Fiche technique : diagonalisation, trigonalisation.

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Fiche technique : diagonalisation, trigonalisation."

Transcription

1 Fche technque 4 : dagonalsaton trgonalsaton - - Fche technque : dagonalsaton trgonalsaton Dagonalsaton de matrces le prncpe pour dagonalser en pratque une matrce est smple : calculer les espaces propres de la matrce et en détermner des bases sauf théorème prélmnare polynôme annulateur scndé à racnes smples matrce symétrque réelle etc la dagonalsablté d une matrce en pratque s obtent après le calcul des valeurs propres et des sous-espaces propres et le constat fat sur la dmenson de ces espaces pour un confort de vocabulare et de compréhenson l peut être utle d avor une vson vectorelle du problème et d évoquer l endomorphsme canonquement assocé à la matrce dans : E n ou n suvant le cas Dans les exemples c-dessous la matrce sera notée et l endomorphsme canonquement assocé u exemple : dagonalser : Les valeurs propres de sont données par son polynôme caractérstque χ qu vaut : χ λ λ λ Donc : Spu Sp {} avec valeur propre double us : Vect E et : Vect E et est dagonalsable dagonalsaton vectorelle : Dans la base : B e e e de avec : e - e e la matrce représentatve de u est dagonale et vaut : mat B u D : u est auss dagonalsable S on note : alors la formule de changement de base donne : D On a donc ben dagonalsé Remarque : est c clarement une matrce de passage les bases utlsées et l espace de référence étant ben dentfées dagonalsaton matrcelle drecte : On pose : et : D peut c être nterprétée comme la matrce de passage de la base canonque de M à la base Remarques : la nouvelle base de ou la matrce permettant de dagonalser u n est pas unque la smlarté des objets manpulés fat qu on dentfera couramment les espaces M avec tout comme les deux bases évoquées au dessus et enfn et u

2 Fche technque 4 : dagonalsaton trgonalsaton - - Trgonalsaton de matrces our trgonalser une matrce l n y a pas de méthode globale à connaître a pror La trgonalsablté d une matrce s obtent après le calcul de son polynôme caractérstque et le constat que ce polynôme est scndé sur le corps de référence de la matrce S la matrce est consdérée comme matrce complexe elle est donc toujours trgonalsable on verra les dfférentes stuatons pouvant se présenter pour une matrce Dans les exemples c-dessous on contnuera à noter la matrce étudée et u l endomorphsme canonquement assocé à en pratque l peut être nécessare de précser s l s agt de l endomorphsme de : E n ou de n canonquement assocé à exemple : a deux valeurs propres l une smple l autre double et n est pas dagonalsable Trgonalser la matrce : On trouve et on factorse χ en ajoutant toutes les colonnes à la premère : χ λ λ λ Les espaces propres de sont : Vect E et : Vect E n est pas dagonalsable Trgonalsaton «standard» de : S on chost : e e - e formant avec les deux premers une base de alors l endomorphsme u canonquement assocé à a pour matrce dans cette nouvelle base : * * pusque la trace de étant égale à celle de elle vaut 5 On chost par exemple : e de telle sorte que : e e e sot une base de et : ue e e On en dédut que : mat B u T et avec : on a : T Trgonalsaton de en rédute de Jordan : On conserve les mêmes deux premers vecteurs propres de dans cet ordre et l est possble de trouver e dans de telle sorte que : B e e e sot une base de et : mat B u Le vecteur : e xyz s obtent en résolvant : ue e e sot en traducton matrcelle dans la base canonque en résolvant le système : z y x z y x On trouve alors : x - y z - ce qu lasse encore le chox On peut proposer alors : e -- la famlle : B e e e est ben lbre et : mat B u T sot avec : alors : T

3 exemple : a une valeur propre trple et un espace propre assocé de dmenson Trgonalser la matrce : En développant on trouve : λ pus on détermne l espace propre assocé à cette χ valeur propre trple et on trouve : E Vect n est ben sûr pas dagonalsable car elle aurat été semblable à I : I - I donc égale à I ce qu n est pas le cas Trgonalsaton «standard» de : On chost de même un trosème vecteur de pour qu avec : e et e - on obtenne une base : B e e e de et on peut prendre : e lors : ue - e e ce qu condut à poser : et : T et on a l égalté : - T On peut remarquer que : T I donc qu également : I et : u d E Trgonalsaton de en rédute de Jordan : On peut trouver une base : B e e e de telle que : mat B u T Ce résultat est un théorème mas on va le vérfer en pratque c-dessous our obtenr B on commence par chercher e en remarquant qu on dot avor : e E u donc tel que : u d E e ue e e sot : u d E e e E u e E u avec e e lbre On chost pour ce fare e hors de E u par exemple : e On pose alors : e ue e qu est non nul pusque : e E u En effet c on a ben : e - et : e E u On complète alors e avec e en une base de E u par exemple : e On peut montrer dans le cas général ou vérfer à la man que la famlle : B e e e est toujours lbre donc forme une base de et par constructon : mat B u T S enfn on pose : on a ben fnalement : T exemple 4 : a une valeur propre trple et un espace propre assocé de dmenson Trgonalser la matrce : On trouve et on factorse χ en ajoutant à la premère colonne la trosème : χ λ Le seul espace propre de vaut : E Vect et n est pas dagonalsable ce qu état Fche technque 4 : dagonalsaton trgonalsaton - -

