DT - CONSTRUCTION DE L EXPONENTIELLE ET DU LOGARITHME NEPERIEN

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "DT - CONSTRUCTION DE L EXPONENTIELLE ET DU LOGARITHME NEPERIEN"

Transcription

1 DT - CONSTRUCTION DE L EXPONENTIELLE ET DU LOGARITHME NEPERIEN Das ce qui suit, o utilisera des argumets élémetaires et o e suppose aucue coaissace des foctios exp et l Ce qui suit sert à les défiir comme limites de deux suites Prélimiaire : l iégalité de Beroulli Propriété 1 Si a 1 et N, alors 1 + a) 1 + a Soit a 1 et P la propriété : 1 + a) 1 + a O démotre par récurrece, que pour tout 1, la propriété P est vraie Cette propriété est vraie à l ordre 1 puisque l o a égalité das ce cas Supposos la propriété vraie à l ordre O écrit 1 + a) +1 = 1 + a)1 + a), et e multipliat les deux membres de l iégalité par le ombre positif 1 + a, o obtiet doc et puisque a 2 est positif, o e déduit 1 + a) 1 + a 1 + a) +1 = 1 + a)1 + a) 1 + a)1 + a), 1 + a) )a + a 2, 1 + a) )a, ce qui est la propriété à l ordre + 1 La propriété est doc vraie pour tout etier 1

2 DT 2 La foctio expoetielle Pour N et x R, o pose et si > x, f x) = e x) = 1 + x ), 1 1 e x) = x ) Propriété 2 Si x, alors e x) e +1 x) O suppose > x O a alors, e réduisat au même déomiateur 1 + x x = = 1 x x x x x + ) + 1) x Mais si l o pose a =, il résulte de ce qui précède que x + ) + 1) 1 + x 1 + a = x > 0, o peut doc appliquer l iégalité de Beroulli, et Doc 1 + x x e +1 x) e x) )a = 1 1 x ) 1 + x ) x + x x + Mais 1 x ) 1 + x ) = + x = 1 x + x + O e déduit que et, puisque e x) est positif, que e +1 x) e x) 1, e x) e +1 x)

3 DT 3 Cette iégalité reste vraie si x =, puisque l o a alors e ) = 0 e +1 ) Fialemet, pour tout x, e x) e +1 x) Remarque : si l o ote 0 la partie etière de x, la suite e x)) 0 +1 est doc croissate Propriété 3 si > x, alors 1 x2 e x)e x) 1 O a e x)e x) = 1 + x ) 1 x ) ) = 1 x2 2, et puisque > x, o e déduit que x2 > 1 et l o peut appliquer l iégalité de Beroulli Alors 2 ) e x)e x) 1 + x2 2 = 1 x2 Par ailleurs doc O a doc bie les iégalités voulues 1 x2 2 1, e x)e x) 1 Propriété 4 Si > x, alors e x) est majoré par f x) et les suites e x)) et f x)) ot ue limite commue Cette limite sera otée expx) = lim 1 + x ) Il résulte de la propriété 3 que, si > x et si 0 est la partie etière de x, f x) = 1 e x) e x) La suite e x)) 0 +1 est doc majorée par f x)) 0 +1

4 DT 4 Efi, comme e x)) 0 +1 est croissate positive, o e déduit que so iverse f x)) 0 +1 est décroissate O a alors les résultats suivates : la suite e x)) 0 +1 est croissate strictemet positive et majorée par le ombre f 0 +1x) Elle coverge vers ue limite l o ulle la suite f x)) 0 +1 est décroissate et miorée par le ombre e 0 +1x) Elle coverge vers ue limite l l ecadremet 1 x2 e x) f x) 1, permet de coclure que la suite e x)/f x)) 0 +1 coverge et admet pour limite 1 Comme elle admet pour limite l/l, o e déduit que l = l, et cette limite sera otée expx) Propriété 5 Pour tout x réel, o a expx)exp x) = 1 Le passage à la limite das les iégalités de la propositio 3 doe alors 1 lim e x)lim e x) 1, doc expx)exp x) = 1 Propriété 6 O a les iégalités suivates : 1) pour tout x R, expx) 1 + x, 2) pour tout x R, expx) > 0, 3) pour tout x < 1, expx) 1 1 x Il résulte de l iégalité de Beroulli que, si x, e x) 1 + x = 1 + x 1) Alors par passage à la limite das cette iégalité, expx) 1 + x

5 DT 5 2) O a e x) 0 doc o e déduit que expx) 0 Mais expx)exp x) = 1 Doc expx) est pas ul, et expx) > 0 3) O a e particulier exp x) 1 x, doc, si x < 1, expx) = 1 exp x) 1 1 x Propriété 7 O a les propriétés suivates 1) si h < 1, alors 1 + h e h) 1 1 h, 2) si ue suite h ) coverge vers 0, alors e h )) coverge vers 1, 3) si ue suite x ) coverge vers x, alors e x )) coverge vers expx) 1) Si h < 1, o a h < 1 et h < 1, doc si 1, l iégalité de Beroulli doe aisi que soit h et e h) 1 + h, h et e h) 1 h > 0, e h) = 1 e h) 1 1 h 2) Si h ) coverge vers zéro, alors, à partir d u certai rag h < 1, et 1 + h e h ) 1 1 h Il résulte du théorème d ecadremet que e h )) coverge vers 1 3) O écrit e x )e x) = 1 + h ) = e h ), avec h = x x xx Alors h ) coverge vers 0 et doc e h )) coverge vers 1 Alors e écrivat e x ) = e x )e x))f x) = e h )f x), o e déduit que e x )) coverge vers 1 expx) = expx) Propriété 8 Quels que soiet x et réels expx + ) = expx)exp)

6 DT 6 O écrit avec e x)e ) = 1 + z ) = e z ), z = x + + x Comme z ) coverge vers x +, o e déduit que e z ) coverge vers expx + ), mais par ailleurs, coverge vers expx)exp), d où la relatio e z )) = e x)e )), expx)exp) = expx + ) Propriété 9 Quels que soiet les ombres réels x, : x)exp x exp) expx) x)exp) E appliquat la relatio 1) de la propriété 6 à x, o obtiet expx)exp ) = expx ) 1 + x, d où ou ecore expx) exp)1 + x ), exp) expx) x)exp) E permutat les rôles de x et de, expx) exp) x )expx), doc x)expx) exp) expx) Propriété 10 La foctio exp est 1) strictemet croissate sur R 2) cotiue sur R 3) dérivable sur R avec ue dérivée égale à elle-même 1) Si x <, o a alors, d après la propriété 9, 0 < x)expx) exp) expx)

