TS 2, Correction Bac Blanc n o 2

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "TS 2, Correction Bac Blanc n o 2"

Transcription

1 TS, Correction Bc Blnc n o Exercice Nouvelle-Clédonie, mrs extrit) points Restitution Orgnisée de Connissnces On utiliser le résultt suivnt : les solutions de l éqution différentielle E ) y = y où R sont les fonctions g définies sur R pr g x) = Ke x où K R. Le but de cette prtie est de déterminer les solutions de l éqution différentielle E) y = y + b où R et b R.. L fonction u définie sur R pr ux) = b : Donc u est une solution de E). u x) = et b + b = ux) + b =. Soit f une fonction définie et dérivble sur R. Supposons que f est solution de E) : f x) = f x) + b = f x) u x) = f u) x) = f u)x) = f x) ux) + b b u x) = ux) + b donc f u est solution de E ).. Supposons que f u est solution de l éqution différentielle y = y f u) x) = f x) u x) = f u)x) = f x) ux) = f x) + b ) ux) + b) = f x) + b ) = f }} x) }} donc f est solution de E). Ainsi : f est solution de E) si et seulement si f u est solution de l éqution différentielle y = y. 4. Solutions de l éqution différentielle E) : Pour toute solution f de E), f u est solution de E ). Donc, toutes les solutions f de E) vérifient : f x) = ux) + Ke x où K R. Ainsi, les solutions f de y = y + b sont f x) = b + Kex où K R. Exercice n o Polynésie septembre 7 points Prtie A Question de cours Rppel de l formule d intégrtion pr prties : ux)v x)d x = [ux)vx)] b u x)vx)d x

2 Démonstrtion : Nous vons : ux)vx)) = u x)vx) + ux)v x) ux)v x) = ux)vx)) u x)vx) Ainsi, en utilisnt l propriété de linérité de l intégrtion, on obtient : Prtie B ux)vx)) u x)vx) ) dx = ux)vx)) dx. ) Coordonnées des points communs à C et C : On résout dns R l éqution : u x)vx) ) dx = [ux)vx)] b u x)vx) ) dx f x) = g x) x ) e x = [ x ) x ) e x ] = x ) = x = x = e x = x = ln ) x = ln ) C et C ont donc deux points communs de cordonnées A ; ) et B ln ; b) Positions reltives de C et C sur R. Soit d l fonction définie sur R pr dx) = f x) g x) = x ) e x [ x ) = x ) e x ]. x ), le signe de dx) est donc celui de e x. Or e x > e x > x > ln x < ln x < ln. ln ) ) ) ). Conclusion : C est u dessus de C sur ] ; ln [ ; et C est u dessous de C sur ] ln ; [. On vu dns l question précédente que les deux courbes ont deux points communs.. ) Clcul de I = f x) dx : ux) = x ) v x) = e x = u x) = x ) Soit vx) = e x Toutes les fonctions sont continues cr dérivbles sur R ; on peut donc intégrer pr prties : I = [ x ) e x] x ) e x) dx = [ x ) e x] + x ) e x dx Soit J = x ) e x dx et intégrons à nouveu pr prties : Soit ux) = x ) u x) = v x) = e x = vx) = e x Donc J = [ x )e x ] + Finlement : e x dx = [ x )e x] + [ e x] = [ x )e x e x]. I = [ x ) e x x )e x e x] = [ e x x ) + x ) + )] = e

3 b) Clcul, en unités d ire, de l ire de l prtie du pln limitée pr les courbes C, C et les droites d équtions x = et x = : On vu à l question. b. que sur l intervlle [ ; ], C est u dessous de C. L ire cherchée est donc égle, en unités d ire, à l intégrle : [ ] x ) x ) e x dx = x ) dx [ ] y 7 = x ) x ) e x dx I = e ) = e 6 5 C 4 B A C x Prtie C On considère l suite u n ) définie pour tout entier nturel n non nul pr : u n = x ) n e x dx.. ) Pour tout x de [ ; ] et pour tout entier nturel n non nul, encdrement de x ) n e x : L fonction exponentielle est croissnte : x x e e x e e e x Or x ) n = [ x ) ] n puisque x ). Donc en multiplint de chque côté pr le nombre positif x ) n, on obtient : e x ) n e x x ) n x ) n = x ) n e x x ) n b) Pour tout entier nturel n non nul, encdrement de u n :

4 En utilisnt le résultt démontrer dns l exercice, on obtient :. Comme lim x ) n e x x ) n = n + dx [ x n+ u n n + x ) n e x dx ] u n )n+ n + x ) n dx u n + )n n + u n n + =, pr ppliction du théorème des «gendrmes», on n + lim u n =. n + Exercice n o Métropole L Réunion 6 septembre 5 points. Affixe du point B, imge du point B d ffixe i pr l ppliction f. On z B = i i + i + i = i + i = i i) i) = + i + i) i) = i = i +. L ppliction f n dmet ps de point invrint. Avec z i : z = z x + iy = x + iy i x + iy)x iy + i) = x + iy i x iy + i x + y y x yi + ix + x yi = x + iy i x + y y + ix = x + iy i x + y y = x y ) + y y = y x = y x = y y y + = y x = y y 4y + = x = y y y + = x = y y ) = x = y y = x = z = i Cette solution n est ps vlide, puisque pr définition z i.. ) Pour tout nombre complexe z, z i = z + i : On z + i = z + i) = z + i) = z i. le conjugué d une somme est égl à l somme des conjugués.) b) OM = et interpréttion géométrique de ce résultt : D près l églité précédente, on : z = z i z + i = z i z i = OM = z = z i z i = = z i z i puisque le module d un complexe est égl à celui de son conjugué. Tous les points imges pprtiennent u cercle trigonométrique, centré en O et de ryon. c) Pour tout point M distinct de A, clcul de l ngle u ) ; OM : L églité z = z i donne pour les rguments : z i ) z i rgz ) = rg u ) ; OM = u ) [ ; AM u )] ; AM = u ) ; AM z i 4

