Formules utiles. Cosinus de l angle d intersection ϑ [0, π] des deux courbes regulières f : I 1 R n, g : I 2 R n : , si f(t 1 ) = g(t 2 ).

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Formules utiles. Cosinus de l angle d intersection ϑ [0, π] des deux courbes regulières f : I 1 R n, g : I 2 R n : , si f(t 1 ) = g(t 2 )."

Transcription

1 Chapitre Courbes dans R n.1 Exercices Formules utiles. Cosinus de l angle d intersection ϑ [, π] des deux courbes regulières f : I 1 R n, g : I R n : cos ϑ = f (t 1 ), g (t ) f (t 1 ) g (t ), si f(t 1 ) = g(t ). Longueur d arc d une courbe f de classe C 1 ([a, b]). L = L a,b = b a f (t) dt 1. Longueur d arc. Calculer la longueur d arc des courbes suivantes f(t) = (cos 3 t, sin 3 t) [, π] (astroïde) f(t) = (t sin t, 1 cos t) [, π] (cycloïde). Spirale logarithmique. Soit c >. On considère la spirale logarithmique f : R R définie par f(t) = (e ct cos t, e ct sin t) (a) Dessiner la spirale logarithmique pour c = 1 π (b) Calculer lim f(t). t (c) Montrer que f définit une courbe regulière. t [, 6π]. (d) Soit [a, b] un intervalle. Calculer la longueur d arc L a,b. (e) Calculer lim b L,b. (f) Soit r > g : [, π] R le cercle défini par g(t) = (r cos t, r sin t) Montrer que il existe un seul point d intersection avec f calculer les cosinus de l angle d intersection. 7

2 CHAPITRE. COURBES DANS R N 8 (g) Soit h la ligne droite donnée par l ensemble {(x, y) : x = y}. Montrer qu il existe un nombre infini des points d intersection avec f donner la suite de ces points. Calculer le cosinus de l angle d intersection pour ces points. (h) Refaire le même calcul pour la ligne droite donnée par l ensemble {(x, y) : x = y}. 3. Deux Formules. (a) Soient f, g : R R n deux fonctions de classe C 1. Montrer que d d t f(t), g(t) = f (t), g(t) + f(t), g (t). (b) Soient a = (a 1, a, a 3 ), b = (b 1, b, b 3 ) R 3. Le produit vectoriel a b de a b est défini par a b = ( a b 3 a 3 b a 3 b 1 a 1 b 3 a 1 b a b 1 ). Calculer a b, a, a b, b a b, a b. Soient f, g : R R n deux fonctions de classe C 1. Montrer que. Corrigés 1. Longueur d arc. On a d ( ) f(t) g(t) = f (t) g(t) + f(t) g (t). d t f (t) = ( 3 cos t sin t, 3 sin t cos t) f (t) = 3 sin t cos t = 3 sin t cos t. Noter que la période de sin t cos t est π/. Donc L = L,π = 3 π = 3 4 = 1 π/ π/ = 6 sin t sin t cos t dt sin t cos t dt (1 sin t ) dt π/ = 6. f(t) = (t sin t, 1 cos t) [, π] (cycloïde)

3 CHAPITRE. COURBES DANS R N 9 On a f (t) = f (t) = (1 cos t, sin t) 1 cos t + cos t + sin t = cos(t) = 4 sin (t/) = sin(t/). Par le changement de variable s = t/ sin s pour s [, π] on obtient π π π L = L,π = sin t/ dt = 4 sin s ds = 4 cos s = 8.. Spirale logarithmique. Soit c >. On considère la spirale logarithmique f : R R définie par f(t) = (e ct cos t, e ct sin t) (a) Dessiner la spirale logarithmique pour c = 1 π (b) Calculer lim f(t). t lim f(t) = (, ) =. t (c) Montrer que f définit une courbe regulière. t [, 6π]. On a f (t) = ( ce ct cos t e ct sin t, ce ct sin t + e ct cos t) f (t) = e ct 1 + c. (d) Soit [a, b] un intervalle. Calculer la longueur d arc L a,b. L a,b = b 1 + c e ct dt = 1 + c 1 b c e ct = 1 + c e ca e cb a a c (e) Calculer lim b L,b.

