Statistiques avec R 3/4 - Machine Learning/Data Mining

Dimension: px
Commencer à balayer dès la page:

Download "Statistiques avec R 3/4 - Machine Learning/Data Mining"

Transcription

1 Statistiques avec R 3/4 - Machine Learning/Data Mining Christophe Lalanne ch.lalanne@gmail.com Cours R (ESME),

2 Synopsis Positionnement du problème Réduction de dimension Sélection de variables Quelques modèles prédictifs Cours R (ESME),

3 RStudio et R Markdown Présentation Cours R (ESME),

4 Différentes questions, différentes approches approche supervisée vs. non-supervisée, voire semisupervisée ; prédiction vs. classification modèle explicatif vs. modèle prédictif ; modèle génératif vs. discriminant What s the model for the data? Leo Breiman, Statistical Modeling: The Two Cultures Cours R (ESME),

5 Rappels sur l'approche de régression Soit la réponse mesurée pour la ème unité, et les valeurs observées sur prédicteurs. Le modèle de régression linéaire (au niveau de ses paramètres) s'écrit avec ( ) les coefficients de régression qui reflètent le changement observé au niveau de lorsque varie de une unité, les autres prédicteurs étant maintenus constants. Cours R (ESME),

6 L'erreur quadratique moyenne (RMSE), définie comme permet de résumer l'écart entre les valeurs prédites et les valeurs observées, en d'autres termes la capacité prédictive du modèle. rmse <- function(obj) sqrt(mean(resid(obj)^2)) Cours R (ESME),

7 Cas d'une variable réponse binaire Régression logistique La régression logistique permet de traiter le cas où la variable réponse est de type binaire (oui/non, malade/pas malade, etc.), et non pas continu comme dans le modèle de régression linéaire. Tout en relaxant certaines des hypothèses du modèle de régression multiple, on maintient quand même l'idée d'une relation linéaire entre la réponse et les prédicteurs. Cours R (ESME),

8 Soit la probabilité d'observer l'événement (vs. 0), alors le log odds peut s'exprimer comme une fonction linéaire des paramètres du modèle à prédicteurs : et la probabilité prédite s'écrit alors Cours R (ESME),

9 Deux utilisations différentes (à ne pas confondre) : 1. prédiction (probabilité, ) 2. classification (e.g., si, sinon). Comme dans le cas de la régression linéaire on utilise des mesures du pouvoir prédictif (e.g., score de Brier) ou discriminant (taux de classification correcte, courbe ROC optimisant un compromis sensibilité/spécificité défini a priori). Voir les packages rms et ROCR. Cours R (ESME),

10 Exemples de problèmes de ML ou DM analyse de documents : mots/topics recherche médicale : expression de gènes et prédiction du type de tumeur cancéreuse commerce, banque : données clients et typologie (achat, crédit, etc.) système de recommendation etc. Cours R (ESME),

11 Le zoo des modèles ML Source : Cours R (ESME),

12 Un problème de surajustement Exemple de modèle (génératif) : f <- function(x) sin(sqrt(2*pi*x)) n < ## ou 30 x <- runif(n, 0, 2*pi) y <- f(x) + rnorm(n, 0, 0.25) library(splines) lm(y ~ bs(x, df=3), data=dfrm) Cours R (ESME),

13 Qualité du modèle de régression par splines : Quel modèle choisir : 3, 5 ou 10 paramètres? Cours R (ESME),

14 Cours R (ESME),

15 BS-15 estimé sur N=100, 30 nouvelles observations. Cours R (ESME),

16 BS-15 estimé sur N=30, 30 nouvelles observations. Cours R (ESME),

17 Compromis biais/variance Considérons un modèle polynomial d'ordre,. Problématique de sélection de modèle : Large biais quand petit, large variance quand grand. Comment choisir? Cours R (ESME),

18 Cours R (ESME),

19 Cours R (ESME),

20 Quel bon compromis pour éviter le sur-ajustement et contrôler la complexité du modèle? Limiter le nombre de prédicteurs,, ou maximiser (critère AIC). Procédure de sélection automatique de variable Validation croisée : 2 sous-échantillons, k-fold (avec ou sans répétition), bootstrap Techniques de pénalisation, incluant la sélection automatique de variables. Cours R (ESME),

21 Régression régularisée L'estimateur par MCO minimise la SSR. Lorsque, n'est pas de rang plein, et il n'y a plus unicité des solutions MCO. Pour la prédiction on peut chercher à minimiser le risque. Cours R (ESME),

22 Remarque : Une pénalisation avec une norme,, revient aux méthodes AIC/BIC. Packages R : glmnet (pas de data frame) ou penalized (inclut la possibilité de ne pénaliser qu'une partie des paramètres), parmi d'autres) Cours R (ESME),

23 Cours R (ESME),

24 f <- function(x) sin(sqrt(2*pi*x)) n < x <- runif(n, 0, 2*pi) sigma <- rnorm(n, 0, 0.25) y <- f(x) + sigma dfrm <- data.frame(x, y) library(penalized) lam <- c(seq(0, 2, by=.01), seq(2, 30, by=2)) X <- poly(dfrm$x, k) for (l in lam) { m <- penalized(response=dfrm$y, penalized=x, lambda1=0, lambda2=l) dfrm$pp <- predict(m, X)[,"mu"] plot(...) } Mais on pourrait très bien optimiser la valeur de. Comment? Cours R (ESME),

25 Application 1 Modèle :, 1. Simuler des données avec, et comparer un modèle linéaire classique à un modèle pénalisé (package glmnet). 2. Comparer les résultats avec une approcge par sélection de variable (step()) et de régression sur composantes principales (pls::pcr()) Cours R (ESME),

26 Exemple pour simuler les données : n <- 50 X <- replicate(10, rnorm(n)) colnames(x) <- paste("x", 1:10, sep="") y <- 1.1*X[,1] + 0.8*X[,2] - 0.7*X[,5] + 1.4*X[,6] + rnorm(n) dfrm <- data.frame(y=y, X) ## Modèle de base fm0 <- lm(y ~ 0+x1+x2+x3+x4, data=dfrm) Cours R (ESME),

27 Colinéarité, grande dimension, sélection de variable Soit, réponse continue, et trois prédicteurs continus,, mesurés sur un échantillon de taille, avec. Considérons 40 prédicteurs additionnels tirés indépendemment dans, de sorte qu'une estimation par simple MCO est moins recommendée. Cours R (ESME),