4 encore prévsble pour la même rason que dans l exemple précédent On peut alors procéder par analyse-synthèse pour trgonalser mas le plus smple est d applquer systématquement la technque qu sut Trgonalsaton en rédute de Jordan : On cherche : B e e e base de telle que : ue E u donc tel que : u d E e e tel que : ue e e sot : e ue e et : e tel que : ue e e sot : e ue e donc avec : e E u e dot donc vérfer : u d E e u d E e e et : e eru d E On calcule donc : eru d E et on trouve : I et : eru d E {xyz x z} On chost ans par exemple : e eru d E On pose ensute : e ue e on constate que : e E u Enfn : e ue e on constate que : e E u Ce derner pont état prévsble car : u d E e u d E e d après le théorème de Cayley-Hamlton La famlle : B e e e est alors une base de ce qu on peut montrer dans le cas général ou constater à la man dans ce cas partculer et on a : mat B u T En posant : on a alors : T Remarques : la matrce ou la nouvelle base de permettant de trgonalser n est pas unque dans les deux derners exemples s la matrce admet pour valeur propre trple la valeur α la matrce T semblable à sera égale à celle proposée mas en changeant ses coeffcents dagonaux en α ussance ème de matrce Utlsaton de la dagonalsablté ou de la trgonalsablté : est dagonalsable S est dagonalsable alors : Gl n K D M n K dagonale Dans ce cas : D D exemple 5 : calculer avec : est dagonalsable et en notant : 5 on a : D 4 D où on en dédut : D Fche technque 4 : dagonalsaton trgonalsaton - 4 -

5 Fche technque 4 : dagonalsaton trgonalsaton sot : est trgonalsable S est trgonalsable alors : Gl n K T M n K] trangulare supéreure T - Dans ce cas : D T - Il est plus ntéressant d utlser une rédute de Jordan reprse de l exemple : calculer avec : est trgonalsable et en notant : on a : T us : T - our calculer T on peut procéder par récurrence ou utlser le bnôme de ewton En effet T s écrt : T D avec : D et : D est dagonale nlpotente et D et commutent c est toujours le cas avec une rédute de Jordan Donc : D D D T On en dédut que : reprse de l exemple 4 : calculer avec : est trgonalsable et en notant : on a : T On peut encore écrre : T D avec : n I D et : D est évdemment dagonale nlpotente et D et commutent et comme au-dessus : I T

6 Utlsaton d un polynôme annulateur polynôme caractérstque ou mnmal Les racnes du polynôme annulateur dont on dspose sont smples et donc est dagonalsable reprse de l exemple 5 : pour : on dspose du polynôme caractérstque comme polynôme annulateur sot : χ λ λ λ our : QR [X] X χ Q R avec : R a X b X c et on détermne ces valeurs à l ade des racnes smples de χ : a b c 9a b c - 6a 4b c ce qu donne après résoluton du système : 4 a b c Il sufft alors de calculer pour obtenr : a b c I et de remplacer par les valeurs trouvées reprse de l exemple : pour : on peut vérfer que le polynôme : µ λ λ est un polynôme annulateur pour polynôme «mnmal» our : QR [X] X µ Q R avec : R a X b et on détermne ces valeurs à l ade des racnes smples de µ : a b a b sot : a b pus : a b I Certanes des racnes du polynôme annulateur sont multples reprse de l exemple : pour : on dspose du polynôme caractérstque comme polynôme annulateur qu est c : χ λ λ our : QR [X] X χ Q R avec : R a X b X c mas on ne dspose plus que de deux racnes pour χ : a b c 4a b c On peut alors penser à dérver comme racne double de χ est auss racne de χ : X - χ Q χ Q R et avec la valeur cela donne : - 4a b On résout alors le système formé par ces tros équatons ce qu permet d obtenr : a b 4 c 4 et on obtent enfn : a b c I reprse de l exemple 4 : pour : on a le polynôme annulateur : χ λ partr de : X χ Q a X b X c on utlse alors le fat que est racne de χ χ et χ On dérve alors deux fos l égalté pour obtenr un système qu après résoluton donne : a b c et on termne avec : a b c I Fche technque 4 : dagonalsaton trgonalsaton - 6 -

Devoil libre N 6 2ème TSI 1 Correction

Devoil libre N 6 2ème TSI 1 Correction CPGE- Lycée technque Mohammeda Devol lbre N 6 Correcton Mathématques Exercce 1 : Un compact de R est une parte bornée fermée http://mathscpge.wordpress.com 1 http://mathscpge.wordpress.com CPGE- Lycée

Plus en détail

UE MAT234. Notes de cours sur l algèbre linéaire

UE MAT234. Notes de cours sur l algèbre linéaire UE MAT234 Notes de cours sur l algèbre lnéare Matrces - Systèmes lnéares - Détermnants - Dagonalsaton Dans tout ce document, K désgne ndfféremment le corps des nombres réels IR, ou celu des nombres complexes

Plus en détail

A =

A = Exercces avec corrgé succnct du chaptre 2 (Remarque : les références ne sont pas gérées dans ce document, par contre les quelques?? qu apparassent dans ce texte sont ben défns dans la verson écran complète

Plus en détail

UNIVERSITE DE BOURGOGNE MM5: Analyse Numérique Elémentaire FichedeTDno2

UNIVERSITE DE BOURGOGNE MM5: Analyse Numérique Elémentaire FichedeTDno2 1 UNIVERSITE DE BOURGOGNE MM5: Analyse Numérque Elémentare FchedeTDno2 1 Que peut-on dre d une méthode tératve dont la matrce a un rayon spectral nul? 2 Etuder les méthodes de Jacob et Gauss-Sedel pour

Plus en détail

Les nombres complexes

Les nombres complexes A) Forme algébrque des nombres complexes Théorème (adms) Il exste un ensemble appelé ensemble des nombres complexes, noté, vérfant les tros proprétés suvantes :. content ;. Il exste dans un élément tel

Plus en détail

Corrigés d exercices pour le TD 3

Corrigés d exercices pour le TD 3 Corrgés d eercces pour le TD 3 N héstez pas à relever les éventuelles fautes dans ce document! Sot (E, d) un espace vectorel mun d une dstance vérfant Pour tous, y E et λ R, d(λ, λy) = λ d(, y). Pour tous,

Plus en détail

Exercices d arithmétique

Exercices d arithmétique DOMAINE : Arthmétque NIVEAU : Intermédare CONTENU : Exercces AUTEUR : Noé DE RANCOURT STAGE : Cachan 011 (junor) Exercces d arthmétque Exercce 1 - Énoncés - a) Trouver tous les enters n N qu possèdent

