Terminale S Spécialité Cours : PGCD - Théorème de Bézout. Théorème de Gauss.

Dimension: px
Commencer à balayer dès la page:

Download "Terminale S Spécialité Cours : PGCD - Théorème de Bézout. Théorème de Gauss."

Transcription

1 A la fin de ce chapitre vous devez être capable de : connaître l identité et le théorème de Bézout. savoir calculer les coefficients de Bézout par «descente» ou par remontée de l algorithme d Euclide. connaître le théorème de Gauss et ses conséquences. savoir résoudre les équations diophantiennes du type : ax + by = c. savoir obtenir et reconnaître une fraction irréductible (en particulier lorsque le numérateur et le dénominateur sont fonctions d un entier naturel n). I. Plus grand diviseur commun de deux entiers a) PGCD de deux entiers naturels Définition : Soit a et b deux entiers naturels non nuls, avec a b. Un entier naturel qui divise à la fois a et b est appelé diviseur commun à a et b. L ensemble des diviseurs communs à a et b possède un plus grand élément que l on nomme le plus grand diviseur commun de a et b. On le note PGCD(a ;b). b) Algorithme d Euclide Lemme d Euclide : Soit a, b, q et r des entiers naturels. Si a = bq + r alors PGCD(a ;b) = PGCD(b ;r). Si d est un diviseur commun à a et b alors il divise aussi a et bq. Il divise donc aussi r = a bq Donc d est un diviseur commun à b et r. Si d est un diviseur commun à b et r alors il divise aussi bq et r. Il divise donc aussi a = bq + r Donc d est un diviseur commun à a et b. Conclusion : L ensemble des diviseurs communs à a et b et l ensemble des diviseurs communs à b et r ont les mêmes éléments et donc le même plus grand élément. On a donc bien PGCD(a ;b) = PGCD(b ;r). Propriété : Soit a et b deux entiers naturels non nuls, avec a b. On définit la suite (r n) d entiers naturels de la façon suivante : r 0 = b ; r 1 est le reste de la division euclidienne de a par b ; Pour n 1 : si r n = 0, alors r n+1 = 0 ; Si r n 0, alors r n+1 est le reste de la division euclidienne de r n-1 par r n Alors il existe un entier p tel que r p 0 et, pour tout n > p, r n = 0. On a alors r p = PGCD(a ;b) ; La division euclidienne de a par b s écrit a = bq 1 + r 1, avec 0 r 1 < b. Si b a, alors r 1 = 0 et donc le processus s arrête avec p = 0. Si b ne divise pas a, la division euclidienne de b par r1 s écrit : b = r 1q 2 + r 2 avec 0 r 2 < r 1 Si r 2 = 0, le processus s arrête avec p = 1. 1

2 Sinon : on suppose que pour tout entier n, r n 0, alors r n-1 = r nq n+1 + r n+1 avec 0 r n+1 < r n. La suite (r n) est donc une suite d entiers naturels strictement décroissante. De plus, r n+1 < r n r n+1 r n 1 et r n r n-1 1 r n+1 r n-1 2 Par suite, r n+1 r n-2 3 Montrons, par récurrence, que r n+1 b (n + 1). Soit P n la proposition : pour tout n entier naturel, r n+1 b (n + 1) Initialisation : P 0 est vraie car : r 1 < r 0 ; donc r 1 r 0 1 soit r 1 b - 1 Hérédité : Supposons P n vraie. r n+2 < r n+1 Donc r n+2 r n+1-1 r 0 (n + 1) 1 en utilisant l'hypothèse de récurrence Donc r n+2 r 0 (n + 2) Soit r n+2 b (n + 2) Donc d après le principe de récurrence, P n est vraie pour tout n. On a alors pour n = b, r b+1 b (b + 1) -1, ce qui est absurde car r n, pour tout n. Donc, la supposition r n 0 pour tout n était absurde. Nécessairement, au bout d un nombre fini de divisions (au maximum b), on obtiendra un reste nul. Soit r p le dernier reste non nul. Le lemme d Euclide permet d écrire : PGCD(a ;b) = PGCD(b ;r 1) = PGCD(r 1;r 2) =. = PGCD(r p-2;r p-1) = PGCD(r p-1;r p) = r p car r p+1 = 0 donc r p divise r p-1. Finalement, on vient de prouver que l algorithme d Euclide permettait de déterminer le PGCD de a et b : c est le dernier reste non nul dans la succession des divisions euclidiennes définies par cet algorithme. Exemple : calculer le PGCD de 494 et 143. Étapes A b r a = bq + r = (1 ère étape) = (2 ème étape) = (3 ème étape) Donc PGCD(494 ; 143) = 13 c) PGCD de deux entiers relatifs Définition : Soit a et b deux entiers relatifs non nuls. Le plus grand diviseur commun à a et b est l unique entier naturel δ vérifiant : δ = PGCD( a ; b ) Remarque : Le lemme d'euclide reste vrai pour des entiers relatifs. 2

3 d) Propriétés du PGCD Propriété : Les diviseurs communs à deux entiers relatifs non nuls a et b sont les diviseurs du PGCD de a et b. Lorsque a *, b * et a > b, dans les divisions euclidiennes successives de l algorithme d Euclide, les diviseurs communs à a et b sont les diviseurs communs à b et r 0, à r 0 et r 1,, à r p-1 et r p. Or r p divise r p-1, donc les diviseurs communs à r p-1 et r p sont ceux de r p ; c'est-à-dire de PGCD(a ;b). Lorsque a * ou b *, le résultat est identique car PGCD(a ;b) = PGCD( a ; b ). Propriétés : Soit a, b et k des entiers relatifs non nuls. Si b divise a, alors PGCD(a ;b) = b PGCD(ka ;kb) = k PGCD(a ;b) de : PGCD(ka ;kb) = k PGCD(a ;b) dans le cas où a, b et k sont des entiers naturels. Si a = bq + r avec 0 r < b, alors ka = kbq + kr avec 0 kr < kb (car k ). Donc kr est le reste de la division euclidienne de ka par kb d après l unicité de l écriture. Avec les notations utilisées dans la démonstration sur l algorithme d Euclide et en multipliant chaque membre des égalités par k, on obtient : PGCD(ka ;kb) = PGCD(kb ;kr 0) = = kr p = k PGCD(a ;b) Conséquence : Si k est un entier naturel non nul, diviseur commun à a et b, alors : PGCD a k ; b k = 1 PGCD(a ;b) k : Ceci découle de la propriété précédente en écrivant a = k a k et b = k b k. e) Nombres premiers entre eux Définition : Dire que deux entiers relatifs non nuls a et b sont premiers entre eux signifie que PGCD(a ;b) = 1. Exemple : 45 et 34 sont premiers entre eux car leur seul diviseur commun positif est 1. Propriété : quotient de deux entiers par leur PGCD Soit a et b deux entiers relatifs non nuls. Soit d le PGCD de a et b. Alors il existe deux entiers relatifs a et b premiers entre eux tels que a=da et b=db. d = PGCD(a ;b) : donc d divise a et d divise b. Il existe donc deux entiers relatifs a et b tels que a = da et b = db. d = PGCD(a ;b) = PGCD(da ;db ) = d PGCD(a ;b ) 3