4 CHAPITRE. COURBES DANS R N 1 lim L,b = lim 1 + c 1 e cb 1 + c =. b b c c (f) Soit r > g : [, π] R le cercle défini par g(t) = (r cos t, r sin t) Montrer que il existe un seul point d intersection avec f calculer les cosinus de l angle d intersection. Noter que g(t) = r f(t) = e ct. Par conséquent, il existe un t unique tel que f(t ) = r (choisir t = ln r c ). De plus, f(t ) = g(t ). Alors, en utilisant g (t) = ( r sin t, r cos t) cos ϑ = f (t ), g (t ) f (t ) g (t ) re ct = e ct 1 + c r 1 = 1 + c Noter que cos ϑ (i.e. ϑ) ne dépend pas du rayon r du cercle. L angle d intersection entre la spirale logarithmique est pour tout cercle le même! (g) Soit h la ligne droite donnée par l ensemble {(x, y) : x = y}. Montrer qu il existe un nombre infini des points d intersection avec f donner la suite de ces points. Calculer le cosinus de l angle d intersection pour ces points. Les points d intersection vérifient la rélation e ct cos t = e ct sin t qui adm les solutions {t k = π/4+πk : k Z}. Pour vecteur tangent de la ligne droite on peut choisir v = (1, 1). Donc cos ϑ k = f (t k ), v f (t k ) v = c e ct k sin t k e ct k 1 + c = ( 1) k+1 c 1 + c car sin t k = cos t k = ( 1) k /. (h) Refaire le même calcul pour la ligne droite donnée par l ensemble {(x, y) : x = y}.

5 CHAPITRE. COURBES DANS R N 11 L angle d intersection ne dépend pas de la ligne droite passante par l origin car toutes les droites sont orthogonales aux cercles de centre (, ). On a montré ci-dessus que l angle d intersection entre la spirale logarithmique est pour tout cercle le même. Donc le même résultat est vrai pour les droites Deux Formules. (a) Soient f, g : R R n deux fonctions de classe C 1. Montrer que d d t f(t), g(t) = f (t), g(t) + f(t), g (t). Par la définition du produit scalaire les propriétés de la dérivée (linéarité règle du produit) on a d d t f(t), g(t) = d d t n = k=1 n f k (t)g k (t) k=1 f k(t)g k (t) + f k (t)g k(t) = f (t), g(t) + f(t), g (t). (b) Soient a = (a 1, a, a 3 ), b = (b 1, b, b 3 ) R 3. Le produit vectoriel

6 CHAPITRE. COURBES DANS R N 1 a b de a b est défini par a b = ( a b 3 a 3 b a 3 b 1 a 1 b 3 a 1 b a b 1 ). Calculer a b, a, a b, b a b, a b. Soient f, g : R R n deux fonctions de classe C 1. Montrer que d ( ) f(t) g(t) = f (t) g(t) + f(t) g (t). d t a b, a =, a b, b = a b, a b = a, a b, b a, b

EO - EXERCICES SUR LE CALCUL DE LONGUEUR D ARCS DE COURBE

EO - EXERCICES SUR LE CALCUL DE LONGUEUR D ARCS DE COURBE EO - EXERCICES SUR LE CALCUL DE LONGUEUR D ARCS DE COURBE Exercice Longueur de l arc de spirale logarithmique défini par r = e t pour t a, puis limite quand a tend vers + Exercice Longueur de l astroïde

Plus en détail

Mathématiques - département MP, S2

Mathématiques - département MP, S2 Mathématiques - département MP, S 11 mars 006 Table des matières 1 Courbes paramétrées 1.1 Équation cartésienne, équation paramétrique, équation polaire 1.1.1 La droite.......................... 4 1.1.

Plus en détail

Le Test et son Corrigé

Le Test et son Corrigé Géométrie, Génie Mécanique 3 avril 9 http://wikiepflch/geomgm hugoparlier@epflch Le Test et son Corrigé Exercice 1 pts) Expliquer la notion de courbure orientée La notion de courbure orientée concerne

Plus en détail

Fonctions de plusieurs variables

Fonctions de plusieurs variables Université Pierre & Marie Curie Année 2016-2017 Module 2M256 Analyse vectorielle, intégrales multiples Fonctions de plusieurs variables 1 Calcul vectoriel Exercice 1. (Produit scalaire) Soient u, v, w

Plus en détail

Corrigé du Brevet de technicien supérieur session 2010 Géomètre topographe

Corrigé du Brevet de technicien supérieur session 2010 Géomètre topographe Corrigé du Brevet de technicien supérieur session 00 Géomètre topographe A. P. M. E. P. Exercice 8 points Partie A. Soit t un réel quelconque. On a : xt+=t+ sint+=t+ sint car sin est périodique. Donc xt+

