OLAP : Mondrian + Pentaho. Maguelonne Teisseire Hugo Alatrista Salas hugo.alatrista- Flavien Bouillot

Dimension: px
Commencer à balayer dès la page:

Download "OLAP : Mondrian + Pentaho. Maguelonne Teisseire Hugo Alatrista Salas hugo.alatrista- salas@teledetec9on.fr Flavien Bouillot"

Transcription

1 OLAP : Mondrian + Pentaho Maguelonne Teisseire Hugo Alatrista Salas hugo.alatrista- Flavien Bouillot

2 Outils Open Source Mondrian : serveur OLAP JFreeReport : ou9l de «Repor9ng» KeHle : ou9ls ETL Pentaho : ou9ls pour faire «Business Intelligence» Weka : ou9ls de fouille de données 2

3 Mondrian Serveur OLAP codé en Java U9lise le langage MDX (Mul9Dimensional expresion) et XML pour l analyse XMLA Spécifica9ons JOLAP (Api Java OLAP) Modèle ROLAP Développé pour la société Pentaho 3

4 Pentaho Ensemble d ou9ls pour faire de «Business Intelligence» Il existe une version propriétaire et une version open source Il s appuie sur Mondrian pour faire du MDX Installa9on rela9vement facile (sauf pour Tomcat) 4

5 Motivation 1 SELECT Magasin.CP, SUM(Ventes) FROM SELECT Magasin.CP, Date.Mois, SUM(Ventes) from janvier février mars janvier 45 5

6 Motivation 2 Comment faire mieux? janvier février mars 34000??? 59100??? 6

7 MDX Mul9Dimensional expresion Permet de faire des requêtes très complexes Syntaxe très naturelle Qui u9lise MDX? MS SQL Server 200X, Oracle, SSAS, iccube, MicroStrategy Intelligence Server, 7

8 Premier exemple SELECT {[date].[year].[mois].members} ON COLUMNS, {[Magasins].[villes].CHILDRENS} ON ROWS FROM [Ventes] 8

9 Premier exemple Projec9on SELECT {[date].[year].[mois].members} ON COLUMNS, {[Magasins].[villes].CHILDRENS} ON ROWS FROM [Ventes] Cube (fait) Lignes Colonnes 9

10 Attention à la syntaxe du MDX /* La syntaxe du MDX faire ahen9on */ SELECT FROM WHERE {collec9on 0} ON COLUMNS, {collec9on 1} ON ROWS... {collec9on n} ON AXIS(n) // il se peut [cube] (tuple) // appelé "slicer dimension" 10

11 RAPPEL DE CONCEPTS BASIQUES 11

12 Dimensions et membres Dimensions (axes dans un cube) peut contenir différents niveaux de granularité Chaque niveau a un nombre déterminé de membres Les membres par default d une dimension sont les éléments les plus généraux (ALL) 12

13 Axes Sont des dimensions qui par9cipent à la forma9on d un cube (qui représente des faits) Une axe peut contenir plusieurs dimensions en concurrence 13

14 Masures AHributs du cube, généralement numériques (associés aux faits) Peuvent être agrégées Toutes les mesures (indicateurs) font par9e de la dimension appelé «Measures» La mesure par default est la première spécifiée dans le cube (fait) 14

15 Tuples et Collections Tuple: tranche du cube ([Magasin].[Ville].[CP].[34000]) Collec9on : liste ordonnée de tuples {[Magasin].[Ville].[CP].MEMBERS} 15

16 Exemple VENTES unitésvendues prixunitaire MAGASIN Montpellier DATE Lille Ardennes Janvier Février Janvier Février Fifa 2013 Sport PES 2014 Darkness 2 Action Resident Evil PRODUIT 16

17 Exemple de hiérarchie Dimension Produit Produit Membres de la dimension Produit Produit Catégorie Sport Ac9on JeuVideo PES2014 FIFA2013 Darkness 2 Resident Evil 17

18 Parcourir les niveaux [Produit].[Catégorie].[FIFA2013] = tous les données pour FIFA2013 [Produit].[JeuVideo].MEMBERS = {Resident Evil 5, Darkness 2, FIFA2013, PES2014} [Produit].[Sport].CHILDREN = {FIFA2013, PES2014} [Produit].[Ac9on].[Resident Evil]:[Darkness 2] = {Resident Evil, Darkness 2} DESCENDANTS([Produit].[Sport], [JeuVideo]) = {FIFA2013, PES2014} 18

19 Une requête MDX simple SELECT {[Measures].MEMBERS} ON COLUMNS FROM [Ventes] Quelle informa9on sera montrée? 19

20 Une requête MDX simple SELECT {[Measures].MEMBERS} ON COLUMNS FROM [Ventes] Quelle informa9on sera montrée? Solu%on : Les indicateurs (ou mesures) 20

21 Différences entre MDX et SQL Les ensembles de registres doivent se déclarer avant l instruc9on SELECT L instruc9on FROM fait référence à un seul cube L instruc9on WHERE permet de faire l opéra9on slice du OLAP 21

22 Exemple 1 SELECT {[Date].[Année].[2011], [Date].[Année].[2012]} ON COLUMNS, {[Magasin].[Ville].MEMBERS} ON ROWS FROM [Ventes] WHERE ([Measures].[prixUnitaire]) Montpellier Lille Ardennes 22

23 Exemple 2 SELECT {[Date].[Year].[2011].CHILDREN} ON COLUMNS, {[Magasin].[Villes].MEMBERS} ON ROWS FROM [Ventes] WHERE ([Measures].[prixUnitaire]) Janvier Février Montpellier Lille Ardennes 23

24 Opération Slice Exemple : slice sur la dimension produit SELECT {[Date].[Année].[2011].CHILDREN} ON COLUMNS, {[Magasin].[Ville].MEMBERS} ON ROWS FROM [Ventes] WHERE ([Produit].[Catégorie].[Sport],[Measures].[prixUnitaire]) 24

25 Opérateur Filter Syntaxe : FILTER(collec9on, condi9on) Exemple : extraire le prix unitaire des produits vendus en plus de 150 unités pendant l année 2011 SELECT {[Date].[Année].[2011].CHILDREN} ON COLUMNS, FILTER ({[Magasin].[Ville].MEMBERS}, ([Measures]. [unitésvendues], [Date].[2011]) > 150) ON ROWS FROM [Ventes] WHERE ([Measures].[prixUnitaire]) 25

