Correction du Contrôle commun de Mathématiques - Sujet A - TS. 2 1 n. n ) n

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Correction du Contrôle commun de Mathématiques - Sujet A - TS. 2 1 n. n ) n"

Transcription

1 Correction du Contrôle commun de Mathématiques - Sujet A - TS Exercice 5 points. n N, u n = n n( n + = n ) n( + = n ) n + n Or par somme, on a lim n = et lim + n =. Ainsi par quotient, lim u n = réponse A. x ] ; + [, f 3x + 6x + 3 (x) = x 3 + 3x + 3x + f (x) = 0 3x + 6x + 3 = 0 et x > 3(x + ) = 0 et x > x = Donc réponse A (réponse C fausse) de plus x >, f (x) 0 donc réponse D (réponse B fausse) 3. g est une fonction polynôme donc g est déie et dérivable sur R et x R, g (x) = 3 (x ) = 6(x ) de plus g (x) = (x ) = 4x 4x = 0 = = 3 > 0 donc g (x) = admet deux solutions distinctes donc la réponse A est fausse. g (x) = 0 (x ) = 0 x = donc réponse B. x R, g (x) 0 donc réponse D et la réponse C est fausse (pour a < 0). 4. h est une fonction polynôme donc h est déie et dérivable sur R et x R, h (x) = 3 (x 5) = 3(x 5) de plus h (4) = 3, h (5) = 0 et h (6) = 3 donc T 5 et T 6 n ont pas le même coefficient directeur donc réponse B et T 4 et T 6 ont le même coefficient directeur donc réponse A fausse. Les abscisses des points d intersection de (d) et C h vérifient h(x) = 0x 5. En développant, (x 5) 3 = x 3 5x + 75x 5. De plus, x 3 5x + 75x 5 = 0x 5 x 3 5x + 65x = 0 x(x 5x + 65) = 0 x = 0 (car x 5x+65 < 0). Donc il existe un unique point d intersection. Donc réponse D (et réponse C fausse) 5. Réponse B 6. Réponses B et C

2 Exercice Bilan : Questions Réponses A A et D B et D B et D B B et C 3 points Les points I et J sont dans le plan (ABD) (car I [AB] et J [AD]). Ainsi les droites (IJ) et (BD) sont coplanaires. Comme elles ne sont pas parallèles, elles sont sécantes en un point L. Les points K et L sont dans le plan (BCD) (car L (BD)). Ainsi les droites (KL) et (BC) sont coplanaires. Comme elles ne sont pas parallèles, elles sont sécantes en un point M. De même, les droites (KL) et (CD) sont coplanaires. Comme elles ne sont pas parallèles, elles sont sécantes en un point N. Ainsi il ne reste plus qu à construire la section demandée : [IM] est sur la face [ABC] [MN] est sur la face [BCD] [NJ] est sur la face [ACD] [IJ] est sur la face [ABD] Exercice 3 Comme q > alors il existe un réel a strictement positif tel que q = + a. On a donc, pour tout entier naturel n, q n = ( + a) n. 3 points D après l inégalité de Bernoulli, pour tout entier naturel n, ( + a) n + na donc q n + na. Or, comme a > 0 alors lim ( + na) = + donc, par comparaison, lim qn = +.

3 Exercice 4 0 points Partie A. Cf annexe On peut conjecturer que la suite (u n ) est décroissante et convergente vers un nombre réel environ égal à, 4 (avec la précision possible du graphique). f est déie et dérivable sur ]0; + [ comme somme de fonctions (polynôme et rationnelle) déies et dérivables sur ]0; + [. Ainsi, pour tout x ]0; + [, f (x) = x = x x. x x x f (x) f(x) 3. Montrons par récurrence que pour tout n entier naturel, u n u n+. Pour tout n N, posons la propriété P (n) : «u n u n+». Initialisation u 0 = 3 et u = ( 3 + ) = 3 6. Ainsi u 0 u. Donc P (0) est vraie. Hérédité Soit k N fixé. On suppose que la propriété P (k) est vraie et on veut montrer que P (k + ) est vraie. On a : u k u k+ car P (k) est vraie donc f(u k ) f(u k+ ) f( ) car f est strictement croissante sur [ ; + [ d après Partie A question. d où u k+ u k+. Ainsi P (k + ) est vraie. Conclusion On a donc montré que P (0) est vraie et que la propriété est héréditaire. Ainsi pour tout n entier naturel, P (n) est vraie. Donc pour tout n entier naturel, u n u n+. 4. D après la question précédente, pour tout n entier naturel, u n u n+. Ainsi la suite (u n ) est décroissante. D après la question précédente, pour tout n entier naturel, u n. Ainsi la 3

4 suite (u n ) est minorée par. La suite (u n ) étant décroissante et minorée, elle est convergente vers un nombre réel l. 5. Par déition de la suite, n N, u n+ = (u n + u n ). Partie B On sait que lim u n = l. En outre, pour tout n entier naturel, u n, donc l. Ainsi l > 0. Par quotient, on obtient Puis par somme on obtient Ainsi, par produit De plus, lim u n+ = l. lim u n = l lim (u n + u n ) = l + l lim (u n + ) = u n (l + l ). Ainsi par unicité de la limite, on obtient l équation l = (l + l ). Or l = (l + l ) l = l l =. Comme l > 0, alors l =. Ainsi lim u n =.. Algorithme permettant de calculer u 6 : variables u : un réel n : un entier début Affecter à u la valeur 3 Affecter à n la valeur 0 tant que n < 6 faire Affecter à u la valeur Affecter à n la valeur n + Afficher la valeur de u Algorithme de calcul de ( u + ) u. Algorithme permettant d afficher tous les termes de u jusqu à u 6 4