28 Par ailleurs, on considère que n'est pas corrélé à mais sa corrélation partielle avec n'est pas nulle. library(mass) n <- 80 Sigma <- matrix(c(1,-.5,-.5,0, -.5,1,.5,-.5, -.5,.5,1,-.5, 0,-.5,-.5,1), nc=4) dat <- mvrnorm(n, rep(0, 4), Sigma) dat <- cbind(dat, replicate(40, rnorm(n, 0, 1))) colnames(dat) <- c("y", paste("x", 1:(ncol(dat)-1), sep="")) Cours R (ESME),

29 Application 2 Est-il possible de recouvrer les prédicteurs? 1. Faire un filtrage univarié des prédicteurs à l'aide d'un simple test de corrélation, avec et sans correction pour les tests multiples (Bonferroni et FDR). 2. Comparer avec une approche par régularisation. 3. Comparer avec une approche par arbre de décision (package rpart). Cours R (ESME),

30 Sélection de variables Méthodes de filtrage : généralement univariées, sélection de variables indépendamment du classifieur Méthodes d'ensemble ("wrapper") : qualité de la classification, importance des prédicteurs, impossible d'enrichir la structure des classifieurs Méthodes intégrées ou enchâssées ("embedded") : processus de sélection de variables intégré à l'algorithme d'apprentissage, moins exigeantes en termes de calcul Cours R (ESME),

31 Source : Guyon, I., et al. (2006). Feature Extraction: Foundations And Applications Springer-Verlag. Cours R (ESME),

32 Méthodes d'ensemble L'idée est de générer des ensembles de classifieurs variés et suffisamment précis. On peut introduire de la variabilité en variant différents paramètres : varier le poids des observations (boosting/bagging) varier les valeurs des observations (ajout de bruit) considérer des sous-ensembles de variables (random forests) Cours R (ESME),

33 varier les paramètres du modèle varier le modèle utiliser (arbres, MARS, NNs, etc.) Les estimations peuvent ensuite être combinées par pondération des estimations, par une méthode de vote (en classification), ou par partitionnement de l'espace de design. Cours R (ESME),

34 Approches non-paramétriques Dans le cas des structures de données irrégulières ( ou ), les approches de filtrage univarié (tests t, régression) ou de réduction de dimension (PCA, SVD) ne prennent pas en compte la nature multivariée du problème. Une approche possible : Arbres de classification et de régression (CART). Cours R (ESME),

35 Cours R (ESME),

36 Avantages des arbres de décision (CART, ID3, C4.5/J48, etc.) : fonctionnent avec des variables numériques ou qualitatives, avec ou sans valeurs manquantes, moins sensibles aux valeurs extrêmes capturent les interactions, ignorent les prédicteurs de faible poids. En revanche, ils sont instables, ne capturent pas bien les combinaisons linéaires de variables, et sont impactés par la colinéarité (variables surrogates). Cours R (ESME),

37 Typiquement, il est nécessaire d'élaguer l'arbre de décision pour éviter le sur-ajustement : minimiser taille de l'arbre + minimiser fonction de coût. 1) root ) y< ) x< * 5) x>= * 3) y>= ) x< ) y< * 13) y>= * 7) x>= ) x< ) y< * 29) y>= * 15) x>= * Cours R (ESME),

38 Exemple : file <- " titanic.raw <- read.table(url(file), header = TRUE) library(rpart) m <- rpart(survived ~., data = titanic.raw) plotcp(m) printcp(m) Cours R (ESME),

39 Variables actually used in tree construction: [1] Age Class Sex Root node error: 711/2201 = n= 2201 CP nsplit rel error xerror xstd x (rel error) = erreur de resubstitution x (xerror) = erreur 10-fold CV Cours R (ESME),

40 Forêts aléatoires Extension des CART incluant une double étape de randomization (variables et individus). Il n'y a pas de modèle sous-jacent : il s'agit d'un algorithme : On spécifie le nombre de variables $p$ qui servira d'ensemble de prédicteurs parmi les variables de départ (généralement, ). Chaque arbre (de profondeur maximale) est construit à partir d'un échantillon bootstrap des individus de Cours R (ESME),

41 À chaque noeud, variables sont sélectionnées aléatoirement parmi les variables, la division de l'arbre se faisant selon un critère de maximisation du gain d'information sur ces variables (Gini : ou ). L'importance de chaque variable est évaluée par permutation. Package : randomforest Cours R (ESME),

42 Source : Cours R (ESME),

43 Source : Cours R (ESME),

44 Source : Cours R (ESME),

45 Source : Gene selection and classification of microarray data using random forest Cours R (ESME),

46 Application 3 1. Télécharger le jeu de données leukemia depuis le site du cours. 2. Vérifier la structure de données. 3. Comparer les prédictions d'un modèle de régression pénalisée avec celles d'un modèle RF. Cours R (ESME),

47 Lecture des données : x <- read.table("leukemia.data.txt")[,-1] x <- t(x) y <- scan("leukemia.class.txt", what = "character") y <- as.numeric(factor(y))-1 Cours R (ESME),

48 Validation croisée Source : Cours R (ESME),

49 On recommende généralement une procédure de type k-fold (k = 5 ou 10), répété (25 ou 100 fois), ou une approche par bootstrap pour de raisons de stabilité et de variance. À retenir : la validation croisée doit englober l'intégralité des étapes de construction et d'évaluation du modèle (optimisation des (hyper-)paramètres, sélection de variables, etc.). Cours R (ESME),

50 Le package caret Cours R (ESME),

51 partitionnement échantillon apprentissage/test : createdatapartition rffit <- train(x=traindescr, y=trainclass, method="rf", tunelength=10, importance=true, proximity=true, trcontrol=traincontrol(method="repeatedcv", number=5, repeats=10, verboseiter=true), metric = "Accuracy") rffit varused(rffit$finalmodel) plot(rffit$finalmodel) Cours R (ESME),

52 Autres modèles Il existe de nombreux autres modèles multivariés : SVM, GBM, MARS, sparse PLS, etc. Voir The Elements of Statistical Learning pour les détails téhoriques, pratiques et le code R. D'autres illustrations sont disponibles sur le site du package caret. Cours R (ESME),

53 Machines à vecteur de support Source : Cours R (ESME),

54 Cours R (ESME),

55 Exemple de SVM library(kernlab) set.seed(101) x <- rbind(matrix(rnorm(120),,2),matrix(rnorm(120,mean=3),,2)) y <- matrix(c(rep(1,60),rep(-1,60))) svp <- ksvm(x,y,type="c-svc") plot(svp,data=x) Voir aussi Support Vector Machines in R: a benchmark study (PDF). Cours R (ESME),

