Bac Blanc Terminale ES - Février 2012 Épreuve de Mathématiques (durée 3 heures)

Dimension: px
Commencer à balayer dès la page:

Download "Bac Blanc Terminale ES - Février 2012 Épreuve de Mathématiques (durée 3 heures)"

Transcription

1 Bac Blanc Terminale ES - Février 2012 Épreuve de Mathématiques (durée 3 heures) L attention des candidats est attirée sur le fait que la qualité de la rédaction, la clarté et la précision des raisonnements entrent pour une part importante dans l appréciation des copies. Aucun échange de matériel ou de calculatrice n'est autorisé entre les candidats. Eercice 1 (5 points) pour les candidats n ayant pas choisi la spécialité MATH On s intéresse au nombre de personnes atteintes d une maladie A ou d une maladie B en France entre 1970 et PARTIE I. Maladie A 1. La calculatrice donne pour les coefficients de la droite des moindres carrés a 87,995 et b 4642,917. En arrondissant les coefficients à l unité, la droite d ajustement de y en obtenue par la méthode des moindres carrés a pour équation y On trace cette droite sur l annee 1, en utilisant, par eemple, l ordonnée à l origine 4643 et le point d abscisse 40 de la droite, ce point ayant pour ordonnée y est l année de rang 41 (car ) Pour 41, on obtient : y Pour l année 2011, on peut prévoir qu il y aura 1035 personnes atteintes de la maladie A. PARTIE II : Maladie B 1. On observe que le nuage de points correspondant à la maladie B n'a pas un aspect rectiligne. Pour la maladie B un ajustement affine ne paraît pas approprié est l année de rang 41. On peut lire sur la courbe que son point d abscisse 41 a une ordonnée environ égale à Le nombre prévisible de personnes qui seront atteintes de la maladie B en 2011 est environ a) La courbe est une parabole d équation y a 2 b c. Elle passe par le point P(0 1500) donc 1500 a 0 2 b 0 c c est-à-dire c 1500 b) passe par le point Q( ) donc 1700 a 10 2 b 10 c passe également par le point R( ) donc 2700 a 20 2 b 20 c Sachant que c 1500, on obtient le système : a 10b a 20b 1500 c est-à-dire 100a 10b a 20b a b 20 40a 2b 120 b 20 10a 40a 2(20 10a) 120 b 20 10a b 20 10a a 4 a 4 40a 40 20a a 80 b b 20 On en déduit que a 4 et b 20 et donc que la courbe a pour équation y c) 2011 est l année de rang 41. Pour 41, on obtient y Le nombre prévisible de personnes qui seront atteintes de la maladie B en 2011 est 7404.

2 2/7

3 Eercice 1 (5 points) pour les candidats ayant choisi la spécialité MATH La société «Vélibre», spécialisée dans la location de vélos, a été créée en janvier 2010 avec un parc de 500 vélos neufs. Afin de conserver un parc de bonne qualité, le directeur de la société a décidé : de racheter 120 vélos neufs en janvier de chaque année ; de revendre 15 % des vélos en janvier 2011 et en janvier 2012 ; de revendre 15 % des vélos les plus usagés en janvier de chaque année suivante. 1. Pour tout nombre entier naturel n, on modélise le nombre de vélos du parc en janvier de l année n par les termes de la suite (U n ) définie pour tout nombre entier naturel n par : U n 1 0,85U n 120 et U En janvier 2010 n+1), le nombre U n 1 de vélos est égal au nombre U n de vélos de l année précédente diminué de 15 % (représentant les vélos revendus) et augmenté de 120 (vélos neufs). On a donc : U n 1 U n , soit U 100 n 1 0,85U n 120 pour tout entier naturel n. De plus, en janvier 2010, le nombre de vélos s élève à 500 donc on a bien U Le directeur désire connaître l évolution du nombre de vélos du parc. A la calculatrice, on peut conjecturer que : a) la suite (U n ) est croissante, b) la suite (U n ) converge vers Pour tout nombre entier naturel n, on pose V n U n 800. a) V n 1 U n ( ) 0,85U n ,85U n 680 0,85U 680 n 0,85 0,85( U n 800 ) On a donc : V n 1 0,85 V n, ce qui prouve que la suite (V n ) est géométrique de raison 0,85. Son premier terme est V 0 U , soit V b) D après la question précédente, on a : V n V 0 q n soit V n 300 (0,85) n. De plus : V n U n 800 U n V n 800 donc U n (0,85) n c) On a 1 0,85 1 donc lim n (0,85) n 0. On en déduit que la limite de la suite (U n ) est égale à 800, soit lim n U n 800. d) D après la question b), on a : U n 1 U n ( (0,85) n 1 ) ( (0,85) n )) 300 (0,85) n (0,85) n En factorisant cette epression par 300 (0,85) n, on obtient : U n 1 U n 300 (0,85) n ( 0,85 1) 300 (0,85) n 0,15 soit : U n 1 U n 45 (0,85) n e) D après la question précédente, on a U n 1 U n 45 (0,85) n avec 45 0 et (0,85) n 0. On a donc U n 1 U n 0 pour tout entier naturel n, ce qui prouve que la suite ( U n ) est croissante. 3. La municipalité prévoit d implanter de nouvelles bornes dans la ville afin d offrir au usagers 700 emplacements. La société «Vélibre» pourra satisfaire cette demande s il eiste un entier naturel n tel que : U n 700. En attendant d avoir étudié la fonction ln, on utilise la calculatrice et on constate que : U n 700 pour n 6 et U La société «Vélibre» pourra donc satisfaire cette demande en /7

4 Eercice 2 (5 points) pour tous les candidats Grâce à un système de détecteur, une borne de péage automatique peut délivrer des tickets à deu hauteurs différentes selon le véhicule détecté afin que le conducteur ne soit pas obligé de sortir pour le saisir : s il s agit d une voiture, d une moto ou d une camionnette, le ticket sort en bas ; s il s agit d un camion, le ticket sort en haut. Si un véhicule est correctement détecté, le conducteur saisit le ticket sans sortir du véhicule. Si un véhicule n'est pas correctement détecté, le conducteur doit sortir du véhicule pour prendre son ticket. La société d autoroute a modélisé le fonctionnement défectueu du détecteur de l une de ces bornes. On considère, pour cette borne de péage, les événements suivants : C : «Le véhicule qui se présente est un camion» H : «Le ticket sort en haut» B : «Le ticket sort en bas». Notation : pour tout événement E et tout événement F de probabilité non nulle, on note p(e) la probabilité p E la probabilité conditionnelle de E sachant F. de l événement E et F 1. On estime qu à cette borne de péage, 52 % des véhicules sont des camions donc : p(c) 0,52. Lorsqu un camion passe, il n est correctement détecté que trois fois sur quatre, ce qui signifie que le ticket ne sort en haut que trois fois sur quatre, soit : p C (H) 3 4. Lorsqu un autre type de véhicule passe, son conducteur est contraint d en sortir pour saisir son ticket une fois sur trois, ce qui signifie que le ticket ne sort pas en bas une fois sur trois. On a donc p C ( H ) 1 3 et p C ( B ) 1 p C ( H ) soit p C ( B ) Pour compléter l arbre, on utilise les valeurs trouvées précédemment et le fait que la somme des probabilités des branches issues d un même nœud est toujours égale à 1 : 0,52 C 3/4 1/4 H B 0,48 C 1/3 2/3 H B 3. p(h) p(h C) p H C d après la formule des probabilités totales, donc : p(h) p C (H) p(c) p C ( H ) p( ) C 3 4 0, ,48 0,39 0,16 0,55 La probabilité que le ticket sorte en haut est égale à 0, Le conducteur n est pas obligé de sortir de son véhicule s il conduit un camion et que le ticket sort en haut ou s il ne conduit pas un camion et que le ticket sort en bas. Cet événement est la réunion des événements disjoints H C et B C ; sa probabilité est donc donnée par : p(h C) p B C p C (H) p(c) p C ( B ) p( ) C 3 4 0, ,48 0,39 0,32 0,71 La probabilité qu un conducteur ne soit pas obligé de sortir de son véhicule pour saisir le ticket vaut 0,71. 4/7