5 variables u : un réel n : un entier début Affecter à u la valeur 3 Affecter à n la valeur 0 tant que n < 6 faire Affecter à u la valeur Affecter à n la valeur n + Afficher la valeur de u Algorithme de calcul de ( u + ) u 3. Exécution de l algorithme à la main jusqu à n = u Partie C n 0... Test 0 < 6 < 6 < Soit n N, u n+ = (u n+ ) = u n u n + = u n + un Donc n N, u n+ = (u n ) = (u n ). Soit n N, d après la question 3 de la partie A on a : u n c est à dire 0 < car u n > 0 0 (u n ) (u n ) car (u n ) 0 Donc pour tout entier naturel n, u n+ = (u n ) (u n ) 3. Sachant que u 0, en appliquant la question C., on a : Pour n =, u 3 (u ) 0 Pour n = 3, u 4 (u 3 ) 0 4 Pour n = 4, u 5 (u 4 ) 0 8 Pour n = 5, u 6 (u 5 ) 0 6 donc pour n = 6 on a u n 0 5 Remarque : on peut démontrer par récurrence que 5

6 pour tout n entier naturel, on a : u n 0 n 4. D après la question C 3., à partir du rang n = 6 tous les termes de la suites (u n ) seront égaux à Exercice 5 Bonus. Soit n N, u n u n = n k=n+ k or k [n + ; n] N, k (car la fonction inverse est décroissante sur n ]0; + [) ainsi u n u n = n k=n+ k n k=n+ n = n n =. Supposons par l absurde qu il existe un réel l tel que lim u n = l on a alors lim u n = l et par somme lim u n u n = 0 ce qui est absurde (d après la question.). 3. Remarquons que la suite (u n ) est croissante (en effet soit n N, u n+ u n = n + > 0) Montrons par l absurde que la suite (u n ) n est pas majorée. Supposons qu il existe un réel M tel que la suite (u n ) soit majorée par M. Le suite (u n ) est une suite croissante et majorée donc il existe un réel l tel que lim u n = l ce qui est absurde d après la question. Donc la suite (u n ) n est pas majorée. La suite (u n ) est croissante et non majorée donc lim u n = + 6

TS Feuille de révision n 1 novembre 2017

TS Feuille de révision n 1 novembre 2017 TS Feuille de révision n 1 novembre 017 Exercice 1 Dans un pays de population constante égale à 10 millions, les habitants vivent soit en zone rurale, soit en ville. Les mouvements de population peuvent

Plus en détail

CHAPITRE 1 : Raisonnement par récurrence, suites et fonctions

CHAPITRE 1 : Raisonnement par récurrence, suites et fonctions CHAPITRE 1 : Raisonnement par récurrence, suites et fonctions 1 Les suites numériques (rappel de première)... 4 1.1 Généralités... 4 1.2 Plusieurs méthodes pour générer une suite... 4 2 Exemples d algorithmes

Plus en détail

Chapitre I : Raisonnement par récurrence et comportement des suites. Extrait du programme :

Chapitre I : Raisonnement par récurrence et comportement des suites. Extrait du programme : Chapitre I : Raisonnement par récurrence et comportement des suites Extrait du programme : 1 I Rappels sur les suites Il existe deux façons de définir une suite : 1 Formule explicite Il existe une fonction

Plus en détail

RAISONNEMENT PAR RECURRENCE

RAISONNEMENT PAR RECURRENCE Exemple: RAISONNEMENT PAR RECURRENCE Montrons par récurrence que pour tout n N *, P (n) : i=n i = 1 + + 3 +...+ ( n -1) + n = n n1 n n1 Initialisation : pour n = 1 i =1 et = 111 =1 donc P(1) est vraie.

Plus en détail

Commun à tous les candidats. Le graphique de l annexe sera complété et remis avec la copie. Soit la fonction f définie sur l intervalle [0; 2] par

Commun à tous les candidats. Le graphique de l annexe sera complété et remis avec la copie. Soit la fonction f définie sur l intervalle [0; 2] par EXERCICE (6 points ) Commun à tous les candidats Le graphique de l annexe sera complété et remis avec la copie Soit la fonction f définie sur l intervalle [0; ] par f(x) x + x + ) Etudier les variations

Plus en détail

Pour chaque proposition, indiquer si elle est vraie ou fausse et justifier soigneusement la réponse. Les questions sont indépendantes entre elles.

Pour chaque proposition, indiquer si elle est vraie ou fausse et justifier soigneusement la réponse. Les questions sont indépendantes entre elles. TS - Maths - D.S.5 Samedi 17 janvier 015-4h Spécialités : SVT - Physique Exercice 1 (5 points) Pour les candidats n ayant pas suivi l enseignement de spécialité Pour chaque proposition, indiquer si elle

Plus en détail

RAISONNEMENT PAR RECURRENCE

RAISONNEMENT PAR RECURRENCE Exemple: Montrons par récurrence que pour tout n Initialisation : pour n = 1 RAISONNEMENT PAR RECURRENCE i=1 i =1 et i=1 N i=n *, P (n) : i = 1 + + 3 +...+ ( n -1) + n = n n 1 i=1 n n 1 Hérédité : supposons

Plus en détail

9 6 - x. On définit la suite (u n ) par u 0 = -3 et pour tout entier naturel n, u n+1 = f(u n ).