56 Cours R (ESME),

57 Equation de décision plot(scale(x), col=y+2, pch=y+2, xlab="", ylab="") w <- colsums(coef(svp)[[1]] * x[unlist(alphaindex(svp)),]) b <- b(svp) abline(b/w[1],-w[2]/w[1]) abline((b+1)/w[1],-w[2]/w[1],lty=2) abline((b-1)/w[1],-w[2]/w[1],lty=2) Source : Cours R (ESME),

Introduction au Data-Mining

Introduction au Data-Mining Introduction au Data-Mining Gilles Gasso, Stéphane Canu INSA Rouen -Département ASI Laboratoire LITIS 8 septembre 205. Ce cours est librement inspiré du cours DM de Alain Rakotomamonjy Gilles Gasso, Stéphane

Plus en détail

LA NOTATION STATISTIQUE DES EMPRUNTEURS OU «SCORING»

LA NOTATION STATISTIQUE DES EMPRUNTEURS OU «SCORING» LA NOTATION STATISTIQUE DES EMPRUNTEURS OU «SCORING» Gilbert Saporta Professeur de Statistique Appliquée Conservatoire National des Arts et Métiers Dans leur quasi totalité, les banques et organismes financiers

Plus en détail

Introduction au Data-Mining

Introduction au Data-Mining Introduction au Data-Mining Alain Rakotomamonjy - Gilles Gasso. INSA Rouen -Département ASI Laboratoire PSI Introduction au Data-Mining p. 1/25 Data-Mining : Kèkecé? Traduction : Fouille de données. Terme

Plus en détail

Arbres binaires de décision

Arbres binaires de décision 1 Arbres binaires de décision Résumé Arbres binaires de décision Méthodes de construction d arbres binaires de décision, modélisant une discrimination (classification trees) ou une régression (regression

Plus en détail

Techniques du Data Mining pour la prédiction de faillite des entreprises et la gestion du risque de crédit

Techniques du Data Mining pour la prédiction de faillite des entreprises et la gestion du risque de crédit Techniques du Data Mining pour la prédiction de faillite des entreprises et la gestion du risque de crédit Adil Belhouari HEC - Montréal - Journées de l Optimisation 2005-09 Mai 2005 PLAN DE LA PRÉSENTATION

Plus en détail

Algorithmes d'apprentissage

Algorithmes d'apprentissage Algorithmes d'apprentissage 1 Agents qui apprennent à partir d'exemples La problématique : prise de décision automatisée à partir d'un ensemble d'exemples Diagnostic médical Réponse à une demande de prêt

Plus en détail

Projet SINF2275 «Data mining and decision making» Projet classification et credit scoring

Projet SINF2275 «Data mining and decision making» Projet classification et credit scoring Projet SINF2275 «Data mining and decision making» Projet classification et credit scoring Année académique 2006-2007 Professeurs : Marco Saerens Adresse : Université catholique de Louvain Information Systems

Plus en détail

Etude des propriétés empiriques du lasso par simulations

Etude des propriétés empiriques du lasso par simulations Etude des propriétés empiriques du lasso par simulations L objectif de ce TP est d étudier les propriétés empiriques du LASSO et de ses variantes à partir de données simulées. Un deuxième objectif est

Plus en détail

Chapitre 6 Apprentissage des réseaux de neurones et régularisation

Chapitre 6 Apprentissage des réseaux de neurones et régularisation Chapitre 6 : Apprentissage des réseaux de neurones et régularisation 77 Chapitre 6 Apprentissage des réseaux de neurones et régularisation Après une introduction rapide aux réseaux de neurones et à la

Plus en détail

Le Data Mining au service du Scoring ou notation statistique des emprunteurs!

Le Data Mining au service du Scoring ou notation statistique des emprunteurs! France Le Data Mining au service du Scoring ou notation statistique des emprunteurs! Comme le rappelle la CNIL dans sa délibération n 88-083 du 5 Juillet 1988 portant adoption d une recommandation relative

Plus en détail

Coup de Projecteur sur les Réseaux de Neurones

Coup de Projecteur sur les Réseaux de Neurones Coup de Projecteur sur les Réseaux de Neurones Les réseaux de neurones peuvent être utilisés pour des problèmes de prévision ou de classification. La représentation la plus populaire est le réseau multicouche

Plus en détail

Scénario: Score d appétence de la carte visa premier

Scénario: Score d appétence de la carte visa premier Scénario: Score d appétence de la carte visa premier Résumé Cette aventure reprend rapidement l exploration des données bancaires avant d aborder systématiquement la construction de modèles de prévision

Plus en détail

Data Mining. Vincent Augusto 2012-2013. École Nationale Supérieure des Mines de Saint-Étienne. Data Mining. V. Augusto.

Data Mining. Vincent Augusto 2012-2013. École Nationale Supérieure des Mines de Saint-Étienne. Data Mining. V. Augusto. des des Data Mining Vincent Augusto École Nationale Supérieure des Mines de Saint-Étienne 2012-2013 1/65 des des 1 2 des des 3 4 Post-traitement 5 représentation : 6 2/65 des des Définition générale Le

Plus en détail

Méthodes d apprentissage statistique «Machine Learning»

Méthodes d apprentissage statistique «Machine Learning» Méthodes d apprentissage statistique «Machine Learning» Fabrice TAILLIEU, Sébastien DELUCINGE, Rémi BELLINA Le marché de l assurance a rarement été marqué par un environnement aussi difficile qu au cours

Plus en détail

Pourquoi l apprentissage?

Pourquoi l apprentissage? Pourquoi l apprentissage? Les SE sont basés sur la possibilité d extraire la connaissance d un expert sous forme de règles. Dépend fortement de la capacité à extraire et formaliser ces connaissances. Apprentissage

Plus en détail

INF6304 Interfaces Intelligentes

INF6304 Interfaces Intelligentes INF6304 Interfaces Intelligentes filtres collaboratifs 1/42 INF6304 Interfaces Intelligentes Systèmes de recommandations, Approches filtres collaboratifs Michel C. Desmarais Génie informatique et génie

Plus en détail

LES MODELES DE SCORE

LES MODELES DE SCORE LES MODELES DE SCORE Stéphane TUFFERY CONFERENCE GENDER DIRECTIVE 31 mai 2012 31/05/2012 ActuariaCnam Conférence Gender Directive Stéphane Tufféry 1 Plan Le scoring et ses applications L élaboration d

Plus en détail

La classification automatique de données quantitatives

La classification automatique de données quantitatives La classification automatique de données quantitatives 1 Introduction Parmi les méthodes de statistique exploratoire multidimensionnelle, dont l objectif est d extraire d une masse de données des informations