5 d) Méthode de construction de l imge M d un point quelconque M distinct de A : On vu que le point M pprtient u cercle de centre O et de ryon. D près l question précédente, on double l rgument de z i sur le cercle centré en A de ryon et on reporte cet rgument sur le cercle trigonométrique. Pour cel, on trce un cercle de centre le point J, intersection de l droite AM) et du cercle de centre A et de ryon, et de ryon [JU]. Il coupe le cercle de centre A et de ryon en un utre point M. On trce le prllélogrmme OAM M. 4. Soit d) l droite pssnt pr le point A et dont un vecteur directeur est le vecteur w d ffixe e i π 6. ) Droite d) : fin de simplifier l lecture du dessin, on choisit comme point M de l question précédente, un point de l droite d). Il est évident que l construction de M, pour tout point M du pln distinct de A, est l même. b) Imge pr l ppliction f de l droite d) privée du point A : On vu que pour tout point M de l droite d) distinct de A, un rgument de son imge M est égle à π 6 = π. On ussi démontré que OM =. L imge de l droite d) est donc réduite u seul point du cercle trigonométrique d rgument π : c est le point d ffixe e i π. y d) M J M A u M U u x Exercice n o 4 Antilles-Guyne septembre 5 points On considère l suite de nombres réels u n ) définie sur N pr :. Clcul de u : u =, u = et, pour tout entier nturel n, u n+ = u n+ 4 u n D près l définition u = u 4 u = + 4 = 4. Si l suite étit géométrique, d près les deux premiers termes l rison serit égle à ; or u ) = u. 5

6 Si l suite étit rithmétique, d près les deux premiers termes l rison serit égle à ) = ) ; or u + = 4 = u. Conclusion : l suite u n ) n est ni rithmétique ni géométrique.. On définit l suite v n ) en posnt, pour tout entier nturel n : v n = u n+ u n ) Clcul de v : v = u u = ) =. b) Clcul de v n+ en fonction de v n ; on pour tout nturel n : v n+ = u n+ u n+ = u n+ 4 u n u n+ = u n+ 4 u n = u n+ ) u n = v n c) L suite v n ) est géométrique : v n+ = v n signifie que l suite v n ) est une suite géométrique de premier terme v = et de rison q =. d) Clcul de v n en fonction de n : ) n On donc quel que soit n N, v n = = n.. On définit l suite w n ) en posnt, pour tout entier nturel n : w n = u n v n. ) Clcul de w : w = u = v =. b) Clcul de w n+ en fonction de u n et de v n : On w n+ = u v n + n+ = u n v n+ v n = + u n v n. c) Pour tout n de N, clcul de w n+ en fonction de w n : On pr définition u n v n = w n, donc l églité ci-dessus s écrit : w n+ = + w n. d) L églité précédente montre que l suite w n ) est une suite rithmétique de premier terme w = et de rison r =. 4. Clcul de u n : On donc w n = w + n = + n. On trouvé que w n = n = u n = u n = n u v n. n n Donc u n = n n, cr n quel que soit n N. k=n 5. Clcul de S n = u k = u + u + + u n : k= Démonstrtion pr récurrence : S = u = et + = = =. L formule est vrie u rng. Supposons que, pour tout nturel k, on it : S k = k i= u i = u + u + + u k = k + k 6

7 k + ) + Montrons que S k+ = k+ = k + 5 k+ : S k+ = S k + u k+ = k + k + ) 4k 6 + k + k + k+ = + k+ = + k 5 k+ = k + 5 k+ L formule est vrie u rng k +. On donc démontré pr récurrence que pour tout n de N : S n = n + n. 7

Corrigé du baccalauréat S Pondichéry 21 avril 2010

Corrigé du baccalauréat S Pondichéry 21 avril 2010 Corrigé du bcclurét S Pondichéry 2 vril 2 EXERCICE Commun à tous les cndidts Prtie A : Restitution orgnisée de connissnces 6 points f et g sont deux fonctions continues sur un intervlle [ ; b] donc g f

Plus en détail

Sujet de Bac 2011 Maths S Obligatoire & Spécialité Polynésie

Sujet de Bac 2011 Maths S Obligatoire & Spécialité Polynésie Sujet de Bc 20 Mths S Oligtoire & Spécilité Polynésie Exercice : 5 points Commun à tous les cndidts. Pour chcune des propositions suivntes, indiquer si elle est vrie ou fusse et donner une démonstrtion

Plus en détail

BACCALAURÉAT GÉNÉRAL. Session Pondichéry (avril 2010) MATHÉMATIQUES (obligatoire) Correction. Série : S

BACCALAURÉAT GÉNÉRAL. Session Pondichéry (avril 2010) MATHÉMATIQUES (obligatoire) Correction. Série : S BACCALAURÉAT GÉNÉRAL Session Pondichéry vril ) MATHÉMATIQUES obligtoire) Correction Série : S Durée de l épreuve : 4 heures Coefficient : 7 EXERCICE PARTIE A Soient et b deux réels tels que < b. Soient

Plus en détail

R.O.C. Nombres complexes. Pondichéry Enseignement spécifique. Exercice 4 Enoncé Restitution organisée de connaissances

R.O.C. Nombres complexes. Pondichéry Enseignement spécifique. Exercice 4 Enoncé Restitution organisée de connaissances Nombres complexes R.O.C. Pondichéry 22. Enseignement spécifique. Exercice 4 Prtie A Restitution orgnisée de connissnces Soit z uombre complexe. On rppelle que z est le conjugué de z et que z est le module

Plus en détail

Corrigé du baccalauréat S Pondichéry 21 avril 2010

Corrigé du baccalauréat S Pondichéry 21 avril 2010 Corrigé du bcclurét S Pondichéry vril EXERCICE Commun à tous les cndidts Prtie A : Restitution orgnisée de connissnces 6 points f et g sont deu fonctions continues sur un intervlle [ ; b] donc g f est

Plus en détail

CALCUL INTEGRAL. Ph DEPRESLE. 29 juin Intégrale d une fonction continue et positive sur un segment 2

CALCUL INTEGRAL. Ph DEPRESLE. 29 juin Intégrale d une fonction continue et positive sur un segment 2 CALCUL INTEGRAL Ph DEPRESLE 9 juin 5 Tble des mtières Intégrle d une fonction continue et positive sur un segment Primitives d une fonction sur un intervlle. Primitives, définition...................................