7 DT 7 La foctio f est doc strictemet croissate 2) Soit a u ombre réel, et x das l itervalle [a h, a + h ] Alors, comme exp est croissate, o a et exp est borée sur [a h, a + h ] O a alors expa h) expx) expa + h), x a)expa) expx) expa) x a)expx) Mais exp est borée et x a ted vers zéro lorsque x ted vers a, doc x a)expx) ted vers 0 Par ailleurs x a)expa) ted aussi vers zéro Il résulte du théorème d ecadremet que expx) expa) ted vers zéro Doc f est cotiue e a Il e résulte que exp est cotiue sur R 3) Si x > a, o déduit de les iégalités suivates x a)expa) expx) expa) x a)expx), expa) expx) expa) x a expx) Comme la foctio exp est cotiue, il e résulte que lorsque x ted vers a, expx) ted vers expa) et, e utilisat le théorème d ecadremet, o e déduit l égalité expx) expa) lim = expa) x a + x a Si x < a, les iégalités s iverset et o e déduit cette fois, expa) expx) expa) x a expx), et doc expx) expa) lim = expa) x a x a La foctio exp est doc dérivable, et pour tout a réel exp a) = expa) La foctio logarithme Propriété 11 O a l idetité ) a )a + 1 = a 1) a + + a 1 )

8 DT 8 O démotre la relatio e développat le membre de droite Calculos S = a 1) 2 ka k 1 O a k=1 et e chageat les idices de sommatio S = ka k+1 2ka k + ka k 1, k=1 k=1 k=1 S = = +1 k 1)a k k=2 1 k=1 1 2ka k + k + 1)a k k=0 k 1) 2k + k + 1))a k + 1)a + a +1 2a 2a a k=2 = a )a + 1 Pour > 0 et N, o défiit ) l ) = 1 1) et k ) = l Propriété 12 l )) La suite l )) est décroissate et la suite k )) est croissate et majorée par E appliquat *) à a = +1), o obtiet + 1) = a 1) a + + a 1 ) Comme a est positif, le membre de droite est positif, et doc, pour tout 1, + 1) = l ) l +1 ) est égalemet positif O e déduit que la suite l )) est croissate La suite )) 1 l est croissate, alors so opposée k )) est décroissate

9 DT 9 Efi ) l ) k ) = 1 1) + 1 ) = 1 1) + = 1) 1 1 ) = 1) 2 O e déduit que, pour tout 1, le ombre l ) k ) est positif Doc k )) est majorée par l )) Propriété 13 Les deux suites l )) et k )) ot ue limite commue O la ote l) = lim 1) E développat, ) 1 l )k ) = 1 1) 1 ) = = l ) k ) O a alors les résultats suivates : la suite l )) est décroissate miorée par le ombre k 1 ) doc coverge vers ue limite l la suite k )) est croissate majorée par le ombre l 1 ) doc coverge vers ue limite l ) 1 Alors, la suite l )k ) a pour limite 0 l l = 0 doc l ) k )) coverge vers 0 Mais elle coverge vers l l, et il e résulte que l = l O ote cette limite l)

10 DT 10 Propriété 14 O a les propriétés ) suivates 1 1) pour tout > 0, l = l), 2) pour tout > 0, 1 l) 1, 3) pour tout x > 0 et tout > 0, lx) = lx) + l), 4) pour tout x > 0 et tout > 0, x l) lx) x x 1) E passat à la limite das la relatio ) 1 k ) = l, o obtiet l) = l ) 1 2) O peut appliquer l iégalité de Beroulli avec a = 1, car a = 1 1 > 1, o obtiet d où et efi O e déduit doc et par passage à la limite Puis d où l o déduit ) 1 + 1) =, l) = l , 1 l ) 1, l) 1 ) = 1, l) 1

11 DT 11 3) O a l x) = x 1) = x 1) + 1) = x 1) 1 + 1) = l x) et lorsque ted vers l ifii, o e déduit 1 + l ) ) + l ), lx) = lx) + l) 4) est obteue e appliquat les iégalités 2) à /x ) + 1) Propriété 15 La foctio l : R + R est 1) strictemet croissate sur R + 2) cotiue sur R + 3) dérivable sur R + avec ue dérivée égale à 1 1) Si > x, o déduit de ce qui précède que 0 < x x Doc la foctio l est strictemet croissate l) lx) 2) Si a est u réel positif, o a x a x lx) la) x a a Lorsque x ted vers a, il résulte du théorème d ecadremet que lx) a ue limite qui vaut la) La foctio l est cotiue e a, et ceci pour tout réel positif a Elle est doc cotiue sur R + 3) Si x > a, il résulte des iégalités précédetes que 1 lx) la) 1 x x a a, et lorsque x ted vers a, le théorème d ecadremet permet de coclure que Si x < a, il résulte cette fois lx) la) lim = 1 x a + x a a 1 lx) la) 1 x x a a,

12 DT 12 et lorsque x ted vers a, le théorème d ecadremet permet de coclure cette fois que lx) la) lim = 1 x a x a a O e déduit que la foctio l est dérivable e a et que l) a) = 1 a Le lie etre les deux Propriété 16 Soit N 1) Pour tout x >, o a l e x)) = x 2) Pour tout > 0, o a e l )) = 1) Si x >, alors e x) > 0, et l e x)) = 1 + x ) ) 1 = x 2) Si > 0, alors l ) > et e l )) = 1 + ) 1) = Propriété 17 Pour tout > 0, expl)) = La suite l )) coverge vers l, doc d après la propriété 7 3), la suite e l )) coverge vers expl ) Alors la propriété 16 2) doe l égalité expl)) = Propriété 18 Pour tout x R, lexpx)) = x

13 DT 13 La suite e x)) état croissate, elle est majorée par sa limite, doc e x) expx), D autre part, si 0 < u < v, o u v et il e résulte que la foctio l est croissate O e déduit alors x = l e x)) l expx)) Pour tout > 0, la suite l )) état décroissate elle est miorée par sa limite et E particulier, si = e x), o e déduit d où l ecadremet l ) l x = l e x)) le x)), le x)) x l expx)) Or, la suite l expx))) coverge vers lexpx)), et e utilisat la cotiuité de la foctio l, la suite le x))) coverge elle aussi vers lexpx)) Il résulte alors du théorème d ecadremet que lexpx)) = x

1 + t = t. a 6 n ln 1 + a. Suite a : On utilise une relation de Chasles (même terme mais sur des ensembles d indices distincts) ! 1 # 1. 1 k.