Plus en détail

SAS ENTERPRISE MINER POUR L'ACTUAIRE

SAS ENTERPRISE MINER POUR L'ACTUAIRE SAS ENTERPRISE MINER POUR L'ACTUAIRE Conférence de l Association des Actuaires I.A.R.D. 07 JUIN 2013 Sylvain Tremblay Spécialiste en formation statistique SAS Canada AGENDA Survol d Enterprise Miner de

Plus en détail

Validation probabiliste d un Système de Prévision d Ensemble

Validation probabiliste d un Système de Prévision d Ensemble Validation probabiliste d un Système de Prévision d Ensemble Guillem Candille, janvier 2006 Système de Prévision d Ensemble (EPS) (ECMWF Newsletter 90, 2001) Plan 1 Critères de validation probabiliste

Plus en détail

Quantification Scalaire et Prédictive

Quantification Scalaire et Prédictive Quantification Scalaire et Prédictive Marco Cagnazzo Département Traitement du Signal et des Images TELECOM ParisTech 7 Décembre 2012 M. Cagnazzo Quantification Scalaire et Prédictive 1/64 Plan Introduction

Plus en détail

Déroulement d un projet en DATA MINING, préparation et analyse des données. Walid AYADI

Déroulement d un projet en DATA MINING, préparation et analyse des données. Walid AYADI 1 Déroulement d un projet en DATA MINING, préparation et analyse des données Walid AYADI 2 Les étapes d un projet Choix du sujet - Définition des objectifs Inventaire des données existantes Collecte, nettoyage

Plus en détail

Organisé par StatSoft France et animé par Dr Diego Kuonen, expert en techniques de data mining.

Organisé par StatSoft France et animé par Dr Diego Kuonen, expert en techniques de data mining. 2 jours : Mardi 15 et mercredi 16 novembre 2005 de 9 heures 30 à 17 heures 30 Organisé par StatSoft France et animé par Dr Diego Kuonen, expert en techniques de data mining. Madame, Monsieur, On parle

Plus en détail

Analyses de Variance à un ou plusieurs facteurs Régressions Analyse de Covariance Modèles Linéaires Généralisés

Analyses de Variance à un ou plusieurs facteurs Régressions Analyse de Covariance Modèles Linéaires Généralisés Analyses de Variance à un ou plusieurs facteurs Régressions Analyse de Covariance Modèles Linéaires Généralisés Professeur Patrice Francour francour@unice.fr Une grande partie des illustrations viennent

Plus en détail

AICp. Vincent Vandewalle. To cite this version: HAL Id: inria-00386678 https://hal.inria.fr/inria-00386678

AICp. Vincent Vandewalle. To cite this version: HAL Id: inria-00386678 https://hal.inria.fr/inria-00386678 Sélection prédictive d un modèle génératif par le critère AICp Vincent Vandewalle To cite this version: Vincent Vandewalle. Sélection prédictive d un modèle génératif par le critère AICp. 41èmes Journées

Plus en détail

Travaux pratiques avec RapidMiner

Travaux pratiques avec RapidMiner Travaux pratiques avec RapidMiner Master Informatique de Paris 6 Spécialité IAD Parcours EDOW Module Algorithmes pour la Fouille de Données Janvier 2012 Prise en main Généralités RapidMiner est un logiciel

Plus en détail

Régression linéaire. Nicolas Turenne INRA nicolas.turenne@jouy.inra.fr

Régression linéaire. Nicolas Turenne INRA nicolas.turenne@jouy.inra.fr Régression linéaire Nicolas Turenne INRA nicolas.turenne@jouy.inra.fr 2005 Plan Régression linéaire simple Régression multiple Compréhension de la sortie de la régression Coefficient de détermination R

Plus en détail

$SSOLFDWLRQGXNULJHDJHSRXUOD FDOLEUDWLRQPRWHXU

$SSOLFDWLRQGXNULJHDJHSRXUOD FDOLEUDWLRQPRWHXU $SSOLFDWLRQGXNULJHDJHSRXUOD FDOLEUDWLRQPRWHXU Fabien FIGUERES fabien.figueres@mpsa.com 0RWVFOpV : Krigeage, plans d expériences space-filling, points de validations, calibration moteur. 5pVXPp Dans le

Plus en détail

Logiciel XLSTAT version 7.0. 40 rue Damrémont 75018 PARIS

Logiciel XLSTAT version 7.0. 40 rue Damrémont 75018 PARIS Logiciel XLSTAT version 7.0 Contact : Addinsoft 40 rue Damrémont 75018 PARIS 2005-2006 Plan Présentation générale du logiciel Statistiques descriptives Histogramme Discrétisation Tableau de contingence

Plus en détail

Introduction à l approche bootstrap

Introduction à l approche bootstrap Introduction à l approche bootstrap Irène Buvat U494 INSERM buvat@imedjussieufr 25 septembre 2000 Introduction à l approche bootstrap - Irène Buvat - 21/9/00-1 Plan du cours Qu est-ce que le bootstrap?

Plus en détail

Données longitudinales et modèles de survie

Données longitudinales et modèles de survie ANALYSE DU Données longitudinales et modèles de survie 5. Modèles de régression en temps discret André Berchtold Département des sciences économiques, Université de Genève Cours de Master ANALYSE DU Plan

Plus en détail

L'intelligence d'affaires: la statistique dans nos vies de consommateurs

L'intelligence d'affaires: la statistique dans nos vies de consommateurs L'intelligence d'affaires: la statistique dans nos vies de consommateurs Jean-François Plante, HEC Montréal Marc Fredette, HEC Montréal Congrès de l ACFAS, Université Laval, 6 mai 2013 Intelligence d affaires

Plus en détail

ANALYSE STATISTIQUE PRÉDICTIVE

ANALYSE STATISTIQUE PRÉDICTIVE Yoshua Bengio Chaire de Recherche du Canada sur les Algorithmes d Apprentissage Statistique, Université de Montréal Charles Dugas ApSTAT Technologies Inc. Et Aviva Canada SALON INTELLIGENCE D AFFAIRE 8

Plus en détail

Apprentissage Automatique

Apprentissage Automatique Apprentissage Automatique Introduction-I jean-francois.bonastre@univ-avignon.fr www.lia.univ-avignon.fr Définition? (Wikipedia) L'apprentissage automatique (machine-learning en anglais) est un des champs

Plus en détail

Analyse discriminante et régression logistique: application au cas de l innovation pour les entreprises du Canton du Tessin

Analyse discriminante et régression logistique: application au cas de l innovation pour les entreprises du Canton du Tessin Analyse discriminante et régression logistique: application au cas de l innovation pour les entreprises du Canton du Tessin Sandro Petrillo Université de Neuchâtel - Diplôme Postgrade en Statistique Projet