26 Opérateur Order Syntaxe : ORDER(collec9on, expression, [, ASC DESC BASC BDESC] SELECT {[Measures].MEMBERS} ON COLUMNS, ORDER ({[Magasin].[Ville].MEMBERS}, [Measures].[prixUnitaire], BDESC) ON ROWS FROM [Ventes] 26

27 Opérateur Head Exemple : Montrer les top- 10 villes en termes de unités vendus SELECT {[Measures].[unitésVendues]} ON COLUMNS, HEAD (ORDER ({[Magasin].[Ville].MEMBERS}, [Measures]. [PrixUnitaire], BDESC), 10) ON ROWS FROM [Ventes] 27

28 Opérateur CrossJoint Combine deux dimensions et les représente comme une seule dimension SELECT {[Date].[2011].CHILDREN} ON COLUMNS, CROSSJOIN ({[Magasin].[Ville].MEMBERS}, {[Produit]. [Catégorie].MEMBERS}) ON ROWS FROM [Ventes] WHERE ([Measures].[unitésVendues]) 28

29 Opérateur Non Empty Filtre les résultats en excluant les membres vides du résultat SELECT {[Date].[2011].CHILDREN} ON COLUMNS, NOT EMPTY (CROSSJOIN ({[Magasin].[Ville].MEMBERS}, {[Produit].[Catégorie].MEMBERS})) ON ROWS FROM [Ventes] WHERE ([Measures].[unitésVendues]) 29

30 Operations d agrégation 1 Syntaxe : WITH MEMBER parent.name AS 'expression' WITH MEMBER [Date].[2011].[Bimestre1] AS '[Date].[2011]. [janvier] + [Date].[2011].[février]' MEMBER [Date].[2011].[Bimestre2] AS '[Date].[2011].[mars] + [Date].[2011].[avril]' SELECT {[Date].[2011].[Bimestre1], [Date].[2011].[Bimestre2]} ON COLUMNS {[Magasin].[CP].MEMBERS} ON ROWS FROM [Ventes] WHERE ([Measures].[unitésVendues]) 30

31 Operations d agrégation 2 WITH MEMBER [Measures].[Profit] AS '([Measures].[PrixUnitaire] [Measures].[PrixProduc9on])' SELECT {[Date].[2011].CHILDREN} ON COLUMNS, {[Magasin].[CP].MEMBERS} ON ROWS FROM [Ventes] WHERE ([Measures].[Profit]) 31

32 Références A Brief MDX Tutorial Using Mondrian, Wei Wang Pentaho User Guide hhp://www.osbi.fr/wp- content/pentaho- Analysis- Viewer- User- Guide.pdf hhp://wiki.pentaho.com/ The Baker's Dozen: 13 Tips for Querying OLAP Databases with MDX hhp://www.devx.com/codemag/ar9cle/

Bases de données multidimensionnelles OLAP. OnLine Analytical Processing

Bases de données multidimensionnelles OLAP. OnLine Analytical Processing Bases de données multidimensionnelles OLAP OnLine Analytical Processing OLAP OLAP (On Line Analytical Processing): Ensemble des outils nécessaires pour la mise en place d'un Système d'information décisionnel

Plus en détail

BI = Business Intelligence Master Data-ScienceCours 5 - MDX

BI = Business Intelligence Master Data-ScienceCours 5 - MDX BI = Business Intelligence Master Data-Science Cours 5 - MDX UPMC 23 février 2015 Plan Vision générale ETL Datawarehouse OLAP Reporting Data Mining Définition OLAP En informatique, et plus particulièrement

Plus en détail

Bases de données multidimensionnelles OLAP

Bases de données multidimensionnelles OLAP Bases de données multidimensionnelles OLAP OLAP OLAP (On Line Analytical Processing): Ensemble des outils nécessaires pour l analyse multidimensionnelle. Les données sont historisées, résumées, consolidées.

Plus en détail

TP Informatique Décisionnelle. OLAP : Mondrian et Pentaho. 1. Télécharger la version libre de Pentaho sur :

TP Informatique Décisionnelle. OLAP : Mondrian et Pentaho. 1. Télécharger la version libre de Pentaho sur : PARTIE 1 : Installer et lancer Pentaho sur Mac TP Informatique Décisionnelle OLAP : Mondrian et Pentaho 1. Télécharger la version libre de Pentaho sur : http://sourceforge.net/projects/pentaho/files/business%20intelligence%20server/

Plus en détail

Entrepôt de données et l Analyse en ligne. Maguelonne Teisseire Hugo Alatrista Salas hugo.alatrista- salas@teledetec9on.fr Flavien Bouillot

Entrepôt de données et l Analyse en ligne. Maguelonne Teisseire Hugo Alatrista Salas hugo.alatrista- salas@teledetec9on.fr Flavien Bouillot Entrepôt de données et l Analyse en ligne Maguelonne Teisseire Hugo Alatrista Salas hugo.alatrista- salas@teledetec9on.fr Flavien Bouillot Déroulement du cours 17 janvier : cours et TD 20 janvier : cours?

Plus en détail

2 Serveurs OLAP et introduction au Data Mining

2 Serveurs OLAP et introduction au Data Mining 2-1 2 Serveurs OLAP et introduction au Data Mining 2-2 Création et consultation des cubes en mode client-serveur Serveur OLAP Clients OLAP Clients OLAP 2-3 Intérêt Systèmes serveurs et clients Fonctionnalité

Plus en détail

Sommaire. Introduction. Opérations typiques. Langages. Architectures

Sommaire. Introduction. Opérations typiques. Langages. Architectures OLAP IED 2006-2007 Sommaire Introduction Opérations typiques Langages Architectures Introduction Contexte un entrepôt de données offre des données - nombreuses - homogènes - exploitables - multidimensionnelles

Plus en détail

BI = Business Intelligence Master Data-ScienceCours 4 - OLAP

BI = Business Intelligence Master Data-ScienceCours 4 - OLAP BI = Business Intelligence Master Data-Science Cours 4 - OLAP UPMC 15 février 2015 Plan Vision générale ETL Datawarehouse OLAP Reporting Data Mining Entrepôt de données Les entrepôts de données (data warehouse)