Plus en détail

Fractions rationnelles

Fractions rationnelles Bblothèque d exercces Énoncés L Feulle n 8 Fractons ratonnelles Exercce Décomposer + 4 Décomposer + + + Décomposer + + + 4 Décomposer 4 + + 5 Décomposer 4 6 Décomposer 5 + 4 + 7 Décomposer 5 + 4 + ( )

Plus en détail

FACTORISATION DE POLYNÔMES SUR DES CORPS FINIS

FACTORISATION DE POLYNÔMES SUR DES CORPS FINIS FACTORISATION DE POLYNÔMES SUR DES CORPS FINIS 1. Introducton La factorsaton est l un des ponts où l analoge entre nombres enters et polynômes se rompt. Par exemple, en caractérstque nulle, on peut trouver

Plus en détail

EXERCICE 1. SOLUTION (5 i ) (2 + 3 i ) (1 i 5) (5 4 i )(3 + 6 i ). 3 i ; 1

EXERCICE 1. SOLUTION (5 i ) (2 + 3 i ) (1 i 5) (5 4 i )(3 + 6 i ). 3 i ; 1 EXERCICE 1. Détermner (x + y ), représentaton cartésenne du nombre complexe : 1.1. (5 ) ; ( + ) ; (1 5 ). 1.. (5 )( + 6 ); ( + ) ( ). 1.. 1.. 1.5. 1+ ; 1 ; +. 1+ 7 + + + 1. 1+ α ( α + β ) α + ( α ; ; (α,β)

Plus en détail

Nombre dérivé d une fonction (2) Plan du chapitre

Nombre dérivé d une fonction (2) Plan du chapitre Nombre dérvé d une foncton (2) Plan du captre Introducton : Nous poursuvons l étude des tangentes en procédant par pettes touces. Dans le captre précédent, nous avons défn la noton de nombre dérvé d une

Plus en détail

NOMBRES COMPLEXES EXERCICE 1. EXERCICE 2. EXERCICE 3. EXERCICE 4. 3 i ; 1. Déterminer (x + y i), représentation cartésienne du nombre complexe : i 1

NOMBRES COMPLEXES EXERCICE 1. EXERCICE 2. EXERCICE 3. EXERCICE 4. 3 i ; 1. Déterminer (x + y i), représentation cartésienne du nombre complexe : i 1 NOMBRES COMPLEXES EXERCICE 1 Détermner (x + y ), représentaton cartésenne du nombre complexe : 11 (5 ) ; ( + ) ; (1 5 ) 1 (5 4 )( + 6 ); (4 + ) (4 ) 1 14 15 ; 1 ; + 7 + + + 1 α ( α + β ) α + ( α ; ; (α,β)

Plus en détail

L ANOVA (complements)

L ANOVA (complements) L ANOVA (complements) On utlse le t de Student pour comparer deux moyennes. Cependant s on veut comparer tros moyennes ou plus l devent nécessare d utlser l Analyse de Varance smple ou l ANOVA 1. L applcaton

Plus en détail

L ANOVA ( ceci est un complément)

L ANOVA ( ceci est un complément) L ANOVA ( cec est un complément) On utlse le t de Student pour comparer deux moyennes. Cependant s on veut comparer tros moyennes ou plus l devent nécessare d utlser l Analyse de Varance smple ou l ANOVA

Plus en détail

Contrôle du mardi 21 janvier 2014 (3 heures 30) 1 ère S1. Partie B

Contrôle du mardi 21 janvier 2014 (3 heures 30) 1 ère S1. Partie B 1 ère S1 ontrôle du mard 1 janver 01 ( heures 0) Le barème est donné sur 0. Parte B Pour la fabrcaton d un lvre, un mprmeur dot respecter sur chaque page des marges de cm à drote et à gauche, cm en haut

Plus en détail

Nombres complexes. Q x2 = 1 2. est dans l ensemble plus grand des rationnels Q. Continuons ainsi, l équation x 2 = 1 2

Nombres complexes. Q x2 = 1 2. est dans l ensemble plus grand des rationnels Q. Continuons ainsi, l équation x 2 = 1 2 Exo7 Nombres complexes Les nombres complexes. Défnton............................................................... Opératons...............................................................3 Parte réelle

Plus en détail

EC 2 Étude des circuits linéaires en régime continu

EC 2 Étude des circuits linéaires en régime continu Étude des crcuts lnéares en régme contnu PS 2016 2017 Objet du chaptre : donner des outls pour détermner l état électrque d un crcut : potentels des dfférents nœuds par rapport à un nœud chos comme référence

Plus en détail

1 ère S Exercices sur les limites (3)

1 ère S Exercices sur les limites (3) ère S Exercces sur les lmtes () n donne c-dessous la courbe représentatve d une oncton déne sur l ntervalle ]0 ; + [ Dre s : - l axe des ordonnées semble asymptote à la courbe ; - la drote semble asymptote

Plus en détail

Solution : 1. Soit y = α + βt, l équation de la droite considérée. Le problème de régression linéaire s écrit. i=1 2(α + βt i b i )t i

Solution : 1. Soit y = α + βt, l équation de la droite considérée. Le problème de régression linéaire s écrit. i=1 2(α + βt i b i )t i Exercces avec corrgé succnct du chaptre 3 (Remarque : les références ne sont pas gérées dans ce document, par contre les quelques?? qu apparassent dans ce texte sont ben défns dans la verson écran complète

Plus en détail

IFT1575 Modèles de recherche opérationnelle (RO) 7. Programmation non linéaire

IFT1575 Modèles de recherche opérationnelle (RO) 7. Programmation non linéaire IFT575 Modèles de recherche opératonnelle (RO 7. Programmaton non lnéare Fonctons convees et concaves Sot et deu ponts dans R n Le segment de drote jognant ces deu ponts est l ensemble des ponts + λ( -

Plus en détail

Circuits en courant continu

Circuits en courant continu Crcuts en courant contnu xercce On consdère les tros montages suvants : montage montage montage ) Montrer que le premer montage équvaut à une résstance unque eq telle que : + eq ) Montrer que le deuxème