Plus en détail

STATISTIQUES. UE Modélisation pour la biologie

STATISTIQUES. UE Modélisation pour la biologie STATISTIQUES UE Modélisation pour la biologie 2011 Cadre Général n individus: 1, 2,..., n Y variable à expliquer : Y = (y 1, y 2,..., y n ), y i R Modèle: Y = Xθ + ε X matrice du plan d expériences θ paramètres

Plus en détail

L ANALYSE EN COMPOSANTES PRINCIPALES (A.C.P.) Pierre-Louis GONZALEZ

L ANALYSE EN COMPOSANTES PRINCIPALES (A.C.P.) Pierre-Louis GONZALEZ L ANALYSE EN COMPOSANTES PRINCIPALES (A.C.P.) Pierre-Louis GONZALEZ INTRODUCTION Données : n individus observés sur p variables quantitatives. L A.C.P. permet d eplorer les liaisons entre variables et

Plus en détail

Une méthode de classification supervisée sans paramètre pour l apprentissage sur les grandes bases de données

Une méthode de classification supervisée sans paramètre pour l apprentissage sur les grandes bases de données Une méthode de classification supervisée sans paramètre pour l apprentissage sur les grandes bases de données Marc Boullé Orange Labs 2 avenue Pierre Marzin 22300 Lannion marc.boulle@orange-ftgroup.com,

Plus en détail

Data mining II. Modélisation Statistique & Apprentissage

Data mining II. Modélisation Statistique & Apprentissage Publications du Laboratoire de Statistique et Probabilités Data mining II. Modélisation Statistique & Apprentissage Philippe BESSE Version janvier 2003 mises à jour : www.lsp.ups-tlse.fr/besse Laboratoire

Plus en détail

Apprentissage incrémental par sélection de données dans un flux pour une application de sécurité routière

Apprentissage incrémental par sélection de données dans un flux pour une application de sécurité routière Apprentissage incrémental par sélection de données dans un flux pour une application de sécurité routière Nicolas Saunier INRETS Télécom Paris Sophie Midenet INRETS Alain Grumbach Télécom Paris Conférence

Plus en détail

Etude d un cas industriel : Optimisation de la modélisation de paramètre de production

Etude d un cas industriel : Optimisation de la modélisation de paramètre de production Revue des Sciences et de la Technologie RST- Volume 4 N 1 /janvier 2013 Etude d un cas industriel : Optimisation de la modélisation de paramètre de production A.F. Bernate Lara 1, F. Entzmann 2, F. Yalaoui

Plus en détail

NON-LINEARITE ET RESEAUX NEURONAUX

NON-LINEARITE ET RESEAUX NEURONAUX NON-LINEARITE ET RESEAUX NEURONAUX Vêlayoudom MARIMOUTOU Laboratoire d Analyse et de Recherche Economiques Université de Bordeaux IV Avenue. Leon Duguit, 33608 PESSAC, France tel. 05 56 84 85 77 e-mail

Plus en détail

Apprentissage Statistique :

Apprentissage Statistique : Apprentissage Statistique Apprentissage Statistique : modélisation, prévision et data mining PHILIPPE BESSE & BÉATRICE LAURENT 5ème année GMM - MMS Équipe de Statistique et Probabilités Institut de Mathématiques

Plus en détail

Apprentissage non paramétrique en régression

Apprentissage non paramétrique en régression 1 Apprentissage non paramétrique en régression Apprentissage non paramétrique en régression Résumé Différentes méthodes d estimation non paramétriques en régression sont présentées. Tout d abord les plus

Plus en détail

CHAPITRE I. Modélisation de processus et estimation des paramètres d un modèle

CHAPITRE I. Modélisation de processus et estimation des paramètres d un modèle CHAPITRE I Modélisation de processus et estimation des paramètres d un modèle I. INTRODUCTION. Dans la première partie de ce chapitre, nous rappelons les notions de processus et de modèle, ainsi que divers

Plus en détail

ESIEA PARIS 2011-2012

ESIEA PARIS 2011-2012 ESIEA PARIS 2011-2012 Examen MAT 5201 DATA MINING Mardi 08 Novembre 2011 Première Partie : 15 minutes (7 points) Enseignant responsable : Frédéric Bertrand Remarque importante : les questions de ce questionnaire

Plus en détail

«Cours Statistique et logiciel R»

«Cours Statistique et logiciel R» «Cours Statistique et logiciel R» Rémy Drouilhet (1), Adeline Leclercq-Samson (1), Frédérique Letué (1), Laurence Viry (2) (1) Laboratoire Jean Kuntzmann, Dép. Probabilites et Statistique, (2) Laboratoire

Plus en détail

Apprentissage statistique dans les graphes et les réseaux sociaux

Apprentissage statistique dans les graphes et les réseaux sociaux Apprentissage statistique dans les graphes et les réseaux sociaux Patrick Gallinari Collaboration : L. Denoyer, S. Peters Université Pierre et Marie Curie AAFD 2010 1 Plan Motivations et Problématique

Plus en détail

Renforcement des trois compétences : compréhension orale, expression orale et expression écrite à partir de documents et vidéos.

Renforcement des trois compétences : compréhension orale, expression orale et expression écrite à partir de documents et vidéos. Master Mathématiques et Applications Spécialité : Ingénierie mathématique et modélisation Parcours : Mathématique et Informatique : Statistique, Signal, Santé (MI3S) 2015-2016 RÉSUMÉ DES COURS : (dernière

Plus en détail

Structure du cours : Il existe de nombreuses méthodes intéressantes qui couvrent l Analyse des Données

Structure du cours : Il existe de nombreuses méthodes intéressantes qui couvrent l Analyse des Données Structure du cours : Il existe de nombreuses méthodes intéressantes qui couvrent l Analyse des Données et le Data Mining Nous suivons le plan suivant : Fonctionnement de Spad Catalogue des méthodes (statistiques

Plus en détail

Initiation à l analyse en composantes principales

Initiation à l analyse en composantes principales Fiche TD avec le logiciel : tdr601 Initiation à l analyse en composantes principales A.B. Dufour & J.R. Lobry Une première approche très intuitive et interactive de l ACP. Centrage et réduction des données.