Plus en détail

Math IV, analyse (L2) Fiche 9

Math IV, analyse (L2) Fiche 9 UNIVERSITÉ CLAUE BERNAR LYON 1 Cours: O. Kravchenko Institut Camille Jordan Travaux dirigés: T. Altınel, T. Eisenkölbl & S. Richard Math IV, analyse (L Fiche 9 5 mai 8 Exercice 1 (Hélice. L hélice circulaire

Plus en détail

Trigonométrie. 1 Une nouvelle unité de mesure des angles. 2 Rappel - Trigonométrie dans le triangle rectangle. 2.1 Rappels sur le triangle rectangle

Trigonométrie. 1 Une nouvelle unité de mesure des angles. 2 Rappel - Trigonométrie dans le triangle rectangle. 2.1 Rappels sur le triangle rectangle Trigonométrie 1 Une nouvelle unité de mesure des angles On considère un cercle de centre O et de rayon r. B θ r A Exercice 1. 1. Quelle est la circonférence de ce cercle? L aire du disque associé? O. Exprimer,

Plus en détail

I- LE RADIAN. Activité d introduction : enroulement de la droite numérique sur le cercle trigo.

I- LE RADIAN. Activité d introduction : enroulement de la droite numérique sur le cercle trigo. Activité d introduction : enroulement de la droite numérique sur le cercle trigo. I- LE RADIAN Le radian est, comme le degré ou le grade, une unité de mesure d angles. Sur un cercle de centre O, l angle

Plus en détail

UGA 2016/17 Feuille d exercices 1 : courbes mat307

UGA 2016/17 Feuille d exercices 1 : courbes mat307 UGA 2016/17 Feuille d exercices 1 : courbes mat307 Exercice 0, rappels de géométrie analytique, complexes et trigonométrie 1. Déterminer la pente, le vecteur directeur et l équation cartésienne de la tangente

Plus en détail

2013/2014 MP, Lycée Berthollet. Résumé de Cours 18 Courbes et Coniques

2013/2014 MP, Lycée Berthollet. Résumé de Cours 18 Courbes et Coniques Résumé de Cours 18 Courbes et Coniques Ici, P est le plan euclidien rapporté à un repère orthonormé R := (O, i, j). I Etude affine Une courbe paramétrée est une application γ = M d un intervalle I dans

Plus en détail

Dossier n 51 : Exemples d étude de situations issues de la géométrie, de la mécanique ou de la physique, conduisant à des courbes paramétrées

Dossier n 51 : Exemples d étude de situations issues de la géométrie, de la mécanique ou de la physique, conduisant à des courbes paramétrées Dossier n 51 : Exemples d étude de situations issues de la géométrie, de la mécanique ou de la physique, conduisant à des courbes paramétrées Rédigé par Cécile COURTOIS, le cecile-courtois@wanadoo.fr I

Plus en détail

CALCUL INTEGRAL. A) Calcul direct à partir des formules fondamentales re C, D math II Calcul intégral

CALCUL INTEGRAL. A) Calcul direct à partir des formules fondamentales re C, D math II Calcul intégral CALCUL INTEGRAL Eercice Calculez les primitives suivantes : A Calcul direct à partir des formules fondamentales. (5 3d 3 4 3 5 5 ( 7, 4d 3 9 6 5 8 (7 4 6 3d ( t dt (sur t ( 5 3 8 d (sur 5 4 3 * R * R 6

Plus en détail

Étude de fonction et de courbes dans le plan

Étude de fonction et de courbes dans le plan Chapitre Étude de fonction et de courbes dans le plan Dans ce chapitre on étudie le problème suivant : étant donne une fonction donné par f) y, comment tracer approimativement la courbe représentative

Plus en détail

1. Produit scalaire dans le plan

1. Produit scalaire dans le plan Produit scalaire 1. Produit scalaire dans le plan 1.1 Définition Soit u et v deux vecteurs non nuls du plan. Ce n est pas une multiplication Le produit scalaire de u par v noté u. v est le nombre défini

Plus en détail

Intégrales curvilignes

Intégrales curvilignes IUT Orsay Mesures Physiques Intégrales curvilignes Cours du ème semestre A L intégrale curviligne de première espèce A-I Longueur d un élément différentiel de courbe 1 Le cas des équations paramétriques