4 D où PGCD(a ;b ) = 1 car d 0. II. Théorème de Bézout. Théorème de Bézout : Deux entiers relatifs a et b sont premiers entre eux si et seulement si il existe des entiers relatifs u et v tels que au + bv = 1. : On suppose a et b premiers entre eux ; donc leur PGCD est 1. Ainsi, au moins l un des deux nombres a ou b est non nul, par exemple a. Soit E l ensemble des entiers naturels de la forme au + bv, avec u et v entiers. Cet ensemble n est pas vide, car il contient a (avec u = 1 et v = 0) et a (avec u = -1 et v = 0). E contient a et a, et l un de ces deux entiers est strictement positif, donc E contient au moins un entier strictement positif. Soit le plus petit d entre eux ; il existe ainsi u 0 et v 0 entiers tels que : = au 0 + bv 0. La division euclidienne de a par s écrit : a = q + r, avec 0 r <. D où : r = a - q = a (au 0 + bv 0)q = a(1 qu 0) + b(-v 0q). Ainsi, r appartient à E car il est de la forme au + bv avec u et v entiers (u = 1 qu 0 et v = -v 0q). Comme est le plus petit élément strictement positif de E, l inégalité 0 r < montre que r est nul, d où a = q et divise a. On montre de même que divise b, d où = 1 car a et b sont premiers entre eux : il existe bien deux entiers u 0 et v 0 tels que au 0 + bv 0 = 1. S il existe des entiers u et v tels que au + bv = 1, alors si d est le PGCD de a et b, il divise a et b, donc au + bv, c'est-à-dire 1 : ainsi, d vaut 1, et a et b sont premiers entre eux. Exemple : a = 4 et b = 9 sont premiers entre eux et on a par exemple : 4 (- 2) = 1 ou (- 3) = 1 ou (- 43) = 1. Les couples (-2 ;1) ; (7 ;-3) et (97 ;-43) sont tous des couples (u ; v) vérifiant l égalité 4u + 9v = 1. Remarques : Ce théorème est un théorème d existence. Il n y a pas unicité du couple (u ; v) tel que au + bv = 1 lorsque a et b sont premiers entre eux. Pour tout entier n, (n + 1) 1 n 1 = 1, donc deux entiers consécutifs n et n + 1 sont toujours premiers entre eux. Détermination pratique de u et v. Comment trouver u et v entiers relatifs tels que au + bv = 1 quand a et b sont premiers entre eux? Un examen rapide des plus petits multiples de a et b peut permettre de conclure. Exemple : a = 7 et b = 17. Sachant que 5 7 = 35 et 2 17 = 34, on a 1 = = = (- 2) 17. 4

5 Le couple (u ; v) = (5 ; - 2) convient. Sinon, on écrit l algorithme d Euclide pour a et b, puis on exprime pas à pas chacun des restes comme combinaisons linéaires de a et de b, jusqu au dernier reste non nul qui est PGCD(a ; b). Si a et b sont premiers entre eux, on aura alors écrit 1 comme une combinaison linéaire au + bv. Ce procédé permet d exprimer PGCD(a ; b) comme combinaison linéaire de a et b, que a et b soient premiers entre eux ou non. Exemple : a =71 et b = 19 Algorithme d Euclide 71 = = = = = On isole les restes dans un membre 14 = = = = On remonte l algorithme à partir de l avant dernière étape 1 = = 5 (14 5 2) 1 = = 14 + ( ) 3 = = 19 3 ( ) 4 = De 1 = , on en déduit que 1 = au + bv, avec u = - 4 et v = 15. Corollaire (Identité de Bézout) : Soit a et b deux entiers relatifs non tous les deux nuls. Si d = PGCD(a ; b), alors il existe des entiers relatifs u et v tels que au + bv = d. En effet, soit a et b deux entiers non nuls dont le PGCD est d. Soit les entiers a et b tels que a=da et b = db. Comme a et b sont premiers entre eux, il existe des entiers u et v tels que a u + b v = 1. En multipliant les deux membres de cette égalité par d, on obtient : ua d + vb d = d, d où au + bv = d. Remarque : contrairement au théorème de Bézout, la réciproque de cette propriété est fausse, si au + bv = d, l entier d n est pas obligatoirement le pgcd de a et b. Par exemple : (-1) 11 = 2, et pourtant le PGCD de 13 et 11 n est pas 2 mais 1. Propriété : Un nombre premier est premier avec tous les entiers qu il ne divise pas. Soit p un nombre premier et a un entier non divisible par p. On note d le PGCD de a et p ; comme d divise p, alors d vaut 1 ou p, puisque p est premier. Or, d ne peut pas être égal à d car a n est pas divisible par p. d où : d = 1. Exemple : 17 est premier, donc premier avec tous les entiers sauf les multiples de 17. Propriété : Si un entier est premier avec deux entiers, alors il est premier avec leur produit. Soit a un entier premier avec b et c : d après le théorème de Bézout, il existe des entiers u et v tels que au + bv = 1 et des entiers u et v tels que au + cv = 1. En effectuant le produit membre à membre, on obtient : 5

6 (au + bv)(au + cv ) = 1, soit : a²uu + acuv + abvu + bcvv = 1. Ou encore : a(auu + cuv + bvu ) + bc(vv ) = 1 Comme auu + cuv + bvu et vv sont des entiers, le théorème de Bézout montre que a et bc sont premiers entre eux. Exemple : Soit n un entier. On a vu que n et n + 1 sont premiers entre eux ; de même, n 1 et n sont premiers entre eux. On en déduit que n et n² - 1 sont premiers entre eux (en effet, n² - 1 = (n + 1)(n 1)). III. Théorème de Gauss. Théorème de Gauss : Soit a, b et c trois entiers non nuls. Si a divise bc et si a et premier avec b alors a divise c. Ce théorème est très utile pour résoudre les équations diophantiennes de la forme ax + by = c, avec x et y entiers. Si a est premier avec b, d après le théorème de Bézout, il existe des entiers u et v tels que au + bv = 1. En multipliant les deux membres de cette égalité par c, on obtient : acu + bcv = c. Or, a divise acu et bc par hypothèse, donc a divise bcv : on en déduit que a divise acu + bcv, c'est-à-dire c. Exemple : Soit a et b deux entiers tels que 3a = 4b. Ici, 4 divise le produit 3a. Les entiers 3 et 4 sont premiers entre eux, donc 4 divise a. Corollaires : Si deux entiers a et b premiers entre eux divisent un entier c alors leur produit ab divise c. Si un nombre premier p divise un produit ab alors p divise a ou p divise b. Comme c est divisible par a et b, alors il existe des entiers k et k tels que c = ka = k b. Cette égalité montre que a divise k b ; comme a et b sont premiers entre eux, le théorème de Gauss assure que a divise k. Donc il existe un entier q tel que k = qa. On en déduit c = qab. Donc ab divise c. Soit p un nombre premier divisant le produit ab. Si p divise a, la conclusion est assurée. Si p ne divise pas a, alors a et p sont premiers entre eux ; comme p divise ab, alors p divise b d après le théorème de Gauss. Exemples : Le nombre est divisible par 5 (car le chiffre des unités est 5) et divisible par 9 (car = 36 et 36 9 = 4). Or 5 et 9 sont premiers entre eux, donc est divisible par 5 9, c'est-à-dire 45. Le produit de trois entiers naturels consécutifs, n(n + 1)(n + 2), est divisible par 2 et par 3 ; 2 et 3 étant premiers entre eux alors ce produit est divisible par 6. 6

Cours : Théorème de Bézout. Théorème de Gauss. Ainsi, au moins l un des deux nombres a ou b est non nul, par exemple a.