1 + t = t. a 6 n ln 1 + a. Suite a : On utilise une relation de Chasles (même terme mais sur des ensembles d indices distincts) ! 1 # 1. 1 k. PHEC Correctio feuille d exercices 00-006 correctio de l exercice t. 8t R + ; + t 6 l( + t) 6 t : Pour cela, o itroduit les foctios f : t 7 l( + t) t et g : t 7 t l( + t) + t dé ies sur [0; +[ et o étudie

Plus en détail

EXERCICES SUR LES SUITES NUMERIQUES

EXERCICES SUR LES SUITES NUMERIQUES EXERCICES SUR LES SUITES NUMERIQUES 1 Etudier la mootoie des suites a ) 0 défiies par : a) a = b) a = + 1) + ) + ) c) a =! d) a = α + 1) α réel positif) Soit a, la suite de terme gééral a = 3 + 1 3 + Trouver

Plus en détail

Convergence de suites réelles

Convergence de suites réelles DOMAINE : No olympique AUTEUR : Nicolas SÉGARRA NIVEAU : Itermédiaire STAGE : Motpellier 2014 CONTENU : Cours et exercices Covergece de suites réelles I) Rappels et otios de base. Défiitio 1. Ue suite

Plus en détail

n² n b) Quel est le nombre de termes de la somme définissant u n? Quel est le plus petit de ces termes? Quel est le plus grand?

n² n b) Quel est le nombre de termes de la somme définissant u n? Quel est le plus petit de ces termes? Quel est le plus grand? Exercice : Détermier la limite de chaque suite (u ). a) u = si π b) u = () c) u = + d) 0,5 + cos(π) Exercice 2 : la costate d Apéry Pour tout etier, u = 3 + + 2 3 +. + 3 ) Doer u miorat de cette suite.

Plus en détail

SOLUTIONS AUX EXERCICES DE LA FEUILLE 1

SOLUTIONS AUX EXERCICES DE LA FEUILLE 1 SOLUTIONS AUX EXERCICES DE LA FEUILLE. Exercice. Ue suite de réels positifs qui coverge vers 0 est décroissate à partir d u certai rag. C est faux. Pour costruire u cotre-exemple, o pourrait cosidérer

Plus en détail

Chapitre 1. Les suites numériques Principe de récurrence Limite d une suite

Chapitre 1. Les suites numériques Principe de récurrence Limite d une suite Eseigemet spécifique Chapitre 1. Les suites umériques Pricipe de récurrece Limite d ue suite I. Rappels sur les suites umériques 1. géérale Ue suite umérique est ue foctio défiie de N vers R, elle peut

Plus en détail

Sup Galilée - Maths pour l Ingénieur Corrigé du Partiel du 19 Novembre 2008

Sup Galilée - Maths pour l Ingénieur Corrigé du Partiel du 19 Novembre 2008 Sup Galilée - Maths pour l Igéieur Corrigé du Partiel du 9 Novembre 008 Étude d ue suite récurrete Soit u 0 ]0, [ O cosidère la suite (u ) défiie par u + u 3 u ) Justifier que la suite u est borée O motre

Plus en détail

Analyse 5 SUITES REELLES

Analyse 5 SUITES REELLES Aalyse chap 5 /6. GENERALITES SR LES SITES. Défiitios Défiitio : e suite est ue foctio, défiie sur ue partie D de. O ote () =, o lit «idice». O dit que est le terme gééral de la suite, ou terme de rag.

Plus en détail

Correction de la question de cours 1

Correction de la question de cours 1 Math I Aalyse Exame du 9 décembre 2007 Durée 2 heures Aucu documet est autorisé. Les calculatrices, téléphoes portables et autres appareils électroiques sot iterdits. Il est iutile de recopier les éocés.

Plus en détail

Existence de la fonction exponentielle

Existence de la fonction exponentielle Eistece de la foctio epoetielle O cosidère les suites réelles (u ) et (v ) défiies pour tout 1 par : u () = 1+ et v () =. La démarce est alors la suivate : Démotrer que les deu suites sot adjacetes et

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours Exo7 Comparaiso des suites Exercices de Jea-Louis Rouget. Retrouver aussi cette fiche sur www.maths-frace.fr * très facile ** facile *** difficulté moyee **** difficile ***** très difficile I : Icotourable

Plus en détail

Chapitre Rappels sur les suites

Chapitre Rappels sur les suites Chapitre Séries umériques. Rappels sur les suites Défiitio.. (i) Ue suite (a ) N de réels (ou de complexes) est covergete vers ue limite a si pour tout ε > 0, il existe 0 N tel que pour tout 0, o a a a

Plus en détail

Corrigé du problème: autour de la fonction zeta alternée de Riemann

Corrigé du problème: autour de la fonction zeta alternée de Riemann Corrigé du problème: autour de la foctio zeta alterée de Riema I Gééralités Pour x >, la suite décroît vers, doc la série coverge par le critère spécial des séries alterées Pour x, e ted pas vers, ce qui

Plus en détail

Révisions d analyse (corrigé des indispensables).

Révisions d analyse (corrigé des indispensables). Révisios d aalyse (corrigé des idispesables). Limites des foctios de variable réelle à valeurs das ou.. a. La foctio f est le produit d e foctio borée sur ( a si ) et d e foctio qui ted vers 0 e 0 ( a

Plus en détail

France métropolitaine Juin 2010 Série S Exercice 1. Restitution organisée de connaissances

France métropolitaine Juin 2010 Série S Exercice 1. Restitution organisée de connaissances Frace métropolitaie Jui 200 Série S Exercice Restitutio orgaisée de coaissaces Démotrer, à l aide de la défiitio et des deux propriétés cidessous que si ( u ) et ( v ) sot deux suites adjacetes, alors

Plus en détail

Exercice 6 [ ] [Correction] Soit (u n ) n N une suite de réels strictement positifs. On suppose

Exercice 6 [ ] [Correction] Soit (u n ) n N une suite de réels strictement positifs. On suppose [http://mpcpgedupuydelomefr] édité le 3 ovembre 07 Eocés Calcul de limites Exercice [ 054 ] [Correctio] Détermier la limite, si celle-ci existe, des suites u suivates : a u = 3 3 + b u = + + + c u = +

Plus en détail

Correction du TD 3 : Séries numériques

Correction du TD 3 : Séries numériques Mme Marceli - Lycée Clemeceau Séries umériques Correctio du TD : Séries umériques Exercice A chaque fois, puisqu'o demade la covergece et la valeur, o reviet à la somme partielle : esuite, soit o recoaît

Plus en détail

Etude asymptotique de suites de solutions d une équation

Etude asymptotique de suites de solutions d une équation [http://mp.cpgedupuydelome.fr] édité le 5 mai 206 Eocés Etude asymptotique de suites de solutios d ue équatio Exercice [ 02289 ] [Correctio] Soit u etier aturel et E l équatio x + l x = d icoue x R +.

Plus en détail

SUITES (Partie 2) = 3u n. et u 0. q n na (inégalité de Bernoulli), a pour limite car lim 4 n = +.