Plus en détail

TD 1. Z la prévision de Monsieur Sûr-de-lui. On donne les lois jointes de (X, Y ) et celles de (X, Z) dans les deux tableaux suivants Elles

TD 1. Z la prévision de Monsieur Sûr-de-lui. On donne les lois jointes de (X, Y ) et celles de (X, Z) dans les deux tableaux suivants Elles TD 1 Exercce 1. Dans la vallée de la mort : l pleut en moyenne 1 jour sur 100. la météo prédt 3 jours de plue sur 100. chaque fos qu l pleut, la météo l a prévu. Monseur Sûr-de-lu prévot qu l ne pleut

Plus en détail

1 ère S Exercices sur les dérivées des fonctions de référence

1 ère S Exercices sur les dérivées des fonctions de référence ère S Eercces sur les dérvées des onctons de réérence ans chaque cas, donner la dérvée de la oncton. n se contentera d écrre '.... ) est la oncton déne sur par 0. ) est la oncton déne sur par 6.. ) est

Plus en détail

A. Équations algébriques réciproques

A. Équations algébriques réciproques SESSION 22 Concours commun Mnes-Ponts PREMIÈRE EPREUVE. FILIÈRE MP Sot P R n []. Posons P = A. Équatons algébrques récproques n a k k. k= n u n P = n a n k k = a k n k = k= k= n a n k k. u n P est effectvement

Plus en détail

NOMBRES COMPLEXES. L addition et la multiplication de 2 entiers naturels donnent un entier naturel.

NOMBRES COMPLEXES. L addition et la multiplication de 2 entiers naturels donnent un entier naturel. NOMRES OMPLEXES RPPELS SUR LES ENSEMLES DE NOMRES Ensemble N : ensemble des enters naturels. L addton et la multplcaton de enters naturels donnent un enter naturel. La soustracton et la dvson de enters

Plus en détail

2. Simplification d un rapport de nombres complexes.

2. Simplification d un rapport de nombres complexes. chaptre. Calcul du module et de l argument d une pussance d un nombre complexe.. Smplfcaton d un rapport de nombres complexes. 3. Pour montrer qu un nombre complexe est réel. 4. Pour montrer qu un nombre

Plus en détail

1 2 i. ; z10 = 1 + i + i 2 + i 3 + i 4 + i 5 + i 6.

1 2 i. ; z10 = 1 + i + i 2 + i 3 + i 4 + i 5 + i 6. EXERCICES TERMINALE S LES NOMBRES COMPLEXES PREMIERS EXERCICES: 1 Calculs dans : Ecrre les nombres complexes suvant sous la forme a + b où a et b sont des réels : 1 = ; = ; = ( + )( + ) ; = 6 = 1 1+ ;

Plus en détail

Dire qu un entier naturel est premier signifie qu il admet deux diviseurs : un et lui-même.

Dire qu un entier naturel est premier signifie qu il admet deux diviseurs : un et lui-même. Vdoune Termnale S Chaptre spé Arthmétque PPCM et nombres premers Nombre premer Dre qu un enter naturel est premer sgnfe qu l admet deux dvseurs : un et lu-même. Zéro est-l un nombre premer? Un est-l un

Plus en détail

1 L1 MATHÉMATIQUES FINANCIÈRES

1 L1 MATHÉMATIQUES FINANCIÈRES 1 1 L1 MATHÉMATIQUES FINANCIÈRES 2 Equvalence d effets à ntérêts composés. Deux effets sont équvalents à une date donnée, s escomptés au même taux ls ont à cette date la même valeur actuelle. Un effet

Plus en détail

1 ère S Exercices sur les fonctions de référence

1 ère S Exercices sur les fonctions de référence ère S Eercces sur les fonctons de référence Détermner par le calcul les nombres qu sont confondus avec leur mage par la foncton «carré» Détermner par le calcul les nombres qu sont confondus avec leur mage

Plus en détail

Polynômes en plusieurs indéterminées

Polynômes en plusieurs indéterminées Polynômes en pluseurs ndétermnées Marc SAGE 29 octobre 25 Table des matères La A-algèbre A ( ) 2I 2. Dé ntons................................................. 2.2 Écrture canonque des polynômes...................................

Plus en détail

TD6 : groupe linéaire, homographies, simplicité

TD6 : groupe linéaire, homographies, simplicité École Normale Supéreure 1ère année Année 2015-2016 Algèbre 1 TD6 : groupe lnéare, homographes, smplcté Exercces : à préparer à la mason avant le TD, seront corrgés en début de TD. Exercces : seront tratés

Plus en détail

Terminale S Les ROC : complexe/géométrie à connaître.

Terminale S Les ROC : complexe/géométrie à connaître. Termnale S Les ROC : complexe/géométre à connaître Vous trouvere c les démonstratons que vous ave offcellement dues fare en cours (dans le programme) Il est mportant de précser que cela ne sgnfe en aucun

Plus en détail

Réseaux linéaires. C Fig 1-a Fig 1-b Fig 1-c Fig 1-d

Réseaux linéaires. C Fig 1-a Fig 1-b Fig 1-c Fig 1-d etour au menu éseaux lnéares Défntons Un réseau électrque lnéare est un ensemble de dpôles lnéares, relés par des conducteurs de résstance néglgeable. On suppose que le réseau content au mons un générateur.

Plus en détail

1 ère S Fonctions de référence

1 ère S Fonctions de référence ère S Fonctons de référence Cette méthode est dffcle à mettre en œuvre pour certanes fonctons ; nous étuderons un ben melleur moyen cette année. 4 ) Tableau de varaton (pour mémore) bectfs : - Revor et

Plus en détail

-1-1. Consigne de tension A = 1 A = A = 0,476. Puis, on effectue la somme des tracés des gains en db et la somme des phases.