5 5. Lorsque le ticket sort en bas, la probabilité qu il s agisse d un conducteur de camion est donnée par : p B (C) p(c B) p(b) D où : p B (C) 0,13 0,45 avec p(b C) p C (B) p(c) 0, avec ,29. 0,13 et p(b) 1 p(h) 1 0,55 0,45 On peut donc affirmer que «moins de 30 % des conducteurs dont le ticket sort en bas sont des conducteurs de camion». 6. Trois véhicules se présentent l un après l autre à cette borne de péage défectueuse. On modélise cette situation comme un tirage avec remise donc le nombre de conducteurs qui ne descendent pas de leur véhicule suit donc la loi binomiale de paramètres (3 0,71). L événement «au moins l un des conducteurs est contraint de descendre de son véhicule pour saisir son ticket» est l événement contraire de l événement «aucun conducteur n est contraint de descendre de son véhicule pour saisir son ticket» dont la probabilité est égale à 0,71 3. La probabilité qu au moins l un des conducteurs soit contraint de descendre de son véhicule pour saisir son ticket est donc égale à 1 0,71 3. Eercice 3 (3 points) pour tous les candidats Soit f une fonction définie et dérivable sur l intervalle ] 6 [. On note f la fonction dérivée de la fonction f sur l intervalle ] 6 [ et C f la courbe représentative de f dans un repère du plan. On donne le tableau de variations de la fonction f ci-dessous f () La fonction f est décroissante sur ] 6 2] donc sa dérivée f est négative sur ] 6 2] L affirmation «Pour tout nombre de l intervalle ] 6 1], on a f () 0» est donc fausse. 2. On a lim f() + donc la droite d équation 6 est asymptote verticale de C f. 6 L affirmation «La courbe C f admet une asymptote parallèle à l ae des ordonnées» est donc vraie. 3. La fonction rationnelle degré de son numérateur et de son dénominateur donc on a : lim D après les limites des fonctions composées, on a : lim + lim (+1) f() 5 lim L affirmation «On a lim f 1 f 1 se comporte à l infini comme le rapport des termes de plus haut 1 lim » est donc fausse. 5/7

6 Eercice 4 (7 points) pour tous les candidats L entreprise CoTon produit du tissu en coton. Celui-ci est fabriqué en 1 mètre de large et pour une longueur eprimée en kilomètre, étant compris entre 0 et 10. Le coût total de production en euros de l entreprise CoTon est donné en fonction de la longueur par la formule C() Le graphique de l annee 2 donne la représentation graphique de la fonction C. PARTIE A : Étude du bénéfice Si le marché offre un pri p en euros pour un kilomètre de ce tissu, alors la recette de l entreprise CoTon pour la vente d une quantité est égal à R() p. 1. On trace sur le graphique de l annee 2 la droite D 1 d équation y par le point de coordonnées ( ). 300 qui passe par l origine et La droite D 1 peut être associée à la recette de l entreprise CoTon pour un pri du marché de 300 euros. Elle est entièrement située en dessous de la représentation graphique de la fonction C représentant le coût total. On en déduit que la recette est toujours inférieure au coût total pour un pri p de 300 euros et donc que l entreprise CoTon ne peut pas réaliser un bénéfice si le pri p du marché est égal à 300 euros. 2. Dans cette question on suppose que le pri du marché est égal à 544 euros. a) On trace sur le graphique de l annee 2 la droite D 2 d équation y 544 qui passe par l origine et par le point de coordonnées ( ). b) La droite D 2 peut être associée à la recette de l entreprise pour un pri du marché de 544 euros. La représentation graphique du coût total est au dessous de D 2 sur l intervalle ] [ avec 2,1 et 8,7. Si le pri p du marché est de 544 euros, l entreprise CoTon réalise un bénéfice pour une quantité produite et vendue, comprise entre 2,1 et 8,7 km (avec la précision permise par le graphique). 3. On considère la fonction B définie sur l intervalle [0 ; 10] par B() 544 C() a) On a B() 544 ( ) B est dérivable sur [0 10], en tant que polynôme et on a : B () , soit B () pour tout de [0 10]. b) B est un trinôme du second degré avec : b 2 4ac ( 36) b et b a 72 2a De plus, le coefficient de 2 est négatif donc B () est négatif à l etérieur de ses racines. On a donc : signe de B B c) D après la question précédente, le bénéfice réalisé par l entreprise CoTon est maimum pour une quantité produite et vendue égale à 6 km et s élève alors à 1128 euros. 6/7

7 PARTIE B : Étude du coût moyen On rappelle que le coût moyen de production C M mesure le coût par unité produite. On considère la fonction C M définie sur l intervalle ]0 10] par C M () C(). 1. C M () C M est donc dérivable sur ]0 10] et on a : C M () De plus : 24( 5)( 2 5) 24( ) 24( ) ( 5)( ) On a donc, C M () 2 5 pour tout appartenant à l intervalle ]0 ; 10] Le trinôme 2 5, a pour discriminant b 2 4ac étant négatif, le trinôme est toujours du signe de a, avec a 1 donc sur ]0 10]. De plus, 24 0 et 2 0 sur ]0 10]. On en déduit que C M () est du signe de ( 5) sur ]0 10]. 3. D après la question précédente, on a : signe de C M () C M 340 C M est strictement décroissante sur ]0 5] et strictement croissante sur [5 10]. 4. D après la question précédente, C M admet un minimum en 5 avec C M (5) 340 donc le coût moyen de production est minimum pour 5 km de tissu produits. C M (5) 340 et C(5) 1700 donc, pour 5 km de tissu produits, le coût moyen de production s élève à 340 euros par kilomètre et le coût total à 1700 euros. 7/7

Correction du devoir commun 16 février 2015

Correction du devoir commun 16 février 2015 Correction du devoir commun 16 février 2015 EXERCICE 1 L entreprise produit du tissu en coton. Celui-ci est fabriqué en 1 mètre de large et pour une longueur eprimée en kilomètre, étant compris entre 0

Plus en détail

Baccalauréat ES Métropole septembre 2011

Baccalauréat ES Métropole septembre 2011 Baccalauréat ES Métropole septembre EXERCICE Pierre, le président d un club de judo. veut acheter 6 médailles ayant la même référence. Elles sont gravées à l effigie d une ou d un champion Doullet, Rinar

Plus en détail

Baccalauréat STMG Antilles Guyane 12 septembre 2014 Correction

Baccalauréat STMG Antilles Guyane 12 septembre 2014 Correction urée : 3 heures Baccalauréat STMG Antilles Guyane 12 septembre 2014 Correction EXERCICE 1 5 points Cet exercice est un questionnaire à choix multiples (QCM). Pour chaque question, quatre réponses sont

Plus en détail

Math Total On interroge un élève au hasard. Les données précédentes sont à utiliser pour les trois questions suivantes.