Plus en détail

Limite d une fonction à l infini

Limite d une fonction à l infini CHAPITRE 3 LIMITES DE FONCTIONS ET DE SUITES Limite d une fonction à l infini et s courbe repré-. Limite finie d une fonction à l infini Soit f une fonction définie sur un intervlle [ ; + [ senttive. L

Plus en détail

Chapitre II - Complexes (Partie I)

Chapitre II - Complexes (Partie I) vq vq Forme lgérique d un nomre complexe Chpitre II - Complexes (Prtie I) Théorème. et définition. Il existe un ensemle noté C, ppelé ensemle des nomres complexes, tel que :. l ensemle C contient l ensemle

Plus en détail

CHAPITRE 17 : CALCUL D INTEGRALES - INTEGRATION PAR PARTIES

CHAPITRE 17 : CALCUL D INTEGRALES - INTEGRATION PAR PARTIES Clcul d intégrles - Intégrtion pr prties Cours CHAPITRE 7 : CALCUL D INTEGRALES - INTEGRATION PAR PARTIES Dns ce cours, nous disposons de trois techniques de clcul d intégrles : ) primitivtion pr lecture

Plus en détail

Définition Propriétés de d intégrale Intégrale fonction de sa borne supérieure Méthodes d intégration. Calcul Intégral

Définition Propriétés de d intégrale Intégrale fonction de sa borne supérieure Méthodes d intégration. Calcul Intégral Clcul Intégrl christophe.profet@univ-evry.fr http://www.mths.univ-evry.fr/pges_perso/cprofet/ Amphi n 1 Jnvier 214 Objectifs du cours 1 donner une définition de l intégrle f (x)dx qui permet de comprendre

Plus en détail

LEÇON N 67 : Formules de Taylor. Applications.

LEÇON N 67 : Formules de Taylor. Applications. LEÇON N 67 : Formules de Tylor. Applictions. Pré-requis : Théorème de Rolle, théorème des Accroissements Finis ; Intégrtion pr prties ; Nottions de Lndu. 67. Résultts globux 67.. Formule de Tylor-Lgrnge

Plus en détail

Résumés de cours : Terminale S.

Résumés de cours : Terminale S. Résumés de cours : Terminle S. Mths-Terminle S. Mr Mmouni : myismil@ltern.org source disponible sur: c http://www.chez.com/myismil Smedi 08 Avril 2006. Tble des mtières Nombres complexes. 3. Prtie réelle

Plus en détail

Chapitre 6. Calcul intégral. OJ = j. Aire(rectangle OIKJ)= 1 u.a. 1 u.a. D = {M(x ; y) P tels que a x b et 0 y f(x)}

Chapitre 6. Calcul intégral. OJ = j. Aire(rectangle OIKJ)= 1 u.a. 1 u.a. D = {M(x ; y) P tels que a x b et 0 y f(x)} Chpitre 6 Clcul intégrl Intégrle et ire. Intégrle d une fonction continue positive sur un intervlle [ ; ] Définition : L unité d ire Soit P un pln muni d un repère orthogonl (O ; ı, j ). Soient I, J, et

Plus en détail

Terminales S. Liste «non exhaustive» des Restitutions Organisées des Connaissances:

Terminales S. Liste «non exhaustive» des Restitutions Organisées des Connaissances: Terminles S Liste «non exhustive» des Restitutions Orgnisées des Connissnces: Théorème 1 : Critère de divergence d'une suite Théorème 2 : Comprison pr rpport à une suite divergente Théorème 3 : Théorème

Plus en détail

Intégration. Intégrale d une fonction. II - Interprétation graphique : calcul d aire. 1) Aire d une fonction positive. T ale STI

Intégration. Intégrale d une fonction. II - Interprétation graphique : calcul d aire. 1) Aire d une fonction positive. T ale STI Intégrtion T le STI I - Intégrle d une fonction Définition Soit F une primitive de l fonction f sur [; ], lors, on note Exemple : Clcul de Clcul de 4 (3x ) dx = = [F(x)] = F() F() xdx : Une primitive de

Plus en détail

ROC: Restitution Organisée des Connaissances

ROC: Restitution Organisée des Connaissances ROC: Restitution Orgnisée des Connissnces Terminle S Septembre 2005 Tble des mtières 1 Anlyse 2 1.1 Limites et ordre........................... 2 1.2 Bijection............................... 3 1.3 Fonction

Plus en détail

Chapitre 6 : Fonctions Logarithme Népérien

Chapitre 6 : Fonctions Logarithme Népérien Lycée Pul Sbtier, Cstelnudry Clsse de T`le STG Chpitre 6 : Fonctions Logrithme Népérien D. Zncnro et C. Aupérin 008-009 Téléchrger c est tuer l industrie, tuons les tous Thurston Moore Dernière modifiction

Plus en détail

Contenus Capacités attendues Commentaires. Déterminer des primitives des fonctions usuelles par lecture inverse du tableau des dérivées.

Contenus Capacités attendues Commentaires. Déterminer des primitives des fonctions usuelles par lecture inverse du tableau des dérivées. Chpitre 7 Intégrtion Contenus Cpcités ttendues Commentires Intégrtion Définition de l intégrle d une fonction continue et positive sur [;] comme ire sous l coure. Nottion f(x) dx. Théorème : si f est une

Plus en détail

Primitives Calcul intégral

Primitives Calcul intégral Primitives Clcul intégrl Christophe ROSSIGNOL Année scolire 2009/200 Tble des mtières Primitives 2. Définition, premières propriétés..................................... 2.2 Primitives des fonctions usuelles....................................

Plus en détail

Chapitre 7 Intégrale et primitive. Table des matières. Chapitre 7 Intégrale et primitive TABLE DES MATIÈRES page -1

Chapitre 7 Intégrale et primitive. Table des matières. Chapitre 7 Intégrale et primitive TABLE DES MATIÈRES page -1 Chpitre 7 Intégrle et primitive TABLE DES MATIÈRES pge - Chpitre 7 Intégrle et primitive Tble des mtières I Exercices I-................................................ I- Clcul pproché d une intégrle

Plus en détail

Intégration, cours, terminale S

Intégration, cours, terminale S Intégrtion, cours, terminle S Intégrtion, cours, terminle S F.Gudon http://mthsfg.net.free.fr 3 vril 2017 Intégrle d une fonction continue sur un intervlle Intégrle d une fonction continue sur un intervlle

Plus en détail

Nombres complexes. 1 Dé nitions. 2 Interprétation géométrique

Nombres complexes. 1 Dé nitions. 2 Interprétation géométrique Nomres complexes 1 Dé nitions Dé nition 1 On ppelle ensemle des nomres complexes et on note C l ensemle des nomres qui s écrivent sous l forme + i vec R; R et où i est un nomre tel que i = 1 : est l prtie

Plus en détail

Ordre et comparaisons

Ordre et comparaisons Seconde 0 - Année 2004 2005 ORDRE ET COMPARAISONS Ordre et comprisons. ACTIVITÉ SUR L ORDRE.. nomres positifs et nomres négtifs. Les réels se représentent sur l droite réelle. Dire que x est positif(ou

Plus en détail

Définition d'une intégrale. Calcul intégral

Définition d'une intégrale. Calcul intégral Définition d'une intégrle Clcul intégrl. Introduction... p2 4. Primitives d'une fonction continue sur un intervlle... 2. Intégrle d'une fonction continue positive sur [;]... p5 p 5. Recherche de primitives...