Cours : Théorème de Bézout. Théorème de Gauss. Ainsi, au moins l un des deux nombres a ou b est non nul, par exemple a. A la fin de ce chapitre vous devez être capable de : connaître l identité et le théorème de Bézout. savoir calculer les coefficients de Bézout par «descente» ou par remontée de l algorithme d Euclide.

Plus en détail

PGCD et PPCM de deux entiers :

PGCD et PPCM de deux entiers : PGCD et PPCM de deux entiers : Table des matières I Plus grand commun diviseur de deux entiers :................................ 1 II Détermination du PGCD par l algorithme d Euclide............................

Plus en détail

PGCD - PPCM Théorèmes de Bézout et de Gauss

PGCD - PPCM Théorèmes de Bézout et de Gauss DERNIÈRE IMPRESSION LE 15 juillet 2016 à 11:11 PGCD - PPCM Théorèmes de Bézout et de Gauss Table des matières 1 Plus grand commun diviseur 2 1.1 Définition................................. 2 1.2 Nombres

Plus en détail

PGCD - PPCM. Exemple 2 On a vu dans le chapitre précédent pgcd(2, 3) = 1 et pgcd(10, 25) = 5.

PGCD - PPCM. Exemple 2 On a vu dans le chapitre précédent pgcd(2, 3) = 1 et pgcd(10, 25) = 5. PGCD - PPCM 1 Plus grand diviseur commun de deux entiers 1.1 Définition - Exemples Définition 1 Soient a et b deux éléments de Z. az+bz est un sous-groupe de Z donc il existe δ N tel que az + bz = δz.

Plus en détail

Définition Soient a et b deux entiers non tous nuls. Le plus grand diviseur commun à a et b est le PGCD de a et b. On le note PGCD (a ; b) ou a b.

Définition Soient a et b deux entiers non tous nuls. Le plus grand diviseur commun à a et b est le PGCD de a et b. On le note PGCD (a ; b) ou a b. PGCD de deux entiers naturels Diviseurs communs à deux entiers naturels Soient a et b deux entiers naturels non tous les deux nuls. L ensemble des diviseurs communs à a et b est une partie de Z non vide

Plus en détail

Chapitre 2 - PGCD et PPCM

Chapitre 2 - PGCD et PPCM Chapitre 2 - PGCD et PPCM Dans ce chapitre, lorsque nous parlerons de diviseur, cela signifiera diviseur positif. 1 Plus grand commun diviseur : PGCD 1.1 Définition du plus grand commun diviseur Soit a

Plus en détail

PGCD - PPCM. 1 Plus grand diviseur commun de deux entiers. 1.1 Dé nition - Exemples

PGCD - PPCM. 1 Plus grand diviseur commun de deux entiers. 1.1 Dé nition - Exemples 1 PGCD - PPCM 1 Plus grand diviseur commun de deux entiers 1.1 Dé nition - Exemples Dé nition 1 Soient a et b deux élément de Z. az + bz est un sous-groupe de Z donc il existe 2 N tel que az + bz = Z.

Plus en détail

pgcd, ppcm dans Z, théorème de Bézout. Applications

pgcd, ppcm dans Z, théorème de Bézout. Applications 7 pgcd, ppcm dans Z, théorème de Bézout. Applications Le théorème de division euclidienne et les sous-groupes de (Z, +) sont supposés connus. Pour tout entier relatif n, on note : nz = {n q q Z} l ensemble

Plus en détail

PGCD et PPCM 1 PGCD Définitions Propriétés ROC Algorithme d Euclide Méthode Algorithme...

PGCD et PPCM 1 PGCD Définitions Propriétés ROC Algorithme d Euclide Méthode Algorithme... PGCD et PPCM Table des matières 1 PGCD 2 1.1 Définitions.................................................... 2 1.2 Propriétés ROC................................................ 2 1.3 Algorithme d Euclide..............................................

Plus en détail

PGCD ET NOMBRES PREMIERS

PGCD ET NOMBRES PREMIERS PGCD ET NOMBRES PREMIERS Cours Terminale S 1. Plus grand commun diviseur de deux entiers Tous les diviseurs de 36 sont : 1, 2, 3, 4, 6, 9, 12, 18, 36 Tous les diviseurs de 48 sont : 1, 2, 3, 4, 6, 8, 12,

Plus en détail

Arithmétique. 1 Divisibilité dans Z

Arithmétique. 1 Divisibilité dans Z 1 Divisibilité dans Z 1.1 Généralités Définition 1 : Soit m et n deux entiers relatifs. On dit que n divise m (ou que n est un diviseur de m ou encore que m est un multiple de n) lorsqu il existe un entier

Plus en détail

PGCD ET PPCM. Par convention, dans ce paragraphe, lorsque l on parlera de diviseurs d un entier naturel, il s agira toujours des diviseurs positifs.

PGCD ET PPCM. Par convention, dans ce paragraphe, lorsque l on parlera de diviseurs d un entier naturel, il s agira toujours des diviseurs positifs. PGCD ET PPCM I. Plus grand commun diviseur Par convention, dans ce paragraphe, lorsque l on parlera de diviseurs d un entier naturel, il s agira toujours des diviseurs positifs. 1. Diviseurs communs à

Plus en détail

Ex 1 : Montrer que pour tout entier naturel n, 9 divise 10 n 1. En déduire que pour tout entier naturel n, 9 ne divise pas 10 n + 1.

Ex 1 : Montrer que pour tout entier naturel n, 9 divise 10 n 1. En déduire que pour tout entier naturel n, 9 ne divise pas 10 n + 1. Fiches méthodes arithmétique Comment traiter un problème de divisibilité? Méthode : Pour les problèmes de divisibilité dans N ou dans Z, on se ramène à la définition de la divisibilité : b divise a signifie

Plus en détail

PGCD et PPCM Thms de BEZOUT, GAUSS et FERMAT

PGCD et PPCM Thms de BEZOUT, GAUSS et FERMAT PGCD et PPCM Thms de BEZOUT, GAUSS et FERMAT I PGCD Définition 1 Soient a et b deux entiers non nuls. Le plus grand commun diviseur de a est b, noté (a, b) ou a b, est l entier positif d qui satisfait

Plus en détail

LEÇON N 13 : PGCD, PPCM de deux entiers naturels.