Math Total On interroge un élève au hasard. Les données précédentes sont à utiliser pour les trois questions suivantes. Lycée l'oiselet BOURGOIN JALLIEU TES Bac Blanc Mardi 4 Février 008: Epreuve de mathématiques SUJET NON SPECIALISTE Durée : heures La calculatrice est autorisée. Le sujet est à rendre avec la copie. NOM,

Plus en détail

TES/TL spé maths Eléments de correction du Bac Blanc n 1 Jeudi 18 décembre 2014

TES/TL spé maths Eléments de correction du Bac Blanc n 1 Jeudi 18 décembre 2014 TES/TL spé maths Eléments de correction du Bac Blanc n Jeudi 8 décembre 4 Calculatrice autorisée - Aucun document n'est autorisé. Exercice. (5 points) Le barème est noté sur points. Partie : Fonctions

Plus en détail

Corrigé du baccalauréat ES Polynésie 10 juin 2016

Corrigé du baccalauréat ES Polynésie 10 juin 2016 Corrigé du baccalauréat ES Polynésie 0 juin 06 EXERCICE Commun à tous les candidats Partie 5 points. Voici un arbre qui convient (les données du texte sont en noir) : K 0,76 0,4 0,4 0,5 L 0,65 0,5 0, 0,8

Plus en détail

Les droites affines Les fonctions polynômes Les fonctions rationnelles... 5

Les droites affines Les fonctions polynômes Les fonctions rationnelles... 5 Les droites affines... ) Rappels... ) Eemples... ) Tangente à une courbe... Les fonctions polynômes... ) Plan d étude... ) Tableau des dérivées utiles pour les fonctions polynômes... ) Fonctions du ème

Plus en détail

Baccalauréat STL Métropole Biotechnologies 20 juin 2013 correction

Baccalauréat STL Métropole Biotechnologies 20 juin 2013 correction Baccalauréat STL Métropole Biotechnologies 0 juin 0 correction La calculatrice (conforme à la circulaire N o 99-86 du 6--99) est autorisée. Le candidat est invité à faire figurer sur la copie toute trace

Plus en détail

DST 3 Corrigé. b) B : «les 2e et 3e sondages sont négatifs». et d après l énoncé ; D où :

DST 3 Corrigé. b) B : «les 2e et 3e sondages sont négatifs». et d après l énoncé ; D où : DST 3 Corrigé Exercice 1 (4 points) Avant le début des travaux de construction d une autoroute, une équipe d archéologie préventive procède à des sondages successifs en des points régulièrement espacés

Plus en détail

Classe : TES1 Le 06/05/2003. MATHEMATIQUES Devoir N 7. Calculatrice et formulaire autorisés

Classe : TES1 Le 06/05/2003. MATHEMATIQUES Devoir N 7. Calculatrice et formulaire autorisés Classe : TES1 Le 06/05/2003 MATHEMATIQUES Devoir N 7 Calculatrice et formulaire autorisés Durée : 3h Exercice 1: (5 points) Une statistique publiée en l an 1998 donne le nombre d abonnés à Internet dans

Plus en détail

BACCALAUREAT GENERAL MATHEMATIQUES ENSEIGNEMENT OBLIGATOIRE

BACCALAUREAT GENERAL MATHEMATIQUES ENSEIGNEMENT OBLIGATOIRE BACCALAUREAT GENERAL Avril 2011 MATHEMATIQUES - Série ES - ENSEIGNEMENT OBLIGATOIRE Durée de l épreuve : 3 heures Coefficient : 5 Les calculatrices électroniques de poche sont autorisées, conformément

Plus en détail

Exercice 1 - Enseignement de spécialité - 5pts. u 0 = 7 et u n+1 = 2u n v n = u n 2. u n =

Exercice 1 - Enseignement de spécialité - 5pts. u 0 = 7 et u n+1 = 2u n v n = u n 2. u n = La maison Ecole d ' Devoir de type bac n o 4 Classe de terminale ES Variations, limites, continuité, asymptotes, fonction logarithme, suites... Copyright c 2004 J.- M. Boucart GNU Free Documentation Licence

Plus en détail

F 3 Reproduire cet arbre et placer les probabilités F 2 sur les branches.

F 3 Reproduire cet arbre et placer les probabilités F 2 sur les branches. Sujet Centres Étrangers 203 EXERCICE. [6 pts] Lois continues Un industriel fabrique des vannes électroniques destinées à des circuits hydrauliques. Les quatre parties A, B, C, D sont indépendantes. Partie

Plus en détail

Classe : TES1 Le 17/12/2002 MATHEMATIQUES Devoir N 4 Calculatrice et formulaire autorisés. Durée : 3h

Classe : TES1 Le 17/12/2002 MATHEMATIQUES Devoir N 4 Calculatrice et formulaire autorisés. Durée : 3h Classe : TES Le 7/2/2002 MATHEMATIQUES Devoir N 4 Calculatrice et formulaire autorisés Durée : 3h Eercice : (5,5 points) (correction) Dans cet eercice, les probabilités demandées seront données sous forme

Plus en détail

Baccalauréat ES La Réunion juin 2007

Baccalauréat ES La Réunion juin 2007 Baccalauréat ES La Réunion juin 27 EXERCICE 1 Commun tous les candidats Soit f une fonction définie sur l intervalle [ 5 ; 2] et (C ) sa courbe représentative relativement à un repère orthogonal. Partie

Plus en détail

NOM : Terminale ES Devoir n 9 Mardi 19 mai 2015

NOM : Terminale ES Devoir n 9 Mardi 19 mai 2015 NOM : Terminale ES Devoir n 9 Mardi 9 mai 5 Eercice. QCM sur 4 points Cet eercice est un questionnaire à choi multiples. Chaque question ci-après comporte quatre propositions de réponse. Pour chacune de

Plus en détail

1, x R (Très utilisés dans les exercices).