Plus en détail

Calcul intégral. Catherine Decayeux. Catherine Decayeux () Calcul intégral 1 / 23

Calcul intégral. Catherine Decayeux. Catherine Decayeux () Calcul intégral 1 / 23 Clcul intégrl Ctherine Decyeux Ctherine Decyeux () Clcul intégrl 1 / 23 I-Introduction Le clcul intégrl s est développé u XVIIe siècle vec les trvux de Bonvntur Cvlieri, Isc Newton, Leibniz... mis les

Plus en détail

Intégration Primitives

Intégration Primitives Intégrtion Primitives Christophe ROSSIGNOL Année scolire 2015/2016 Tble des mtières 1 Rppels et compléments 3 1.1 Rppels de dérivtion.......................................... 3 1.1.1 Dérivtion en un point......................................

Plus en détail

, f(x) est l image de l élément x de E par f.

, f(x) est l image de l élément x de E par f. I- Rppels : I- 1 Déinition d une onction : Soient E et F deu intervlles de R ou une réunion d intervlles de R Déinition 1: Une onction ssocint un élément de l ensemble E (ensemble de déprt dns l ensemble

Plus en détail

Cours de Terminale S /Intégration. E. Dostal

Cours de Terminale S /Intégration. E. Dostal Cours de Terminle S /Intégrtion E. Dostl Février 26 Tble des mtières 9 Intégrtion 2 9. Intégrles............................................. 2 9.. Aire sous une courbe...................................

Plus en détail

Exercices de révision

Exercices de révision Université de Cen Licence de Biologie Semestre 0 04 Mthémtiques TD Groupe 4 Exercices de révision Corrigé Nombres complexes Exercice. On pose A = + i et B = + i. Clculer A B, A + B, A B, B, A + B. Clculer

Plus en détail

Mathématiques Différentielle - Intégrale

Mathématiques Différentielle - Intégrale Mthémtiques Différentielle - Intégrle F. Richrd 1 1 Institut PPRIME - UPR 3346 CNRS Déprtement Fluides, Thermique, Combustion Frnce Institut des Risques Industriels Assurntiels et Finnciers IRIAF F. Richrd

Plus en détail

7. Applications du théorème des

7. Applications du théorème des 67 7. Applictions du théorème des résidus. Évlution d intégrles réelles impropres Une ppliction importnte de l théorie des résidus est l évlution de certins types d intégrles définies et d intégrles impropres

Plus en détail

Chapitre 5. Intégration. 5.1 Intégration des fonctions en escaliers

Chapitre 5. Intégration. 5.1 Intégration des fonctions en escaliers Chpitre 5 Intégrtion Nous llons construire l intégrle pr un procédé de pssge à l limite. D bord on définit l intégrle des fonctions en escliers, ensuite on psse à l limite pour intégrer des fonctions plus

Plus en détail

Clamaths.fr - Les Roc en Terminale S

Clamaths.fr - Les Roc en Terminale S Clmths.fr - Les Roc en Terminle S CONTENTS ROC - exigibles... 2 Roc 1 Théorème de comprison pour les suites... 2 Roc 2 Limite de qn lorsque q > 1... 2 Roc 3 Unicité de l fonction exponentielle... 3 Roc

Plus en détail

Etude de suites récurrentes

Etude de suites récurrentes [http://mp.cpgedupuydelome.fr] édité le 5 mi 06 Enoncés Etude de suites récurrentes Exercice [ 0304 ] [Correction] u 0 = R et n N, + = u n ) Justifier que l suite ( ) est bien définie et n N, [ ; ] b)

Plus en détail

Intégration des fonctions continues par morceaux

Intégration des fonctions continues par morceaux Chpitre 4 Intégrtion des fonctions continues pr morceu 4.1 Introduction Dns cette section, on fie < deu réels, on note I = [, ] et on considère f : I R une ppliction continue. On suppose en outre que f

Plus en détail

LIMITES DE SUITES ET DE FONCTIONS I..

LIMITES DE SUITES ET DE FONCTIONS I.. TS-cours-chp2-1 - LIMITES DE SUITES ET DE FONCTIONS I.. Limite d une suite 1 / tend vers l infini Définition ( rppel ) Dire que l suite tend vers + signifie que, pour tout nombre A, l intervlle [A ; +

Plus en détail

Table des matières 3. GÉNÉRALITÉS SUR LES FONCTIONS...63 A) ENSEMBLE DE DÉFINITION D'UNE FONCTION...63

Table des matières 3. GÉNÉRALITÉS SUR LES FONCTIONS...63 A) ENSEMBLE DE DÉFINITION D'UNE FONCTION...63 Tble des mtières 1. ALGORITHMES...15 A) LES PRINCIPAUX ALGORITHMES À SAVOIR CONSTRUIRE ET MANIPULER...15 1. Comment écrire un lgorithme qui clcule un terme u n d'une suite numérique définie pr récurrence?...15

Plus en détail

Hachurer légèrement la zone délimitée par les quatre droites, (Ox), et (AB).