SUITES (Partie 2) = 3u n. et u 0. q n na (inégalité de Bernoulli), a pour limite car lim 4 n = +. SUITES (Partie ) I Comportemet à l'ifii d'ue suite géométrique ) Rappel Défiitio : Ue suite (u ) est ue suite géométrique s'il existe u ombre q tel que pour tout etier, o a : u + = q u Le ombre q est appelé

Plus en détail

Exercices - Variables aléatoires discrètes : corrigé. Variables discrètes finies - Exercices pratiques

Exercices - Variables aléatoires discrètes : corrigé. Variables discrètes finies - Exercices pratiques Variables discrètes fiies - Exercices pratiques Exercice 1 - Loi d u dé truqué - Deuxième aée - 1. X pred ses valeurs das {1,..., 6}. Par hypothèse, il existe u réel a tel que P (X k) ka. Maiteat, puisque

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable. k n) X k (1 X) n k.

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable. k n) X k (1 X) n k. Exo7 Suites et séries de foctios Exercices de Jea-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-fracefr * très facile ** facile *** difficulté moyee **** difficile ***** très difficile I : Icotourable

Plus en détail

1 Propriétés - Suites monotones

1 Propriétés - Suites monotones Uiversité d Aix-Marseille Licece de Mathématiques Semestre 06-07 Aalyse Plache - Suites umériques Propriétés - Suites mootoes Exercice Soiet les suites défiies, pour tout, par u = et v = Vérifier qu elles

Plus en détail

Corrigé feuille d exercices 4

Corrigé feuille d exercices 4 UNIVERSITÉ PIERRE ET MARIE CURIE Aée 008/009 MIME LM5-Suites et Itégrales Groupes Corrigé feuille d exercices Suites Covergece de suites Exercice Ue suite u N est pas croissate, si o N, u + u est vérifiée

Plus en détail

Exercice 6 [ ] [Correction] Soit (u n ) n N une suite de réels strictement positifs. On suppose

Exercice 6 [ ] [Correction] Soit (u n ) n N une suite de réels strictement positifs. On suppose [http://mp.cpgedupuydelome.fr] édité le 9 mai 07 Eocés Calcul de ites Exercice [ 054 ] [Correctio] Détermier la ite, si celle-ci existe, des suites u suivates : a u = 3 3 + b u = + + + c u = + + d u =

Plus en détail

Exo7. Les rationnels, les réels. Exercices de Jean-Louis Rouget. Retrouver aussi cette fiche sur

Exo7. Les rationnels, les réels. Exercices de Jean-Louis Rouget. Retrouver aussi cette fiche sur Exo7 Les ratioels, les réels Exercices de Jea-Louis Rouget. Retrouver aussi cette fiche sur www.maths-frace.fr * très facile ** facile *** difficulté moyee **** difficile ***** très difficile I : Icotourable

Plus en détail

Correction Exercices sur les suites. Correction. un+1 = 0,2u n +0,6 u 0 = 1

Correction Exercices sur les suites. Correction. un+1 = 0,2u n +0,6 u 0 = 1 Correctio Exercice 1 O cosidère la suite (v ) défiie par v 0 = 3 et pour tout 1, v +1 = v 2 3v +4. 1. Démotrer que la suite est croissate. v +1 v = v 2 4v +4 = (v 2) 2 0 quelque soit etier. Doc (v ) est

Plus en détail

Devoir à rendre le 4 janvier 2017

Devoir à rendre le 4 janvier 2017 Uiversité Paris-Dauphie, L MIDO, groupe Aalyse (206-207) Devoir à redre le javier 207 Eercice Soit D u domaie o vide de R et f : D!R.. O souhaite démotrer la caractérisatio séquetielle de l uiforme cotiuité

Plus en détail

Terminale S Chapitre 2 : Fonctions, continuité et TVI Page 1 sur 5 ( ) = ( )

Terminale S Chapitre 2 : Fonctions, continuité et TVI Page 1 sur 5 ( ) = ( ) Termiale S Chapitre : Foctios, cotiuité et TVI Page sur 5 Ce que dit le programme : Défiitio Soiet f ue foctio défiie sur u itervalle I de R et a = O dit que f est cotiue e a si lim f x f a O dit que f

Plus en détail

Laurent Garcin MPSI Lycée Jean-Baptiste Corot. u k

Laurent Garcin MPSI Lycée Jean-Baptiste Corot. u k SÉRIES NUMÉRIQUES K désige le corps R ou C. Gééralités. Défiitios Défiitio. Série Soit (u ) 0 ue suite umérique (i.e. à valeurs das K). O appelle série de terme gééral u la suite (S ) 0 où 0, S = u k Cette

Plus en détail

Concours commun Mines-Ponts 2000 Corrigé de la seconde épreuve de mathématiques

Concours commun Mines-Ponts 2000 Corrigé de la seconde épreuve de mathématiques Cocours commu Mies-Pots Corrigé de la secode épreuve de mathématiques a Nous pouvos appliquer le critère de d Alembert : doc le rayo R est égal à /4 C+ + + + C = + 4, + b O sait que h est de classe C avec

Plus en détail

Suites numériques 1 / 12 A Chevalley

Suites numériques 1 / 12 A Chevalley MT8 A 03 Suites umériques Aleth Chevalley. Rappels.. Défiitio O appelle suite umérique réelle, toute applicatio f : ϒ qui à tout etier aturel, fait correspodre le ombre réel f() et o désige la suite par

Plus en détail

Limites de suites, cours, terminale S

Limites de suites, cours, terminale S Limites de suites, cours, termiale S Covergece de suites Déitio : Soit (u ) ue suite. O dit que (u ) coverge vers u réel l ou a pour limite l lorsque tout itervalle ouvert A coteat l, cotiet tous les termes

Plus en détail

Suites numériques. Copyright meilleurenmaths.com. Tous droits réservés

Suites numériques. Copyright meilleurenmaths.com. Tous droits réservés Suites umériques. 1. Mode de géératio des suites... p2 4. Le raisoemet par récurrece... p4 2. Relatio de récurrece... p3 5. Ses de variatio des suites... p6 3. Suites arithmétiques, suites géométriques...

Plus en détail

D.S. nº4 : Suites, Probabilités, Complexes, exponentielle. Samedi 15 décembre 2012, 3h, Calculatrices autorisées. Ce sujet est à rendre avec la copie.