1, x R (Très utilisés dans les exercices). Leçon 04 : La fonction eponentielle (f() = e ) L eponentielle naturelle (à base e). f() = e est définie pour tout réel. C est une fonction positive, R, e > 0. e 0 = 1 et e 1 = e.718. Si < 0 alors 0< e

Plus en détail

2 mars calculatrice autorisée

2 mars calculatrice autorisée DS type Baccalauréat T(L)/ES 2 mars 202 - calculatrice autorisée EXERCICE Durée : 3 heures 5 points Le tableau suivant donne l évolution du chiffre d affaires du commerce équitable en France, exprimé en

Plus en détail

Correction du devoir de Mathématiques commun aux terminales S (n 1/2H)

Correction du devoir de Mathématiques commun aux terminales S (n 1/2H) Année scolaire 202-20 0 octobre 202 Terminales S 704/705/706) Correction du devoir de Mathématiques commun aux terminales S n /2H) Question de cours : points) Rappeler la définition de deux événements

Plus en détail

BACCALAURÉAT GÉNÉRAL

BACCALAURÉAT GÉNÉRAL BACCALAURÉAT GÉNÉRAL SESSION 2012 MATHÉMATIQUES Série : ES DURÉE DE L ÉPREUVE : 3 heures COEFFICIENT : 5 Ce sujet comporte 7 pages numérotées de 1 à 7 Ce sujet nécessite l utilisation d une feuille de

Plus en détail

Mathématiques. préparation à la Terminale STMG

Mathématiques. préparation à la Terminale STMG Mathématiques préparation à la Terminale STMG Correction Mathématiques préparation à la Terminale STMG correction page 1/11 Notations : «appartient à», symbole utilisé entre un élément et un ensemble :

Plus en détail

Baccalauréat ES Antilles-Guyane 19 juin 2012

Baccalauréat ES Antilles-Guyane 19 juin 2012 Baccalauréat ES Antilles-Guyane 19 juin 2012 Exercice 1 On donne le prix moyen en euros d un litre de gasoil en France, entre 1998 et 2007 : Année 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 Rang

Plus en détail

Correction Bac Blanc de juin : Liban 31 mai 2010 TES

Correction Bac Blanc de juin : Liban 31 mai 2010 TES Correction Bac Blanc de juin : Liban 31 mai 2010 Modalités : Durée de l épreuve : 3 heures ; Calculatrice autorisée ; Répondre sur votre copies) et non sur le présent sujet, sauf l annexe à remettre ;

Plus en détail

Exercices : étude de fonctions

Exercices : étude de fonctions Eercice 39 page 55 : Eercices : étude de fonctions a) fau, la fonction n est pas continue en 1. b) fau, f(1) = 1. c) vrai d) vrai, la courbe coupe trois fois la droite d équation y = 4. Eercice 42 page

Plus en détail

DÉRIVÉES. lorsque h devient très proche de zéro?

DÉRIVÉES. lorsque h devient très proche de zéro? DÉRIVÉES I Nombre dérivé - Tangente Eercice 0 (voir réponses et correction) Un mobile M se déplace sur un ae gradué. On suppose que sa position sur cet ae à l'instant t ( t ³ 0) est donnée par son abscisse

Plus en détail

Contrôle de mathématiques 4

Contrôle de mathématiques 4 Terminale ES 2 5 janvier 2017 Contrôle de mathématiques 4 Exercice I f est la fonction définie sur [ ; 1,5] dont la courbe C est donnée ci-dessous. 6 1 1 O 1 C 5 On ne demande pas de justifications pour

Plus en détail

Continuité, dérivabilité et convexité

Continuité, dérivabilité et convexité Continuité, dérivabilité et conveité A) Fonction dérivée et sens de variation 1 Fonction dérivée Déinition : Soit une onction déinie sur un intervalle I et telle que, en toute valeur dérivée '( eiste La

Plus en détail

Baccalauréat ES France 15 juin 2006

Baccalauréat ES France 15 juin 2006 Baccalauréat ES France 15 juin 2006 EXERCICE 1 3 points Commun tous les candidats Soit f une fonction définie et dérivable sur l intervalle [ 3 ; + [, croissante sur les intervalles [ 3 ; 1] et [2 ; +

Plus en détail

Intégrale d une fonction : Exercices Corrigés en vidéo avec le cours sur jaicompris.com

Intégrale d une fonction : Exercices Corrigés en vidéo avec le cours sur jaicompris.com Intégrale et aire On considère la fonction affine f dont la courbe ci-contre passe par les points A et B. ) Déterminer l epression de f(). ) En déduire une primitive F de f. ) a) Déterminer l intégrale

Plus en détail

BACCALAURÉAT BLANC. OBLIGATOIRE et ENSEIGNEMENT DE SPÉCIALITÉ

BACCALAURÉAT BLANC. OBLIGATOIRE et ENSEIGNEMENT DE SPÉCIALITÉ BACCALAURÉAT BLANC Mercredi 5 Septembre 03 3h 7 h MATHÉMATIQUES Série S OBLIGATOIRE et ENSEIGNEMENT DE SPÉCIALITÉ Les calculatrices électroniques de poche sont autorisées, conformément à la réglementation

Plus en détail

3. En donner une interprétation graphique. 3 [ par f(x) = ln(-2x + 3) + 2x.

3. En donner une interprétation graphique. 3 [ par f(x) = ln(-2x + 3) + 2x. T ES Mathématiques DS 5 le 18/01/01 Exercice 1 (5,5 POINTS ) On considère une fonction f définie et dérivable sur l intervalle [- ; 4]. On note f la fonction dérivée de la fonction f. La courbe C f, tracée

Plus en détail

1. À partir des informations portées sur le graphique, reproduire sur votre copie et compléter le tableau suivant : x f (x) f (x) - 2 e²

1. À partir des informations portées sur le graphique, reproduire sur votre copie et compléter le tableau suivant : x f (x) f (x) - 2 e² BACCALAUREAT BLANC n Epreuve: MATHEMATIQUES Série : ES Durée : 3 heures Coefficient : 5 L énoncé est constitué de 6 pages (I/6 à 6/6). Les eercices peuvent être traités dans n'importe quel ordre. La qualité

Plus en détail

Terminales S BAC BLANC Mathématiques Corrigé. Durée 4 heures. La calculatrice graphique est autorisée.

Terminales S BAC BLANC Mathématiques Corrigé. Durée 4 heures. La calculatrice graphique est autorisée. Terminales S BAC BLANC Mathématiques Corrigé Durée 4 heures. La calculatrice graphique est autorisée. Eercice (commun) A. Etude de f en ) On a : lim = et lim e = e =. Par composition, il vient alors :

Plus en détail

BACCALAURÉAT TECHNOLOGIQUE MATHÉMATIQUES. Spécialité : BIOTECHNOLOGIES

BACCALAURÉAT TECHNOLOGIQUE MATHÉMATIQUES. Spécialité : BIOTECHNOLOGIES BACCALAURÉAT TECHNOLOGIQUE Session 2017 Vendredi 16 juin 2017 MATHÉMATIQUES Série : SCIENCES ET TECHNOLOGIES DE LABORATOIRE Spécialité : BIOTECHNOLOGIES Durée de l épreuve : 4 heures Coefficient : 4 Calculatrice

Plus en détail

Exercice 1 : études de fonctions économiques

Exercice 1 : études de fonctions économiques remière ES2 Corrigé devoir maison n 6 À remettre le jeudi 12/05/2011 Eercice 1 : études de fonctions économiques L entreprise CoTon produit du tissu en coton. Celui-ci est fabriqué en 1 mètre de large

Plus en détail

BACCALAUREAT TECHNOLOGIQUE SCIENCES ET TECHNOLOGIES INDUSTRIELLES. Génie Civil Génie Énergétique BAC BLANC MATHÉMATIQUES

BACCALAUREAT TECHNOLOGIQUE SCIENCES ET TECHNOLOGIES INDUSTRIELLES. Génie Civil Génie Énergétique BAC BLANC MATHÉMATIQUES BACCALAUREAT TECHNOLOGIQUE SCIENCES ET TECHNOLOGIES INDUSTRIELLES Génie Civil Génie Énergétique BAC BLANC MATHÉMATIQUES Durée : heures Coefficient : L usage de la calculatrice est autorisé pour cette épreuve.