Plus en détail

MTI820 Entrepôts de données et intelligence d affaires. Les applica+ons de BI

MTI820 Entrepôts de données et intelligence d affaires. Les applica+ons de BI MTI820 Entrepôts de données et intelligence d affaires Les applica+ons de BI Département de génie logiciel et des TI MTI820 Hiver 2011 S. ChaEi, C. Desrosiers 1 Le cycle de vie d un projet en BI Diagramme

Plus en détail

PROJET ECUREUIL DU CNIP INFORMATIQUE DÉCISIONNELLE SERVEURS D'ANALYSE OLAP ESNE-IG RAPPORT DE TRAVAIL DE DIPLÔME 2007 FABIEN AIRIAU

PROJET ECUREUIL DU CNIP INFORMATIQUE DÉCISIONNELLE SERVEURS D'ANALYSE OLAP ESNE-IG RAPPORT DE TRAVAIL DE DIPLÔME 2007 FABIEN AIRIAU PROJET ECUREUIL DU CNIP INFORMATIQUE DÉCISIONNELLE SERVEURS D'ANALYSE OLAP ESNE-IG RAPPORT DE TRAVAIL DE DIPLÔME 2007 FABIEN AIRIAU Fabien Airiau ESNE-IG Rapport de travail de diplôme 2007 Page 1 sur 77

Plus en détail

Etude de faisabilité visant à mettre en place un entrepôt de données sur les données de l IFN. Analyser et Explorer avec une grande interactivité

Etude de faisabilité visant à mettre en place un entrepôt de données sur les données de l IFN. Analyser et Explorer avec une grande interactivité Établissement chargé de réaliser l inventaire permanent du patrimoine forestier sur tout le territoire métropolitain indépendamment de toute question de propriété. Parmi ces objectifs: Connaissance de

Plus en détail

2014/2015. Rapport 4 REALISE PAR : ISMAIL NAIT ABDELLAH OUALI SOUFIANE HOURRI MOHAMED OUSSAFI ENCADRE PAR : MME L.LAMRINI ANOUAR OUFQIR SMARTSIR

2014/2015. Rapport 4 REALISE PAR : ISMAIL NAIT ABDELLAH OUALI SOUFIANE HOURRI MOHAMED OUSSAFI ENCADRE PAR : MME L.LAMRINI ANOUAR OUFQIR SMARTSIR 2014/2015 Rapport 4 REALISE PAR : ISMAIL NAIT ABDELLAH OUALI SOUFIANE HOURRI MOHAMED OUSSAFI ENCADRE PAR : ANOUAR OUFQIR MME L.LAMRINI SMARTSIR Table des matières Introduction... 2 Choix de l outil pour

Plus en détail

Entrepôts de données : Introduction au langage MDX (Multi-Dimensional extensions) pour lʼolap

Entrepôts de données : Introduction au langage MDX (Multi-Dimensional extensions) pour lʼolap Entrepôts de données : Introduction au langage MDX (Multi-Dimensional extensions) pour lʼolap (7.1) Bernard ESPINASSE Professeur à Aix-Marseille Université (AMU) Ecole Polytechnique Universitaire de Marseille

Plus en détail

Travail de diplôme 2011 Business Intelligence Open Source SpagoBI/Talend Résumé

Travail de diplôme 2011 Business Intelligence Open Source SpagoBI/Talend Résumé ESNE Travail de diplôme 2011 Business Intelligence Open Source SpagoBI/Talend Résumé I.Cirillo 2010-2011 Introduction Le laboratoire de base de données de l ESNE a mis en place, il y a quelques années,

Plus en détail

SQL Server 2012 Implémentation d'une solution de Business Intelligence (Sql Server, Analysis Services...)

SQL Server 2012 Implémentation d'une solution de Business Intelligence (Sql Server, Analysis Services...) Avant-propos 1. À qui s'adresse ce livre? 15 2. Pré-requis 15 3. Objectifs du livre 16 4. Notations 17 Introduction à la Business Intelligence 1. Du transactionnel au décisionnel 19 2. Business Intelligence

Plus en détail

OLAP queries optimization: A framework for combining Rule-Based and Cost-Based approaches

OLAP queries optimization: A framework for combining Rule-Based and Cost-Based approaches OLAP queries optimization: A framework for combining Rule-Based and Cost-Based approaches H. Mouloudi - A. Giacometti - P. Marcel LI - Université François-Rabelais de Tours L. Bellatreche LISI ENSMA -

Plus en détail

SQL Server 2014 Implémentation d'une solution de Business Intelligence (Sql Server, Analysis Services, Power BI...)

SQL Server 2014 Implémentation d'une solution de Business Intelligence (Sql Server, Analysis Services, Power BI...) Avant-propos 1. À qui s'adresse ce livre? 15 2. Pré-requis 15 3. Objectifs du livre 16 4. Notations 17 Introduction à la Business Intelligence 1. Du transactionnel au décisionnel 19 2. Business Intelligence

Plus en détail

Techniques d implémenta3on d OLAP

Techniques d implémenta3on d OLAP Techniques d implémenta3on d OLAP Introduc3on On a vu qu il existait 2 grandes alterna3ves : MOLAP = structure de données adhoc, pour le mul3dimensionnel. ROLAP = implémenta3on à l aide d un SGBD rela3onnel

Plus en détail

Présentation Windows Azure Hadoop Big Data - BI

Présentation Windows Azure Hadoop Big Data - BI Présentation Windows Azure Hadoop Big Data - BI Sommaire 1. Architecture Hadoop dans Windows Azure... 3 2. Requête Hive avec Hadoop dans Windows Azure... 4 3. Cas d études... 5 3.1 Vue : Administrateur...