LEÇON N 13 : PGCD, PPCM de deux entiers naturels. LEÇON N 13 : Pré-requis : Z ainsi que la division euclidienne dans Z ; Z est un anneau principal (ie intègre dont tous les idéaux sont de la forme nz avec n N) 131 PGCD de deux entiers relatifs 1311 Définition

Plus en détail

ARITHMETIQUE. I/ Divisibilité dans Z :

ARITHMETIQUE. I/ Divisibilité dans Z : ARITHMETIQUE I/ Divisibilité dans Z : Définition : Soit a et b deux entiers relatifs. On dit que a est un multiple de b s il existe un entier relatif k tel que a=k.b Si de plus b 0, alors on dit aussi

Plus en détail

Sylvain ETIENNE 2003\2004 PLC1 Exposé 11

Sylvain ETIENNE 2003\2004 PLC1 Exposé 11 Sylvain ETIENNE 00\004 etiennesy@wanadoofr PGCD ET PPCM DE DEUX ENTIERS NATURELS NOMBRES PREMIERS ENTRE EUX APPLICATIONS L EXPOSE POURRA ETRE ILLUSTRE PAR UN OU DES EXEMPLES FAISANT APPEL A L UTILISATION

Plus en détail

Exo7. Arithmétique dans Z. 1 Divisibilité, division euclidienne

Exo7. Arithmétique dans Z. 1 Divisibilité, division euclidienne Exo7 Arithmétique dans Z 1 Divisibilité, division euclidienne Exercice 1 Sachant que l on a 96842 = 256 375+842, déterminer, sans faire la division, le reste de la division du nombre 96842 par chacun des

Plus en détail

Partie A : Plus Grand Commun Diviseur / Théorème de Bachet-Bézout / Théorème de Gauss

Partie A : Plus Grand Commun Diviseur / Théorème de Bachet-Bézout / Théorème de Gauss Partie A : Plus Grand Commun Diviseur / Théorème de Bach-Bézout / Théorème de Gauss I Le Plus Grand Commun Diviseur 1 / Diviseurs communs à deux entiers : a) Problème de pavage On veut paver une pièce

Plus en détail

Deux éléments quelconques de Z sont comparables (l ordre est total). C est-à-dire que pour n, m dans Z on a soit n m soit m n.

Deux éléments quelconques de Z sont comparables (l ordre est total). C est-à-dire que pour n, m dans Z on a soit n m soit m n. 6 Arithmétique dans Z 6.1 L anneau Z des entiers relatifs On désigne par Z l ensemble des entiers relatifs, soit : Z = {, n,, 2, 1, 0, 1, 2,, n, }. On note Z l ensemble Z privé de 0. On rappelle que l

Plus en détail

Chapitre III : PGCD, Théorème de Bézout, Théorème de Gauss

Chapitre III : PGCD, Théorème de Bézout, Théorème de Gauss Terminale S (Spécialité) Chapitre III : PGCD, Théorème de Bézout, Théorème de Gauss Année scolaire 2015/2016 I) PGCD de deux entiers naturels : 1) Définition : Soient a et b, deux entiers naturels non

Plus en détail

Cours de Terminale S - Spécialité /PGCD et nombres premiers entre eux. E. Dostal

Cours de Terminale S - Spécialité /PGCD et nombres premiers entre eux. E. Dostal Cours de Terminale S - Spécialité /PGCD et nombres premiers entre eux E. Dostal juin 2015 Table des matières 3 PGCD et entiers premiers entre eux 2 3.1 PGCD de deux entiers......................................

Plus en détail

Problème. A 1. a) On effectue la division euclidienne de 41 par tous ,1 ; donc le plus grand premier à utiliser est 19.

Problème. A 1. a) On effectue la division euclidienne de 41 par tous ,1 ; donc le plus grand premier à utiliser est 19. CHAPITRE 3 Les nombres premiers SÉQUENCE 1 Les nombres premiers (page 76) RÉSOLUTION DE PROBLÈMES Problème 1 A 1. Conjecture possible : le produit des nombres associés aux extrémités est égal à l ordonnée

Plus en détail

PGCD ET NOMBRES PREMIERS

PGCD ET NOMBRES PREMIERS 1 PGCD ET NOMBRES PREMIERS I. PGCD de deux entiers 1) Définition et propriétés Vidéo https://youtu.be/sc2ipy27ym0 Tous les diviseurs de 60 sont : 1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 60 Tous les diviseurs

Plus en détail

Équations diophantiennes du premier degré

Équations diophantiennes du premier degré du premier degré Z, auctore 3 octobre 2007 Résumé Soient a, b, c trois entiers. Résoudre l équation diophantienne ax + by = c. consiste à déteminer toutes les paires de nombres entiers x et y qui en sont

Plus en détail

La division euclidienne est la division avec reste des entiers naturels. On rappelle ce qui la caractérise.

La division euclidienne est la division avec reste des entiers naturels. On rappelle ce qui la caractérise. Chapitre 1 Arithmétique Ce texte est une liste d exercices avec un résumé succinct des principaux résultats et définitions du cours. Il ne remplace donc pas le cours! Pour le contenu du chapitre Arithmétique,

Plus en détail

ARITHMETIQUE. Exercice 4 :

ARITHMETIQUE. Exercice 4 : ARITHMETIQUE Exercice 1 : Étant donnés cinq nombres entiers consécutifs, on trouve toujours parmi eux (vrai ou faux et pourquoi) : 1. au moins deux multiples de 2. 2. au plus trois nombres pairs. 3. au

Plus en détail

Terminale S Spécialité Cours : DIVISIBILITE ET CONGRUENCES DANS.

Terminale S Spécialité Cours : DIVISIBILITE ET CONGRUENCES DANS. A la fin de ce chapitre vous devez être capable de : connaître différents procédés pour établir une divisibilité : utilisation de la définition, utilisation d identités remarquables, disjonction des cas,

Plus en détail

Bibliothèque d exercices L1 Feuille n 6. Arithmétique dans Z

Bibliothèque d exercices L1 Feuille n 6. Arithmétique dans Z Bibliothèque d exercices Énoncés L1 Feuille n 6 Arithmétique dans Z 1 Divisibilité, division euclidienne Exercice 1 Combien 15! admet-il de diviseurs? Exercice 2 Trouver le reste de la division par 13

Plus en détail

I. Divisibilité dans Z

I. Divisibilité dans Z 1 I. Divisibilité dans Z Définition : Soit a et b deux entiers relatifs. a divise b s'il existe un entier relatif k tel que b = ka. On dit également : - a est un diviseur de b, - b est divisible par a,

Plus en détail

Feuille 5 : Arithmétique

Feuille 5 : Arithmétique Université Claude Bernard Lyon Semestre d automne 206-207 UE Fondamentaux des Mathématiques I Feuille 5 : Arithmétique Exercice Montrer que pour tout n 2 N :. n(n + )(n + 2)(n + 3) est divisible par 24,

Plus en détail

Division euclidienne dans Z

Division euclidienne dans Z 23 Division euclidienne dans Z 23.1 L anneau Z des entiers relatifs On désigne par Z l ensemble des entiers relatifs, soit : Z {, n,, 2, 1, 0, 1, 2,, n, }. On note Z l ensemble Z privé de 0. On rappelle

Plus en détail

Table des matières 0- Préliminaire... 2

Table des matières 0- Préliminaire... 2 Table des matières 0- Préliminaire... 2 I- Divisibilité dans Z... 3 I-1- Multiples d'un entier relatif... 3 I-1-1- Définition:... 3 I-1-2- Exemples:... 3 I-1-3- Un raisonnement par l'absurde:... 3 I-2-

Plus en détail

LEÇON N 12 : Multiples, diviseurs, division euclidienne.