9 6 - x. On définit la suite (u n ) par u 0 = -3 et pour tout entier naturel n, u n+1 = f(u n ). Exercice 75 p 55 exercices sur les suites Symbole Belin 0 On s intéresse aux suites définies sur V et vérifiant la relation de récurrence u n+ = + u n². Une telle suite sera déterminée par son premier

Plus en détail

). 1. Montrer que pour tout n 1 on a u n > Démontrer que pour tout n 1 on a u n+1 2 = 1 (u n 2) 2

). 1. Montrer que pour tout n 1 on a u n > Démontrer que pour tout n 1 on a u n+1 2 = 1 (u n 2) 2 TS Suites récurrentes Exercices Exercice. Soit u la suite définie par u 0 = 3 et pour tout entier n, + = 4un +.. Démontrer que pour tout entier n, >.. On définit la suite v pour n N par v n = un. Montrer

Plus en détail

Baccalauréat Blanc 2016 : correction

Baccalauréat Blanc 2016 : correction Baccalauréat Blanc 016 : correction EXERCICE 1 Le chikungunya est une maladie virale transmise d un être humain à l autre par les piqûres de moustiques femelles infectées. Un test a été mis au point pour

Plus en détail

Chapitre 1 : Les suites

Chapitre 1 : Les suites Chapitre : Les suites I. Exercices supplémentaires Partie A : Récurrence Exercice La suite est définie par et +2+ pour tout entier naturel. Démontrer par récurrence que pour tout. La suite est définie

Plus en détail

Limites de suites. Révisions

Limites de suites. Révisions Limites de suites Révisions Soit ( ) une suite définie pour tout n N par = n 2 + n Exprimer en fonction de n : a b + c + 2 La suite ( ) est-elle arithmétique? 3 Quel est le sens de variation de ( )? 2

Plus en détail

Correction du baccalauréat S Liban 27 mai 2015

Correction du baccalauréat S Liban 27 mai 2015 Correction du baccalauréat S Liban 27 mai 25 A. P. M. E. P. EXERCICE 6 points E J H G I A L D B K C. a) Par lecture sur le dessin ci-dessus on détermine facilement les coordonnées des points représentés

Plus en détail

Corrigé du baccalauréat S Polynésie 7 juin 2013

Corrigé du baccalauréat S Polynésie 7 juin 2013 Corrigé du baccalauréat S Polynésie 7 juin 20 Exercice : Commun à tous les candidats 6 points (a Les coordonnées du point d intersection de la courbe C avec l axe des ordonnées est le point de coordonnées

Plus en détail

EABJM Bac Blanc Novembre 2009 MATHÉMATIQUES

EABJM Bac Blanc Novembre 2009 MATHÉMATIQUES EABJM Bac Blanc Novembre 2009 MATHÉMATIQUES Terminales S - S2 N. Chiffot S. Coursaget J. Giovendo Durée : 4 heures. Nombre de pages : 7. L utilisation de la calculatrice est autorisée. Corrigé TS - TS2

Plus en détail

Exercices : Suites réelles

Exercices : Suites réelles Exercices : Suites réelles Exercice : Démontrer par récurrence les résultats suivants : n+. n N, k k = n n+ + n. n N, (k +) = n. Soit a R + fixé, n N, (+a) n +na 4. n, n! n Analyse : Chapitre Exercices

Plus en détail

Limite d une suite - Terminale S Exercices corrigés en vidéo avec le cours sur jaicompris.com. v n. lim. lim

Limite d une suite - Terminale S Exercices corrigés en vidéo avec le cours sur jaicompris.com. v n. lim. lim Limite d une suite - Terminale S Exercices corrigés en vidéo avec le cours sur jaicompriscom Reconnaitre les formes indéterminées Dans chaque cas, on donne la ite de u n et v n Déterminer si possible,

Plus en détail

Complément sur les suites. Suites adjacentes

Complément sur les suites. Suites adjacentes DERNIÈRE IMPRESSION LE 27 février 2017 à 16:33 Complément sur les suites. Suites adjacentes Table des matières 1 Le procédé 2 2 Suites adjacentes 2 2.1 Définition................................. 2 2.2

Plus en détail

Corrigé du baccalauréat S Antilles-Guyane 22 juin 2015

Corrigé du baccalauréat S Antilles-Guyane 22 juin 2015 Corrigé du baccalauréat S Antilles-Guyane juin 15 A. P. M. E. P. EXERCICE 1 Commun à tous les candidats 6 POINTS 1. Pour toutes les courbes, on a g a (1)= a. Donc on a de bas en haut les courbes Γ,5, Γ,1,

Plus en détail

étude de fonctions suites

étude de fonctions suites Corrigé DS Terminale S étude de fonctions suites Exercice Une image numérique en noir et blanc est composée de petits carrés appelés pixels donc la couleur va du blanc au noir en passant par toutes les

Plus en détail

F 3 Reproduire cet arbre et placer les probabilités F 2 sur les branches.

F 3 Reproduire cet arbre et placer les probabilités F 2 sur les branches. Sujet Centres Étrangers 203 EXERCICE. [6 pts] Lois continues Un industriel fabrique des vannes électroniques destinées à des circuits hydrauliques. Les quatre parties A, B, C, D sont indépendantes. Partie

Plus en détail

Amérique du sud. Novembre Enseignement spécifique. Corrigé

Amérique du sud. Novembre Enseignement spécifique. Corrigé Amérique du sud. Novembre 014. Enseignement spécifique. orrigé EXERIE 1 Partie A 1) La calculatrice fournit P410 X 450) = 0,954 à 10 3 près. P410 X 450) = 0,954 à 10 3 près. ) Posons Z = Y 69. On sait

Plus en détail

BACCALAUREAT BLANC GENERAL. Epreuve: MATHEMATIQUES. Série : S Durée : 4 heures Coefficient : 9 SPECIALITE

BACCALAUREAT BLANC GENERAL. Epreuve: MATHEMATIQUES. Série : S Durée : 4 heures Coefficient : 9 SPECIALITE BACCALAUREAT BLANC GENERAL Epreuve: MATHEMATIQUES Série : S Durée : 4 heures Coefficient : 9 SPECIALITE Avant de composer, le candidat s'assurera que le sujet comporte bien 4 pages numérotées de 1 à 4.