Plus en détail

Les Entrepôts de Données

Les Entrepôts de Données Les Entrepôts de Données Grégory Bonnet Abdel-Illah Mouaddib GREYC Dépt Dépt informatique :: GREYC Dépt Dépt informatique :: Cours Cours SIR SIR Systèmes d information décisionnels Nouvelles générations

Plus en détail

Système OLAP Fresqueau

Système OLAP Fresqueau Système OLAP Fresqueau Kamal BOULIL Journées 20 mars Strasbourg Réunion plénière -Fresqueau 07-08 octobre 2013 1 Plan 1. Introduction 1. Projet ANR Fresqueau 2. Systèmes OLAP 2. Système OLAP Fresqueau

Plus en détail

RMLL Présentation Activité Pentaho

RMLL Présentation Activité Pentaho RMLL Présentation Activité Pentaho BPM Conseil «Best Pentaho partner for 2006» 11 Juillet 2007 Activités et Orientations BPM Conseil Société de conseil en informatique décisionnelle Partenaire la suite

Plus en détail

L informatique des entrepôts de données

L informatique des entrepôts de données L informatique des entrepôts de données Daniel Lemire SEMAINE 10 Introduction à MDX 10.1. Présentation de la semaine Tout comme le modèle relationnel utilise SQL comme langage, le modèle OLAP utilise le

Plus en détail

Exploiter les statistiques d utilisation de SQL Server 2008 R2 Reporting Services

Exploiter les statistiques d utilisation de SQL Server 2008 R2 Reporting Services Exploiter les statistiques d utilisation de SQL Server 2008 R2 Reporting Services Nous verrons dans cet article comment exploiter simplement les données de Log de SQL Server 2008 R2 Reporting Services

Plus en détail

La Business Intelligence 01/05/2012. Les Nouvelles Technologies

La Business Intelligence 01/05/2012. Les Nouvelles Technologies 2 La Business Intelligence Les Nouvelles Technologies 3 Une expertise méthodologique pour une intervention optimale sur tous les niveaux du cycle de vie d un projet 4 5 Ils nous font confiance : L ambition

Plus en détail

Fournir un accès rapide à nos données : agréger au préalable nos données permet de faire nos requêtes beaucoup plus rapidement

Fournir un accès rapide à nos données : agréger au préalable nos données permet de faire nos requêtes beaucoup plus rapidement Introduction Phases du projet Les principales phases du projet sont les suivantes : La mise à disposition des sources Des fichiers Excel sont utilisés pour récolter nos informations L extraction des données

Plus en détail

Business Intelligence (BI) Stratégie de création d un outil BI

Business Intelligence (BI) Stratégie de création d un outil BI Business Intelligence (BI) La Business intelligence est un outil décisionnel incontournable à la gestion stratégique et quotidienne des entités. Il fournit de l information indispensable, sous plusieurs

Plus en détail

TP2_1 DE BUSINESS INTELLIGENCE ISIMA ZZ3 F3

TP2_1 DE BUSINESS INTELLIGENCE ISIMA ZZ3 F3 TP2_1 DE BUSINESS INTELLIGENCE ISIMA ZZ3 F3 03/11/2014 Plan du TP 2 Présentation de la suite Microsoft BI Ateliers sur SSIS (2H) Ateliers sur RS (2H) 3 Présentation de la suite Microsoft BI Présentation

Plus en détail

Collabora'on IRISA/INRA sur le transfert de nitrates et l améliora'on de la qualité des eaux des bassins versants:

Collabora'on IRISA/INRA sur le transfert de nitrates et l améliora'on de la qualité des eaux des bassins versants: Collabora'on IRISA/INRA sur le transfert de nitrates et l améliora'on de la qualité des eaux des bassins versants: Tassadit BOUADI 22 Juin 2010, Saint Jacut 1 Plan Introduc

Plus en détail

Oracle Décisionnel : Modèle OLAP et Vue matérialisée D BILEK

Oracle Décisionnel : Modèle OLAP et Vue matérialisée D BILEK Oracle Décisionnel : Modèle OLAP et Vue matérialisée SOMMAIRE Introduction Le modèle en étoiles Requêtes OLAP Vue matérialisée Fonctions Roll up et Cube Application Introduction Data Warehouse Moteur OLAP

Plus en détail

L informatique des entrepôts de données

L informatique des entrepôts de données L informatique des entrepôts de données Daniel Lemire SEMAINE 10 Introduction à MDX 10.1. Présentation de la semaine Tout comme le modèle relationnel utilise SQL comme langage, le modèle OLAP utilise le

Plus en détail

Introduction à la B.I. Avec SQL Server 2008

Introduction à la B.I. Avec SQL Server 2008 Introduction à la B.I. Avec SQL Server 2008 Version 1.0 VALENTIN Pauline 2 Introduction à la B.I. avec SQL Server 2008 Sommaire 1 Présentation de la B.I. et SQL Server 2008... 3 1.1 Présentation rapide

Plus en détail

Analyse comparative entre différents outils de BI (Business Intelligence) :

Analyse comparative entre différents outils de BI (Business Intelligence) : Analyse comparative entre différents outils de BI (Business Intelligence) : Réalisé par: NAMIR YASSINE RAGUI ACHRAF Encadré par: PR. L. LAMRINI Dans le domaine d économies des Big Data et Open Data, comment

Plus en détail

INITIATION AU LANGAGE SQL

INITIATION AU LANGAGE SQL ECOLE NATIONALE DES INGENIEURS DES TRAVAUX AGRICOLES DE BORDEAUX DEPARTEMENT ENTREPRISE ET SYSTEMES UNITE DE FORMATION INFORMATIQUE ET GENIE DES EQUIPEMENTS ~o~o~o~ INITIATION AU LANGAGE SQL Notes de cours

Plus en détail

L informatique des entrepôts de données

L informatique des entrepôts de données L informatique des entrepôts de données Daniel Lemire SEMAINE 10 Introduction à MDX 10.1. Présentation de la semaine Tout comme le modèle relationnel utilise SQL comme langage, le modèle OLAP utilise le

Plus en détail

SGBDR. Systèmes de Gestion de Bases de Données (Relationnelles)

SGBDR. Systèmes de Gestion de Bases de Données (Relationnelles) SGBDR Systèmes de Gestion de Bases de Données (Relationnelles) Plan Approches Les tâches du SGBD Les transactions Approche 1 Systèmes traditionnels basés sur des fichiers Application 1 Gestion clients

Plus en détail

Didier MOUNIEN Samantha MOINEAUX

Didier MOUNIEN Samantha MOINEAUX Didier MOUNIEN Samantha MOINEAUX 08/01/2008 1 Généralisation des ERP ERP génère une importante masse de données Comment mesurer l impact réel d une décision? Comment choisir entre plusieurs décisions?

Plus en détail

INTERROGATION D UNE BASE DE DONNEES ROLAP AVEC MONDRIAN/JRUBIK

INTERROGATION D UNE BASE DE DONNEES ROLAP AVEC MONDRIAN/JRUBIK UPPA MASTER 2 - LAOSI Travaux Dirigés d'informatique INTERROGATION D UNE BASE DE DONNEES ROLAP AVEC MONDRIAN/JRUBIK I Installation de JRubik 1/ Récupérez l archive zippée sur le répertoire Public puis

Plus en détail

SQL Server 2014. SQL Server 2014. Implémentation d une solution. Implémentation d une solution de Business Intelligence.