Plus en détail

Bac Blanc Terminale ES - Février 2017 Épreuve de Mathématiques (durée 3 heures)

Bac Blanc Terminale ES - Février 2017 Épreuve de Mathématiques (durée 3 heures) Bac Blanc Terminale ES - Février 2017 Épreuve de Mathématiques (durée 3 heures) L attention des candidats est attirée sur le fait que la qualité de la rédaction, la clarté et la précision des raisonnements

Plus en détail

Baccalauréat STG Mercatique, CFE, GSI Antilles-Guyane 13 septembre 2013 correction

Baccalauréat STG Mercatique, CFE, GSI Antilles-Guyane 13 septembre 2013 correction Baccalauréat STG Mercatique, FE, GSI Antilles-Guyane 13 septembre 2013 correction EXERIE 1 et eercice est un questionnaire à choi multiples (QM). Pour chaque question, quatre réponses sont proposées parmi

Plus en détail

Sujet Spécialité MATHÉMATIQUES ANTILLES - GUYANE BAC S

Sujet Spécialité MATHÉMATIQUES ANTILLES - GUYANE BAC S Sujet Spécialité MATHÉMATIQUES ANTILLES - GUYANE BAC S - 2016 Sujets Bac Maths 2016 Annales Mathématiques Bac 2016 Sujets + Corrigés - Alain Piller Antilles - Guyane Annales Bac Maths 2016 BACCALAURÉAT

Plus en détail

Corrigé du baccalauréat STMG Pondichéry 25 avril 2017

Corrigé du baccalauréat STMG Pondichéry 25 avril 2017 EXERCICE 1 Corrigé du baccalauréat STMG Pondichéry 25 avril 2017 (3 points) Le service marketing d un centre commercial veut évaluer l impact des frais engagés en publicité, par mois, sur le nombre de

Plus en détail

BACCALAURÉAT GÉNÉRAL SESSION MATHÉMATIQUES Série S Candidats n ayant pas suivi l enseignement de spécialité. Durée de l épreuve : 4 heures

BACCALAURÉAT GÉNÉRAL SESSION MATHÉMATIQUES Série S Candidats n ayant pas suivi l enseignement de spécialité. Durée de l épreuve : 4 heures BACCALAURÉAT GÉNÉRAL SESSION 2014 MATHÉMATIQUES Série S Candidats n ayant pas suivi l enseignement de spécialité Durée de l épreuve : 4 heures Coefficient : 7 OBLIGATOIRE Ce sujet comporte 5 pages numérotées

Plus en détail

MATHÉMATIQUES. Série : S Enseignement spécifique

MATHÉMATIQUES. Série : S Enseignement spécifique BAC BLANC 19 MARS 2013 MATHÉMATIQUES Série : S Enseignement spécifique Durée de l épreuve : 4 heures L utilisation d une calculatrice est autorisée Le sujet comporte 6 pages Le candidat doit traiter les

Plus en détail

Baccalauréat ES Centres étrangers 15 juin 2009

Baccalauréat ES Centres étrangers 15 juin 2009 Durée : 3 heures Baccalauréat ES Centres étrangers 15 juin 009 EXERCICE 1 Commun à tous les candidats 4 points Cet exercice est un questionnaire à choix multiples. Pour chacune des quatre questions proposées,

Plus en détail

Corrigé du baccalauréat ES Polynésie 10 juin 2016

Corrigé du baccalauréat ES Polynésie 10 juin 2016 Corrigé du baccalauréat ES Polynésie juin 6 EXERCICE Commun à tous les candidats 5 points On s intéresse à l ensemble des demandes de prêts immobiliers auprès de trois grandes banques. Une étude montre

Plus en détail

Chapitre II : Limites de fonctions et continuité

Chapitre II : Limites de fonctions et continuité Chapitre II : Limites de fonctions et continuité Cité Scolaire Gambetta Année scolaire 0-03 I Limite à l infini : ) Limite finie en Définition : Dire qu une fonction f a pour limite le réel l en signifie

Plus en détail

BAC BLANC N 1 Mathématiques Première S

BAC BLANC N 1 Mathématiques Première S BAC BLANC N 1 Mathématiques La qualité de la rédaction, la clarté et la précision des raisonnements entreront pour une part importante dans l appréciation des copies. Les résultats seront encadrés. * BON

Plus en détail

BACCALAURÉAT GÉNÉRAL. Session 2015 MATHÉMATIQUES. - Série ES - ENSEIGNEMENT DE SPÉCIALITÉ. Durée de l'épreuve : 3 heures Coefficient : 7

BACCALAURÉAT GÉNÉRAL. Session 2015 MATHÉMATIQUES. - Série ES - ENSEIGNEMENT DE SPÉCIALITÉ. Durée de l'épreuve : 3 heures Coefficient : 7 BACCALAURÉAT GÉNÉRAL Session 2015 MATHÉMATIQUES - Série ES - ENSEIGNEMENT DE SPÉCIALITÉ Durée de l'épreuve : 3 heures Coefficient : 7 Les calculatrices électroniques de poche sont autorisées, conformément

Plus en détail

Baccalauréat ES Antilles Guyane septembre 2010

Baccalauréat ES Antilles Guyane septembre 2010 Durée : 3 heures Baccalauréat ES Antilles Guyane septembre 2010 EXERCICE 1 5 points Le tableau suivant donne l évolution du chiffre d affaires du commerce équitable en France, exprimé en millions d euros.

Plus en détail

Terminale S Vendredi 13 décembre 2013 MINI BACCALAURÉAT BLANC DE MATHÉMATIQUES SÉRIE S OBLIGATOIRE. Durée de l épreuve : 3 HEURES

Terminale S Vendredi 13 décembre 2013 MINI BACCALAURÉAT BLANC DE MATHÉMATIQUES SÉRIE S OBLIGATOIRE. Durée de l épreuve : 3 HEURES MINI BACCALAURÉAT BLANC DE MATHÉMATIQUES SÉRIE S Durée de l épreuve : 3 HEURES Les calculatrices électroniques de poche sont autorisées conformément à la réglementation en vigueur, pas leur échange. Le

Plus en détail

Pour chaque proposition, indiquer si elle est vraie ou fausse et justifier soigneusement la réponse. Les questions sont indépendantes entre elles.