-1-1. Consigne de tension A = 1 A = A = 0,476. Puis, on effectue la somme des tracés des gains en db et la somme des phases. Exercce 5 ASSERVISSEMENT DE VITESSE CORRECTION AVEC UN P.I.D. -Détermner K 3 K = 3 t mn K = 5 t mn V 6 V - Détermner les transmttances G, T,et A, avec C(p) =, sachant que le gan en boucle ouverte est égal

Plus en détail

Propriétés d une matrice stochastique précisées par son algèbre

Propriétés d une matrice stochastique précisées par son algèbre Proprétés d une matrce stochastque précsées par son algèbre J. Parzet 15 anver 2013 Une matrce stochastque est une matrce carrée réelle, à coeffcents postfs dont la somme des termes de toute lgne vaut

Plus en détail

Les nombres complexes

Les nombres complexes LGL Cours de Mathématques 6 Les nombres complexes Notaton, Défnton A Introducton et notatons Dans l'ensemble des enters naturels, une équaton telle que x + 5 admet une soluton. Pour que l'équaton x + 5

Plus en détail

CHAPITRE V. Formes différentielles sur les variétés. I. Espace tangent

CHAPITRE V. Formes différentielles sur les variétés. I. Espace tangent CHAPITRE V Formes dfférentelles sur les varétés I. Espace tangent Sot M une varété dfférentable de dmenson n et U = (U, ϕ ) I un atlas de M. On note par ϕ j := ϕ ϕ 1 j le dfféomorphsme entre les ouverts

Plus en détail

Chap. C1 : structure et arithmétique dans Z (fin)

Chap. C1 : structure et arithmétique dans Z (fin) Chap. C1 : structure et arthmétque dans Z (fn) The aftermath of Gauss... or the math after Gauss (P. Rbenbom, My Number My frends). V Nombres premers 1) Proprétés élémentares a) Défnton : () Termnologe

Plus en détail

4 METHODES D ANALYSE DES RESEAUX

4 METHODES D ANALYSE DES RESEAUX V V 4 METHOES LSE ES ESEUX 4. Introducton L analyse des réseaux en régme établ ou permanent repose sur les los ntrodutes dans les chaptres précédents : - la lo des malles : la somme des dfférences de potentel

Plus en détail

Nombres premiers et décomposition primaire

Nombres premiers et décomposition primaire [htt://m.cgeduuydelome.fr] édté le 10 jullet 2014 Enoncés 1 ombres remers et décomoston rmare Exercce 1 [ 01219 ] [correcton] Montrer que les nombres suvants sont comosés : a) 4n 3 + 6n 2 + 4n + 1 avec

Plus en détail

Module Mathématiques pour l Informatique_ partie 10

Module Mathématiques pour l Informatique_ partie 10 Module Mathématques pour l Informatque_ parte 0 Zahra Royer-SafouanaTabou Rappel : On appelle ans les ensembles de nombres : (cf. Wpéda), ensemble des enters naturels., ensemble des enters relatfs., ensemble

Plus en détail

Correction Mines PC 2 : Problème de Waring

Correction Mines PC 2 : Problème de Waring Correcton Mnes PC : Problème de Warng Glbert Prmet glbertprmet@9onlnefr 9 ma 6 Merc d adresser vos éventuelles remarques et correctons à l adresse c-dessus A Proprétés élémentares du Wronsken On pose d)

Plus en détail

CUEEP Département Mathématiques T902 : Méthode des moindres carrés p1/16

CUEEP Département Mathématiques T902 : Méthode des moindres carrés p1/16 Méthode des mondres carrés Stuaton Le lancer de pods Dx adolescents droters s exercent à lancer le pods, du bras drot pus du bras gauche. Les résultats (dstances en mètres) obtenus sont les suvants : Adolescent

Plus en détail

OUTILS MATHEMATIQUES GLISSEURS & TORSEURS

OUTILS MATHEMATIQUES GLISSEURS & TORSEURS Statque et Cnématque des soldes 0-0 Chaptre Chap: OUTILS THETIQUES GLISSEUS & TOSEUS L'obectf de ce chaptre est de donner brèvement les outls mathématques nécessares à la compréhenson de la sute de ce

Plus en détail

Cours d analyse numérique de C. Bertelle. FMdKdD fmdkdd [à] free.fr

Cours d analyse numérique de C. Bertelle. FMdKdD fmdkdd [à] free.fr Cours d analyse numérque de C Bertelle FMdKdD fmdkdd [à] freefr Unversté du Havre Année 009 00 Table des matères Rappels d algèbre lnéare Espace vectorel Applcatons lnéares et matrces Matrce nverse d une

Plus en détail

Mathématiques B30. Les nombres complexes Module de l élève

Mathématiques B30. Les nombres complexes Module de l élève Mathématques B30 Les nombres complexes Module de l élève 00 Mathématques B30 Les nombres complexes 10 y axe magnare Module de l élève 4+6 x -10 10 axe réel --4 Bureau de la mnorté de langue offcelle 00-10

Plus en détail

AL1 Complexes Séance de TD - Corrigés des exercices -

AL1 Complexes Séance de TD - Corrigés des exercices - AL1 Complexes Séance de TD - Corrgés des exercces - 1 QCM GI FA 01 Test calcul et rotaton GI FA 015 Test 1 Complexes et rotaton GI FC186 015 Test Complexes et cercle 5 GI FC18/6 01 Test - Complexes et

Plus en détail

1 Réponse d un circuit RC série à un échelon de tension

1 Réponse d un circuit RC série à un échelon de tension Lycée Naval, Sup. Sgnaux Physques.. Crcut lnéare du premer ordre Crcut lnéare du premer ordre 1 éponse d un crcut C sére à un échelon de tenson On s ntéresse à la réponse d une assocaton sére {conducteur

Plus en détail

Probabilités. Définition : Chacun des résultats possible d une expérience aléatoire est appelée issue de l expérience.