SQL Server 2014. SQL Server 2014. Implémentation d une solution. Implémentation d une solution de Business Intelligence. Ce livre sur s adresse à toutes les personnes désireuses de mettre en œuvre les techniques de l informatique décisionnelle (ou BI, Business Intelligence) à l aide des composants de la suite Microsoft :

Plus en détail

BUSINESS INTELLIGENCE

BUSINESS INTELLIGENCE BUSINESS SYSTÈME D INFORMATION DÉCISIONNEL CENTRE DE RESSOURCES INFORMATIQUES PÔLE INFORMATIQUE DE GESTION & SI DÉFINITION L INFORMATIQUE DÉCISIONNELLE DÉSIGNE L ENSEMBLE DES TECHNOLOGIES UTILISÉES DANS

Plus en détail

Chap. 5 : Langage SQL (Structured Query Language) Pr. : Mohamed BASLAM Contact : baslam.med@gmail.com Niveau : S4 BCG Année : 2014/2015 1

Chap. 5 : Langage SQL (Structured Query Language) Pr. : Mohamed BASLAM Contact : baslam.med@gmail.com Niveau : S4 BCG Année : 2014/2015 1 Chap. 5 : Langage SQL (Structured Query Language) Pr. : Mohamed BASLAM Contact : baslam.med@gmail.com Niveau : S4 BCG Année : 2014/2015 1 Plan Généralités Langage de Définition des (LDD) Langage de Manipulation

Plus en détail

Urbanisation des SI-NFE107

Urbanisation des SI-NFE107 OLAP Urbanisation des SI-NFE107 Fiche de lecture Karim SEKRI 20/01/2009 OLAP 1 Introduction PLAN OLAP Les différentes technologies OLAP Plate formes et Outils 20/01/2009 OLAP 2 Informatique décisionnelle

Plus en détail

Informatique Initiation aux requêtes SQL. Sommaire

Informatique Initiation aux requêtes SQL. Sommaire cterrier.com 1/14 04/03/2008 Informatique Initiation aux requêtes SQL Auteur : C. Terrier ; mailto:webmaster@cterrier.com ; http://www.cterrier.com Utilisation : Reproduction libre pour des formateurs

Plus en détail

Oracle Database 10g: Les fondamentaux du langage SQL I

Oracle Database 10g: Les fondamentaux du langage SQL I Oracle University Appelez-nous: +33 (0) 1 57 60 20 81 Oracle Database 10g: Les fondamentaux du langage SQL I Durée: 3 Jours Description Ce cours offre aux étudiants une introduction à la technologie de

Plus en détail

RAPPORT ENTREPOT DE DONNEES

RAPPORT ENTREPOT DE DONNEES RAPPORT ENTREPOT DE DONNEES Informatique Décisionnelle Réalisé par : Supervisé par : Ait Skourt Brahim Bouchana Adil Ed-dahmouni Bouthayna El Issaoui Naoufal Pr. L.Lamrini Informatique décisionnelle (BI)

Plus en détail

1/39. I Langage d interrogation et modification des données (DML) I Langage de définition du schéma (DDL)

1/39. I Langage d interrogation et modification des données (DML) I Langage de définition du schéma (DDL) Introduction 1/39 2/39 Introduction Anne-Cécile Caron Licence MIAGE - BDD 2015-2016 A partir de l algèbre relationnelle s est construit un langage informatique permettant d interroger les données : SQL

Plus en détail

OPTIMISATION DES CUBES OLAP, DE LA CREATION A LA NAVIGATION

OPTIMISATION DES CUBES OLAP, DE LA CREATION A LA NAVIGATION OPTIMISATION DES CUBES OLAP, DE LA CREATION A LA NAVIGATION Vous travaillez avec des cubes OLAP. Vous avez été Caractéristiques : confronté, ou le serez peut-être, à des problèmes tels Catégories : SAS

Plus en détail

F. Opérations multidimensionnelles

F. Opérations multidimensionnelles F. Opérations multidimensionnelles Roll up (drill-up)/drill down (roll down) Roll up (drill-up) : résumer, agréger des données en montant dans une hiérachie ou en oubliant une dimension Drill down (roll

Plus en détail

SQL SERVER 2008, BUSINESS INTELLIGENCE

SQL SERVER 2008, BUSINESS INTELLIGENCE SGBD / Aide à la décision SQL SERVER 2008, BUSINESS INTELLIGENCE Réf: QLI Durée : 5 jours (7 heures) OBJECTIFS DE LA FORMATION Cette formation vous apprendra à concevoir et à déployer une solution de Business

Plus en détail

TP2_2 DE BUSINESS INTELLIGENCE ISIMA ZZ3 F3

TP2_2 DE BUSINESS INTELLIGENCE ISIMA ZZ3 F3 TP2_2 DE BUSINESS INTELLIGENCE ISIMA ZZ3 F3 03/11/2014 Plan du TP 2 Présentation de la suite Microsoft BI Ateliers sur SSIS (2H) Ateliers sur RS (2H) 3 Présentation de la suite Microsoft BI Présentation

Plus en détail

Bases de données. Licence Pro QSSI. patrick.marcel@univ-tours.fr http://www.info.univ-tours.fr/ marcel

Bases de données. Licence Pro QSSI. patrick.marcel@univ-tours.fr http://www.info.univ-tours.fr/ marcel Bases de données Licence Pro QSSI patrick.marcel@univ-tours.fr http://www.info.univ-tours.fr/ marcel contexte nous avons vu comment exprimer des requêtes simples nous avons vu des requêtes que nous ne

Plus en détail

Action de formation: SQL Server Business Intelligence & Data Warehouse

Action de formation: SQL Server Business Intelligence & Data Warehouse Action de formation: SQL Server Business Intelligence & Data Warehouse Contenu : Integration Services Présentation de Management Studio - Présenter les différentes tâches de SSMS - Structure des serveurs

Plus en détail

BDWA EXAMEN - 27 MARS 2006 Documents autorisés. Exercice 1. Requêtes décisionnelles

BDWA EXAMEN - 27 MARS 2006 Documents autorisés. Exercice 1. Requêtes décisionnelles Nom : Prénom : Page 1 Université Pierre et Marie Curie Paris 6 BDWA EXAMEN - 27 MARS 2006 Documents autorisés Master d'informatique Exercice 1. Requêtes décisionnelles On considère une base de données