Plus en détail

Contexte. Pour cela, elles doivent être très compliquées, c est-à-dire elles doivent être très différentes des fonctions simples,

Contexte. Pour cela, elles doivent être très compliquées, c est-à-dire elles doivent être très différentes des fonctions simples, Non-linéarité Contexte Pour permettre aux algorithmes de cryptographie d être sûrs, les fonctions booléennes qu ils utilisent ne doivent pas être inversées facilement. Pour cela, elles doivent être très

Plus en détail

Analyse de la vidéo. Chapitre 4.1 - La modélisation pour le suivi d objet. 10 mars 2015. Chapitre 4.1 - La modélisation d objet 1 / 57

Analyse de la vidéo. Chapitre 4.1 - La modélisation pour le suivi d objet. 10 mars 2015. Chapitre 4.1 - La modélisation d objet 1 / 57 Analyse de la vidéo Chapitre 4.1 - La modélisation pour le suivi d objet 10 mars 2015 Chapitre 4.1 - La modélisation d objet 1 / 57 La représentation d objets Plan de la présentation 1 La représentation

Plus en détail

Formations EViews FORMATIONS GENERALES INTRODUCTIVES INTRO : INTRODUCTION A LA PRATIQUE DE L ECONOMETRIE AVEC EVIEWS

Formations EViews FORMATIONS GENERALES INTRODUCTIVES INTRO : INTRODUCTION A LA PRATIQUE DE L ECONOMETRIE AVEC EVIEWS Formations EViews FORMATIONS GENERALES INTRODUCTIVES DEB : DECOUVERTE DU LOGICIEL EVIEWS INTRO : INTRODUCTION A LA PRATIQUE DE L ECONOMETRIE AVEC EVIEWS FORMATIONS METHODES ECONOMETRIQUES VAR : MODELES

Plus en détail

Solutions Décisionnelles SPAD. La maîtrise des données, l'art de la décision

Solutions Décisionnelles SPAD. La maîtrise des données, l'art de la décision Solutions Décisionnelles SPAD La maîtrise des données, l'art de la décision SPAD, la référence en Analyse de Données et Data Mining La solution logicielle SPAD permet de tirer le meilleur parti de tous

Plus en détail

CALCUL D UN SCORE ( SCORING) Application de techniques de discrimination LES OBJECTIFS DU SCORING

CALCUL D UN SCORE ( SCORING) Application de techniques de discrimination LES OBJECTIFS DU SCORING CALCUL D UN SCORE ( SCORING) Application de techniques de discrimination LES OBJECTIFS DU SCORING SÉLECTION DES RISQUES PRÉVISION DES DÉFAUTS SUIVI ET CONTRÔLE Pierre-Louis GONZALEZ Différents types de

Plus en détail

Statistiques Appliquées à l Expérimentation en Sciences Humaines. Christophe Lalanne, Sébastien Georges, Christophe Pallier

Statistiques Appliquées à l Expérimentation en Sciences Humaines. Christophe Lalanne, Sébastien Georges, Christophe Pallier Statistiques Appliquées à l Expérimentation en Sciences Humaines Christophe Lalanne, Sébastien Georges, Christophe Pallier Table des matières 1 Méthodologie expérimentale et recueil des données 6 1.1 Introduction.......................................

Plus en détail

Introduction au Data Mining et à l apprentissage statistique

Introduction au Data Mining et à l apprentissage statistique Introduction au Data Mining et à l apprentissage statistique Gilbert Saporta Chaire de Statistique Appliquée & CEDRIC, CNAM, 292 rue Saint Martin, F-75003 Paris gilbert.saporta@cnam.fr http://cedric.cnam.fr/~saporta

Plus en détail

Stéphane Tufféry DATA MINING & STATISTIQUE DÉCISIONNELLE. 24/12/2006 Stéphane Tufféry - Data Mining - http://data.mining.free.fr

Stéphane Tufféry DATA MINING & STATISTIQUE DÉCISIONNELLE. 24/12/2006 Stéphane Tufféry - Data Mining - http://data.mining.free.fr 1 Stéphane Tufféry DATA MINING & STATISTIQUE DÉCISIONNELLE 2 Plan du cours Qu est-ce que le data mining? A quoi sert le data mining? Les 2 grandes familles de techniques Le déroulement d un projet de data

Plus en détail

Calcul de développements de Puiseux et application au calcul du groupe de monodromie d'une courbe algébrique plane

Calcul de développements de Puiseux et application au calcul du groupe de monodromie d'une courbe algébrique plane Calcul de développements de Puiseux et application au calcul du groupe de monodromie d'une courbe algébrique plane Poteaux Adrien XLIM-DMI, UMR-CNRS 6172 Université de Limoges Soutenance de thèse 15 octobre

Plus en détail

Formation continue. Ensae-Ensai Formation Continue (Cepe)

Formation continue. Ensae-Ensai Formation Continue (Cepe) CertifiCat de data scientist Formation continue Ensae-Ensai Formation Continue (Cepe) CertifiCat de data scientist La demande de data scientists est croissante mais peu de formations existent. Ce certificat

Plus en détail

Identification de nouveaux membres dans des familles d'interleukines

Identification de nouveaux membres dans des familles d'interleukines Identification de nouveaux membres dans des familles d'interleukines Nicolas Beaume Jérôme Mickolajczak Gérard Ramstein Yannick Jacques 1ère partie : Définition de la problématique Les familles de gènes

Plus en détail

Exercices M1 SES 2014-2015 Ana Fermin (http:// fermin.perso.math.cnrs.fr/ ) 14 Avril 2015

Exercices M1 SES 2014-2015 Ana Fermin (http:// fermin.perso.math.cnrs.fr/ ) 14 Avril 2015 Exercices M1 SES 214-215 Ana Fermin (http:// fermin.perso.math.cnrs.fr/ ) 14 Avril 215 Les exemples numériques présentés dans ce document d exercices ont été traités sur le logiciel R, téléchargeable par

Plus en détail

Le Big Data : Aspects théoriques et pratiques

Le Big Data : Aspects théoriques et pratiques Le Big Data : Aspects théoriques et pratiques Stéphane TUFFERY II èmes Rencontres STAT. à l UBS 21 novembre 2014 21/11/2014 Big Data IIe Rencontres STAT. à l UBS S.Tufféry 1 Plan Le Big Data Méthodes statistiques

Plus en détail

Cours de méthodes de scoring

Cours de méthodes de scoring UNIVERSITE DE CARTHAGE ECOLE SUPERIEURE DE STATISTIQUE ET D ANALYSE DE L INFORMATION Cours de méthodes de scoring Préparé par Hassen MATHLOUTHI Année universitaire 2013-2014 Cours de méthodes de scoring-

Plus en détail

PREPROCESSING PAR LISSAGE LOESS POUR ACP LISSEE

PREPROCESSING PAR LISSAGE LOESS POUR ACP LISSEE PREPROCESSING PAR LISSAGE LOESS POUR ACP LISSEE Jean-Paul Valois, Claude Mouret & Nicolas Pariset Total, 64018 Pau Cédex MOTS CLEFS : Analyse spatiale, ACP, Lissage, Loess PROBLEMATIQUE En analyse multivariée,

Plus en détail

CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE. Cinquième épreuve d admissibilité STATISTIQUE. (durée : cinq heures)

CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE. Cinquième épreuve d admissibilité STATISTIQUE. (durée : cinq heures) CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE Cinquième épreuve d admissibilité STATISTIQUE (durée : cinq heures) Une composition portant sur la statistique. SUJET Cette épreuve est composée d un

Plus en détail

Soutenance de stage Laboratoire des Signaux et Systèmes

Soutenance de stage Laboratoire des Signaux et Systèmes Soutenance de stage Laboratoire des Signaux et Systèmes Bornes inférieures bayésiennes de l'erreur quadratique moyenne. Application à la localisation de points de rupture. M2R ATSI Université Paris-Sud

Plus en détail

Que fait SAS Enterprise Miner?