D.S. nº4 : Suites, Probabilités, Complexes, exponentielle. Samedi 15 décembre 2012, 3h, Calculatrices autorisées. Ce sujet est à rendre avec la copie. D.S. º4 : Suites, Probabilités, Complexes, expoetielle TS1 Samedi 15 décembre 01, h, Calculatrices autorisées. Ce sujet est à redre avec la copie. Nom :.................... Préom :................. Commuicatio

Plus en détail

Exercices. Exercice 1 (Suites adjacentes) On considère les suites (u n ) n N et (v n ) n N définies par: 1 k u n = n 3, v n = u n + 1 n 1 2n 2

Exercices. Exercice 1 (Suites adjacentes) On considère les suites (u n ) n N et (v n ) n N définies par: 1 k u n = n 3, v n = u n + 1 n 1 2n 2 Exercices Exercice (Suites adjacetes) O cosidère les suites (u ) N et (v ) N défiies par: u 3, k3 k 2 + v u + 2 2 Motrer que (u ) N et (v ) N sot adjacetes. Exercice 2 Soiet les deux suites (u ) et (v

Plus en détail

SERIES NUMERIQUES réelles ou complexes

SERIES NUMERIQUES réelles ou complexes UE7 - MA5 : Aalyse SERIES NUMERIQUES réelles ou complexes I. Gééralités Défiitio Etat doée ue suite (u ) de ombres réels ou complexes, o appelle série de terme gééral u la suite (S ) défiie par : () S

Plus en détail

«J'aimais et j'aime encore les mathématiques pour elles-mêmes comme n'admettant pas l'hypocrisie et le vague, mes deux bêtes d'aversion» (Stendhal)

«J'aimais et j'aime encore les mathématiques pour elles-mêmes comme n'admettant pas l'hypocrisie et le vague, mes deux bêtes d'aversion» (Stendhal) Lycée Stedhal (Greoble) Niveau : Termiale S Titre Cours : Chapitre 0 : Les suites Aée : 204-205 «J'aimais et j'aime ecore les mathématiques pour elles-mêmes comme 'admettat pas l'hypocrisie et le vague,

Plus en détail

L2 - Math4 Exercices corrigés sur les suites numériques

L2 - Math4 Exercices corrigés sur les suites numériques L2 - Math4 Exercices corrigés sur les suites umériques Eocés Exercice Les assertios suivates sot-elles vraies ou fausses? Doer ue démostratio de chaque assertio vraie, et doer u cotre-exemple de chaque

Plus en détail

Exercice 6 [ ] [Correction] Soit (u n ) une suite décroissante de réels telle que

Exercice 6 [ ] [Correction] Soit (u n ) une suite décroissante de réels telle que [http://mpcpgedupuydelomefr] édité le 7 août 07 Eocés Calcul asymptotique Comparaiso de suites umériques Eercice [ 08 ] [Correctio] Trouver u équivalet simple au suites u suivates et doer leur limite :

Plus en détail

TD n o 1 : suites numériques

TD n o 1 : suites numériques MAT232 : séries et itégrales gééralisées Uiversité Joseph Fourier 23-24 Greoble TD o : suites umériques Rappel importat : il existe u cours de L e lige, ititulé M@ths e Lge, à l adresse : http://ljk.imag.fr/membres/berard.ycart/mel/

Plus en détail

1. Limite d'une suite... p2. Suites convergentes

1. Limite d'une suite... p2. Suites convergentes Suites covergetes 1.... p2 4. Cas particuliers... p9 2. Limites et comparaiso... p6 5. Suites mootoes... p11. Opératios sur les limites... p7 1. Limite d'ue suite 1.1. Limite ifiie a) Défiitios O dit que

Plus en détail

SUITES et SERIES DE FONCTIONS

SUITES et SERIES DE FONCTIONS UE7 - MA5 : Aalyse SUITES et SERIES DE FONCTIONS I Suites de foctios à valeurs das È ou  Etat doé u esemble E, ue suite de foctios umériques défiies sur E est la doée, pour tout etier, d'ue applicatio

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours Exo7 Valeurs absolues. Partie etière. Iégalités Exercices de Jea-Louis Rouget. Retrouver aussi cette fiche sur www.maths-frace.fr * très facile ** facile *** difficulté moyee **** difficile ***** très

Plus en détail

TD10. Loi des grands nombres, théorème central limite.

TD10. Loi des grands nombres, théorème central limite. Uiversité Pierre & Marie Curie Licece de Mathématiques L3 UE LM345 Probabilités élémetaires Aée 2014 15 TD10. Loi des grads ombres, théorème cetral limite. 1. Soit (U ) 1 ue suite de variables aléatoires

Plus en détail

CONCOURS COMMUN POLYTECHNIQUE (ENSI) FILIERE MP MATHEMATIQUES 1

CONCOURS COMMUN POLYTECHNIQUE (ENSI) FILIERE MP MATHEMATIQUES 1 SESSION 22 CONCOURS COMMUN POLYTECHNIQUE ENSI FILIERE MP MATHEMATIQUES EXERCICE : ormes équivaletes. Soit f E. f est de classe C sur [,]. Doc la foctio f est cotiue sur le segmet [,] et par suite la foctio

Plus en détail

Calculs de limites, développements limités, développements asymptotiques

Calculs de limites, développements limités, développements asymptotiques Eo7 Calculs de limites, développemets limités, développemets asymptotiques Eercices de Jea-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-fracefr * très facile ** facile *** difficulté moyee ****

Plus en détail

FONCTION LOGARITHME NÉPÉRIEN

FONCTION LOGARITHME NÉPÉRIEN FONCTION LOGARITHME NÉPÉRIEN Cours Termiale S La foctio logarithme épérie O a vu das u chapitre précédet que la foctio epoetielle est cotiue et strictemet croissate sur R et que l image de R par cette

Plus en détail

AVRIL 2013 CONCOURS INGÉNIEURS DES TRAVAUX STATISTIQUES. ITS Voie A

AVRIL 2013 CONCOURS INGÉNIEURS DES TRAVAUX STATISTIQUES. ITS Voie A AVRIL CONCOURS INGÉNIEURS DES TRAVAUX STATISTIQUES ITS Voie A CORRIGE DE LA ère COMPOSITION DE MATHEMATIQUES Eercice. Calculer, e, la dérivée de : Arc ta( ) Soit f ( ) Arc ta( ), alors f ( ) Arc ta( )

Plus en détail

Correction concours général maths 2015

Correction concours général maths 2015 Correctio cocours gééral maths 2015 Problème I Petits poids 1) a) 3 = 3, 3 + 5 = 8, 3 + 5 6 = 2, 3 + 5 6 8 = 6, 3 + 5 6 8 + 2 = 4 doc poids(3,5, 6, 8,2) = 8 b) poids(1,2,3,,2015, 2015, 2014,.., 1) = 1

Plus en détail

Questions de cours. tend vers 0, alors que la série harmonique 1. v n = ln n La série u n est convergente, et la série [ ( )]

Questions de cours. tend vers 0, alors que la série harmonique 1. v n = ln n La série u n est convergente, et la série [ ( )] PC - DS N 6 - U corrigé Questios de cours QC..a L assertio a. est fausse. Par exemple, la suite + ted vers 0, alors que la série harmoique + est divergete. QC..b L assertio b. est vraie. Supposos que la