LEÇON N 12 : Multiples, diviseurs, division euclidienne. LEÇON N 12 :. Pré-requis : Z est bien ordonné et archimédien ; Toute partie non vide et minorée (respectivement majorée) de Z possède un plus petit (repectivement grand) élément ; Notions de groupes, sous-groupes

Plus en détail

Étude de N et Z ( Spécialité Maths) Terminale S

Étude de N et Z ( Spécialité Maths) Terminale S Étude de N et Z ( Spécialité Maths) Terminale S Dernière mise à jour : Jeudi 22 Novembre 2007 Vincent OBATON, Enseignant au lycée Stendhal de Grenoble (Année 2007-2008) Lycée Stendhal, Grenoble ( Document

Plus en détail

Premier cours : division euclidienne sur Z et K[X]

Premier cours : division euclidienne sur Z et K[X] Premier cours : division euclidienne sur Z et K[X] Avant de donner la définition formelle d anneau, notion qui sera l objet principal de ce cours, on révise deux exemples importants : l ensemble Z des

Plus en détail

Master Enseignement Mathématiques

Master Enseignement Mathématiques Master Enseignement Mathématiques Eric Edo Leçons d Arithmétique à l oral du CAPES. Il y a cinq leçons d arithmétique à l oral du CAPES : L12. Multiples, diviseurs, division euclidienne. L13. PGCD, PPCM

Plus en détail

PGCD ET PPCM. Par convention, dans ce paragraphe, lorsque l on parlera de diviseurs d un entier naturel, il s agira toujours des diviseurs positifs.

PGCD ET PPCM. Par convention, dans ce paragraphe, lorsque l on parlera de diviseurs d un entier naturel, il s agira toujours des diviseurs positifs. PGCD ET PPCM I. Plus grand commun diviseur Par convention, dans ce paragraphe, lorsque l on parlera de diviseurs d un entier naturel, il s agira toujours des diviseurs positifs. 1. Diviseurs communs à

Plus en détail

Congruences. DOMAINE : Arithmétique. NIVEAU : Débutants STAGE : Montpellier 2014 CONTENU : Cours et exercices

Congruences. DOMAINE : Arithmétique. NIVEAU : Débutants STAGE : Montpellier 2014 CONTENU : Cours et exercices DOMAINE : Arithmétique AUTEUR : Nicolas SÉGARRA NIVEAU : Débutants STAGE : Montpellier 014 CONTENU : Cours et exercices Congruences Commençons par trois exercices permettant de rappeler ce qui a été vu

Plus en détail

PGCD : D Euclide à Bézout

PGCD : D Euclide à Bézout Chapitre 3 PGCD : D Euclide à Bézout 1 PGCD de deux entiers Activités 1 et 2 page 34 pour se rafraîchir la mémoire et découvrir quelques propriétés du PGCD. Considérons un entier relatif a. On notera D(a)

Plus en détail

PGCD. d est le dernier reste non nul : d = pgcd (945 ; 882) = Les diviseurs de 63 sont : 1, 3, 7, 9, 21, 63. Problème

PGCD. d est le dernier reste non nul : d = pgcd (945 ; 882) = Les diviseurs de 63 sont : 1, 3, 7, 9, 21, 63. Problème CHAPITRE 2 PGCD Théorème de Bézout Théorème de Gauss SÉQUENCE 1 PGCD de deux entiers naturels (page 40) RÉSOLUTION DE PROBLÈMES Problème 1 1. 945 = 882 + et 882 = 14. Donc PGCD (945 ; 882) = car d doit

Plus en détail

2 Plus grand commun diviseur

2 Plus grand commun diviseur 2 Plus grand commun diviseur PGCD DE DEUX ENTIERS NATURELS Définition Soit deux nombres entiers naturels a et b non nuls. Un nombre entier naturel δ qui divise chacun de ces nombres est appelé diviseur

Plus en détail

LEÇON N 15 : Construction du corps Q des rationnels. Nombres décimaux, développement décimal d un nombre rationnel.

LEÇON N 15 : Construction du corps Q des rationnels. Nombres décimaux, développement décimal d un nombre rationnel. LEÇON N 15 : Construction du corps Q des rationnels. Nombres décimaux, développement décimal d un nombre rationnel. Pré-requis : Relations d équivalence, ensembles quotient, PGCD, théorème de Gauss ; Un

Plus en détail

La division euclidienne et ses conséquences

La division euclidienne et ses conséquences Chapitre 1 La division euclidienne et ses conséquences 1.1 La division euclidienne Division euclidienne pour les entiers positifs Théorème 1.1.1. Pour a N, b N, il existe un unique couple d entiers (q,

Plus en détail

Synthèse de cours PanaMaths Divisibilité et congruences

Synthèse de cours PanaMaths Divisibilité et congruences Synthèse de cours PanaMaths Divisibilité et congruences Rappelons que, sans plus de précision, «nombre entier» désigne un élément de. Division euclidienne Diviseurs Soit a et b deux nombres entiers. On

Plus en détail

Cours de mathématiques M.P.S.I.

Cours de mathématiques M.P.S.I. Cours de mathématiques M.P.S.I. D'après les cours de M. De Granrut Henriet Quentin Ausseil Lucas Perard Arsène Philipp Maxime Arithmétique dans Z 1. Multiples et diviseurs Soient a,b Z. On dit que a divise

Plus en détail

Exposé 11 : PGCD et PPCM de deux entiers naturels. Nombres premiers entres eux. Applications. Illustration avec la calculatrice.

Exposé 11 : PGCD et PPCM de deux entiers naturels. Nombres premiers entres eux. Applications. Illustration avec la calculatrice. Exposé 11 : PGCD et PPCM de deux entiers naturels. Nombres premiers entres eux. Applications. Illustration avec la calculatrice. Prérequis 1 : -Notion de diviseur multiple et de nombre premier -Division

Plus en détail

Division euclidienne. PPCM-PGCD.