Hachurer légèrement la zone délimitée par les quatre droites, (Ox), et (AB). Vdouine Terminle S Cpitre 4 Intégrtion Définition Soit f une fonction continue et positive sur un intervlle I contennt et deu nomres tels que. L représenttion grpique est trcée dns un repère ortogonl O;;

Plus en détail

FONCTION EXPONENTIELLE ET EQUATION DIFFERENTIELLE. 1 + x n

FONCTION EXPONENTIELLE ET EQUATION DIFFERENTIELLE. 1 + x n FONCTION EXPONENTIELLE ET EQUATION DIFFERENTIELLE. I LA FONCTION EXPONENTIELLE Définition Il eiste une fonction f, dérivble sur IR, solution de l'éqution différentielle Y '= Y et telle que f(0) = que l'on

Plus en détail

MAT 1720 A : Calcul différentiel et intégral I

MAT 1720 A : Calcul différentiel et intégral I MAT 1720 A : et intégrl I Pul-Eugène Prent Déprtement de mthémtiques et de sttistique Université d Ottw le 14 octobre 2015 Au menu ujourd hui 1 2 3 4 Le théorème de Stokes Voici le contenu d un peu plus

Plus en détail

Le Centre d éducation en mathématiques et en informatique. Ateliers en ligne Euclide Atelier n o 5. Suites et séries. c 2014 UNIVERSITY OF WATERLOO

Le Centre d éducation en mathématiques et en informatique. Ateliers en ligne Euclide Atelier n o 5. Suites et séries. c 2014 UNIVERSITY OF WATERLOO Le Centre d éduction en mthémtiques et en informtique Ateliers en ligne Euclide Atelier n o 5 Suites et séries c 014 UNIVERSITY OF WATERLOO L pluprt des problèmes de cette trousse font ppel à des formules

Plus en détail

EB - INTEGRALES DEPENDANT D UN PARAMETRE

EB - INTEGRALES DEPENDANT D UN PARAMETRE EB - INTEGRALES DEPENDANT D UN PARAMETRE Définition 1 Soit (f x ) x A une fmille de fonctions continues à vleurs dns C, définies sur un intervlle [, b[ de R. On considère l intégrle impropre g(x) = que

Plus en détail

Chapitre 2. Les nombres complexes. 2.1 Définition et propriétés de C

Chapitre 2. Les nombres complexes. 2.1 Définition et propriétés de C Chpitre 2 Les nombres complexes Certines équtions polynomiles à coefficients réels n ont ps de solution dns R ; c est le cs de l éqution du second degré x 2 +1 = 0 puisque tout crré de réel est positif.

Plus en détail

( ). Dans tout ce paragraphe, f et g sont des fonctions continues et positives sur un intervalle a;b. C f

( ). Dans tout ce paragraphe, f et g sont des fonctions continues et positives sur un intervalle a;b. C f Chpitre 6 : Clcul intégrl I Intégrle d une fonction continue positive 1 Unité d'ire Le pln est muni d un repère orthogonl O;i!,! j!!" "!!! " " En posnt OI = i et OJ = j, l ire du rectngle OIKJ définit

Plus en détail

DM1. Nombres complexes, homographies. u w = u w.

DM1. Nombres complexes, homographies. u w = u w. Université Pul Sbtier, Année 205-206 Licence LPS DM Nombres complexes, homogrphies. Dns ce problème, on considère le pln ffine euclidien P muni d un repère orthonormé (0, i, j). On identifier P vec l ensemble

Plus en détail

Examen de géométrie - Durée : 2h

Examen de géométrie - Durée : 2h Université de Lorrine Fculté des sciences et technologies L2 Mthémtiques 31/05/2016 Exmen de géométrie - Durée : 2h Consigne s ppliqunt à tous les exercices : fire oligtoirement des figures. Elles devront

Plus en détail

5. Intégration complexe

5. Intégration complexe 49 5. Intégrtion complexe 1. Intégrles définies d une fonction complexe d une vrible réelle Les intégrles sont extrêmement importntes dns l étude des fonctions d une vrible complexe. Nous étblirons l équivlence

Plus en détail

1. Notion d intégrale Interprétation graphique

1. Notion d intégrale Interprétation graphique Clcul intégrl TS 1. Notion d intégrle Interpréttion grphique Le pln étnt muni du repère orthogonl ( O,I, J ) l unité d ire ( u. ) est l ire du rectngle âti à prtir des points O, I, J. on ppelle domine

Plus en détail

Intégration. 1 Intégrale d une fonction. 2.1 Définition Propriétés Ensemble des primitives d une fonction... 6

Intégration. 1 Intégrale d une fonction. 2.1 Définition Propriétés Ensemble des primitives d une fonction... 6 Tble des mtières Intégrle d une fonction. Définition.................................................. Propriétés................................................. 4 Notion de primitive d une fonction 5.

Plus en détail

Primitives et Calcul d une intégrale

Primitives et Calcul d une intégrale Primitives et Clcul d une intégrle I) Primitive ) Définition : Soit f une fonction définie sur un intervlle I. On ppelle primitive de f sur I, toute fonction F dérivle sur I dont l dérivée F est égle à

Plus en détail

Chapitre 6. Primitive et Intégrale. 6.1 Primitive Rappels

Chapitre 6. Primitive et Intégrale. 6.1 Primitive Rappels Chpitre 6 Primitive et Intégrle 6. Primitive 6.. Rppels Définition 6... Si f est une fonction définie sur un intervlle I, une primitive de f sur I est une fonction F telle que pour tout x dns I, F (x)

Plus en détail

Intégrales et primitives

Intégrales et primitives Chpitre 3 Intégrles et primitives 3.1 Définitions Soit f(x une fonction continue définie sur l intervlle [, ]. L intégrle de f sur l intervlle [, ] est un nomre réel noté qui est défini de l fçon suivnte

Plus en détail

Exercices sur le logarithme népérien (1)

Exercices sur le logarithme népérien (1) TS On considère l fonction f : + ln et l on note C s courbe représenttive dns le pln muni d un Eercices sur le logrithme népérien () repère O, i, j Sns clcultrice, clculer : ; B ln 5 ln 9 5 A ln 6 ln ln

Plus en détail

COURS TERMINALE S LE CALCUL INTEGRAL

COURS TERMINALE S LE CALCUL INTEGRAL COURS TERMINALE S LE CALCUL INTEGRAL A. Notion d'intégrle. Aire sous l coure On définit le domine pln, qu'on ppeller ire sous l coure C représenttive d'une fonction positive f sur un intervlle [; ], l

Plus en détail

Cours de Mathématiques Seconde. Ordre et valeur absolue

Cours de Mathématiques Seconde. Ordre et valeur absolue Cours de Mthémtiques Seconde Frédéric Demoulin 1 Dernière révision : 16 vril 2007 Document diffusé vi le site www.cmths.net de Gilles Costntini 2 1 frederic.demoulin (chez) voil.fr 2 gilles.costntini (chez)

Plus en détail

Fiches de cours analyse 4 ème Sciences expérimentales. Limites et continuité. Limites et comparaison de fonctions.