Plus en détail

Fonctions trigonométriques - Corrigé. 2 2 cos 1

Fonctions trigonométriques - Corrigé. 2 2 cos 1 Exercice 1 : Fonctions trigonométriques - Corrigé 1. a. est dérivable sur comme somme de fonctions dérivables sur et =1 cos On sait que, pour tout réel et donc en particulier pour tout, cos 1 donc 0 et

Plus en détail

Suites et récurrence

Suites et récurrence Suites et récurrence 1 Suites arithmétiques et géométriques 1.1 Définitions * On dit que la suite (u n ) est arithmétique s il existe un réel r appelé raison tel que, pour tout n dans N, on ait : u n+1

Plus en détail

Fonction exponentielle

Fonction exponentielle Fonction exponentielle 1 Fonction exponentielle Définition et variation Théorème Définition Il existe une unique fonction définie et dérivable sur telle que et Cette fonction est appelée fonction exponentielle

Plus en détail

démonstrations exigibles au baccalauréat

démonstrations exigibles au baccalauréat démonstrations exigibles au baccalauréat fonction exponentielle (1/2) propriété : Il existe une unique fonction dérivable sur telle que ' = et (0) = 1 1 L'existence de la fonction est admise conformément

Plus en détail

Corrigé du bac S Antilles-Guyane juin 2014

Corrigé du bac S Antilles-Guyane juin 2014 orrigé du bac S Antilles-Guyane juin 204 EXERIE ommun à tous les candidats Partie A 5 points. a. L arbre pondéré est le suivant : 0,80 0,85 J 0,20 0,5 J 0,0 b. D après l arbre : 0,90 ( ) p J = 0,5 0,0=0,05.

Plus en détail

Principe d une démonstration par récurrence :

Principe d une démonstration par récurrence : Chapitre Suites 1 Démonstration par récurrence Exemples introductif : Imaginons que des ouvriers construisant un immeuble aient toutes les instructions nécessaires pour construire un étage d immeuble sur

Plus en détail

Etude de limites de suites monotones

Etude de limites de suites monotones Etude de ites de suites monotones I) Définition On dit que la suite ( ) est majorée lorsqu il existe un nombre réel M tel que, pour tout entier naturel n, M. On dit que M est un majorant de la suite (

Plus en détail

Baccalauréat S Nouvelle-Calédonie 17 novembre 2014 Corrigé

Baccalauréat S Nouvelle-Calédonie 17 novembre 2014 Corrigé Baccalauréat S Nouvelle-Calédonie 17 novembre 014 Corrigé A. P. M. E. P. Exercice 1 Commun à tous les candidats Une fabrique de desserts glacés dispose d une chaîne automatisée pour remplir des cônes de

Plus en détail

Lycée Municipal d Adultes de la ville de Paris Mardi 07 mai 2013 BACCALAURÉAT BLANC DE MATHÉMATIQUES. correction SÉRIE S

Lycée Municipal d Adultes de la ville de Paris Mardi 07 mai 2013 BACCALAURÉAT BLANC DE MATHÉMATIQUES. correction SÉRIE S Lycée Municipal d Adultes de la ville de Paris Mardi 7 mai BACCALAURÉAT BLANC DE MATHÉMATIQUES SÉRIE S Durée de l épreuve : 4 HEURES Les calculatrices sont AUTORISÉES correction Coefficient : 9 Le candidat

Plus en détail

Suite récurrente définie par une fonction

Suite récurrente définie par une fonction Suite récurrente définie par une fonction Rédigé par un enseignant et un élève de l Ecole Polytechnique (Vincent Langlet). Niveau : Approfondir la Terminale S ou Première Année post bac Difficulté : Exercice

Plus en détail

Corrigé du bac blanc n 2 Terminales S Février 2010

Corrigé du bac blanc n 2 Terminales S Février 2010 Corrigé Bac Blanc n Terminale S Février 010 1 / 6 Corrigé du bac blanc n Terminales S Février 010 Exercice 1 Partie A Spécialité maths 1. = Soit d = PGCD(a, b) d est un diviseur de a et b donc il existe

Plus en détail

EXERCICES 1S DERIVATION

EXERCICES 1S DERIVATION EXERCICES S DERIVATION Nombre dérivé ; utilisation des formules On trouvera les solutions après la liste des exercices Ne les consultez pas trop vite! EX : Calculer la fonction dérivée de la fonction f

Plus en détail

Corrigé du bac 2016 : Mathématiques Obligatoire Série S Métropole

Corrigé du bac 2016 : Mathématiques Obligatoire Série S Métropole Corrigé du bac 2016 : Mathématiques Obligatoire Série S Métropole BACCALAURÉAT GÉNÉRAL Session 2016 MATHEMATIQUES Série S ÉPREUVE DU LUNDI 20 JUIN 2016 Enseignement Obligatoire Coefficient : 7 Durée de

Plus en détail

Suites réelles. I Rappels de vocabulaire. II Suites remarquables. Définition 5

Suites réelles. I Rappels de vocabulaire. II Suites remarquables. Définition 5 I Rappels de vocabulaire Suites réelles Définition 1 Une suite réelle u est une application de I R où I est une partie de N. Au lieu de noter u(n), pour les suites on note u n l image de n par l application

Plus en détail

(exercice : calculer u 2 puis u 5 )

(exercice : calculer u 2 puis u 5 ) Suites Prérequis : Division euclidienne Soient a et b deux entiers avec b 0. Il existe un unique couple (q, r) Z N tel que a = q b + r et 0 r < b. q s appelle le quotient de la division enclidienne de

Plus en détail

Recueil d annales en Mathématiques. Terminale S Enseignement obligatoire. Suites numériques

Recueil d annales en Mathématiques. Terminale S Enseignement obligatoire. Suites numériques Recueil d annales en Mathématiques Terminale S Enseignement obligatoire Frédéric Demoulin Dernière révision : 9 avril 008 Document diffusé via le site wwwbacamathsnet de Gilles Costantini fredericdemoulin

Plus en détail

Mathématique ECS 1 03 Sept Devoir surveillé 1.