Probabilités. Définition : Chacun des résultats possible d une expérience aléatoire est appelée issue de l expérience. Probabltés A) Vocabulare.. Expérence aléatore. Défntons : Une expérence est dte aléatore s elle vérfe tros condtons : Elle condut à des résultats possbles qu on est capable de nommer. On ne sat à l avance

Plus en détail

Primitives élémentaires de fonctions élémentaires

Primitives élémentaires de fonctions élémentaires Prmtves élémentares de fonctons élémentares Ahmed Moussaou et Ramanujan Santharoubane Exposé de maîtrse encadré par Franços Loeser Septembre 2008 1 Table des matères 1 Corps dfférentels 3 2 Équatons dfférentelles

Plus en détail

Anneaux et corps Bachelor Semestre 4 Prof. E. Bayer Fluckiger 16 mars Quiz 3

Anneaux et corps Bachelor Semestre 4 Prof. E. Bayer Fluckiger 16 mars Quiz 3 Anneaux et corps Bachelor Semestre 4 Prof. E. Bayer Fluckger 16 mars 2016 Quz 3 Queston 1. Est-ce que les anneaux Z et Q sont somorphes? Non. Par exemple, on a montré Sére 2, Ex.3.1. qu l exste un seul

Plus en détail

Travaux pratiques de Mathématiques. Ajustement

Travaux pratiques de Mathématiques. Ajustement I.U.T de Sant-azare Département de Géne cvl E LETTRES CAPITALES OM(S) : PRÉOM(S) : GROUPE : Travaux pratques de Mathématques Ajustement Travaux pratques de Mathématques joseoun.fr Page 1 / 7 Travaux pratques

Plus en détail

Mesures Physiques Intégrales triples Calcul de volumes et d hyper-volumes

Mesures Physiques Intégrales triples Calcul de volumes et d hyper-volumes IUT ORSAY Mesures Physques Intégrales trples Calcul de volumes et d hyper-volumes Cours du ème semestre A. omane «cubable» On dt qu un domane est cubable quand son volume peut être approché par une subdvson

Plus en détail

C 15/03/2017. Cahier Technique E. Tests de conformité 1/7

C 15/03/2017. Cahier Technique E. Tests de conformité 1/7 Indce de Révson Date de mse en applcaton C 15/03/017 Caher Technque E 1/7 Table des matères TABLE DES MATIERES... 1 1 PRICIPE... CRITERES DE COFORMITE DE LA VALEUR THERMIQUE DECLAREE....1 TEST DE COFORMITE

Plus en détail

»

» Leçon 1 Nombres enters En lsant avec attenton le lvre Le calcul et la géométre au temps des pharaons de M. ROUSSELET, Thomas apprend que «Les premers nombres qu ont été écrts en Égypte datent de 5 000

Plus en détail

arxiv:math/ v1 [math.ra] 9 Aug 2002

arxiv:math/ v1 [math.ra] 9 Aug 2002 arxv:math/874v [mathra] 9 Aug Matrces autosmlares Roland Bacher November 8, 3 Résumé: Cette note ntrodut une classe de matrces dont les détermnants sont facles à calculer L exemple le plus frappant est

Plus en détail

Exercices type Bac Nombres complexes

Exercices type Bac Nombres complexes Exercces type Bac Nombres complexes Exercce 1 : Pour chaque queston, une seule réponse est exacte. Chaque réponse juste rapporte 1 pont. Une absence de réponse n est pas sanctonnée. Il sera retré 0,5 pont

Plus en détail

1 ère S Le plan muni d un repère

1 ère S Le plan muni d un repère 1 ère S Le plan mun d un repère Ce chaptre fat sute à celu des vecteurs du plan bectf : consolder et compléter les bases de géométre analtque dans le plan de seconde (repérage des ponts dans le plan) I

Plus en détail

2. Loi de propagation des erreurs (cas simples)

2. Loi de propagation des erreurs (cas simples) Lycée Blase-Cendrars/Physque/Labos/DC///04 Labos de physque : Mesures - Propagaton d erreurs - Mesures répéttves - Statstques. Prncpe de la mesure en physque Une mesure est toujours mprécse. La précson

Plus en détail

Les transformations élémentaires

Les transformations élémentaires Les transformatons élémentares ransformatons Utlsatons : Déplacement d'un objet dans une scène Déplacement d'un observateur par rapport a une scène éplcaton d'un motf ou d'un objet Déformaton d'un objet

Plus en détail

Résumé. Sommaire. «Toute théorie n est bonne qu à condition de s en servir pour passer outre». André Gide in «Journal».

Résumé. Sommaire. «Toute théorie n est bonne qu à condition de s en servir pour passer outre». André Gide in «Journal». «Toute théore n est bonne qu à condton de s en servr pour passer outre». ndré Gde n «Journal». Résumé L usage des los de Krchhoff permet de toujours trouver les tensons et courants dans un réseau électrque

Plus en détail

Probabilités, Statistique et Calcul Stochastique

Probabilités, Statistique et Calcul Stochastique Ecole Natonale des Scences Applquées de Tétouan (ENSATE) Année Unverstare: 204-205 robabltés, Statstque et Calcul Stochastque e-mal: m_merouan@yahoo.fr Ste Web: elmerouan.jmdo.com rogramme robabltés et

Plus en détail

Contrôle du lundi 19 novembre 2012 (45 minutes) 1 ère S1

Contrôle du lundi 19 novembre 2012 (45 minutes) 1 ère S1 1 ère S1 Contrôle du lund 19 novembre 01 (45 mnutes) Compléter le tableau c-dessous donnant la dstrbuton de fréquences pour cet échantllon (calculs au broullon, fréquences sous forme décmale) : Prénom

Plus en détail

Utilisation du solveur d Excel

Utilisation du solveur d Excel Cycle ICM : 1A Pôle nformatque Cours applcatons nformatques Auteur : Bertrand Jullen 22/12/04 Utlsaton du solveur d Excel Le but de ce TP est de famlarser les élèves avec la foncton Solveur d Excel, dans

Plus en détail

Équations et racines

Équations et racines CHAPITRE III Équatons et racnes III.1. Quadratques et cubques Équatons quadratques. On dspose de formules pour la résoluton des équatons quadratques (c est à dre du second degré). En fat, la résoluton