Pour chaque proposition, indiquer si elle est vraie ou fausse et justifier soigneusement la réponse. Les questions sont indépendantes entre elles. TS - Maths - D.S.5 Samedi 17 janvier 015-4h Spécialités : SVT - Physique Exercice 1 (5 points) Pour les candidats n ayant pas suivi l enseignement de spécialité Pour chaque proposition, indiquer si elle

Plus en détail

Exercices supplémentaires Dérivation

Exercices supplémentaires Dérivation Exercices supplémentaires Dérivation Partie A : Lecture graphique et tracé de tangente Exercice Lire graphiquement le coefficient directeur s il existe de chacune des droites représentées ci-dessous. -

Plus en détail

Sujet Bac Maths SUJET 3 ANTILLES - GUYANE alainpiller. fr

Sujet Bac Maths SUJET 3 ANTILLES - GUYANE alainpiller. fr Sujet Bac Maths SUJET 3 ANTILLES - GUYANE 2016 alainpiller. fr Sujets Bac Maths 2016 Annales Mathématiques Bac 2016 Sujets + Corrigés - Alain Piller Antilles - Guyane Annales Bac Maths 2016 BACCALAURÉAT

Plus en détail

Chapitre 3 : Limites de fonctions Terminale ES 2, , Y. Angeli

Chapitre 3 : Limites de fonctions Terminale ES 2, , Y. Angeli Chapitre 3 : Limites de fonctions -28-09-- Terminale ES 2, 20-202, Y. Angeli. Notion de ite : les différentes situations. Le plan est muni d un repère orthogonal (; ı, j). Dans ces illustrations, a et

Plus en détail

CORRECTION DU DEVOIR N 2 DE MATHEMATIQUES

CORRECTION DU DEVOIR N 2 DE MATHEMATIQUES EXERCICE N 1 (5 points) QCM CORRECTION DU DEVOIR N 2 DE MATHEMATIQUES =2 1) La suite définie par = vérifie : = = = 2) La suite définie pour tout entier par =6 1 est : arithmétique géométrique arithmétique

Plus en détail

BACCALAURÉAT GÉNÉRAL MATHÉMATIQUES. Série S ENSEIGNEMENT OBLIGATOIRE

BACCALAURÉAT GÉNÉRAL MATHÉMATIQUES. Série S ENSEIGNEMENT OBLIGATOIRE BACCALAURÉAT GÉNÉRAL Session 2010 MATHÉMATIQUES Série S ENSEIGNEMENT OBLIGATOIRE Durée de l épreuve : 4 heures Coefficient : 7 Les calculatrices électroniques de poche sont autorisées, conformément à la

Plus en détail

Bac Blanc Terminale ES - Février 2013 Correction de l'épreuve de Mathématiques (durée 3 heures)

Bac Blanc Terminale ES - Février 2013 Correction de l'épreuve de Mathématiques (durée 3 heures) Exercice 1 (5 points) Bac Blanc Terminale ES - Février 2013 Correction de l'épreuve de Mathématiques (durée 3 heures) pour les candidats n ayant pas choisi la spécialité MATH Un producteur de fruits rouges

Plus en détail

Bac Blanc Terminale ES - Février 2014 Correction de l'épreuve de Mathématiques (durée 3 heures)

Bac Blanc Terminale ES - Février 2014 Correction de l'épreuve de Mathématiques (durée 3 heures) Bac Blanc Terminale ES - Février 2014 Correction de l'épreuve de Mathématiques (durée 3 heures) Exercice 1 (5 points) pour les candidats n ayant pas choisi la spécialité MATH Le tableau suivant donne l'indice

Plus en détail

Terminale S Bac Blanc Février 2013 Corrigé

Terminale S Bac Blanc Février 2013 Corrigé Terminale S Bac Blanc Février 2013 Corrigé Métropole Juin 2006 (6 points) 1) Soit la fonction définie sur par. On désigne par sa courbe représentative dans un repère orthonormé d unité graphique 2cm. a)

Plus en détail

TSTI2D Le corrigé. DEVOIR EN TEMPS LIBRE N II : Dérivées, fonctions, équation. Exercice II 1

TSTI2D Le corrigé. DEVOIR EN TEMPS LIBRE N II : Dérivées, fonctions, équation. Exercice II 1 DEVOIR EN TEMPS LIBRE N II : Dérivées, fonctions, équation TSTID Le corrigé Eercice II Soit f la fonction définie pour tout réel par f ()= 6 0.. On note f la dérivée de la fonction f. a) Calculer f ().

Plus en détail

Concours externe pour le recrutement de contrôleurs stagiaires de l INSEE

Concours externe pour le recrutement de contrôleurs stagiaires de l INSEE Concours externe pour le recrutement de contrôleurs stagiaires de l INSEE Exercice 1 Partie A Correction (non officielle) de l épreuve de Mathématiques et de Statistiques du 29/01/2013 Nicolas ZERR 1)

Plus en détail

1. Généralités sur les fonctions et fonctions polynômes

1. Généralités sur les fonctions et fonctions polynômes Comment faire pour Généralités sur les fonctions et fonctions polnômes86 Repérage 88 Dérivation90 Comportements asmptotiques et étude de fonctions9 5 Calcul vectoriel et barcentre 96 6 Produit scalaire

Plus en détail

Montrer que le vecteur n

Montrer que le vecteur n Polynésie juin 4 EXERCICE (5 points) Dans un repère orthonormé de l espace, on considère les points A (5 ; 5 ; ), B ( ; ; ), C ( ; ; ) et D (6 ; 6 ; ).. Déterminer la nature du triangle BCD et calculer

Plus en détail

Corrigé du bac S blanc Lycée Français de Valence 4 avril 2013

Corrigé du bac S blanc Lycée Français de Valence 4 avril 2013 Corrigé du bac S blanc Lycée Français de Valence avril EXERCICE 5 points VRAI ou FAUX? Pour chacun des énoncés suivants, indiquer si la proposition correspondante est vraie ou fausse et proposer une justification

Plus en détail

Baccalauréat S Centres étrangers 12 juin 2013

Baccalauréat S Centres étrangers 12 juin 2013 Durée : 4 heures Baccalauréat S Centres étrangers 2 juin 203 L usage des calculatrices est autorisé selon les termes de la circulaire n o 99-86 du 6 novembre 999. Il est rappelé que la qualité de la rédaction,

Plus en détail

calcul intégral Table des matières 1 intégrale d une fonction activité à retenir exercices évaluations...

calcul intégral Table des matières 1 intégrale d une fonction activité à retenir exercices évaluations... calcul intégral Table des matières intégrale d une fonction. activité.................................................... à retenir.................................................. 7. eercices...................................................

Plus en détail

Corrigé entrée à Sciences Po ADMISSION AU COLLÈGE UNIVERSITAIRE 2016 Samedi 20 février 2016 MATHÉMATIQUES durée de l épreuve : 3 h.

Corrigé entrée à Sciences Po ADMISSION AU COLLÈGE UNIVERSITAIRE 2016 Samedi 20 février 2016 MATHÉMATIQUES durée de l épreuve : 3 h. Corrigé entrée à Sciences Po ADMISSION AU COLLÈGE UNIERSITAIRE 206 Samedi 20 février 206 MATHÉMATIQUES durée de l épreuve : 3 h A. P. M. E. P. Les calculatrices sont autorisées. Problème La partie A est

Plus en détail

BACCALAURÉAT TECHNOLOGIQUE STG. Spécialités : Mercatique, Comptabilité et Finance d Entreprise, Gestion des systèmes d information.