Mathématique ECS 1 03 Sept Devoir surveillé 1. Mathématique ECS 0 Sept. 06 Devoir surveillé. Veillez à bien justifier vos réponses : un exercice bien traité rapporte des points, un exercice traité de façon non rigoureuse ne rapporte pas de points.

Plus en détail

Résumé du cours sur les suites.

Résumé du cours sur les suites. Résumé du cours sur les suites. 1 Suites numériques réelles et principe de récurrence 1.1 Les deux façons de définir une suite numérique réelle Définition. On note n 0 un entier naturel (en général n 0

Plus en détail

Fonction exponentielle

Fonction exponentielle Fonction exponentielle I) Définition de la fonction exponentielle 1) Théorème 1: Il existe une unique fonction f dérivable sur R telle que : Pour tout nombre x, f (x) = f(x), et f(0) = 1 Cette fonction

Plus en détail

Terminale S Vendredi 13 décembre 2013 MINI BACCALAURÉAT BLANC DE MATHÉMATIQUES SÉRIE S OBLIGATOIRE. Durée de l épreuve : 3 HEURES

Terminale S Vendredi 13 décembre 2013 MINI BACCALAURÉAT BLANC DE MATHÉMATIQUES SÉRIE S OBLIGATOIRE. Durée de l épreuve : 3 HEURES MINI BACCALAURÉAT BLANC DE MATHÉMATIQUES SÉRIE S Durée de l épreuve : 3 HEURES Les calculatrices électroniques de poche sont autorisées conformément à la réglementation en vigueur, pas leur échange. Le

Plus en détail

CORRECTION - FX 0. ab a b + 1 1

CORRECTION - FX 0. ab a b + 1 1 Lycée Thiers CORRECTION - FX 0 Exercice. Somme et produit... qui est le plus grand? On considère deux entiers a, b >. Comparer et ab. On constate que : ab a b + = a ) b ) > 0 Or, si p, q sont entiers,

Plus en détail

Fonction exponentielle

Fonction exponentielle Fonction exponentielle Définition de la fonction exponentielle Théorème Il existe une unique fonction f dérivable sur R telle que f # = f et f 0 = 1 L existence de cette fonction est admise. Unicité (ROC)

Plus en détail

Les suites numériques

Les suites numériques Les suites numériques chapitre 4 I Premier regard Définition : suite numérique Une suite numérique est une liste de nombres réels, numérotés généralement par des indices, entiers naturels consécutifs 0,

Plus en détail

Lycée la Folie Saint James. Fiche de cours : Généralités sur les suites

Lycée la Folie Saint James. Fiche de cours : Généralités sur les suites Lycée la Folie Saint James T ale S Fiche de cours : Généralités sur les suites Notion de suite. Définitions Une suite numérique réelle est une fonction u définie sur l ensemble N ou sur une partie de N

Plus en détail

Chapitre 1 : Correction des Travaux dirigés

Chapitre 1 : Correction des Travaux dirigés U.P.S. I.U.T. A, Département d Informatique Année 009-00 Chapitre : Correction des Travaux dirigés. Soit v n n i0 qi la somme des n premiers termes d une suite géométrique de raison q, et de premier terme.

Plus en détail

Exercice 5 Démontrer que pour tout entier naturel n, le nombre 3n² + 3n + 6 est un multiple de 6.

Exercice 5 Démontrer que pour tout entier naturel n, le nombre 3n² + 3n + 6 est un multiple de 6. Exercice 1 : Dire en justifiant si les suites (u n ) définies ci-dessous sont arithmétiques, géométriques ou ni l'un ni l'autre. Dans le cas où elles sont arithmétiques ou géométriques, préciser le premier

Plus en détail

Intégration Encadrement d intégrale Exercices corrigés

Intégration Encadrement d intégrale Exercices corrigés Intégration Encadrement d intégrale Exercices corrigés Sont abordés dans cette fiche : (cliquez sur l exercice pour un accès direct) Exercice 1 : encadrer une intégrale Exercice 2 : donner un encadrement

Plus en détail

Lycée Marlioz - Aix les Bains. Bac Blanc Mathématiques - Terminale S. 2 avril 2015

Lycée Marlioz - Aix les Bains. Bac Blanc Mathématiques - Terminale S. 2 avril 2015 Lycée Marlioz - Aix les Bains Bac Blanc 205 Mathématiques - Terminale S Candidats n ayant pas choisi la spécialité maths 2 avril 205 Pour cette épreuve, la rédaction, la clarté et la précision des explications

Plus en détail

Chapitre 3. Suites récurrentes

Chapitre 3. Suites récurrentes Chapitre 3 Suites récurrentes 3.1 Suites numériques Définition 3.1 On appelle suite de terme général u n et on note (u n ) n 0 ou plus simplement u la liste ordonnée des nombres u 0, u 1, u 2, u 3,....

Plus en détail

Lycée Saint-Exupéry BAC BLANC - Février Terminales S Epreuve de Mathématiques - Durée : 4 heures. CORRECTION

Lycée Saint-Exupéry BAC BLANC - Février Terminales S Epreuve de Mathématiques - Durée : 4 heures. CORRECTION Lycée Saint-Eupéry BAC BLANC - Février 06 - Terminales S Epreuve de Mathématiques - Durée : 4 heures. CORRECTION Eercice : commun à tous les candidats Partie A :. On a l arbre pondéré ci-contre : A 3,5

Plus en détail

Corrigé du baccalauréat série S Amérique du Sud 17 novembre 2014

Corrigé du baccalauréat série S Amérique du Sud 17 novembre 2014 orrigé du baccalauréat série S Amérique du Sud 17 novembre 014 A. P. M. E. P. Exercice 1 ommun à tous les candidats 6 points Une entreprise est spécialisée dans la fabrication de ballons de football. ette

Plus en détail

Cours de terminale S - Généralités sur les fonctions

Cours de terminale S - Généralités sur les fonctions les fonctions LPO de Chirongui - Exercices : Savoir Faire (livre)- Déterminer une ite Interprétation graphique Livre Indice BORDAS - Page 45 Exercice 34, 35, 36 et 37 page 56 - Limite finie à l infini

Plus en détail

Epreuve de Mathématiques - Durée : 4 heures.