Plus en détail

10 I. INTRODUCTION À LA THÉORIE DES GROUPES

10 I. INTRODUCTION À LA THÉORIE DES GROUPES 10 I. INTRODUCTION À LA THÉORIE DES GROUPES () Pour tout x H, x 1 H Cela sgnfe que la restrcton de à H H que l on note encore mas qu l faudrat en toute rgueur désgner par H donne une lo nterne de H et

Plus en détail

Cours 2. Méthode des différences finies Approche stationnaire

Cours 2. Méthode des différences finies Approche stationnaire Cours Méthode des dfférences fnes Approche statonnare Technque de dscrétsaton en D Constructon du système Prse en compte des condtons aux lmtes Noton de convergence Extenson au D Verson 09/006 (E.L.) NF04

Plus en détail

INTRODUCTION A L ETUDE DES SPECTROMETRIES DE L ATOME

INTRODUCTION A L ETUDE DES SPECTROMETRIES DE L ATOME INTRODUCTION A ETUDE DES SPECTROMETRIES DE ATOME Nveaux énergétques de l atome et transtons permses C.J. Ducauze, H. Ths et X.T. Bu INTRODUCTION A ETUDE DES SPECTROMETRIES DE ATOME Nveaux énergétques de

Plus en détail

Probabilités et Statistique

Probabilités et Statistique robabltés et Statstque rogramme Calcul des probabltés: Espaces probablsés Varables aléatores dscrètes et contnues Los usuelles dscrètes et contnues Statstque Applquée: Convergences stochastques Approxmatons

Plus en détail

Polynômes bis. Marc SAGE. 18 décembre Continuité des racines 3. 4 Une fonction polynomiale en ses variables est polynomiale 4

Polynômes bis. Marc SAGE. 18 décembre Continuité des racines 3. 4 Une fonction polynomiale en ses variables est polynomiale 4 Polynômes bs Marc SAGE 8 décembre 25 Table des matères Sur la nullté des polynômes à n ndétermnées 2 2 Une foncton localement polynomale est un polynôme 2 3 Contnuté des racnes 3 4 Une foncton polynomale

Plus en détail

( ), dans les conditions standards, va

( ), dans les conditions standards, va THERMOCHIMIE R. Duperray Lycée F.BUISSON PTSI U T I L I S A T I O N D E S T A B L E S D E S G R A N D E U R S T H E R M O D Y N A M I Q U E S S T A N D A R D Dans le chaptre précédent, nous avons vu l

Plus en détail

Méthode des résidus pondérés

Méthode des résidus pondérés Produt propre d un opérateur Méthode des résdus pondérés Ecrture d un opérateur u avec Ω les coordonnées spatales x, y, z p dans Ω Pour un opérateur lnéare u u u u avec α, β des nombres quelconques Pour

Plus en détail

M3 ÉNERGIE(S) D UN POINT

M3 ÉNERGIE(S) D UN POINT M3 ÉNERGIE(S) D UN POINT MATÉRIEL OBJECTIFS Les prncpes fondamentaux de la dynamque ou los de Newton ( Cf. Cours M2) permettent d établr les équatons dfférentelles du mouvement, leur résoluton fournt l

Plus en détail

Texte Urnes et particules

Texte Urnes et particules Unverstés Rennes I Épreuve de modélsaton - Agrégaton Externe de Mathématques 2009. Page n 1. Texte Urnes et partcules À la fn du 19 ème sècle et au début du suvant, la tempête fat rage autour de la théore

Plus en détail

Le fabuleux destin des équations différentielles linéaires :

Le fabuleux destin des équations différentielles linéaires : Le fabuleux destn des équatons dfférentelles lnéares : au-delà du premer ordre - Page 1 sur 14 A propos de ce qu sut Une équaton dfférentelle est une égalté lant une foncton et une, vore pluseurs de ses

Plus en détail

Exercices sur les courbes en coordonnées polaires dans le plan

Exercices sur les courbes en coordonnées polaires dans le plan Exercces sur les courbes en coordonnées polares dans le plan Dans le plan orenté P mun d un repère orthonormé drect,, polare sn. ) Détermner les symétres de ; en dédure un domane d étude. ) Etuder et tracer

Plus en détail

CHAPITRE 7. CALCUL DES INDICATEURS DU SOUTIEN AUX CONSOMMATEURS

CHAPITRE 7. CALCUL DES INDICATEURS DU SOUTIEN AUX CONSOMMATEURS Chaptre 7 : Calcul des ndcateurs du souten aux consommateurs CHAITRE 7. CALCUL DES INDICATEURS DU SOUTIEN AUX CONSOMMATEURS 313. À l nstar du chaptre 6, le présent chaptre décrt en détal la méthode à applquer

Plus en détail

Editions ENI. Access Collection Référence Bureautique. Extrait

Editions ENI. Access Collection Référence Bureautique. Extrait Edtons ENI Access 2010 Collecton Référence Bureautque Extrat Relatons entres les tables Tables Établr une relaton entre deux tables Les dfférents types de relaton entre les tables Établr une relaton entre

Plus en détail

Méthodes en Sciences-Physiques. Programme de Première S.

Méthodes en Sciences-Physiques. Programme de Première S. Méthodes en Scences-Physques. Programme de Premère S. Comment réalser et utlser les tableaux d avancement en Premère S Équaton de la réacton 3Ag + aq + AsO 3 4 aq Ag 3 AsO 4 s quanttés de matère en mol

Plus en détail

OUTILS MATHEMATIQUES L1 SVG Paul Broussous

OUTILS MATHEMATIQUES L1 SVG Paul Broussous UTILS MATHEMATIQUES L1 SVG 1 Paul Broussous Chaptre II. Nombres complees Défnton. L ensemble C des nombres complees est formé des epressons de la forme +, et nombres réels avec les règles : (Egalté) +

Plus en détail

Refroidissement d un liquide et horloge de température

Refroidissement d un liquide et horloge de température ACTUALITÉS PÉDAGOGIQUES 151 Refrodssement d un lqude et horloge de température LYCÉE Lycée Baudelare - 74960 Cran-Gevrer (Grenoble) PARTICIPANTS Professeurs Glles GALLIN-MARTEL, professeur de physque ;