Division euclidienne. PPCM-PGCD. Division euclidienne. PPCM-PGCD.. Division euclidienne dans ℕ... p2 5. Nombres premiers entre eux... p6 2. Systèmes de numération... P3 6. Plus petit commun multiple... p8 3. Algorithme d'euclide... p5

Plus en détail

( ) ; 8!, donc 4 est un diviseur de 32. ( )( n +1) ; n 1! donc si n 1, alors n +1est un

( ) ; 8!, donc 4 est un diviseur de 32. ( )( n +1) ; n 1! donc si n 1, alors n +1est un I. Divisibilité dans Z Activité 1 1. Définition Soit a, b et c trois nombres entiers relatifs non nuls. On dit que b divise a, si et seulement si, il existe un entier relatif k tel que a = kb. On dit aussi

Plus en détail

Chapitre C : PGCD, PPCM.

Chapitre C : PGCD, PPCM. Chapitre C : PGCD, PPCM. Table des matières I. Diviseurs communs à deux entiers 1 II. PGCD de deux entiers 2 III. Calcul par l algorithme d euclide 3 IV. Calcul par la décomposition en facteurs premiers

Plus en détail

Divisibilité, nombres premiers, division euclidienne et congruences

Divisibilité, nombres premiers, division euclidienne et congruences 1 Divisibilité, nombres premiers, division euclidienne et congruences DIVISIBILITÉ DANS Z Définition Soient a et b deux entiers relatifs On dit que a divise b (ou que a est un diviseur de b, ou que b est

Plus en détail

Spécialité Terminale S IE4 Bézout - Fermat S

Spécialité Terminale S IE4 Bézout - Fermat S Spécialité Terminale S IE4 Bézout - Fermat S1 2011-2012 1) Soit p V, p premier. 2) a) Montrer que pour tout n W, n 13 n est divisible par 546. 1) On considère l équation (E) dans W² : 8x + 5y = 1 a) Donner

Plus en détail

NOMBRES ENTIERS ET RATIONNELS. N Les entiers relatifs, -3; -2; -1; 0; 1; 2,

NOMBRES ENTIERS ET RATIONNELS. N Les entiers relatifs, -3; -2; -1; 0; 1; 2, NOMBRES ENTIERS ET RATIONNELS I Les ensembles de nombres Désignation Exemples Notation Les entiers naturels 0; 1; 2... N Les entiers relatifs, -3; -2; -1; 0; 1; 2, Z Les nombres décimaux : Un nombre décimal

Plus en détail

Olympiades Françaises de Mathématiques Corrigé de l envoi Numéro 1 Arithmétique OFM. Olympiade. Française.

Olympiades Françaises de Mathématiques Corrigé de l envoi Numéro 1 Arithmétique OFM. Olympiade. Française. s s de 2016-2017 Olympiade Corrigé de l envoi Numéro 1 Arithmétique 1 Exercices du groupe B Exercice 1. On définit une suite ainsi : Trouver le plus grand entier k tel que 3 k u 2017. { u0 = 15, u 1 =

Plus en détail

Module M33 : Arithmétique et Compléments d Algèbre

Module M33 : Arithmétique et Compléments d Algèbre L2 Maths-Info Université Evry Val d Essonne Module M33 : Arithmétique et Compléments d Algèbre 2016-2017 TD d Arithmétique 1 Divisibilité Exercice 1. Faire la liste de tous les diviseurs positifs de 12.

Plus en détail

MATHÉMATIQUES. Terminale S - programme spécialité

MATHÉMATIQUES. Terminale S - programme spécialité MATHÉMATIQUES Terminale S - programme spécialité cbnd MATHÉMATIQUES Un cours complet de Terminale S - programme spécialité Conforme au B.O. du 13 octobre 2011 Édité à Marseille le 4 août 2016 Résumé :

Plus en détail

Concepts de base en arithmétique

Concepts de base en arithmétique Concepts de base en arithmétique Jean-Louis Tu Objectifs de ce document Ce document s adresse à tout élève de fin de collège ou début de lycée souhaitant s initier aux exercices d arithmétique de type

Plus en détail

Olympiades Françaises de Mathématiques Envoi Numéro 3 Corrigé

Olympiades Françaises de Mathématiques Envoi Numéro 3 Corrigé Olympiades Françaises de Mathématiques 2012-2013 Envoi Numéro 3 Corrigé 1 Exercices Juniors Exercice 1. On appelle diviseur propre d un entier n un diviseur positif de n qui est différent de 1 et de n.

Plus en détail

Soient a et b deux entiers. Posons. pgcd(a, b),

Soient a et b deux entiers. Posons. pgcd(a, b), Soient a et b deux entiers. Posons pgcd(a, b), pour le plus grand commun diviseur de a et b. Et ppcm(a, b), pour le plus petit commun multiple de a et b. On dit que a et b sont relativement premier si

Plus en détail

est l ensemble des entiers naturels..., 100,..., 50,..., 2, 1,0,1,2,3,...,50,...,100,... est l ensemble des entiers relatifs.

est l ensemble des entiers naturels..., 100,..., 50,..., 2, 1,0,1,2,3,...,50,...,100,... est l ensemble des entiers relatifs. Série d'exercices *** 1 ère Année Lycée Secondaire Ali Zouaoui ACTIVITE NUMERIQUE I " Hajeb Laayoun " 0,1,,3,...,50,...,100,... est l ensemble des entiers naturels..., 100,..., 50,...,, 1,0,1,,3,...,50,...,100,...

Plus en détail

DIVISIBILITÉ ET CONGRUENCES

DIVISIBILITÉ ET CONGRUENCES DIVISIBILITÉ ET CONGRUENCES Cours Terminale S 1. Divisibilité dans Z 1) Multiples et diviseurs d un entier relatif a) Définition Définition 1 : Soient a et b deux entiers. On dit que a divise b si, et

Plus en détail

Terminale S Spécialité

Terminale S Spécialité A la fin de ce chapitre vous devez être capable de : savoir déterminer si un entier est premier en utilisant le nombre minimal de divisions par la suite des nombres premiers. savoir décomposer un entier

Plus en détail

Cours de Troisième / Arithmétique. E. Dostal

Cours de Troisième / Arithmétique. E. Dostal Cours de Troisième / Arithmétique E. Dostal juillet 2014 Table des matières 1 Arithmétique 2 1.1 Ensembles de Nombres...................................... 2 1.2 Nombres Entiers Naturels....................................