Que fait SAS Enterprise Miner? Développez une connaissance plus précise avec un processus data mining plus productif La transformation de données brutes en informations utiles reste une problématique pour les entreprises. Pour apporter

Plus en détail

Introduction aux outils BI de SQL Server 2014. Fouille de données avec SQL Server Analysis Services (SSAS)

Introduction aux outils BI de SQL Server 2014. Fouille de données avec SQL Server Analysis Services (SSAS) MIT820: Entrepôts de données et intelligence artificielle Introduction aux outils BI de SQL Server 2014 Fouille de données avec SQL Server Analysis Services (SSAS) Description générale Ce tutoriel a pour

Plus en détail

Sélection de Caractéristiques pour le Filtrage de Spams

Sélection de Caractéristiques pour le Filtrage de Spams Sélection de Caractéristiques pour le Filtrage de Spams Kamilia MENGHOUR, Labiba SOUICI-MESLATI Laboratoire LRI, Université Badji Mokhtar, BP 12, 23000, Annaba, Algérie. k_menghour@yahoo.fr, souici_labiba@yahoo.fr

Plus en détail

Exemple PLS avec SAS

Exemple PLS avec SAS Exemple PLS avec SAS This example, from Umetrics (1995), demonstrates different ways to examine a PLS model. The data come from the field of drug discovery. New drugs are developed from chemicals that

Plus en détail

Une comparaison de méthodes de discrimination des masses de véhicules automobiles

Une comparaison de méthodes de discrimination des masses de véhicules automobiles p.1/34 Une comparaison de méthodes de discrimination des masses de véhicules automobiles A. Rakotomamonjy, R. Le Riche et D. Gualandris INSA de Rouen / CNRS 1884 et SMS / PSA Enquêtes en clientèle dans

Plus en détail

Complet Intuitif Efficace. Références

Complet Intuitif Efficace. Références Logiciel de référence en Analyse de Données, Data Mining et Text Mining pour transformer vos données en connaissance Complet Intuitif Efficace Dans un environnement convivial et intuitif, disposez de toute

Plus en détail

CAPTEURS - CHAINES DE MESURES

CAPTEURS - CHAINES DE MESURES CAPTEURS - CHAINES DE MESURES Pierre BONNET Pierre Bonnet Master GSI - Capteurs Chaînes de Mesures 1 Plan du Cours Propriétés générales des capteurs Notion de mesure Notion de capteur: principes, classes,

Plus en détail

Philippe BESSE*, Hélène MILHEM*, Olivier MESTRE*,**, Anne DUFOUR***, Vincent-Henri PEUCH*** Résumé

Philippe BESSE*, Hélène MILHEM*, Olivier MESTRE*,**, Anne DUFOUR***, Vincent-Henri PEUCH*** Résumé Comparaison de techniques de «Data Mining» pour lʼadaptation statistique des prévisions dʼozone du modèle de chimie-transport MOCAGE A comparison of Data Mining techniques for the statistical adaptation

Plus en détail

Principe de symétrisation pour la construction d un test adaptatif

Principe de symétrisation pour la construction d un test adaptatif Principe de symétrisation pour la construction d un test adaptatif Cécile Durot 1 & Yves Rozenholc 2 1 UFR SEGMI, Université Paris Ouest Nanterre La Défense, France, cecile.durot@gmail.com 2 Université

Plus en détail

Commande Prédictive des. Convertisseurs Statiques

Commande Prédictive des. Convertisseurs Statiques Commande Prédictive des Convertisseurs Statiques 1 Classification des méthodes de commande pour les convertisseurs statiques Commande des convertisseurs Hystérésis MLI Cde Linéaire Fuzzy Logic Sliding

Plus en détail

ESSEC. Cours «Management bancaire» Séance 3 Le risque de crédit Le scoring

ESSEC. Cours «Management bancaire» Séance 3 Le risque de crédit Le scoring ESSEC Cours «Management bancaire» Séance 3 Le risque de crédit Le scoring Les méthodes d évaluation du risque de crédit pour les PME et les ménages Caractéristiques Comme les montants des crédits et des

Plus en détail

Masters Spécialisés «Actuariat et Prévoyance» et «Actuariat et Finance»

Masters Spécialisés «Actuariat et Prévoyance» et «Actuariat et Finance» Masters Spécialisés «Actuariat et Prévoyance» et «Actuariat et Finance» Introduction au Data Mining K. EL HIMDI elhimdi@menara.ma 1 Sommaire du MODULE Partie 1 : Introduction au Data Mining Partie 2 :

Plus en détail

Intérêt du découpage en sous-bandes pour l analyse spectrale

Intérêt du découpage en sous-bandes pour l analyse spectrale Intérêt du découpage en sous-bandes pour l analyse spectrale David BONACCI Institut National Polytechnique de Toulouse (INP) École Nationale Supérieure d Électrotechnique, d Électronique, d Informatique,

Plus en détail

IBM SPSS Regression 21

IBM SPSS Regression 21 IBM SPSS Regression 21 Remarque : Avant d utiliser ces informations et le produit qu elles concernent, lisez les informations générales sous Remarques sur p. 46. Cette version s applique à IBM SPSS Statistics

Plus en détail

1 Modélisation d être mauvais payeur

1 Modélisation d être mauvais payeur 1 Modélisation d être mauvais payeur 1.1 Description Cet exercice est très largement inspiré d un document que M. Grégoire de Lassence de la société SAS m a transmis. Il est intitulé Guide de démarrage

Plus en détail

Tests non-paramétriques de non-effet et d adéquation pour des covariables fonctionnelles

Tests non-paramétriques de non-effet et d adéquation pour des covariables fonctionnelles Tests non-paramétriques de non-effet et d adéquation pour des covariables fonctionnelles Valentin Patilea 1 Cesar Sanchez-sellero 2 Matthieu Saumard 3 1 CREST-ENSAI et IRMAR 2 USC Espagne 3 IRMAR-INSA