Plus en détail

Math IV, analyse (L2) Fiche 10

Math IV, analyse (L2) Fiche 10 UNIVERSITÉ CLAUDE BERNARD LYON Cours: O. Kravchenko Institut Camille Jordan Travaux dirigés: T. Altınel, T. Eisenkölbl & S. Richard Math IV, analyse (L2) Fiche 9 mai 28 Exercice. Un astroïde est la courbe

Plus en détail

Exercices sur le produit scalaire

Exercices sur le produit scalaire Exercices sur le produit scalaire Exercice 1 La figure ci-dessous représente un rectangle ABCD tel que : AB = 5 et BC = ; un triangle ABF équilatéral et un triangle BCE rectangle et isocèle en C. Le point

Plus en détail

ANALYSE II, , 2e bachelier ingénieur civil Examen du 07 janvier 2013 Solutions Version : 11 février 2013 (V1 : 05/02/13)

ANALYSE II, , 2e bachelier ingénieur civil Examen du 07 janvier 2013 Solutions Version : 11 février 2013 (V1 : 05/02/13) ANALYSE II, -3, e bachelier ingénieur civil Examen du 7 janvier 3 Solutions Version : février 3 V : 5//3) THEORIE 35 points) Théorie.) Enoncer et démontrer le théorème de Liouville relatif à la caractérisation

Plus en détail

Géométrie du plan. 1 Questions de cours. 2 Applications du cours. 3 Exercices

Géométrie du plan. 1 Questions de cours. 2 Applications du cours. 3 Exercices Géométrie du plan 1 Questions de cours 1 Énoncer et démontrer l inégalité de Schwarz Énoncer et démontrer l inégalité triangulaire pour la norme euclidienne 3 Soit u un vecteur unitaire du plan Combien

Plus en détail

Bien entendu, la différentielle d une courbe en un point t (lorsqu elle existe) est l application R R n définie par la matrice colonne f 1(t) (t) =

Bien entendu, la différentielle d une courbe en un point t (lorsqu elle existe) est l application R R n définie par la matrice colonne f 1(t) (t) = COURBES PARAMÉTRÉES Résumé de cours de calcul différentiel 2 L3 de B. Calmès, Université d Artois (version du 6 mars 2016) Dans ce qui suit, un espace vectoriel de dimension finie est toujours muni de

Plus en détail

UNIVERSITÉ PARIS OUEST NANTERRE LA DÉFENSE U.F.R. SEGMI Année universitaire Mathématiques: Mise à niveau. Séance 10: Fonctions usuelles

UNIVERSITÉ PARIS OUEST NANTERRE LA DÉFENSE U.F.R. SEGMI Année universitaire Mathématiques: Mise à niveau. Séance 10: Fonctions usuelles UNIVERSITÉ PARIS OUEST NANTERRE LA DÉFENSE U.F.R. SEGMI Année universitaire 04 05 L Économie Cours de M. Desgraupes Mathématiques: Mise à niveau Séance 0: Fonctions usuelles Table des matières Fonction

Plus en détail

Exo7. Courbes planes. 1 Courbes d équation y = f (x) 2 Courbes paramétrées en coordonnées cartésiennes. Fiche de Léa Blanc-Centi.

Exo7. Courbes planes. 1 Courbes d équation y = f (x) 2 Courbes paramétrées en coordonnées cartésiennes. Fiche de Léa Blanc-Centi. Eo7 Courbes planes Fiche de Léa Blanc-Centi. Courbes d équation = f () Eercice Représenter les courbes d équation cartésienne = f (), donner l équation de leur tangente au point d abscisse = et la position

Plus en détail

Les angles orientés ( En première S )

Les angles orientés ( En première S ) Les angles orientés ( En première S ) Dernière mise à jour : Mercredi 4 Septembre 008 Vincent OBATON, Enseignant au lycée Stendhal de Grenoble Lycée Stendhal, Grenoble ( Document de : Vincent Obaton )

Plus en détail

On peut aussi trouver une équation cartésienne de la médiatrice de [AB] en écrivant que M (d) si AM = BM ou bien AM 2 = BM 2

On peut aussi trouver une équation cartésienne de la médiatrice de [AB] en écrivant que M (d) si AM = BM ou bien AM 2 = BM 2 1S Corrigé DS n o 9 Durée :h Exercice 1 ( 5,5 points ) Dans un repère orthonormé du plan, on considère les points A(3; 1), B(; ) et C( ; 1). 1. Déterminer une équation de la droite (d 1 ), médiatrice de