Fiches de cours analyse 4 ème Sciences expérimentales. Limites et continuité. Limites et comparaison de fonctions. Fiches de cours nlyse 4 ème Sciences epérimentles Limites et continuité Limites et comprison de fonctions. L et L ' sont des réels. désigne soit un réel, soit +, soit Premier théorème de comprison Soit

Plus en détail

I. NOMBRES COMPLEXES. a. Le nombre «i» Il existe un nombre, noté i, qui a la propriété suivante : i² = -1

I. NOMBRES COMPLEXES. a. Le nombre «i» Il existe un nombre, noté i, qui a la propriété suivante : i² = -1 www.mthsenligne.com STI - 1N8 - NBRES CPLEXES CRS (1/5) PRGRAES Sommes + i où i² = -1 ; églité, somme, produit, conjugué, inverse. Représenttion géométrique, ffie d'un point, d'un vecteur. odule et rgument

Plus en détail

Série n 6 : Interpolation et méthodes des moindres carrés

Série n 6 : Interpolation et méthodes des moindres carrés Université Clude Bernrd, Lyon I 43, boulevrd du 11 novembre 1918 696 Villeurbnne Cedex Licence Sciences & Technologies Spécilité Mthémtiques UE : Clcul Scientifique 009-010 Série n 6 : Interpoltion et

Plus en détail

LICENCE DE MATHÉMATIQUES DEUXIÈME ANNÉE. Unité d enseignement LCMA 4U11 ANALYSE 3. Françoise GEANDIER

LICENCE DE MATHÉMATIQUES DEUXIÈME ANNÉE. Unité d enseignement LCMA 4U11 ANALYSE 3. Françoise GEANDIER LICENCE DE MATHÉMATIQUES DEUXIÈME ANNÉE Unité d enseignement LCMA 4U ANALYSE 3 Frnçoise GEANDIER Université Henri Poincré Nncy I Déprtement de Mthémtiques . Tble des mtières I Séries numériques. Séries

Plus en détail

Chapitre 05 Les nombres complexes Première partie

Chapitre 05 Les nombres complexes Première partie Terminle S. Lycée Desfontines Melle Chpitre 05 Les nomres complexes Première prtie Le pln est rpporté à un repère orthonorml direct ( O;ÄOI ;ÄOJ ), ppelé pln complexe. Dns tout ce chpitre, et désignent

Plus en détail

CHAPITRE 5. Champs de vecteurs

CHAPITRE 5. Champs de vecteurs CHAPITRE 5 Chmps de vecteurs Définition 5.1. Un chmp de vecteur est une ppliction F définie et continue sur un domine D( F ) de R 3 qui chque point (x, y, z) de R 3 ssocie une vecteur F (x, y, z) de R

Plus en détail

Théorème de la bijection : exemples de rédaction

Théorème de la bijection : exemples de rédaction ECE-B 5-6 Théorème de l bijection : eemples de rédction Le but de cette fiche est de fire un point sur le théorème de l bijection. Après un retour sur l énoncé et s démonstrtion, on illustrer l utilistion

Plus en détail

Espaces vectoriels normés ; espaces de Banach

Espaces vectoriels normés ; espaces de Banach Chpitre 7 Espces vectoriels normés ; espces de Bnch Un espce vectoriel normé complet est ppelé un espce de Bnch On note K pour R ou C 71 Exemples d espces vectoriels normés 711 Normes sur K n Sur K n,

Plus en détail

Cours de 1ère S/ Géométrie plane. Eric Dostal

Cours de 1ère S/ Géométrie plane. Eric Dostal Cours de 1ère S/ Géométrie plne Eric Dostl Aout 015 Tble des mtières Vecteurs et repérge dns le pln.1 Rppels.......................................... Bses, Repères et Coordonnées.............................

Plus en détail

Intégrale de fonction positive

Intégrale de fonction positive Chpitre Intégrles et primitives I Eercices Intégrle de fonction positive. Évluer pproimtivement l ire de l prtie du pln comprise entre l courbe C f ci-dessous, l e des bscisses, et l droite d éqution.

Plus en détail

Chapitre I : Fonctions, expressions algébriques et problèmes

Chapitre I : Fonctions, expressions algébriques et problèmes Chpitre I : Fonctions, expressions lgériques et prolèmes I Les ensemles de nomres : Déinition 1 : 0 ;1; 2;3;4 ;...;15;16;... est l ensemle des nomres entiers nturels.... ; -16; -15;...; -4; -3; -2; -1;

Plus en détail

CHAPITRE 7. Rappel sur l intégrale simple.

CHAPITRE 7. Rappel sur l intégrale simple. CHPITRE 7 Rppel sur l intégrle simple. Les prochins chpitres triteront de l intégrtion. Dns un premier temps, nous rppellerons ce qu est l intégrle simple (l intégrtion pour les fonctions d une seule vrible

Plus en détail

Calculs de base (Rappels)

Calculs de base (Rappels) Chpitre I Clculs de bse (Rppels) I.1 Diviseurs et multiples I.1.1 Définitions On : 12=3 4. On dit que 3 et 4 sont des diviseurs de 12, ou que 12 est un multiple de 3 et de 4. DÉFINITION I.1.1 Soit et b

Plus en détail

Calcul intégral. Mathématique. Sylvie Jancart. Octobre 2015

Calcul intégral. Mathématique. Sylvie Jancart. Octobre 2015 Mthémtique Sylvie Jncrt sylvie.jncrt@ulg.c.be Octobre 2015 Introduction L notion d intégrle répond à deux problèmes de nture différente: l une lgébrique, l utre géométrique. Une fonction étnt donnée, existe-t-il

Plus en détail

Calculs de primitives et d intégrales

Calculs de primitives et d intégrales Clculs de primitives et d intégrles Dns ce chpitre, on borde exclusivement les clculs de primitives ou d intégrles comme le prévoit le progrmme officiel L théorie de l intégrtion est repoussée u deuxième

Plus en détail

LIMITES ET CONTINUITÉ

LIMITES ET CONTINUITÉ LIMITES ET CONTINUITÉ Cours Terminle S Limite d une onction à l inini ) Limite inie en l inini Déinition : Soit une onction déinie sur un intervlle de l orme ] A ; + [ On dit que l onction dmet pour limite

Plus en détail

: Correction du concours blanc n 1 de PTSI. x n. Définition de I n. est continue sur R. En déduire que I n existe pour n N.