Plus en détail

b) Par définition, ln 1 est le nombre dont l'exponentielle est 1. Or e = 1. Donc ln 1 = 0 2) Traduction de la définition.

b) Par définition, ln 1 est le nombre dont l'exponentielle est 1. Or e = 1. Donc ln 1 = 0 2) Traduction de la définition. Termiale S Chapitre 7 «Foctios logarithmes» Page sur 2 I) Défiitio et propriétés algébriques : ) La foctio : Défiitio : La foctio logarithme épérie, otée, est la foctio défiie sur ;+ qui, à tout réel >

Plus en détail

Université Denis Diderot (Paris VII) MP 3. Quelques exercices corrigés Suites et séries numériques

Université Denis Diderot (Paris VII) MP 3. Quelques exercices corrigés Suites et séries numériques Uiversité Deis Diderot (Paris VII) 006-007 MP 3 Quelques exercices corrigés Suites et séries umériques Das les pages qui suivet ous proposos la correctios de quelques exercices de la feuille sur les suites

Plus en détail

Feuille d Exercices : Suites, suite!

Feuille d Exercices : Suites, suite! ECS 1 Dupuy de Lôme Semaie du 6 décembre 004 Feuille d Exercices : Suites, suite! Exercice 1 : Pour tout etier, o défiit u = 1. Motrez que u est mootoe.. Motrez que v est géométrique. k= 3. E déduire l

Plus en détail

France métropolitaine Enseignement spécifique

France métropolitaine Enseignement spécifique Frace métropolitaie 202 Eseigemet spécifique EXERCICE 3 (6 poits (commu à tous les cadidats Il est possible de traiter la partie C sas avoir traité la partie B Partie A O désige par f la foctio défiie

Plus en détail

SUITES NUMERIQUES. Archimède a défini dans les années 220 avant J.-C. deux suites permettant d'obtenir de très bonnes valeurs approchées de π.

SUITES NUMERIQUES. Archimède a défini dans les années 220 avant J.-C. deux suites permettant d'obtenir de très bonnes valeurs approchées de π. Quelques repères historiques SUITES NUMERIQUES Archimède a défii das les aées 220 avat J.-C. deux suites permettat d'obteir de très boes valeurs approchées de π. Héro d'alexadrie au premier siècle après

Plus en détail

DS 2 Correction. (question de cours 2 points) Énoncer le théorème de Rolle. 1 n n n. lim u n = 1.

DS 2 Correction. (question de cours 2 points) Énoncer le théorème de Rolle. 1 n n n. lim u n = 1. icolas.laillet@imj-prg.fr DS 2 Aalyse Exercice 1 (questio de cours 2 poits Éocer le théorème de Rolle. Soiet a, b deux réels avec a < b, soit f ue foctio à valeurs réelles, cotiue sur [a, b] et dérivable

Plus en détail

Les suites récurrentes à convergence lente

Les suites récurrentes à convergence lente Les suites récurretes à covergece lete Daiel PERRIN 0. Itroductio. Je me propose d écrire ue sorte de bila sur la covergece des suites u + = f(u ), avec f de classe C au mois, vers u poit fixe α, das le

Plus en détail

LIMITES DE SUITES. n ) u n = 2 n pour n IN 5 ) u n = 2n + 1 n - 5 pour n ³ 6 6 ) u n = (-1)n pour n IN

LIMITES DE SUITES. n ) u n = 2 n pour n IN 5 ) u n = 2n + 1 n - 5 pour n ³ 6 6 ) u n = (-1)n pour n IN LIMITES DE SUITES I Limites fiies ou ifiies Exercice 1 Pour chacue des suites, e calculat différets termes, cojecturer la valeur limite de u quad deviet ifiimet grad (c'est-à-dire quad ted vers + ). 1

Plus en détail

Suites Numériques Site MathsTICE de Adama Traoré Lycée Technique Bamako

Suites Numériques Site MathsTICE de Adama Traoré Lycée Technique Bamako Suites Numériques Site MathsTICE de Adama Traoré Lycée Techique Bamako I Gééralité sur les suites: - Pricipe du raisoemet par récurrece : Soit la propositio P() dépedat de l etier () la propositio est

Plus en détail

Article PanaMaths Les intégrales et la formule de Wallis

Article PanaMaths Les intégrales et la formule de Wallis Article PaaMaths Les itégrales et la formule de allis Itroductio Joh allis (Ashford 66 Oxford 73) est u mathématicie aglais. So éducatio fut d abord religieuse (il sera ordoé prêtre e 64) mais à partir

Plus en détail

Synthèse de cours PanaMaths (TS) Suites numériques

Synthèse de cours PanaMaths (TS) Suites numériques Sythèse de cours PaaMaths (TS) Suites umériques Das ce chapitre, le terme «suite» désige ue suite umérique (c'est-à-dire, das le cadre du programme de Termiale S, ue suite de réels). Ue telle suite sera

Plus en détail

Exercices corrigés sur les séries de fonctions

Exercices corrigés sur les séries de fonctions Eercices corrigés sur les séries de foctios Eocés Eercice Motrer que la série ( ) est uiformémet covergete mais o ormalemet covergete sur [, ] Eercice 2 Étudier la covergece sur R + de la série de foctios

Plus en détail

C.B. Analyse : solutions

C.B. Analyse : solutions l( ) ) La foctio f C.B. Aalyse : solutios Partie I : Etude de la foctio L a) Par théorème géérau, f est de classe C sur ], [ {}. E, o motre simultaémet les deu propriétés e obteat u D.L. de f e. O sait

Plus en détail

Corrigé : EM Lyon 2005

Corrigé : EM Lyon 2005 Corrigé : EM Lyo 5 Optio écoomique Eercice :. Par défiitio de E, la famille (I,J,K) est ue famille géératrice de E. Cette famille est-elle libre? O cherche tous les réels a, b et c tels que : ai +bj +ck

Plus en détail

TD 2 : Suites numériques réelles

TD 2 : Suites numériques réelles Uiversité Paris-Est Mare-la-Vallée Licece L Maths/Ifo d semestre 0/0 Aalyse TD : Suites umériques réelles Exercice Cours) Motrer que si ue suite réelle u ) N coverge, alors toute sous-suite de u ) coverge

Plus en détail

Chapitre 11 : Suites réelles

Chapitre 11 : Suites réelles PCSI Préparatio des Khôlles 03-04 Chapitre : Suites réelles Exercice Soit(u ) N ue suite de réels strictemet positifs. O suppose qu il existek R + tel que u + u + k.. Motrer quek< u + 0.. Motrer quek>

Plus en détail

Exercices sur le raisonnement par récurrence - Corrigé

Exercices sur le raisonnement par récurrence - Corrigé Exercices sur le raisoemet par récurrece - Corrigé Arithmétique 1) Motrer, pour tout etier aturel, que 1 est divisible par 3. O cosidère la propriété : Quelque soit l etier, il existe u etier k tel que

Plus en détail

Suites de variables aléatoires.