Plus en détail

Les entrepôts de données

Les entrepôts de données Les entrepôts de données Lydie Soler Janvier 2008 U.F.R. d informatique Document diffusé sous licence Creative Commons by-nc-nd (http://creativecommons.org/licenses/by-nc-nd/2.0/fr/) 1 Plan Introduction

Plus en détail

CATALOGUE DE FORMATIONS BUSINESS INTELLIGENCE. Edition 2012

CATALOGUE DE FORMATIONS BUSINESS INTELLIGENCE. Edition 2012 CATALOGUE DE FORMATIONS BUSINESS INTELLIGENCE Edition 2012 AGENDA Qui sommes nous? Présentation de Keyrus Keyrus : Expert en formations BI Nos propositions de formation 3 modes de formations Liste des

Plus en détail

L2 sciences et technologies, mention informatique SQL

L2 sciences et technologies, mention informatique SQL Bases de données L2 sciences et technologies, mention informatique SQL ou : le côté obscure de la jolie théorie films titre réalisateur année starwars lucas 1977 nikita besson 1990 locataires ki-duk 2005

Plus en détail

Modèle relationnel Création et modification des relations en SQL

Modèle relationnel Création et modification des relations en SQL Modèle relationnel Création et modification des relations en SQL ENT - Clé sql2009 BD - Mírian Halfeld-Ferrari p. 1 Insertion dans une relation Pour insérer un tuple dans une relation: insert into Sailors

Plus en détail

SQL. Requête la plus simple. Projection. Requête la plus simple. Différents modes d interrogation. Requêtes mécanismes d interrogation des données

SQL. Requête la plus simple. Projection. Requête la plus simple. Différents modes d interrogation. Requêtes mécanismes d interrogation des données Requêtes mécanismes d interrogation des données SQL! En entrée : une ou plusieurs tables! En sortie : une table réponse sandra.bringay@univ-montp3.fr roland.mahiques@univ-montp3.fr alexandre.pinlou@univ-montp3.fr

Plus en détail

BIRT (Business Intelligence and Reporting Tools)

BIRT (Business Intelligence and Reporting Tools) BIRT (Business Intelligence and Reporting Tools) Introduction Cette publication a pour objectif de présenter l outil de reporting BIRT, dans le cadre de l unité de valeur «Data Warehouse et Outils Décisionnels»

Plus en détail

Créer le modèle multidimensionnel

Créer le modèle multidimensionnel 231 Chapitre 6 Créer le modèle multidimensionnel 1. Présentation de SSAS multidimensionnel Créer le modèle multidimensionnel SSAS (SQL Server Analysis Services) multidimensionnel est un serveur de bases

Plus en détail

Université Paris 13 TP Base de données Année 2008-2009 Institut Galilée feuille 2 : requêtes SQL INFO1

Université Paris 13 TP Base de données Année 2008-2009 Institut Galilée feuille 2 : requêtes SQL INFO1 Université Paris 13 TP Base de données Année 2008-2009 Institut Galilée feuille 2 : requêtes SQL INFO1 Exercice 1 : requêtes simples Pour traiter de la vente par correspondance on considère la modélisation

Plus en détail

Introduction aux outils BI de SQL Server 2014. Création de cubes dans SQL Server Analysis Services (SSAS)

Introduction aux outils BI de SQL Server 2014. Création de cubes dans SQL Server Analysis Services (SSAS) MIT820: Entrepôts de données et intelligence artificielle Introduction aux outils BI de SQL Server 2014 Création de cubes dans SQL Server Analysis Services (SSAS) Description générale Ce tutoriel a pour

Plus en détail

Bases de Données OLAP. Systèmes Opérationnels vs. Entrepôts de Données Requêtes. Donné un Modèle Multidimensionnel

Bases de Données OLAP. Systèmes Opérationnels vs. Entrepôts de Données Requêtes. Donné un Modèle Multidimensionnel 007 006 00 00 00 00 Books s s North America Asia Europe Bases de Données OLAP Hiver 0/0 Melanie Herschel melanie.herschel@lri.fr Université Sud, Groupe Bases de Données, LRI Systèmes Opérationnels vs.

Plus en détail

Bases de Données OLAP

Bases de Données OLAP Bases de Données OLAP Hiver 013/014 Melanie Herschel melanie.herschel@lri.fr Université Sud, Groupe Bases de Données, LRI Systèmes Opérationnels vs. Entrepôts de Données Requêtes Requêtes BD opérationnelles

Plus en détail

Cours Bases de données 2ème année IUT

Cours Bases de données 2ème année IUT Cours Bases de données 2ème année IUT Cours 1 : Vues et Index Anne Vilnat http://www.limsi.fr/individu/anne/cours Plan 1 Les Vues Généralités Syntaxe Avantages Conditions de mise à jour 2 Index Généralités

Plus en détail

Petit Déjeuner Pépinière du Logiciel Libre. 25 juin 2008

Petit Déjeuner Pépinière du Logiciel Libre. 25 juin 2008 Petit Déjeuner Pépinière du Logiciel Libre 25 juin 2008 1 / 37 Agenda Définition & Principes Les différents outils & composants Les Solutions intégrés Open-Source Vos Questions 2 / 37 Agenda Définition

Plus en détail

UMBB, Département Informatique Cours Master 1 BDA Responsable : A. AIT-BOUZIAD Le 06 Décembre 2011 CHAPITRE 2 CONTRÖLE DE DONNEES DANS SQL

UMBB, Département Informatique Cours Master 1 BDA Responsable : A. AIT-BOUZIAD Le 06 Décembre 2011 CHAPITRE 2 CONTRÖLE DE DONNEES DANS SQL UMBB, Département Informatique Cours Master 1 BDA Responsable : A. AIT-BOUZIAD Le 06 Décembre 2011 CHAPITRE 2 CONTRÖLE DE DONNEES DANS SQL I Gestion des utilisateurs et de leurs privilèges I.1 Gestion

Plus en détail

TP2 DE BUSINESS INTELLIGENCE ISIMA ZZ3 F3

TP2 DE BUSINESS INTELLIGENCE ISIMA ZZ3 F3 TP2 DE BUSINESS INTELLIGENCE ISIMA ZZ3 F3 30/11/2011 Plan du TP 2 Rappel sur la chaine de BI Présentation de la suite Microsoft BI Ateliers sur SSIS (2H) Ateliers sur RS (2H) 3 Rappel sur la chaine de