: Correction du concours blanc n 1 de PTSI. x n. Définition de I n. est continue sur R. En déduire que I n existe pour n N. 6-7 : Correction du concours blnc n de PTSI EXERCICE N O Durée conseillée : h5, brème envisgé 6 points On considère l suite réelle I n n N définie pr : n N, I n = x n dx Définition de I n. Justifier rigoureusement

Plus en détail

Intégrabilité d une fonction à valeurs réelles ou complexes

Intégrabilité d une fonction à valeurs réelles ou complexes Cours de Mthémtiques ntégrtion sur un intervlle quelconque Prtie : Fonctions intégrbles à vleurs complexes Fonctions intégrbles à vleurs complexes Dns ce prgrphe, est un intervlle de R, et K désigne R

Plus en détail

Synthèse de cours PanaMaths Variables aléatoires à densité

Synthèse de cours PanaMaths Variables aléatoires à densité Synthèse de cours PnMths Vriles létoires à densité Vrile létoire à densité Vrile létoire réelle continue Soit X une vrile létoire réelle. On dit que «X est une vrile létoire réelle continue» si elle prend

Plus en détail

2 Taux de variation et dérivée

2 Taux de variation et dérivée Tu de vrition et dérivée.1 Tu de vrition et dérivée en un point Q..1 Clculer le tu de vrition moyen TVM [;] f) pour les fonctions suivntes. cm cm ) f) = 1 b) f) = c) f) = 5 d) f) = 1 e) f) = + 5 Q.. Soit

Plus en détail

Chapitre 10 Intégrales. Table des matières. Chapitre 10 Intégrales TABLE DES MATIÈRES page -1

Chapitre 10 Intégrales. Table des matières. Chapitre 10 Intégrales TABLE DES MATIÈRES page -1 Chpitre Intégrles TABLE DES MATIÈRES pge - Chpitre Intégrles Tble des mtières I Exercices I-................................................ I-................................................ I-................................................

Plus en détail

ENSEMBLES DE NOMBRES

ENSEMBLES DE NOMBRES Chpitre 01 Ensemles de nomres I- Les différents ensemles de nomres ENSEMBLES DE NOMBRES 1. Les entiers nturels Les entiers nturels sont les nomres 0 ; 1 ; ; ;... On note N l ensemle des entiers nturels,

Plus en détail

! Remarque : La racine carrée d un nombre négatif n existe pas.

! Remarque : La racine carrée d un nombre négatif n existe pas. 3 ème Chpitre A 3 RACINE CARREE D UN NOMBRE POSITIF 1 I) Définition et conditions d existence de l rcine crrée d un nombre. 1) Définition. Il existe deux nombres tel que si on les multiplie pr eux même

Plus en détail

I. Fonctions

I. Fonctions FORMULAIRE MATHÉMATIQUES - RENTRÉE 205 - PRÉPA ECS PREMIÈRE ANNÉE Tble des mtières I. Fonctions - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 4. Générlités sur les fonctions...................

Plus en détail

Ch.4èFONCTIONS DE RÉFÉRENCE

Ch.4èFONCTIONS DE RÉFÉRENCE LFA / première S COURS - mthémtiques Mme MAINGUY Ch.4èFONCTIONS DE RÉFÉRENCE ere S Dns tout le chpitre, le pln est muni d'un repère orthonorml ( O ; i! ;! j ) I. Rppels de Seconde Soit f une fonction définie

Plus en détail

APPROXIMATION DE FONCTIONS DÉRIVABLES PAR UNE FONCTION POLYNOMIALE

APPROXIMATION DE FONCTIONS DÉRIVABLES PAR UNE FONCTION POLYNOMIALE APPROXIMATION DE FONCTIONS DÉRIVABLES PAR UNE FONCTION POLYNOMIALE Définition. Soit I R un intervlle ouvert et soit f : I R une fonction. () Si f est continue, on dit que f est de clsse C 0. (2) Si f est

Plus en détail

Nous admettrons et utiliserons souvent le théorème suivant:

Nous admettrons et utiliserons souvent le théorème suivant: < 20 Intégrtion: fonction réelle d une vrile réelle. Définition 2.5. (Intégrilité u sens de Riemnn) Une fonction réelle f: [, ] R est dite intégrle sur [,], si ǫ > 0, f 1, f 2 : [, ] R fonctions en escliers

Plus en détail

Chapitre 11 : Calcul intégral

Chapitre 11 : Calcul intégral Cpitre 11 : Clcul intégrl I Intégrle d une fonction positive I.1 Définition Définition ( 1. Dns un repère ortogonl O; i ; ) j, on ppelle unité d ire l ire du rectngle de côtés [OI] et [OJ]. 2. Soient f

Plus en détail

M : Zribi 4 ème Sc Fiche. Calcul intégral. Le plan est rapporté à un repère orthogonal (O;i,j).

M : Zribi 4 ème Sc Fiche. Calcul intégral. Le plan est rapporté à un repère orthogonal (O;i,j). L.S.Mrs Elridh Clcul intégrl M : Zrii Le pln est rpporté à un repère orthogonl (O;i,j). A) Intégrle d une fonction continue et positive. 1 - Aire et intégrle. Définition Soit f une fonction continue et

Plus en détail

THEOREMES D ANALYSE. P. Pansu 12 avril 2005

THEOREMES D ANALYSE. P. Pansu 12 avril 2005 THEOREMES D ANALYSE P. Pnsu 12 vril 2005 1 Vleurs intermédiires 1.1 Le théorème des vleurs intermédiires Théorème 1 Soit [, b] un intervlle fermé borné. Soit f : [, b] R une fonction continue. On suppose

Plus en détail

Développements limités. Généralités. Définitions usuelles

Développements limités. Généralités. Définitions usuelles Développements limités I Générlités I.A Définitions usuelles.......................... I.B Formules de Tylor.......................... I.C Développements limités usuels.................... 4 I.D Eemples

Plus en détail

Kit de survie - Bac S

Kit de survie - Bac S - Opértions sur les inéglités Kit de survie - Bc S Inéglités - Etude de signe Règles usuelles : Pour tout : x < y x + < y + même sens Pour tout k > : x < y kx < ky même sens Pour tout k < : x < y kx >

Plus en détail

Exemple d'introduction 1. Découverte des fonctions définies par une intégrale et premiers pas vers le théorème fondamental du calcul intégral.