Suites de variables aléatoires. Uiversité Pierre et Marie Curie 200-20 Probabilités et statistiques - LM345 Feuille 8 Suites de variables aléatoires.. Soit Ω, F, P u espace de probabilités. Détermier pour chacue des covergeces suivates

Plus en détail

Ch.1 ( ) ( ) + 9 ( ) ( ) = n ( n + 1 )( n + 2) ( )? ( ) ( ) ( )( n + 2) SUITES PARTIE 1 récurrence et suites bornées

Ch.1 ( ) ( ) + 9 ( ) ( ) = n ( n + 1 )( n + 2) ( )? ( ) ( ) ( )( n + 2) SUITES PARTIE 1 récurrence et suites bornées Termiale S Ch1 SUITES PARTIE 1 récurrece et suites borées Das tout le chapitre, les etiers cosidérés sot aturels, c'est-à-dire positifs ouls I Raisoemet par récurrece 1 / Itroductio Exercice 1 : soit u

Plus en détail

question-type-bac.fr

question-type-bac.fr BAC S 4 Mathématiques - Frace métropole Eseigemet spécifique et de spécialité Ce documet est bie plus qu u simple corrigé de sujet de baccalauréat. Grâce aux solutios claires et détaillées, aux démarches

Plus en détail

Problème 1 : construction de triangles. Problème 2 : autour du théorème des valeurs intermédiaires

Problème 1 : construction de triangles. Problème 2 : autour du théorème des valeurs intermédiaires Problème 1 : costructio de triagles Das u pla affie euclidie orieté, o cosidère deux poits disticts B et C et u poit M apparteat pas à la droite BC). Pour chacue des assertios suivates, détermier s il

Plus en détail

Exercice 6 [ ] [Correction] (a) Étudier u n où u n = 1 (b) Étudier v n où v n = 1

Exercice 6 [ ] [Correction] (a) Étudier u n où u n = 1 (b) Étudier v n où v n = 1 [http://mp.cpgedupuydelome.fr] édité le 8 décembre 6 Eocés Séries umériques Nature de séries umériques Exercice [ ] [Correctio] Détermier la ature des séries dot les termes gééraux sot les suivats : a

Plus en détail

Corrigé de l'épreuve de maths 2 - e3a - MP

Corrigé de l'épreuve de maths 2 - e3a - MP Corrigé de l'épreuve de maths 2 - e3a - MP - 207 Partie I L'applicatio ϕ est liéaire et P R [X], ϕ(p R [X] doc ϕ iduit sur R [X] u edomorphisme 2 ϕ( = et i, ϕ(x i = X i ix i O e déduit la matrice de ϕ

Plus en détail

TD1 - Suites numériques

TD1 - Suites numériques IUFM du Limousi 2008-09 PLC1 Mathématiques S. Viatier Exercices TD1 - Suites umériques Exercice 1 Soit α > 0, étudier la covergece des suites déies par u = ( ) 1 + si α, v = 3 + cos α ( ) 1 + α. 3 + Idicatio

Plus en détail

Polynômes de Bernstein

Polynômes de Bernstein Polyômes de Berstei Sergei Nataovic Berstei est é e 1880 et est mort e 1968. 1) Défiitio. Soit f ue foctio défiie et cotiue sur [0, 1] à valeurs das. Pour etier aturel o ul doé, le -ième polyôme de Berstei

Plus en détail

12 Cours - Suites.nb 1/11. Suites

12 Cours - Suites.nb 1/11. Suites 12 Cours - Suites.b 1/11 Suites I) Gééralités 1) Défiitio 2) Notatio 3) Commet peut être défiie ue suite 4) Suites et ordre 5) Propriété vraie à partir d u certai rag 6) Exercice 7) Suites arithmétiques,

Plus en détail

SÉRIES DE FONCTIONS SUITES ET PC*2. 13 octobre octobre octobre 2004

SÉRIES DE FONCTIONS SUITES ET PC*2. 13 octobre octobre octobre 2004 3 octobre 2004 Exemple 2. O se doe a I et q C(I, K). L équatio différetielle liéaire : y (x) q(x) y(x) = 0 avec les coditios y(a) = α, y (a) = β SUITES ET SÉRIES DE FONCTIONS PC*2 3 octobre 2004 Admet

Plus en détail

Autour de la loi de Poisson

Autour de la loi de Poisson Agrégatio Itere de Mathématiques Thierry Champio séace du 25 ovembre 2016 Autour de la loi de Poisso Notatios - Itroductio Das tout ce problème, (Ω, T, P) est u espace probabilisé. Toutes les variables

Plus en détail

1 Séries numériques. 1.1 Généralités. Dans toute cette section, si cela n est pas précisé, E désignera l espace R m, m 1, et la norme euclidienne.

1 Séries numériques. 1.1 Généralités. Dans toute cette section, si cela n est pas précisé, E désignera l espace R m, m 1, et la norme euclidienne. 1 Séries umériques Das toute cette sectio, si cela est pas précisé, E désigera l espace R m, m 1, et la orme euclidiee. 1.1 Gééralités Défiitio 1.1. Soit (x ) N ue suite de E et pour chaque N, o défiit

Plus en détail

Suites réelles. 1. Quelques rappels sur le corps des réels

Suites réelles. 1. Quelques rappels sur le corps des réels Agrégatio itere UFR MATHÉMATIQUES Suites réelles O ote N l esemble des etiers aturels et Z l esemble des etiers relatifs. Avat de parler de l esemble R des ombres réels, rappelos la défiitio de deux autres

Plus en détail

Compléments sur les suites Suites adjacentes

Compléments sur les suites Suites adjacentes DERNIÈRE IMPRESSION LE 7 février 07 à 6:3 Complémets sur les suites Suites adjacetes I Ecadremet d ue suite EXERCICE ) Motrer que pour tout k N et pour tout x [k ; k+], o a : k+ k+ k x dx k ) O pose u

Plus en détail

Z = 1 4i. z = On multiplie par le conjugué du dénominateur S = 5. = b + i. z 2 = z 1. 2 = 3 i 2. = 6 + 2i 4. { 3 + i. 2 ; 3 i }

Z = 1 4i. z = On multiplie par le conjugué du dénominateur S = 5. = b + i. z 2 = z 1. 2 = 3 i 2. = 6 + 2i 4. { 3 + i. 2 ; 3 i } Nom :........................ DS Préom :..................... Devoir o 7 Mars 6.../... Le soi et la rédactio serot pris e compte das la otatio. Faites des phrases claires et précises. Le barème est approximatif.