Epreuve de Mathématiques - Durée : 4 heures. Lycée Saint-Exupéry BAC BLANC - Février 04 - Terminales S Epreuve de Mathématiques - Durée : 4 heures. Le sujet est composé de exercices communs à tous les candidats, d un exercice réservé aux candidats

Plus en détail

LEÇON N 56 : 56.1 Monotonie de la suite

LEÇON N 56 : 56.1 Monotonie de la suite LEÇON N 56 : Étude de suites de nombres réels définies par une relation de récurrence u n+1 = f(u n ) et une condition initiale. L exposé pourra être illustré par un ou des exemples faisant appel à l utilisation

Plus en détail

Corrigé du baccalauréat S Métropole La Réunion 20 juin 2016

Corrigé du baccalauréat S Métropole La Réunion 20 juin 2016 Corrigé du baccalauréat S Métropole La Réunion juin 6 A. P. M. E. P. EXERCICE Commun à tous les candidats 6 POINTS Partie A. Utilisons un arbre pondéré :.8 S : A S Les hypothèses s écrivent : ( ) P(A)=,4

Plus en détail

TS4 DS5 19/01/11. Démontrer que l équation g (x) = 0 admet sur [1 ; + [ une unique solution notée α.

TS4 DS5 19/01/11. Démontrer que l équation g (x) = 0 admet sur [1 ; + [ une unique solution notée α. Eercice 1: (7 points) Nouvelle-Calédonie novembre 2010 TS4 DS5 19/01/11 Soit la fonction définie sur l intervalle [1 ; + [ par ϕ() = 1+ 2 2 2 ln(). 1. a. Étudier le sens de variation de la fonction ϕ sur

Plus en détail

Lycée Municipal d Adultes de la ville de Paris Mardi 25 février 2014 BACCALAURÉAT BLANC DE MATHÉMATIQUES. correction SÉRIE S

Lycée Municipal d Adultes de la ville de Paris Mardi 25 février 2014 BACCALAURÉAT BLANC DE MATHÉMATIQUES. correction SÉRIE S Lycée Municipal d Adultes de la ville de Paris Mardi 5 février 01 BACCALAURÉAT BLANC DE MATHÉMATIQUES SÉRIE S Durée de l épreuve : HEURES Les calculatrices sont AUTORISÉES correction obligatoire et spé

Plus en détail

TS - Maths - D.S.3 - CORRECTION

TS - Maths - D.S.3 - CORRECTION TS - Maths - DS3 - CORRECTION Samedi 4 Novembre 20-2h Exercice Les parties A et B sont indépendantes Un site internet propose des jeux en ligne On donnera une valeur approchée à 0 2 près des résultats

Plus en détail

CORRECTION Exercice 1 Partie 1 Soit g la fonction définie sur R par g(x) = e 2x 2x e 2x + 1.

CORRECTION Exercice 1 Partie 1 Soit g la fonction définie sur R par g(x) = e 2x 2x e 2x + 1. CORRECTION Exercice Partie Soit g la fonction définie sur R par g(x) = e 2x 2x e 2x +.. 2x donc par composition e e! & donc par somme '() +*. 2x * donc par composition Xe 2xe! # La droite d équation y

Plus en détail

Université MONTPELLIER 3 UFR 4. Notes de Cours. Mathématiques M1 MRHDS Laurent Piccinini. version du 5 octobre 2011.

Université MONTPELLIER 3 UFR 4. Notes de Cours. Mathématiques M1 MRHDS Laurent Piccinini. version du 5 octobre 2011. Université MONTPELLIER 3 UFR 4 Notes de Cours Mathématiques M1 MRHDS 2011-2012 Laurent Piccinini version du 5 octobre 2011. M1 MRHDS 1 Table des matières I Les suites numériques 2 I.1 Généralités..............................................

Plus en détail

Terminale S Problème de synthèse n 1 Fonctions irrationnelles - Fonction ln - Suites - Calcul d'aire

Terminale S Problème de synthèse n 1 Fonctions irrationnelles - Fonction ln - Suites - Calcul d'aire Terminale S Problème de synthèse n f est la fonction définie sur par f() = orthonormal (O; i ; j )(unité graphique : 2 cm). A. Etude de la fonction f + - et C sa courbe représentative dans un repère ²

Plus en détail

Convergence des suites monotones

Convergence des suites monotones Convergence des suites monotones Suites majorée, minorée, bornée Définition Une suite (u # ) est majorée par un nombre réel M si pour tout n N, u # M Une suite (u # ) est minorée par un nombre réel m si

Plus en détail

Exercice n 114 page 128

Exercice n 114 page 128 Jeudi 28 Février 2013 DM de Maths Exercice n 114 page 128 1) a) Voir papier millimétré 1) b) D après la représentation graphique des premiers termes de la suite (u n ), on peut conjecturer qu elle est

Plus en détail

Devoir surveillé 5 mathématiques

Devoir surveillé 5 mathématiques Devoir surveillé 5 mathématiques BCPST 205-206 Exercice. Soit t un réel strictement positif. On définit la suite ( n N par la donnée de x 0 = t et la relation de récurrence : n N, + =.. (a Soit g la fonction

Plus en détail

EXERCICE I ( 6 points ) Correction: centres étrangers 2007 modifié

EXERCICE I ( 6 points ) Correction: centres étrangers 2007 modifié Lycée de la Plaine de l Ain - Ambérieu en Bugey. Année scolaire 0 / 03. TERMINALES SCIENTIFIQUES BAC BLANC - mathématiques - CORRIGé EXERCICE I ( 6 points ) Correction: centres étrangers 007 modifié Le