Plus en détail

DIVISIBILITÉ ET CONGRUENCES

DIVISIBILITÉ ET CONGRUENCES 1 DIVISIBILITÉ ET CONGRUENCES I. Divisibilité dans! Définition : Soit a et b deux entiers relatifs. a divise b s'il existe un entier relatif k tel que b = ka. On dit également : - a est un diviseur de

Plus en détail

Chapitre 1. Divisibilité dans Z

Chapitre 1. Divisibilité dans Z Chapitre 1 Divisibilité dans Z I Divisibilité dans Z Définition 1: Multiple diviseur d un nombre Soit a et b deux entiers relatifs On dit que a est un multiple de b ( ou que b est un diviseur de a ) s

Plus en détail

ROC : Restitution organisées des connaissances

ROC : Restitution organisées des connaissances DERNIÈRE IMPRESSION LE 21 juin 2015 à 9:13 ROC : Restitution organisées des connaissances Paul Milan 21 juin 2015 Les démonstrations suivantes sont à connaître. Les raisonnements mis en œuvre peuvent être

Plus en détail

Chapitre premier R, ordre, intervalles

Chapitre premier R, ordre, intervalles Chapitre premier R, ordre, intervalles 1.1 Définitions et rappels Définition 1.1.1. Un entier naturel est un nombre positif ou nul permettant de dénombrer des objets comptant chacun pour un. Un nombre

Plus en détail

Divisibilité. La divisibilite dans Z pour 4è annee

Divisibilité. La divisibilite dans Z pour 4è annee Divisibilité : Divisibilité La divisibilite dans Z pour 4è annee Dans ce module d introduction à l arithmétique, retour sur les notions connues depuis le collège que sont la division euclidienne, les nombres

Plus en détail

Chapitre I : Divisibilité dans Z, division euclidienne, Congruences

Chapitre I : Divisibilité dans Z, division euclidienne, Congruences Terminale S (Spécialité) Chapitre I : Divisibilité dans Z, division euclidienne, Congruences 2015/2016 I) Divisibilité dans Z : La notion de diviseur d'un entier a déjà été rencontrée au collège (classe

Plus en détail

Polynômes et fractions rationnelles

Polynômes et fractions rationnelles Polynômes et fractions rationnelles Exercice 1. Factoriser dans [ ] et dans [ ] le polynôme Allez à : Correction exercice 1 Exercice 2. Soit Factoriser dans [ ], puis dans [ ] et enfin dans [ ] Allez à

Plus en détail

des diviseurs communs de a et b. b. Deux entiers relatifs a et b ont toujours au moins deux diviseurs en commun : 1 et 1.

des diviseurs communs de a et b. b. Deux entiers relatifs a et b ont toujours au moins deux diviseurs en commun : 1 et 1. Vestiges d'une terminale S spécialité Il était une foisle PGCD - Un doc de Jérôme ONILLON distriué par la taverne de l'irlandais(wwwtanopahcom) Page 1 sur 6 Il était une foisle Plus Grand Diviseur Commun

Plus en détail

Multiples. Division euclidienne. Congruence

Multiples. Division euclidienne. Congruence DERNIÈRE IMPRESSION LE 30 septembre 2014 à 12:26 Multiples. Division euclidienne. Congruence Table des matières 1 Avant propos 2 2 Multiples et diviseurs dans Z 2 2.1 Déition.................................

Plus en détail

Polynômes. Motivation. 1. Définitions Définitions

Polynômes. Motivation. 1. Définitions Définitions Polynômes Vidéo partie 1. Définitions Vidéo partie 2. Arithmétique des polynômes Vidéo partie 3. Racine d'un polynôme, factorisation Vidéo partie 4. Fractions rationnelles Fiche d'exercices Polynômes Fiche

Plus en détail

grand commun diviseur (PGCD)

grand commun diviseur (PGCD) 2 Plus A grand commun diviseur (PGCD) Objectifs du chapitre À travers des problèmes de pavages, nous allons revoir la notion de PGCD déjà vue en classe de troisième. B Pour débuter Activité 1 Carrelage

Plus en détail

COURS ARITHMÉTIQUE Site MathsTICE de Adama Traoré Lycée Technique Bamako

COURS ARITHMÉTIQUE Site MathsTICE de Adama Traoré Lycée Technique Bamako COURS ARITHMÉTIQUE Site MathsTICE de Adama Traoré Lycée Technique Bamako Ensemble N des entiers naturels I Propriétés de N: - Propriétés de l addition dans N: L opération est une loi de composition interne

Plus en détail

La division euclidienne

La division euclidienne DOCUMENT 2 La division euclidienne La division euclidienne joue un role central en arithmétique. Comme c est l un des tous premiers résultats que l on démontre, il est important de savoir exactement ce

Plus en détail

Arithmétique modulaire pour la cryptographie

Arithmétique modulaire pour la cryptographie Université de Limoges, XLIM-DMI, 123, Av. Albert Thomas 87060 Limoges Cedex France 05.55.45.73.10 pierre-louis.cayrel@xlim.fr Licence professionnelle Administrateur de Réseaux et de Bases de Données IUT

Plus en détail

Fonction exponentielle

Fonction exponentielle Fonction exponentielle 1 Fonction exponentielle Définition et variation Théorème Définition Il existe une unique fonction définie et dérivable sur telle que et Cette fonction est appelée fonction exponentielle

Plus en détail

FICHE DE RÉVISION DU BAC

FICHE DE RÉVISION DU BAC Introduction Pré-requis : Ensemble de nombres Plan du cours 1. Divisibilité dans Z 2. Congruence 3. Plus grand commun diviseur 1. Divisibilité dans Z Dans tout ce qui suit, on se place dans l ensemble

Plus en détail

Chapitre 1. Arithmétique

Chapitre 1. Arithmétique Chapitre 1. Arithmétique 1. Raisonnement par récurrence 1.1 Principe Il s agit d un raisonnement inductif, c est-à-dire un raisonnement visant à produire des connaissances par des conclusions plus générales

Plus en détail

Leçon n 14 : Multiples, diviseurs, division euclidienne

Leçon n 14 : Multiples, diviseurs, division euclidienne Leçon n 14 : Multiples, diviseurs, division euclidienne (En bleu : ce qui n'est pas projeté) Introduction / Programmes - Ces notions d'arithmétiques sont introduites dès l'école primaire, où les élèves

Plus en détail

Diviseurs, multiples des nombres entiers naturels Dans ce chapitre on travail uniquement dans l ensemble N.

Diviseurs, multiples des nombres entiers naturels Dans ce chapitre on travail uniquement dans l ensemble N. Diviseurs, multiples des nombres entiers naturels Dans ce chapitre on travail uniquement dans l ensemble N. I Définitions : 1. Division euclidienne : Propriété : Soient a et b deux entiers naturels, avec

Plus en détail

( ) Si b divise a, alors pgcd a;b. ( ) est le plus grand commun diviseur de a et b.

( ) Si b divise a, alors pgcd a;b. ( ) est le plus grand commun diviseur de a et b. Chapitre 2 : PGCD - Bézout - Gauss I. PGCD de deux entiers Activité 1 Soit a et b des entiers non nuls. On note D( a;b) l ensemble des diviseurs communs positifs de a et de b. Ainsi D( a;b) = D( a) D(

Plus en détail

Spécialité en terminale S

Spécialité en terminale S Spécialité en terminale S Contents 1 Arithmétique 2 1.1 Multiples et diviseurs............................................. 2 1.1.1 Cours................................................. 2 1.1.2 Exercices...............................................