Plus en détail

Formule de Green Riemann

Formule de Green Riemann [http://mp.cpgedupuydelome.fr] édité le 1 juillet 14 Enoncés 1 Formule de Green Riemann Exercice 1 [ 69 ] [correction] Soit Γ la courbe orientée dans le sens trigonométrique, constituée des deux portions

Plus en détail

CHAPITRE 2. Courbes paramétrées

CHAPITRE 2. Courbes paramétrées CHAPITRE Courbes paramétrées Dans tout ce chapitre nous choisissons un repère du plan affine ce qui permet d identifier les points du plan avec les éléments de R (par leurs coordonnées) et les vecteurs

Plus en détail

Chapitre : Trigonométrie

Chapitre : Trigonométrie Chapitre : Trigonométrie Dans tout le chapitre, le plan est muni d un repère orthonormé ;, I. Cercle trigonométrique 1) Repérage sur le cercle trigonométrique Définition : Le cercle trigonométrique C est

Plus en détail

Courbes planes parametrées et polaires

Courbes planes parametrées et polaires CPGE My Youssef, Rabat Õæ k QË@ á Ô g QË@ é

Plus en détail

Fonctions de deux variables réelles

Fonctions de deux variables réelles [http://mp.cpgedupuydelome.fr] édité le 0 juill 04 Enoncés Fonctions de deu variables réelles Généralités sur les fonctions de deu variables Eercice [ 0733 ] [correction] Déterminer tous les couples (α,

Plus en détail

Courbes en coordonnées polaires

Courbes en coordonnées polaires Chapitre II Courbes en coordonnées polaires A Étude et tracé de courbes définies en coordonnées polaires On suppose le plan muni d un repère orthonormal O, ı, j ). A.1 Représentation d une courbe en coordonnées

Plus en détail

Correction Baccalauréat S Amérique du Nord Mai 2008 http ://www.maths-express.com

Correction Baccalauréat S Amérique du Nord Mai 2008 http ://www.maths-express.com Correction Baccalauréat S Amérique du Nord Mai 28 http ://www.maths-express.com Exercice. Voir la figure finale à la fin de l exercice! 2. (a) Le cercle Γ est l ensemble des points M du plan tels que AM

Plus en détail

En enroulant l'axe des réels chaque réel «b» marque sur le cercle un point unique B. B est le point associé au réel «b» et on le note alors M(b).

En enroulant l'axe des réels chaque réel «b» marque sur le cercle un point unique B. B est le point associé au réel «b» et on le note alors M(b). Angles et Trigonométrie I º] Rappels : repérage d'un point sur le cercle trigonométrique Le sens direct est aussi appelé sens trigonométrique ou sens positif Un cercle trigonométrique est un cercle de

Plus en détail

Fonctions trigonométriques

Fonctions trigonométriques Fonctions trigonométriques ère STID I - Cercle trigonométrique - Mesure des angles orientés Définition Dans le plan muni d un repère ; i, j, le cercle trigonométrique est le cercle de centre et de rayon

Plus en détail

Trigonométrie. I] Cercle trigonométrique et radians

Trigonométrie. I] Cercle trigonométrique et radians I] Cercle trigonométrique et radians Dans le plan muni d un repère orthonormé, on appelle cercle trigonométrique le cercle de centre O et de rayon 1 sur lequel on définit un sens de parcours appelé sens

Plus en détail

Le sujet comporte 8 pages numérotées de 2 à 9. Il faut choisir et réaliser seulement trois des quatre exercices proposés EXERCICE I

Le sujet comporte 8 pages numérotées de 2 à 9. Il faut choisir et réaliser seulement trois des quatre exercices proposés EXERCICE I Le sujet comporte 8 pages numérotées de à 9 Il faut choisir et réaliser seulement trois des quatre exercices proposés EXERCICE I Donner les réponses à cet exercice dans le cadre prévu à la page 3 Une enquête

Plus en détail

Fonctions trigonométriques

Fonctions trigonométriques Fonctions trigonométriques Jérôme Germoni Novembre 2 Première étude : par équation différentielle.. Définition On s inspire de la définition de l exponentielle vue en terminale. Théorème (admis) Il existe

Plus en détail

Corrigé du baccalauréat série S Amérique du Nord juin 2003

Corrigé du baccalauréat série S Amérique du Nord juin 2003 Corrigé du baccalauréat série S Amérique du Nord juin EXERCICE 1 Commun à tous les candidats points 1. Réponse b.. En égalant les deu intégrales on obtient : e λt 1= e λt 1=e λt e λt = 1 et par croissance

Plus en détail

Géométrie dans l espace

Géométrie dans l espace Géométrie dans l espace I Modes de repérage dans l espace 1 I.A Coordonnées cartésiennes...................... 1 I.B Coordonnées cylindriques...................... 2 I.C Coordonnées sphériques.......................