Plus en détail

Sujet Asie 2013 EXERCICE 1. [5 pts] Probabilités

Sujet Asie 2013 EXERCICE 1. [5 pts] Probabilités Sujet Asie 203 EXERCICE. [5 pts] Probabilités Dans cet exercice, les probabilités seront arrondies au centième. Partie A Une grossiste achète des boîtes de thé chez deux fournisseurs. Il achète 80% de

Plus en détail

Exercice 1. Exercice 2. Exercice 3. Compléments sur les suites - Récurrence Exercices - Corrigé

Exercice 1. Exercice 2. Exercice 3. Compléments sur les suites - Récurrence Exercices - Corrigé Compléments sur les suites - Récurrence Exercices - Corrigé Exercice Pour n N nn + ), on pose Hn) : k := + + 3 + + n =. k= Pour n =, les deux membres de l égalité valent et donc H) est vraie. Soit ensuite

Plus en détail

France métropolitaine Enseignement spécifique. Corrigé

France métropolitaine Enseignement spécifique. Corrigé France métropolitaine. 016. Enseignement spécifique. Corrigé EXERCICE 1 Partie A 1) Représentons la situation par un arbre de probabilités. 0,8 0,4 A 0, 0,6 B 0,95 0,05 D après la formule des probabilités

Plus en détail

SUITES - RECURRENCE - SOMMES

SUITES - RECURRENCE - SOMMES SUITES - RECURRENCE - SOMMES Chapitre 1 I Généralités sur les suites Définition I.1 Une suite réelle est une fonction d une partie A de N dans R. u : A R n u(n) := u n l intervalle de définition peut donc

Plus en détail

Chapitre I : LES SUITES

Chapitre I : LES SUITES Chapitre I : LES SUITES I- Généralités sur les suites 1) Définition et notations Définition 1 : 1) Définir une suite par une formule explicite, c est donner une relation entre le terme et l entier, pour

Plus en détail

Suites - Récurrence 10X. 2 quiselit:sommedes 2 pouriallantde1à10vaut:

Suites - Récurrence 10X. 2 quiselit:sommedes 2 pouriallantde1à10vaut: Suites - Récurrence 1. Définitions - Rappels 1.1.Modes de définition d une suite La suite 0 =0 1 = =4 3 =6 peut être définiededeuxmanières: Définition explicite : ½ = Définition récurrente : 0 =0 +1 =

Plus en détail

TS Limites de suites Cours. Exemples : Ex 3 page 45 ; suite (2n²)+algo dépassement. I. Définitions 1. Limite infinie. 2. Limite finie.

TS Limites de suites Cours. Exemples : Ex 3 page 45 ; suite (2n²)+algo dépassement. I. Définitions 1. Limite infinie. 2. Limite finie. TS Limites de suites Cours I. Définitions 1. Limite infinie Définition Dire qu une suite (u n ) a pour limite + signifie que tout intervalle ouvert de la forme [A ; + [ contient tous les termes de la suite

Plus en détail

Polynésie 7 Juin Corrigé

Polynésie 7 Juin Corrigé Polynésie 7 Juin 2013 - Corrigé Exercice 1 (6 points) On considère la fonction définie sur R par. On note la courbe représentative de la fonction dans un repère orthogonal. 1) Étude de la fonction a) Déterminer

Plus en détail

Bibliothèque d exercices L1 Feuille n 10. Suites

Bibliothèque d exercices L1 Feuille n 10. Suites Bibliothèque d exercices Énoncés L Feuille n 0 Suites Convergence Exercice Soit (u n ) n N une suite de R. Que pensez-vous des propositions suivantes : Si (u n ) n converge vers un réel l alors (u n )

Plus en détail

Chapitre 2 : Limites de suites

Chapitre 2 : Limites de suites Chapitre 2 : Limites de suites I Suite convergeant un réel l Définition Soient (u n ) une suite numérique et l un nombre réel. On dit que (u n ) admet pour limite l (ou converge vers l) lorsque tout intervalle

Plus en détail

Cours de terminale S Suites numériques

Cours de terminale S Suites numériques 0 - - de terminale S Suites s LPO de Chirongui 20 mai 2016 1 - Introduction- Introduction Principe de récurrence Exemple En Mathématiques, un certain nombre de propriétés dépendent d un entier naturel

Plus en détail

Corrigé du baccalauréat S Liban 31 mai 2016

Corrigé du baccalauréat S Liban 31 mai 2016 Corrigé du baccalauréat S Liban 3 mai 6 Exercice points Commun à tous les candidats A. P. M. E. P.. a) Le triangle AI E est rectangle en I. Par le théorème de Pythagore, on en déduit E I = AE AI. D autre

Plus en détail

Droites et plans dans l espace

Droites et plans dans l espace Droites et plans dans l espace Positions relatives de deux plans Définition Deux plans de l espace sont strictement s ils n ont aucun point en commun. Positions relatives de deux plans Plans Deux plans

Plus en détail

Corrigé du baccalauréat S Métropole & La Réunion septembre 2009

Corrigé du baccalauréat S Métropole & La Réunion septembre 2009 Corrigé du baccalauréat S Métropole & La Réunion septembre 009 EXERCICE 1 (6 points) PARTIE A Commun à tous les candidats 1. Quel que soit le réel x, x 0 x + 4 4 ln ( x + 4 ) existe. La fonction f est

Plus en détail

Fonction homographique - tangente à une courbe - suite récurrente

Fonction homographique - tangente à une courbe - suite récurrente f est la fonction définie sur D = ]- ;3[ ]3 ;+ [ par f(x) = x + 1 3 - x. 1) a) Etudier les variations de f sur D, ses limites aux bornes de D puis construire sa représentation graphique C f dans un repère

Plus en détail

ETUDE des SUITES RECURRENTES. 1 Intervalle stable par f - Existence et encadrement des termes de (u n ) n N

ETUDE des SUITES RECURRENTES. 1 Intervalle stable par f - Existence et encadrement des termes de (u n ) n N Lycée Dominique Villars ECE COURS ETUDE des SUITES RECURRENTES On appelle suite récurrente toute suite (u n ) n N telle qu il existe une fonction réelle f : I R telle que : n N, u n+ = f(u n ) On va voir

Plus en détail

LEÇON N 46 : Suites de nombres réels définies par une relation de récurrence.