BACCALAURÉAT TECHNOLOGIQUE STG. Spécialités : Mercatique, Comptabilité et Finance d Entreprise, Gestion des systèmes d information. BACCALAURÉAT TECHNOLOGIQUE STG Spécialités : Mercatique, Comptabilité et Finance d Entreprise, Gestion des systèmes d information. SESSION 2012 ÉPREUVE DE MATHÉMATIQUES Mercatique, comptabilité et finance

Plus en détail

4 e série Exercices sur les études de fonctions

4 e série Exercices sur les études de fonctions e série Eercices sur les études de fonctions Pour les courbes, on vérifiera sur calculatrice graphique On rappelle également que les tableau de variations (tableau récapitulatifs) doivent comporter les

Plus en détail

TS4 DS5 19/01/11. Démontrer que l équation g (x) = 0 admet sur [1 ; + [ une unique solution notée α.

TS4 DS5 19/01/11. Démontrer que l équation g (x) = 0 admet sur [1 ; + [ une unique solution notée α. Eercice 1: (7 points) Nouvelle-Calédonie novembre 2010 TS4 DS5 19/01/11 Soit la fonction définie sur l intervalle [1 ; + [ par ϕ() = 1+ 2 2 2 ln(). 1. a. Étudier le sens de variation de la fonction ϕ sur

Plus en détail

Titre du dossier : Calculs de dérivées. Sujet : Etudier les dérivées et le sens de variation d une fonction. Auteur : MAIRONE Yvon, SESE Sandrine

Titre du dossier : Calculs de dérivées. Sujet : Etudier les dérivées et le sens de variation d une fonction. Auteur : MAIRONE Yvon, SESE Sandrine Titre du dossier : Calculs de dérivées Sujet : Etudier les dérivées et le sens de variation d une fonction Auteur : MAIRONE Yvon, SESE Sandrine Société : Ecole de la deuième Chance Marseille Mots clés

Plus en détail

SESSION 2016 ENSEIGNEMENT DE SPÉCIALITÉ. Durée de l épreuve : 3 heures Coefficient : 7

SESSION 2016 ENSEIGNEMENT DE SPÉCIALITÉ. Durée de l épreuve : 3 heures Coefficient : 7 BACCALAURÉAT GÉNÉRAL SESSION 2016 MATHÉMATIQUES - Série ES ENSEIGNEMENT DE SPÉCIALITÉ Durée de l épreuve : 3 heures Coefficient : 7 Les calculatrices électroniques de poche sont autorisées, conformément

Plus en détail

Résoudre dans IR les équations et inéquations suivantes : B : = 1 C : x 3 9x x 2x

Résoudre dans IR les équations et inéquations suivantes : B : = 1 C : x 3 9x x 2x Octobre 2003(1 ère S 4 ) Les calculatrices sont autorisées. Lisez l énoncé en entier avant de commencer et répondez bien au questions qui vous sont posées. Vous pouvez faire les eercices dans l ordre que

Plus en détail

BAC BLANC 2013 MATHÉMATIQUES STI2D. Toutes options

BAC BLANC 2013 MATHÉMATIQUES STI2D. Toutes options BACCALAURÉAT TECHNOLOGIQUE CORRIGÉ BAC BLANC 03 MATHÉMATIQUES STID Toutes options Durée de l épreuve : heures Coefficient : Ce sujet comporte pages numérotées (celle-ci comprise) L usage de la calculatrice

Plus en détail

Terminale S Chapitre 1 : Fonctions, variations et limites Page 1 sur 12

Terminale S Chapitre 1 : Fonctions, variations et limites Page 1 sur 12 Terminale S Chapitre : Fonctions, variations et ites Page sur I) Dérivation Ce que dit le programme : Nouveautés par rapport à la première : Dérivée de la composée et écriture différentielle (pour la physique)

Plus en détail

La maison Ecole d ' Devoir de type bac n o 5 Classe de terminale ES. Exercice 1 - sur 7 pts

La maison Ecole d ' Devoir de type bac n o 5 Classe de terminale ES. Exercice 1 - sur 7 pts La maison Ecole d ' Devoir de type bac n o 5 Classe de terminale ES Espérance mathématique, fonction logarithme, interprétation graphique, suites... Copyright c 004 J.- M. Boucart GNU Free Documentation

Plus en détail

Sujet de Bac 2009 Maths ES Obligatoire & Spécialité - Polynésie

Sujet de Bac 2009 Maths ES Obligatoire & Spécialité - Polynésie Sujet de Bac 2009 Maths ES Obligatoire & Spécialité - Polynésie Exercice 1 : 4 points Cet exercice est un questionnaire à choix multiples. Pour chacune des questions suivantes quatre réponses sont proposées,

Plus en détail

Dérivées et applications

Dérivées et applications Dérivées et applications I) Dérivée d une fonction strictement monotone 1) Exemples graphiques Soit une fonction dérivable sur un intervalle I. Pour tout I, (x) est le coefficient directeur de la tangente

Plus en détail

La fonction f n est définie sur [1;3] f n est pas continue sur R. = lim(x a) lim

La fonction f n est définie sur [1;3] f n est pas continue sur R. = lim(x a) lim Lcée Camille SEE I CONTINUITÉ D UNE FONCTION DÉFINITION Soit f une fonction définie sur un intervalle I de R et a un réel appartenant à I.. Dire que f est continue en a signifie que lim a f()= f(a). Dire

Plus en détail

SESSION 2017 ENSEIGNEMENT OBLIGATOIRE. Durée de l épreuve : 3 heures Coefficient : 4 ENSEIGNEMENT DE SPÉCIALITÉ

SESSION 2017 ENSEIGNEMENT OBLIGATOIRE. Durée de l épreuve : 3 heures Coefficient : 4 ENSEIGNEMENT DE SPÉCIALITÉ BACCALAURÉAT GÉNÉRAL SESSION 2017 MATHÉMATIQUES - Série ES ENSEIGNEMENT OBLIGATOIRE Durée de l épreuve : 3 heures Coefficient : 5 MATHÉMATIQUES - Série L ENSEIGNEMENT DE SPÉCIALITÉ Durée de l épreuve :

Plus en détail

Bac ES Centres étrangers juin 2010

Bac ES Centres étrangers juin 2010 Bac ES Centres étrangers juin 2010 EXERCICE 1 Pour chacune des questions, une seule des trois réponses a, b ou c est exacte. Indiquer sur la copie le numéro de la question et la lettre correspondant à

Plus en détail

Remise à Niveau Mathématiques

Remise à Niveau Mathématiques Mathématiques RAN - Fonctions Remise à Niveau Mathématiques Deuième partie : Fonctions Corrigés des eercices Page sur 0 RAN Fonctions Eercices corrigés - Rev 03 Mathématiques RAN - Fonctions DÉFINITIONS

Plus en détail

BACCALAURÉAT TECHNOLOGIQUE SESSION 2012

BACCALAURÉAT TECHNOLOGIQUE SESSION 2012 BACCALAURÉAT TECHNOLOGIQUE SESSION 2012 Epreuve : MATHÉMATIQUES Série : Sciences et Technologies de la Santé et du Social (ST2S) Durée de l épreuve : 2 heures Coefficient : 3 L usage d une calculatrice

Plus en détail

CH V Le second degré :

CH V Le second degré : CH V Le second degré : I) Les fonctions polynômes (Rappels) : 1) Développer, factoriser : Rappels : Pour tout réels a, b et c a( b + c) = ab + ac On dit que l on lorsque l on passe de a( b + c) à ab +

Plus en détail

Sujet + Corrigé. Correction Réalisée SUJET 3 ANTILLES - GUYANE BAC S ANNALES MATHÉMATIQUES BAC S PROBABILITÉS alainpiller.