Plus en détail

Multiples et diviseurs

Multiples et diviseurs TS spé Multiples et diviseurs I. Divisibilité 1 ) Définition Plan du chapitre : I. Divisibilité II. Ensemble des diviseurs d un entier III. Exercices d application de la définition IV. Parité d un entier

Plus en détail

Cours d Algèbre I Bachelor Semestre 3 Prof. E. Bayer Fluckiger 8 octobre 2012

Cours d Algèbre I Bachelor Semestre 3 Prof. E. Bayer Fluckiger 8 octobre 2012 Cours d Algèbre I Bachelor Semestre 3 Prof. E. Bayer Fluckiger 8 octobre 2012 Série 3 Exercice 1. (1) Sachant que le 8 octobre 2012 est un lundi, déterminer à quel jour de la semaine correspond la date

Plus en détail

Arithmétique (2) Multiples ; diviseurs ; PGCD ; PPCM. 1 ère L Option. 5 ) Liste de tous les diviseurs d un entier naturel

Arithmétique (2) Multiples ; diviseurs ; PGCD ; PPCM. 1 ère L Option. 5 ) Liste de tous les diviseurs d un entier naturel 1 ère L Option I. Multiples et diviseurs 1 ) Définition Arithmétique (2) Multiples ; diviseurs ; PGCD ; PPCM 5 ) Liste de tous les diviseurs d un entier naturel Question : Trouver tous les diviseurs d'un

Plus en détail

Exercices d arithmétiques

Exercices d arithmétiques Exercices d arithmétiques 18 janvier 2014 Exercice 1. 1. Montrer que si n est somme des carrés de deux entiers consécutifs alors 2n 1 est le carré d un entier. 2. Montrer que si 2n 1 est le carré d un

Plus en détail

1. Cours 1: Arithmétique dans Z

1. Cours 1: Arithmétique dans Z 1. Cours 1: Arithmétique dans Z 1.1. Divisibilité: Soient a, b deux entiers ( a; b 2 Z) On dit que b divise a, s il exite q 2 Z tel que a = qb Exemple 1: 1 divise tout entier a En e et: a = a:1 Exemple

Plus en détail

( ) 2 = n( n 3 + 2n) +1. ( ) 2 et ( n 3 + 2n) sont premiers entre eux.

( ) 2 = n( n 3 + 2n) +1. ( ) 2 et ( n 3 + 2n) sont premiers entre eux. Exercices : PGCD et nombres entiers premiers entre eux Exercice 1 Si on divise 4294 et 3521 par un même entier positif, on obtient respectivement 10 et 11 comme reste. Quel est cet entier? Exercice 2 Les

Plus en détail

b) 67 = et 2 < 13 : dans la division euclidienne de 67 par 13, le quotient est 5 et le reste est 2.

b) 67 = et 2 < 13 : dans la division euclidienne de 67 par 13, le quotient est 5 et le reste est 2. Exercice p 58, n 1 : Déterminer le quotient entier et le reste de chaque division euclidienne : a) 15 par 7 ; b) 67 par 13 ; c) 124 par 61 ; d) 275 par 25 ; e) 88 par 17 ; f) 146 par 15. a) 15 = 7 2 +

Plus en détail

CH I Diviseurs d un entier. PGCD. Algorithme d Euclide.

CH I Diviseurs d un entier. PGCD. Algorithme d Euclide. CH I Diviseurs d un entier. PGCD. Algorithme d Euclide. A) Diviseurs d un entier naturel Les diviseurs de 35 sont 1 ; 5 35 ; 7 1. Diviseurs d un nombre entier non nul Les diviseurs de 72 sont : 1 ; 2 ;

Plus en détail

CAPES session 2015 Épreuve 2. Problème n o 1

CAPES session 2015 Épreuve 2. Problème n o 1 CAPES session 2015 Épreuve 2 Problème n o 1 A. P. M. E. P. Problème n o 1 Notations On note N l ensemble des entiers naturels, N l ensemble des entiers naturels non nuls et Z l ensemble des entiers relatifs.

Plus en détail

Bases d algorithmique, algorithmes d Euclide 1 Le programme sur ce sujet :

Bases d algorithmique, algorithmes d Euclide 1 Le programme sur ce sujet : 1 Le programme sur ce sujet : 2 Algorithmique et informatique Notions de variable et de type. Instructions d affectation, conditionnelles, d itération. Fonctions et procédures (ou sous-programmes) ; passage

Plus en détail

ENTIERS, RATIONNELS, DECIMAUX

ENTIERS, RATIONNELS, DECIMAUX Université Blaise Pascal, Préparation au CAPES de Mathématiques Année 2005 ENTIERS, RATIONNELS, DECIMAUX Document de travail pour la préparation au CAPES François DUMAS 1. Z comme anneau euclidien 1. Notion

Plus en détail

Exo7. Polynômes. 1 Opérations sur les polynômes. 2 Division, pgcd. Corrections de Léa Blanc-Centi.

Exo7. Polynômes. 1 Opérations sur les polynômes. 2 Division, pgcd. Corrections de Léa Blanc-Centi. Exo7 Polynômes Corrections de Léa Blanc-Centi. 1 Opérations sur les polynômes Exercice 1 Trouver le polynôme P de degré inférieur ou égal à 3 tel que : P(0) = 1 et P(1) = 0 et P( 1) = 2 et P(2) = 4. [000427]

Plus en détail

TERMINALE S DIVISIBILITÉ ET NOMBRES PREMIERS. I Divisibilité dans Z. Mathématiques, enseignement de spécialité

TERMINALE S DIVISIBILITÉ ET NOMBRES PREMIERS. I Divisibilité dans Z. Mathématiques, enseignement de spécialité TERMINALE S Mathématiques, enseignement de spécialité DIVISIBILITÉ ET NOMBRES PREMIERS I Divisibilité dans Z 1 Division euclidienne dans Z. Soient a un nombre entier relatif et b un entier naturel non

Plus en détail

EXERCICES D ARITHMÉTIQUE

EXERCICES D ARITHMÉTIQUE 1. On note D(a) l'ensemble des diviseurs positifs de l'entier a. a) Déterminer l'ensemble des diviseurs positifs de 60, puis l'ensemble des diviseurs positifs de 11. Déterminer ensuite l'intersection de

Plus en détail

Entiers relatifs. 1 Définition

Entiers relatifs. 1 Définition Entiers relatifs 1 Définition On définit, sur l ensemble N N, la relation binaire R par : (a, b)r(c, d) a + d = b + c On vérifie sans peine que R est bien une relation d équivalence : La réflexivité découle

Plus en détail

PLUS GRAND COMMUN DIVISEUR P.G.C.D.

PLUS GRAND COMMUN DIVISEUR P.G.C.D. PLUS GRAND COMMUN DIVISEUR P.G.C.D. Prérequis : Nombres entiers; Multiple; Division Euclidienne I - DIVISEURS II- CALCUL DU PGCD III PROPRIETES I. Divisibilité 1) Diviseurs Soient a et b deux entiers non

Plus en détail