LEÇON N 46 : Suites de nombres réels définies par une relation de récurrence. LEÇON N 46 : Suites de nombres réels définies par une relation de récurrence. Pré-requis : Suites numériques : monotonie, convergence, divergence ; Théorème des valeurs intermédiaires ; R est complet :

Plus en détail

Fonction exponentielle Dérivation Exercices corrigés

Fonction exponentielle Dérivation Exercices corrigés Fonction exponentielle Dérivation Exercices corrigés Sont abordés dans cette fiche : (cliquez sur l exercice pour un accès direct) Exercice 1 : continuité et dérivabilité en Exercice 2 : opérations de

Plus en détail

Sujets de bac : Exponentielle

Sujets de bac : Exponentielle Sujets de bac : Exponentielle Sujet : Polynésie septembre 2002 On considère la fonction définie sur par ) Etudier la parité de. 2) Montrer que pour tout,. 3) Déterminer les ites de en et en. Donner l interprétation

Plus en détail

Concours Communs Polytechniques 2013 Épreuve de Mathématiques n 1 TSI

Concours Communs Polytechniques 2013 Épreuve de Mathématiques n 1 TSI ÉLÉMENTS DE CORRECTION CCP TSI MATHS Concours Communs Polytechniques Épreuve de Mathématiques n TSI. a) On a f ) + Eercice donc f ) + +. b) L application f est dérivable et même de classe C ) sur R comme

Plus en détail

Chapitre 12. Suites récurrentes

Chapitre 12. Suites récurrentes Chapitre 1 L'objectif de ce chapitre est de recenser les quelques théorèmes permettant l'étude des suites dénies par récurrence (u n+1 = f(u n )) et les diérentes méthodes s'appuyant dessus. I Quelques

Plus en détail

Exercices sur la fonction logarithme népérien - Corrigé

Exercices sur la fonction logarithme népérien - Corrigé Lycée Secondaire El Ksour Année Scolaire 213-214 Exercices sur la fonction logarithme népérien - Corrigé ExerciceN 1 Soient et les fonctions définies sur l intervalle par et On note C et C les courbes

Plus en détail

TS - Maths - Bac blanc - Correction Spécialité SVT-Physique

TS - Maths - Bac blanc - Correction Spécialité SVT-Physique TS - Maths - Bac blanc - Correction Spécialité SVT-hysique Exercice 1 5 points Des probabilités Commun à tous les candidats Dans un laboratoire, se trouve un atelier nommé «L école des souris». Dès leur

Plus en détail

Chapitre 2 : Fonctions QCM Pour bien commencer (cf. p. 58 du manuel)

Chapitre 2 : Fonctions QCM Pour bien commencer (cf. p. 58 du manuel) Chapitre 2 : Fonctions QCM Pour bien commencer (cf. p. 58 du manuel) Pour chaque question, il y a une ou plusieurs bonnes réponses. Exercice n 1 On considère la figure ci-dessous où cinq droites sont tracées.

Plus en détail

Continuité des fonctions réelles

Continuité des fonctions réelles Chapitre 2 Continuité des fonctions réelles 2.1 Généralités Définition 2.1.1. Une fonction réelle f est une application d une partie D de R dans R. La partie D est appelée ensemble (ou domaine) de définition

Plus en détail

Exercices d entrainement pour le chapitre 02 (récurrence et suites)

Exercices d entrainement pour le chapitre 02 (récurrence et suites) Exercices d entrainement pour le chapitre 0 récurrence et suites 0. Énoncés Exercice. Démontrer l inégalité n > n pour tout entier naturel n. Exercice. On définit, pour tout entier n, le n ième nombre

Plus en détail

Correction du baccalauréat S Pondichéry 16 avril 2008

Correction du baccalauréat S Pondichéry 16 avril 2008 Correction du baccalauréat S Pondichéry 6 avril 008 EXERCICE Commun à tous les candidats 4 points. a. x e x e ou encore e x e e x > par croissance de la fonction exponentielle). f est donc bien définie

Plus en détail

Continuité Compléments de dérivation

Continuité Compléments de dérivation Continuité Compléments de dérivation Christophe ROSSIGNOL Année scolaire 015/016 Table des matières 1 Notion de continuité 1.1 Limite finie en un réel a......................................... 1. Définitions

Plus en détail

EXERCICE 3 (7 points )

EXERCICE 3 (7 points ) EXERCICE 3 (7 points ) Commun à tous les candidats La page annexe sera à compléter et à remettre avec la copie à la fin de l épreuve. PARTIE A On considère la fonction f définie sur l intervalle ]0; +

Plus en détail

des plans P 1 et P 2, a pour représentation paramétrique x = 4t 2

des plans P 1 et P 2, a pour représentation paramétrique x = 4t 2 Sujet Amérique du Nord 2013 EXERCICE 1. [5 pts] Géométrie On se place dans l espace muni d un repère orthonormé. On considère les points A(0 ; 4 ; 1), B(1 ; 3 ; 0), C(2 ; 1 ; 2) et D(7 ; 1 ; 4). 1. Démontrer

Plus en détail

TS - Maths - D.S.4 - Correction Spécialités : SVT - Physique

TS - Maths - D.S.4 - Correction Spécialités : SVT - Physique TS - Maths - D.S. - Correction Spécialités : SVT - Physique Samedi 05 Décembre 05 - h Exercice ( points) Commun à tous les candidats Une usine produit de l eau minérale en bouteilles. Lorsque le taux de

Plus en détail