Sujet + Corrigé. Correction Réalisée SUJET 3 ANTILLES - GUYANE BAC S ANNALES MATHÉMATIQUES BAC S PROBABILITÉS alainpiller. Sujet + Corrigé ANNALES MATHÉMATIQUES BAC S PROBABILITÉS - 2016 SUJET 3 ANTILLES - GUYANE BAC S - 2016 Correction Réalisée Par Alain PILLER alainpiller.fr Sujets Bac Maths 2016 Annales Mathématiques Bac

Plus en détail

Devoir surveillé n 5 19 janvier 2011

Devoir surveillé n 5 19 janvier 2011 Devoir surveillé n 5 19 janvier 2011 Term ES Eercice 1 : (4 points) Soit f une fonction définie et dérivable sur R. On a tracé ci-contre sa courbe représentative C dans un repère orthonormal. On note f

Plus en détail

Chapitre 2 : Fonctions QCM Pour bien commencer (cf. p. 58 du manuel)

Chapitre 2 : Fonctions QCM Pour bien commencer (cf. p. 58 du manuel) Chapitre 2 : Fonctions QCM Pour bien commencer (cf. p. 58 du manuel) Pour chaque question, il y a une ou plusieurs bonnes réponses. Exercice n 1 On considère la figure ci-dessous où cinq droites sont tracées.

Plus en détail

Sujet abordé : exponentielle (lecture graphique) Exercice 1 (BAC ES national 2010). Classe de terminale ES Mathématiques

Sujet abordé : exponentielle (lecture graphique) Exercice 1 (BAC ES national 2010). Classe de terminale ES Mathématiques Classe de terminale ES Mathématiques Sujet abordé : exponentielle (lecture graphique) Exercice (BAC ES national ). Un nouveau modèle de mini-ordinateur portable est mis sur le marché. Soit x la quantité

Plus en détail

Epreuve de mathématiques Durée : 3h

Epreuve de mathématiques Durée : 3h Bac blanc n 2 Terminale ES Epreuve de mathématiques Durée : 3h Candidat ayant choisi la spécialité mathématique Les calculatrices sont autorisées mais l échange de calculatrice entre candidats est interdit.

Plus en détail

Leçon N 8 : La fonction ln (Logarithme népérien)

Leçon N 8 : La fonction ln (Logarithme népérien) Leçon N 8 : La fonction ln (Logarithme népérien) Dans les dernières leçons, nous allons voir des fonctions nouvelles qui seront utilisées dans les problèmes de BAC. La première est le logarithme népérien

Plus en détail

Baccalauréat STG C.G.R.H Métropole 20 juin 2013 correction

Baccalauréat STG C.G.R.H Métropole 20 juin 2013 correction accalauréat STG C.G.R.H Métropole 20 juin 2013 correction La calculatrice (conforme à la circulaire N 99-186 du 16-11-99) est autorisée. Le candidat est invité à faire figurer sur la copie toute trace

Plus en détail

TS - Maths - D.S.4 - Correction Spécialités : SVT - Physique

TS - Maths - D.S.4 - Correction Spécialités : SVT - Physique TS - Maths - D.S. - Correction Spécialités : SVT - Physique Samedi 05 Décembre 05 - h Exercice ( points) Commun à tous les candidats Une usine produit de l eau minérale en bouteilles. Lorsque le taux de

Plus en détail

Sujets de bac : Ln. Partie C Dans le plan rapporté à un repère orthonormé ; ;, on note : Γ la courbe représentative de la fonction ;

Sujets de bac : Ln. Partie C Dans le plan rapporté à un repère orthonormé ; ;, on note : Γ la courbe représentative de la fonction ; Sujets de bac : Ln Sujet n 1 : extrait de Liban juin 2004 Partie A Soit la fonction définie sur 0; par 2 ln. 1) Etudier les variations de sur 0; et préciser ses ites en 0 et en. a. Montrer que l équation

Plus en détail

TD 11 : Fonctions Continues et le Théorème des Valeurs Intermédiaires

TD 11 : Fonctions Continues et le Théorème des Valeurs Intermédiaires Université Paris Est Créteil DAEU TD : Fonctions Continues et le Théorème des Valeurs Intermédiaires Dans cette fiche on définie une propriété très importante qui est vérifiée par un très grand nombre

Plus en détail

Mathématiques. préparation à la Terminale ES

Mathématiques. préparation à la Terminale ES Mathématiques préparation à la Terminale ES Le programme de Terminale ES est chargé et est la continuité de celui de 1 ère ère ES. Les nouvelles notions sont nombreuses et le rythme de progression est

Plus en détail

Métropole mai 2015 Exercice 1 10 points Partie A - Événements indépendants, probabilités conditionnelles Partie B - Loi binomiale 1.

Métropole mai 2015 Exercice 1 10 points Partie A - Événements indépendants, probabilités conditionnelles Partie B - Loi binomiale 1. Métropole mai 2015 Exercice 1 10 points Les trois parties de cet exercice sont indépendantes Le centre d approvisionnement d une chaîne de magasin spécialisée dans le jardinage et l animalerie vient de

Plus en détail

Fonction exponentielle

Fonction exponentielle Propriétés algébriques Exercice 1 Ecrire sous la forme d une puissance de les expressions suivantes : a) e7 e 2 b) (e-1 ) 4 c) (exp(e e 2 )) -3 d) e 2 exp(-3) e) e -3 exp(2) f) exp(1) exp(-2) Exercice

Plus en détail

Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures)

Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures) Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures) Eercice 1 (5 points) pour les candidats n ayant pas choisi la spécialité MATH Le tableau suivant donne l évolution du chiffre

Plus en détail

Corrigé du baccalauréat STMG Nouvelle-Calédonie 19 novembre 2015

Corrigé du baccalauréat STMG Nouvelle-Calédonie 19 novembre 2015 Corrigé du baccalauréat STMG Nouvelle-Calédonie 19 novembre 2015 EXERCICE 1 5 points Le tableau ci-dessous donne la consommation de soins et de biens médicaux (CSM) en France, en milliards d euros : Année

Plus en détail

Exercices et Annales Maths Terminale S

Exercices et Annales Maths Terminale S Stages intensifs Exercices et Annales Maths Terminale S www.groupe-reussite.fr contact@groupe-reussite.fr 1 Chapitre 1 Fonction exponentielle, logarithme népérien et logarithme décimal 1.1 Exercices préliminaires

Plus en détail

BACCALAURÉAT GÉNÉRAL MATHÉMATIQUES. Série S ENSEIGNEMENT DE SPÉCIALITÉ

BACCALAURÉAT GÉNÉRAL MATHÉMATIQUES. Série S ENSEIGNEMENT DE SPÉCIALITÉ BACCALAURÉAT GÉNÉRAL Session 2010 MATHÉMATIQUES Série S ENSEIGNEMENT DE SPÉCIALITÉ Durée de l épreuve : 4 heures Coefficient : 9 Les calculatrices électroniques de poche sont autorisées, conformément à

Plus en détail