Exemple d'introduction 1. Découverte des fonctions définies par une intégrale et premiers pas vers le théorème fondamental du calcul intégral. Eemple d'introduction 1. Découverte des fonctions définies pr une intégrle et premiers ps vers le théorème fondmentl du clcul intégrl. PARTIE I : Découverte de l fonction «ire sous l coure» et conjecture

Plus en détail

Exercices sur le calcul algébrique. Petits problèmes

Exercices sur le calcul algébrique. Petits problèmes Exercices sur le clcul lgébrique Les exercices ou questions précédés d un stérisque pourront être trités vec profit à l ide d un logiciel de clcul formel, tel que Xcs, qui ser vu en Trvux Prtiques, ou

Plus en détail

INTEGRATION. f(x) I F(x) I ) PRIMITIVE. e x R e x + c

INTEGRATION. f(x) I F(x) I ) PRIMITIVE. e x R e x + c INTEGRATION I ) PRIMITIVE Définition : Soient f et F deu fonctions définies sur I. F est une primitive de f sur I si F est dérivle sur I et pour tout de I F () = f () Propriété : Si f continue sur I lors

Plus en détail

Corrigés des exercices de mathématiques pour les élèves qui entrent en seconde.

Corrigés des exercices de mathématiques pour les élèves qui entrent en seconde. Exercice : Corrigés des exercices de mthémtiques pour les élèves qui entrent en seconde. ) Clculer (sns clcultrice) : 8 ; 8 ; c 8 ; d 8 ; e ; f ; g ; h. ) Ecrire sous l forme, et entiers vec le plus petit

Plus en détail

PARTIE II : Un exemple pour se familiariser avec la conjecture et cette drôle de fonction. . (On ne cherchera pas à exprimer F plus simplement.

PARTIE II : Un exemple pour se familiariser avec la conjecture et cette drôle de fonction. . (On ne cherchera pas à exprimer F plus simplement. Eercice. Découverte des fonctions définies pr une intégrle et premiers ps vers le téorème fondmentl du clcul intégrl. PARTE : Découverte de l fonction «ire sous l courbe» et conjecture sur s dérivée et

Plus en détail

Limites de Fonction. 1 Limites d une fonction et asymptotes 1.1 Limite en l infini. 1.2 Limite en un réel a Asymptotes...

Limites de Fonction. 1 Limites d une fonction et asymptotes 1.1 Limite en l infini. 1.2 Limite en un réel a Asymptotes... Lycée Pul Doumer 203-204 TS Cours Limites de Fonction Contents Limites d une fonction et symptotes. Limite en l infini....................................2 Limite en un réel..................................

Plus en détail

CALCUL INTEGRAL I. ACTIVITES D INTRODUCTION. Ch7 : Calcul intégral-ts

CALCUL INTEGRAL I. ACTIVITES D INTRODUCTION. Ch7 : Calcul intégral-ts Ch7 : Clcul intégrl-ts CALCUL INTEGRAL I. ACTIVITES D INTRODUCTION Activité n : Trcer dns un repère orthonorml l représenttion grphique de l fonction f définie pr : f(x) = 5. Hchurer l'ire du domine pln

Plus en détail

Pavage d un rectangle avec des carrés

Pavage d un rectangle avec des carrés Mth en Jens 006-007 Pvge d un rectngle vec des crrés Lycée Sud-Medoc / Lycée Montigne Guillume Cmelot, Luc Drné, Antoine Crof, Budouin Auzou, Rémy Ptin, Elodie Mrtin, Hélène Mrtin, Aurélie Verdon en prtenrit

Plus en détail

Rappels et compléments sur l intégrale de Riemann

Rappels et compléments sur l intégrale de Riemann Chpitre Rppels et compléments sur l intégrle de Riemnn Commençons pr un rppel. Théorème.. (Théorème fondmentl du clcul intégrl) Soit f :[, b]! R une fonction continue. Pour tout x 2 [, b], posons F (x)

Plus en détail

Contrôle du mardi (50 minutes) TS1 H G E F. Prénom et nom :.. Note :.. / 20 D C

Contrôle du mardi (50 minutes) TS1 H G E F. Prénom et nom :.. Note :.. / 20 D C TS1 ontrôle du mrdi 18-11-014 (50 minutes) rénom et nom :.. Note :.. / 0. (6 points : points pour l construction ; 4 points pour l justifiction) Soit un tétrèdre. On note et J les milieux respectifs de

Plus en détail

Les intégrales. C f. A = aire sous la courbe sur [0 ; 1] A = 1 3. II. Deux points de vue. 1 ) 1 er aspect : avec les suites

Les intégrales. C f. A = aire sous la courbe sur [0 ; 1] A = 1 3. II. Deux points de vue. 1 ) 1 er aspect : avec les suites TS I Introduction ) Prolème Les intégrles II eu points de vue ) er spect : vec les suites Méthode des rectngles (Pscl iemnn) f est une fonction définie, continue et positive sur un intervlle [, ] ( ) n

Plus en détail

Fractions. 1 Propriété des quotients égaux 1. 2 Addition, soustraction de deux fractions 3. 3 Produit de deux fractions 5

Fractions. 1 Propriété des quotients égaux 1. 2 Addition, soustraction de deux fractions 3. 3 Produit de deux fractions 5 Tle des mtières Frctions 1 Propriété des quotients égux 1 Addition, soustrction de deux frctions Produit de deux frctions Comprison de deux frctions Produit en croix 10 6 Quotient de deux frctions. Inverse

Plus en détail

Analyse numérique : Intégration numérique

Analyse numérique : Intégration numérique Anlyse numérique : Intégrtion numérique Pgor 1A Chpitre 4 8 février 11 mrs 2013 Anlyse numérique (Pgor 1A) Intégrtion numérique 8/02-11/03/2013 1 / 67 Pln 1 Introduction 2 Intégrtion pr méthode de Monte-Crlo

Plus en détail