Plus en détail

Business Intelligence simple et efficace avec Excel et PowerPivot

Business Intelligence simple et efficace avec Excel et PowerPivot Présentation de PowerPivot A. L analyse de données 7 1. Activité 7 2. Définitions 8 a. Mesures et dimensions 8 b. Traitement et analyse 8 c. Robustesse et confiance 9 B. Des solutions pour les gros volumes

Plus en détail

Bases de Données relationnelles et leurs systèmes de Gestion

Bases de Données relationnelles et leurs systèmes de Gestion III.1- Définition de schémas Bases de Données relationnelles et leurs systèmes de Gestion RAPPELS Contraintes d intégrité sous Oracle Notion de vue Typage des attributs Contrainte d intégrité Intra-relation

Plus en détail

BDMD NI248. Exercice 1 : Cube

BDMD NI248. Exercice 1 : Cube Nom : Prénom : Page 1 Université Pierre et Marie Curie Paris 6 Master d'informatique BDMD NI248 23 mars 2011 Documents autorisés - 2h Exercice 1 : Cube 5 pts Soit une table Ventes (Magasin, Produit, Couleur,

Plus en détail

PANORAMA DES SYSTEMES D INFORMATION. Business Intelligence. Kevinconsulting.org - MOUCKOUMBI Herbert Kevin

PANORAMA DES SYSTEMES D INFORMATION. Business Intelligence. Kevinconsulting.org - MOUCKOUMBI Herbert Kevin PANORAMA DES SYSTEMES D INFORMATION Business Intelligence Kevinconsulting.org - MOUCKOUMBI Herbert Kevin SOMMAIRE Sommaire 1. 2. Investigation sur le marché de la Business Intelligence 3. de Business Intelligence

Plus en détail

Hervé Couturier EVP, SAP Technology Development

Hervé Couturier EVP, SAP Technology Development Hervé Couturier EVP, SAP Technology Development Hervé Biausser Directeur de l Ecole Centrale Paris Bernard Liautaud Fondateur de Business Objects Questions à: Hervé Couturier Hervé Biausser Bernard Liautaud

Plus en détail

Secteur Tertiaire Informatique Filière étude - développement. Accueil. Apprentissage. Période en entreprise. Evaluation.

Secteur Tertiaire Informatique Filière étude - développement. Accueil. Apprentissage. Période en entreprise. Evaluation. Secteur Tertiaire Informatique Filière étude - développement Activité «Développer la persistance des données» PL / SQL: Mise à jour des données Accueil Apprentissage Période en entreprise Evaluation Code

Plus en détail

Fiche de lecture OLAP

Fiche de lecture OLAP Fiche de lecture OLAP NFE107 Urbanisation des Systèmes d Information Karim Sekri Informatique décisionnelle BI, Business Intelligence Système interprétant des données complexes permettant aux dirigeants

Plus en détail

SQL Historique 1982 1986 1992

SQL Historique 1982 1986 1992 SQL Historique 1950-1960: gestion par simple fichier texte 1960: COBOL (début de notion de base de données) 1968: premier produit de sgbdr structuré (IBM -> IDMS) 1970-74: élaboration de l'outil d'analyse

Plus en détail

Interfaçage de programmation. c Olivier Caron

Interfaçage de programmation. c Olivier Caron Interfaçage de programmation 1 Le SGBD est-il suffisant? (1/2) Les pour : La puissance du langage de requêtes. 1 Le SGBD est-il suffisant? (1/2) Les pour : La puissance du langage de requêtes. L aspect

Plus en détail

Département Génie Informatique

Département Génie Informatique Département Génie Informatique BD51 : Business Intelligence & Data Warehouse Projet Rédacteur : Christian FISCHER Automne 2011 Sujet : Développer un système décisionnel pour la gestion des ventes par magasin

Plus en détail

2 ème PARTIE : LE LANGAGE SQL

2 ème PARTIE : LE LANGAGE SQL 2 ème PARTIE : LE LANGAGE SQL PLAN : I. Le langage de manipulation des données II. Le langage de définition des données III. Administration de la base de données IV. Divers (HORS PROGRAMME) Introduction:

Plus en détail

Rudiments SQL pour Oracle BDA_RCS

Rudiments SQL pour Oracle BDA_RCS Rudiments SQL pour Oracle BDA_RCS 08-11-2014 1 La base de données Gestion des commandes 08-11-2014 2 Les noms de colonnes sont volontairement simplifiés 3 Ajout de nouvelles colonnes dans des tables qui

Plus en détail

Magasins et entrepôts de données (Datamart, data warehouse) Approche relationnelle pour l'analyse des données en ligne (ROLAP)

Magasins et entrepôts de données (Datamart, data warehouse) Approche relationnelle pour l'analyse des données en ligne (ROLAP) Magasins et entrepôts de données (Datamart, data warehouse) Approche relationnelle pour l'analyse des données en ligne (ROLAP) Définition (G. Gardarin) Entrepôt : ensemble de données historisées variant

Plus en détail

2014/2015 REALISE PAR : ISMAIL NAIT ABDELLAH OUALI SOUFIANE HOURRI MOHAMED OUSSAFI ANOUAR OUFQIR ENCADRE PAR : MME L. LAMRINI

2014/2015 REALISE PAR : ISMAIL NAIT ABDELLAH OUALI SOUFIANE HOURRI MOHAMED OUSSAFI ANOUAR OUFQIR ENCADRE PAR : MME L. LAMRINI 2014/2015 REALISE PAR : ISMAIL NAIT ABDELLAH OUALI SOUFIANE HOURRI MOHAMED OUSSAFI ANOUAR OUFQIR ENCADRE PAR : MME L. LAMRINI Table des matières 1. Bilan de la séance de Lundi 09 Mars 2015... 2 2. Présentation

Plus en détail

Projet Fresqueau: un entrepôt des données pour analyser la qualité de l eau en France

Projet Fresqueau: un entrepôt des données pour analyser la qualité de l eau en France Projet Fresqueau: un entrepôt des données pour analyser la qualité de l eau en France 12 juin 2013 Atelier SOLAP @EDA2013 Démarrage Projet MIDAS - 29 Janvier 2008 1 Plan Projet Fresqueau Objectifs généraux