Plus en détail

Concours Commun des Mines 1. MATHÉMATIQUES Première épreuve. Options M et P. ( 1) k ζ(k)x k k

Concours Commun des Mines 1. MATHÉMATIQUES Première épreuve. Options M et P. ( 1) k ζ(k)x k k Cocours Commu des Mies MATHÉMATIQUES Première épreuve. Optios M et P Objet du problème : Etude de la foctio F défiie par : Coaissaces requises : Séries umériques. Itégrales gééralisées. Séries de foctios,

Plus en détail

Exercice 2 (Séries de fonctions - 7 points)

Exercice 2 (Séries de fonctions - 7 points) INSA Toulouse, STPI, IMACS 2 mercredi 18 décembre 212 Correctio exame d'aalyse I (coquilles probables) Exercice 1 (Séries etières - 5 poits) Calculer le rayo de covergece et le domaie de covergece simple

Plus en détail

Exercices sur les limites de suites 1.

Exercices sur les limites de suites 1. Exercices sur les ites de suites. Détermier les ites des suites ci-dessous lorsque ted vers +. Exercice.. u cos. v. w si + 900 Exercice 5. 0, 7. u 0, + 0, 4. v 70 + 000. w 44 4 + 5 Exercice.. u +. v. w

Plus en détail

CONCOURS BLANC 1 SCI 2

CONCOURS BLANC 1 SCI 2 CONCOURS BLANC SCI Durée : 4 heures Aucu istrumet de calcul est autorisé Aucu documet est autorisé Les étudiats sot ivités à soiger la présetatio de leur copie EXERCICE : CCP 05 CCP : cocours commus polytechiques

Plus en détail

4 ème aée Maths Limites Cotiuité et dérivabilité Octobre 9 A LAATAOUI Eercice : La figure ci cotre est la représetatio graphique d ue foctio f défiie et cotiue sur IR O ote que (ζf) admet au voisiage de

Plus en détail

Exercices corrigés sur les séries entières

Exercices corrigés sur les séries entières Exercices corrigés sur les séries etières Eocés Exercice Détermier le rayo de covergece des séries etières a z suivates : a l, a l, a, a e /3, a +!, a arcsi + π 4. Exercice Détermier le rayo de covergece

Plus en détail

Suites et séries réelles

Suites et séries réelles Suites et séries réelles Ue suite umérique est ue famille de ombres réels ou complexes idicées par les etiers aturels. O ote ue suite u idifféremmet (u ) N, ou (u ) 0, ou simplemet (u ). L esemble des

Plus en détail

Chapitre 5 : Suites classiques

Chapitre 5 : Suites classiques Chapitre 5 : Suites classiques Objectifs : Révisios sur les suites arithmétiques et géométriques. Révisio du théorème de croissace comparée. Savoir exprimer e foctio de les termes d ue suite récurrete

Plus en détail

P(n) : quelque soit n entier naturel : n 3 = ( n) 2. P(n 0 ) est vraie (initialisation).

P(n) : quelque soit n entier naturel : n 3 = ( n) 2. P(n 0 ) est vraie (initialisation). T ale S Chapitre. Résumé page 3.. Pricipe de récurrece. a. Exemple. 3 + 3 = + 8 = 9 = ( + ) 3 + 3 + 3 3 = + 8 + 7 = 36 = ( + + 3) O voudrait démotrer la propriété géérale : P() : quelque soit etier aturel

Plus en détail

Chap2 Les suites : Raisonnement par récurrence limites de suites

Chap2 Les suites : Raisonnement par récurrence limites de suites I Rappels de première Chap2 Les suites : Raisoemet par récurrece limites de suites II Suites majorées, miorées, borées Défiitios : O dit qu ue suite ( u ) est majorée lorsqu il existe u réel M tel que

Plus en détail

Exercices sur les suites de fonctions

Exercices sur les suites de fonctions ercices sur les suites de foctios océs ercice Étudier la covergece simple et uiforme des suites de foctios de R das R suivates : f ) = ), g ) = si, ϕ ) = e si, ψ ) = e cos. ercice 2 Étudier la covergece

Plus en détail

Limite d'une suite. soit n > 9

Limite d'une suite. soit n > 9 Limite d'ue suite I) Limite d'ue suite : a) ite ifiie : défiitio : Ue suite (u ) a pour ite + quad ted vers + si tout itervalle de la forme ]A; +[ (A état u réel) cotiet tous les termes u à partir d'u

Plus en détail

Partie I - Suites et intégrales

Partie I - Suites et intégrales SESSION 16 Cocours commu Cetrale MATHÉMATIQUES. FILIERE MP I.A - Étude d ue itégrale à paramètres Partie I - Suites et itégrales I.A - 1 Soit φ : [, + [ ], + [ R de sorte que pour tout réel x, fx = Φx,t.

Plus en détail

SESSION Concours ENSAM - ESTP - EUCLIDE - ARCHIMEDE. Epreuve de Mathématiques B PSI. Exercice I

SESSION Concours ENSAM - ESTP - EUCLIDE - ARCHIMEDE. Epreuve de Mathématiques B PSI. Exercice I SESSION 9 Cocours ENSAM - ESTP - EUCLIDE - ARCHIMEDE E3A Epreuve de Mathématiques B PSI Exercice I ) rga) 3 < 4 et doc A / GL 4 R) Par suite, est valeur propre de A ) Soit U Puisque la somme des coefficiets

Plus en détail

Partie A : z x. z =( z ) = 4 = - 4 donc z est aussi solution de (E) Partie C :

Partie A : z x. z =( z ) = 4 = - 4 donc z est aussi solution de (E) Partie C : Corrigé baccalauréat S Polyésie 200 (raiateabac.blogspot.com) EXERCICE (5 poits) Pré-requis : z a + bi et _ z a bi Partie A : a ) E posat z a + bi et z a + b i o obtiet : z x z (a + bi) ( a + b i) aa bb

Plus en détail

Exercices - Les nombres réels : corrigé. Valeur absolue - Partie entière

Exercices - Les nombres réels : corrigé. Valeur absolue - Partie entière Exercices - Les ombres réels : corrigé Exercice 1 - Ordre et R - L1/Math Sup - 1. Supposos que a 0 et posos ε = a /2 > 0. Alors o a a < ε = a /2, soit e simplifiat par a qui est positif, 1 < 1/2. Ceci

Plus en détail

Suites Numériques Site MathsTICE de Adama Traoré Lycée Technique Bamako

Suites Numériques Site MathsTICE de Adama Traoré Lycée Technique Bamako Suites Numériques Site MathsTICE de Adama Traoré Lycée Techique Bamako I Gééralité sur les suites: - Pricipe du raisoemet par récurrece : Soit la propriété P() dépedat de l idice Si les propositios ()

Plus en détail