Plus en détail

K. Ammar, F. Bachoc, JM. Martinez. Séminaire ARISTOTE - 23 octobre 2014 - Palaiseau

K. Ammar, F. Bachoc, JM. Martinez. Séminaire ARISTOTE - 23 octobre 2014 - Palaiseau Apport des modèles de krigeage à la simulation numérique K Ammar, F Bachoc, JM Martinez CEA-Saclay, DEN, DM2S, F-91191 Gif-sur-Yvette, France Séminaire ARISTOTE - 23 octobre 2014 - Palaiseau Apport des

Plus en détail

Enjeux mathématiques et Statistiques du Big Data

Enjeux mathématiques et Statistiques du Big Data Enjeux mathématiques et Statistiques du Big Data Mathilde Mougeot LPMA/Université Paris Diderot, mathilde.mougeot@univ-paris-diderot.fr Mathématique en Mouvements, Paris, IHP, 6 Juin 2015 M. Mougeot (Paris

Plus en détail

Laboratoire 4 Développement d un système intelligent

Laboratoire 4 Développement d un système intelligent DÉPARTEMENT DE GÉNIE LOGICIEL ET DES TI LOG770 - SYSTÈMES INTELLIGENTS ÉTÉ 2012 Laboratoire 4 Développement d un système intelligent 1 Introduction Ce quatrième et dernier laboratoire porte sur le développement

Plus en détail

Christophe CANDILLIER Cours de DataMining mars 2004 Page 1

Christophe CANDILLIER Cours de DataMining mars 2004 Page 1 Christophe CANDILLIER Cours de DataMining mars 2004 age 1 1. Introduction 2. rocessus du DataMining 3. Analyse des données en DataMining 4. Analyse en Ligne OLA 5. Logiciels 6. Bibliographie Christophe

Plus en détail

Transmission d informations sur le réseau électrique

Transmission d informations sur le réseau électrique Transmission d informations sur le réseau électrique Introduction Remarques Toutes les questions en italique devront être préparées par écrit avant la séance du TP. Les préparations seront ramassées en

Plus en détail

Programmation linéaire

Programmation linéaire 1 Programmation linéaire 1. Le problème, un exemple. 2. Le cas b = 0 3. Théorème de dualité 4. L algorithme du simplexe 5. Problèmes équivalents 6. Complexité de l Algorithme 2 Position du problème Soit

Plus en détail

Table des matières. I Mise à niveau 11. Préface

Table des matières. I Mise à niveau 11. Préface Table des matières Préface v I Mise à niveau 11 1 Bases du calcul commercial 13 1.1 Alphabet grec...................................... 13 1.2 Symboles mathématiques............................... 14 1.3

Plus en détail

INTRODUCTION AU DATA MINING

INTRODUCTION AU DATA MINING INTRODUCTION AU DATA MINING 6 séances de 3 heures mai-juin 2006 EPF - 4 ème année - Option Ingénierie d Affaires et de Projets Bertrand LIAUDET TP DE DATA MINING Le TP et le projet consisteront à mettre

Plus en détail

1 Imputation par la moyenne

1 Imputation par la moyenne Introduction au data mining L3 MIS - STA 1616-2010 V. Monbet Données manquantes L'objectif de ce TD est de manipuler et de comparer plusieurs méthodes d'imputation de données manquantes. La première partie

Plus en détail

chapitre 4 Nombres de Catalan

chapitre 4 Nombres de Catalan chapitre 4 Nombres de Catalan I Dénitions Dénition 1 La suite de Catalan (C n ) n est la suite dénie par C 0 = 1 et, pour tout n N, C n+1 = C k C n k. Exemple 2 On trouve rapidement C 0 = 1, C 1 = 1, C

Plus en détail

UNIVERSITÉ DE STRASBOURG ÉCOLE DOCTORALE DES SCIENCES CHIMIQUES UMR 7177 THÈSE. présentée par. Ioana OPRISIU. soutenue le : 28 mars 2012

UNIVERSITÉ DE STRASBOURG ÉCOLE DOCTORALE DES SCIENCES CHIMIQUES UMR 7177 THÈSE. présentée par. Ioana OPRISIU. soutenue le : 28 mars 2012 UNIVERSITÉ DE STRASBOURG ÉCOLE DOCTORALE DES SCIENCES CHIMIQUES UMR 7177 THÈSE présentée par Ioana OPRISIU soutenue le : 28 mars 2012 pour obtenir le grade de Docteur de l université de Strasbourg Discipline

Plus en détail

Détection spatiale de données aberrantes. Application à la surveillance de la qualité de l'air.

Détection spatiale de données aberrantes. Application à la surveillance de la qualité de l'air. Détection spatiale de données aberrantes. Application à la surveillance de la qualité de l'air. Michel Bobbia 1 & Michel Misiti 2 & Yves Misiti 2 & Jean-Michel Poggi 3 & Bruno Portier 4 1 Air Normand,

Plus en détail

Communications collectives et ordonnancement en régime permanent pour plates-formes hétérogènes

Communications collectives et ordonnancement en régime permanent pour plates-formes hétérogènes Loris MARCHAL Laboratoire de l Informatique du Parallélisme Équipe Graal Communications collectives et ordonnancement en régime permanent pour plates-formes hétérogènes Thèse réalisée sous la direction

Plus en détail

Exercice 3 du cours Management Bancaire : «Risque de crédit et scoring»

Exercice 3 du cours Management Bancaire : «Risque de crédit et scoring» Exercice 3 du cours Management Bancaire : «Risque de crédit et scoring» Ce cas a pour objectif d étudier le risque de crédit d une entreprise à l aide de la méthode du scoring. Cette méthode statistique

Plus en détail

TABLE DES MATIERES. C Exercices complémentaires 42

TABLE DES MATIERES. C Exercices complémentaires 42 TABLE DES MATIERES Chapitre I : Echantillonnage A - Rappels de cours 1. Lois de probabilités de base rencontrées en statistique 1 1.1 Définitions et caractérisations 1 1.2 Les propriétés de convergence

Plus en détail

Nouvelles propositions pour la résolution exacte du sac à dos multi-objectif unidimensionnel en variables binaires

Nouvelles propositions pour la résolution exacte du sac à dos multi-objectif unidimensionnel en variables binaires Nouvelles propositions pour la résolution exacte du sac à dos multi-objectif unidimensionnel en variables binaires Julien Jorge julien.jorge@univ-nantes.fr Laboratoire d Informatique de Nantes Atlantique,

Plus en détail