Plus en détail

Bases de données et sites WEB

Bases de données et sites WEB Bases de données et sites WEB Cours2 : Sécurité et contrôles d accès Anne Doucet 1 Authentification Autorisation Privilèges Rôles Profils Limitations de ressources Plan Audit Contrôle d accès via les vues

Plus en détail

Compte rendu d activité Fiche n 1

Compte rendu d activité Fiche n 1 Compte rendu d activité Fiche n 1 Alexandre K. (http://ploufix.free.fr) Nature de l activité Création d une base de connaissances avec PostgreSQL Contexte : Le responsable technique souhaite la mise en

Plus en détail

Formation à l utilisation des Systèmes de Gestion de Bases de Données Relationnelles. organisée avec la collaboration du

Formation à l utilisation des Systèmes de Gestion de Bases de Données Relationnelles. organisée avec la collaboration du Proyecto FAO COPEMED Universidad de Alicante Ramón y Cajal, 4 03001 - Alicante, España GCP/REM/057/SPA Web : www.fao.org/fi/copemed Tel : +34 96 514 59 79 Fax : +34 96 514 59 78 Email : copemed@ua.es Formation

Plus en détail

Formation Cloudera Data Analyst Utiliser Pig, Hive et Impala avec Hadoop

Formation Cloudera Data Analyst Utiliser Pig, Hive et Impala avec Hadoop Passez au niveau supérieur en termes de connaissance grâce à la formation Data Analyst de Cloudera. Public Durée Objectifs Analystes de données, business analysts, développeurs et administrateurs qui ont

Plus en détail

Le langage SQL (deuxième partie) c Olivier Caron

Le langage SQL (deuxième partie) c Olivier Caron Le langage SQL (deuxième partie) 1 Les requêtes de consultation Représente la majorité des requêtes 1 Les requêtes de consultation Représente la majorité des requêtes Encapsule complètement l algèbre relationnel

Plus en détail

Chapitre 4 LE LANGAGE D INTERROGATION DE DONNÉES SQL

Chapitre 4 LE LANGAGE D INTERROGATION DE DONNÉES SQL Chapitre 4 LE LANGAGE D INTERROGATION DE DONNÉES SQL 1. Définitions Clause : mot-clé Requête : interrogation ou action structurée sur la BD Requête d interrogation composée de l ensemble des clauses :

Plus en détail

1. LA GESTION DES BASES DE DONNEES RELATIONNELLES

1. LA GESTION DES BASES DE DONNEES RELATIONNELLES Dossier G11 - Interroger une base de données La base de données Facturation contient tout un ensemble d'informations concernant la facturation de la SAFPB (société anonyme de fabrication de produits de

Plus en détail

Choix de l outil PENTAHO

Choix de l outil PENTAHO Choix de l outil PENTAHO GROUPES : Encadrant : IDRISSI BADSSI abd al moughit Mme LEMRINI loubna HALIM hamza LARHROUCH mustapha Table des matières Business intelligence... 2 Les Outils Open source de Business

Plus en détail

BUSINESS INTELLIGENCE. Une vision cockpit : utilité et apport pour l'entreprise

BUSINESS INTELLIGENCE. Une vision cockpit : utilité et apport pour l'entreprise BUSINESS INTELLIGENCE Une vision cockpit : utilité et apport pour l'entreprise 1 Présentation PIERRE-YVES BONVIN, SOLVAXIS BERNARD BOIL, RESP. SI, GROUPE OROLUX 2 AGENDA Définitions Positionnement de la

Plus en détail

L informatique des entrepôts de données

L informatique des entrepôts de données L informatique des entrepôts de données Daniel Lemire SEMAINE 8 Introduction à OLAP 8.1. Présentation de la semaine Le modèle OLAP (Online Analytical Processing) est un modèle quasiomniprésent en intelligence

Plus en détail

EPITA. Bases de données 2 ème par4e AppIng2-2015 Session 2014. Alexandra Champavert. Copyright 2010-2014 Alexandra Champavert - 1 -

EPITA. Bases de données 2 ème par4e AppIng2-2015 Session 2014. Alexandra Champavert. Copyright 2010-2014 Alexandra Champavert - 1 - EPITA Bases de données 2 ème par4e AppIng2-2015 Session 2014 Alexandra Champavert - 1 - Contenu du cours Le datawarehouse Principes de modélisa=on (flocon, étoile) Les ETL Les fonc=onnalités propres à

Plus en détail

L offre décisionnel IBM. Patrick COOLS Spécialiste Business Intelligence

L offre décisionnel IBM. Patrick COOLS Spécialiste Business Intelligence L offre décisionnel IBM Patrick COOLS Spécialiste Business Intelligence Le marché du Business Intelligence L enjeux actuel des entreprises : devenir plus «agiles» Elargir les marchés tout en maintenant

Plus en détail

FreeAnalysis. Schema Designer. Cubes

FreeAnalysis. Schema Designer. Cubes FreeAnalysis Schema Designer Cubes Charles Martin et Patrick Beaucamp BPM Conseil Contact : charles.martin@bpm-conseil.com, patrick.beaucamp@bpm-conseil.com Janvier 2013 Document : BPM_Vanilla_FreeAnalysisSchemaDesigner_v4.2_FR.odt

Plus en détail

Projet. Rappel VBA. Manuele Kirsch Pinheiro - UP1 / CRI / UFR06 Ges>on 28/02/15

Projet. Rappel VBA. Manuele Kirsch Pinheiro - UP1 / CRI / UFR06 Ges>on 28/02/15 Projet Rappel VBA 28/02/15 1 VBA : quoi & pourquoi? VBA : quoi? Langage et environnement de programma>on Orienté Objets A5aché aux documents MS Office VBA : pourquoi? Associer un comportement ac=f à des

Plus en détail

Le langage SQL Rappels

Le langage SQL Rappels Le langage SQL Rappels Description du thème : Présentation des principales notions nécessaires pour réaliser des requêtes SQL Mots-clés : Niveau : Bases de données relationnelles, Open Office, champs,

Plus en détail

Projet M1 Sujet 21 : Développement d'un logiciel simplifié de type Business Object

Projet M1 Sujet 21 : Développement d'un logiciel simplifié de type Business Object Florent Dubien Antoine Pelloux IUP GMI Avignon Projet M1 Sujet 21 : Développement d'un logiciel simplifié de type Business Object Professeur Tuteur : Thierry Spriet 1. Cadre du projet... 3 2. Logiciel

Plus en détail