Plus en détail

Partie 1. Manipulations. Plan. Approche expérimentale de la tangente à une courbe. 1 ère S

Partie 1. Manipulations. Plan. Approche expérimentale de la tangente à une courbe. 1 ère S 1 ère S pproche epérmentale de la tangente à une courbe Parte 1 anpulatons Dans toute cette parte, on consdère la courbe de la foncton «carré» dans le plan mun d un repère. Plan Parte 1 anpulatons I. Tracé

Plus en détail

COURS REPRÉSENTATIONS

COURS REPRÉSENTATIONS COURS REPRÉSENTATIONS STÉPHANE LAMY Table des matères Théore générale. Développement : Le cube et les représentatons de S 4 5 2. Développement : Structure des groupes abélens fns 8 3. Développement : Théorème

Plus en détail

Cours de Calcul numérique MATH 031

Cours de Calcul numérique MATH 031 Cours de Calcul numérque MATH 03 G. Bontemp, A. da Slva Soares, M. De Wulf Département d'informatque Boulevard du Tromphe - CP22 http://www.ulb.ac.be/d Valeurs propres en pratque. Localsaton. Méthode de

Plus en détail

Nombre dérivé d une fonction (1) Plan du chapitre. Le I. Exemple. Fiche sur tangente surtout au début

Nombre dérivé d une fonction (1) Plan du chapitre. Le I. Exemple. Fiche sur tangente surtout au début Le 4-3-016 Nombre dérvé d une foncton (1) Fce sur tangente surtout au début ben donner le dfférentes motvatons du captre aspect TICE Introducton : Dans le captre précédent, nous avons défn la tangente

Plus en détail

VI INERTIE GEOMETRIE DES MASSES

VI INERTIE GEOMETRIE DES MASSES VI INERTIE EOMETRIE DE ME Dans l étude de la dynamque des systèmes matérels et des soldes l est mportant d étuder la répartton géométrque des masses, afn d exprmer smplement les concepts cnétques qu apparassent

Plus en détail

Modèle TCP/IP B.E. n 1. Routage et interconnexion

Modèle TCP/IP B.E. n 1. Routage et interconnexion Modèle TCP/IP B.E. n 1 Routage et nterconnexon Dans une premère phase, une nterconnexon basée sur IP et sur les lasons exstantes est mse en place. Une deuxème étape consstera à défnr à partr d une adresse

Plus en détail

Exercice 1 : Classification, d un point de vue général (4 points)

Exercice 1 : Classification, d un point de vue général (4 points) Corrgé du Devor survellé de Reconnassance de Formes I3 Informatque Mard 8 anver 003 - durée : heures Tous documents autorsés Noté sur 30 ponts (/0 Exercce : Classfcaton, d un pont de vue général ( ponts

Plus en détail

Factorisation. Résolution de

Factorisation. Résolution de Factorsaton LU Pour smpl er la présentaton de l'algorthme, on ne va pas tenr compte d'éventuelles permutatons, n de l'ntalsaton des lu() de Sclab c. help lu. Note la commande permutatons, Factorsaton LU

Plus en détail

Leçon 1. Statistiques

Leçon 1. Statistiques Leçon 1 Statstques Lors d une séance de saut en hauteur, le professeur d EPS a relevé, en centmètres, les performances c-dessous : 110-115-10-110-100-110-15-15-100-95-135-105-1-110-95-100-110-85-85-105-140-15-100-135-105-1-135-115-10-135

Plus en détail

ça s écrit comme ça se prononce la classe 3

ça s écrit comme ça se prononce la classe 3 ça s écrt comme ça se prononce! PRÉSENTATION Ça s écrt comme ça se prononce! est un outl de producton de mots. Il a pour but de rendre les élèves capables, dès la fn de la Grande Secton de maternelle,

Plus en détail

Le sujet s articulait autour de trois performances attendues du robot, toutes liées à sa vitesse de marche.

Le sujet s articulait autour de trois performances attendues du robot, toutes liées à sa vitesse de marche. - EPREUVE DE SCIENCES INDUSTRIELLES 5.1 - Épreuves écrtes - flères MP I. Analyse du sujet Le sujet s appuyat sur le robot humanoïde Lola développé par l unversté de Munch. Ce projet de recherche s attache

Plus en détail

Établir une relation entre deux tables

Établir une relation entre deux tables Access 2013 Tables Relatons entre les tables Access 2013 Établr une relaton entre deux tables Les dfférents types de relaton entre les tables Établr une relaton entre les tables de la base de données va

Plus en détail

Géométrie des masses

Géométrie des masses Cours - éométre des masses CE M éométre des masses ommare éométre des masses... Masse et nerte d un sstème... 3. Notons d nert... 3. Masse... 3.3 Centre d'nerte centre de gravté... 4.4 Algorthme de calcul

Plus en détail

Séminaire Henri Cartan

Séminaire Henri Cartan Sémnare Henr Cartan H CARTAN Détermnaton des algèbres H (π,n;z 2 ) et H (π,n;z 2 ) ; groupes stables modulo p Sémnare Henr Cartan, tome 7, n o 1 (1954-1955), exp n o 10, p 1-8

Plus en détail

Corrigé Exercice 1 : TRAIN CYLINDRIQUE.

Corrigé Exercice 1 : TRAIN CYLINDRIQUE. TD 21 corrgé - Lo E-S pour les réducteurs et multplcateurs de vtesse à tran smple Page 1/6 CORRIGÉ EXERCICE 1 : TRAIN CYLINDRIQUE.... 1 Exemple 1.1 : Engrenages cylndrques smples.... 1 Exemple 1.2 : Motoréducteur

Plus en détail

Circuits linéaires du premier ordre

Circuits linéaires du premier ordre Électrcté - haptre 2 rcuts lnéares du premer ordre Introducton... 2 I Étude d un dpôle sére...3 1 omportements lmtes d un condensateur...3 2 harge d un condensateur : réponse d un dpôle à un échelon de

Plus en détail