Plus en détail

1 Le radian : unité de mesure d angle

1 Le radian : unité de mesure d angle Le radian : unité de mesure d angle Définition. Soit C un cercle de centre et de rayon. Un radian est la mesure d un angle au centre qui intercepte un arc de longueur du cercle. La mesure en radians d

Plus en détail

UNIVERSITÉ PARIS OUEST NANTERRE LA DÉFENSE U.F.R. SEGMI Année universitaire Corrigé des exercices de mise à niveau en Mathématiques

UNIVERSITÉ PARIS OUEST NANTERRE LA DÉFENSE U.F.R. SEGMI Année universitaire Corrigé des exercices de mise à niveau en Mathématiques UNIVERSITÉ PARIS OUEST NANTERRE LA DÉFENSE U.F.R. SEGMI Année universitaire 04 05 L Économie Cours de M. Desgraupes Corrigé des exercices de mise à niveau en Mathématiques Séance 0 : Fonctions usuelles

Plus en détail

Correction du baccalauréat S Polynésie 10 juin 2010

Correction du baccalauréat S Polynésie 10 juin 2010 Correction du baccalauréat S Polynésie 0 juin 00 Exercice Commun à tous les candidats. Le plan complexe est rapporté à un repère orthonormal direct O, u, ) v. 5 points Prérequis Partie A - Restitution

Plus en détail

Produit scalaire dans le plan

Produit scalaire dans le plan ème année Maths Produit scalaire dans le plan Octobre 009 A LAATAOUI Exercice n 1 La figure ci-dessous représente un rectangle ABCD tel que : AB = 5 et BC = ; un triangle ABF équilatéral et un triangle

Plus en détail

Sujet A. Exercice 1. Dans cette partie, les réponses seront justifiées sur la copie. 1S Devoir surveillé n 7 : lundi 4 avril 2011

Sujet A. Exercice 1. Dans cette partie, les réponses seront justifiées sur la copie. 1S Devoir surveillé n 7 : lundi 4 avril 2011 S Devoir surveillé n 7 : lundi avril 0 Sujet A Eercice Pour les parties A et B, indiquer pour chaque affirmation si elle est e ou fausse. Chaque réponse eacte rapporte un demi-point et chaque réponse fausse

Plus en détail

Programme de colle - Semaine 4. Fonctions puissances, logarithmes, exponentielles ; cosinus et sinus hyperbolique.

Programme de colle - Semaine 4. Fonctions puissances, logarithmes, exponentielles ; cosinus et sinus hyperbolique. Programme de colle - Semaine 4 Fonctions circulaires. Bijections, fonctions circulaires réciproques. Fonctions puissances, logarithmes, exponentielles ; cosinus et sinus hyperbolique. Démonstrations du

Plus en détail

On appelle H la projection orthogonale de A sur la droite (BC).

On appelle H la projection orthogonale de A sur la droite (BC). Première S 2010-2011 Exercices sur le produit scalaire, équations de droite et de cercles Exercice 1 : Distance d'un point à une droite. On se donne une droite ( ) dont l'équation cartésienne est de la

Plus en détail

TRIGONOMÉTRIE ET ANGLES ORIENTÉS

TRIGONOMÉTRIE ET ANGLES ORIENTÉS TRIGONOMÉTRIE ET ANGLES ORIENTÉS Première S - Chapitre 5 Table des matières I Le cercle trigonométrique et le radian 2 I 1 Le cercle trigonométrique..................................... 2 I 2 Le radian..............................................

Plus en détail

Révision d algèbre et d analyse

Révision d algèbre et d analyse Révision d algèbre et d analyse Chapitre2 : Rappels de géométrie, courbes et surfaces Équipe de Mathématiques Appliquées UTC Mars 2011 suivant Chapitre II Rappels de géométrie, courbes et surfaces II.1

Plus en détail

Révision d algèbre et d analyse

Révision d algèbre et d analyse Révision d algèbre et d analyse Chapitre8 : Intégrale curviligne-théorème de Green-Riemann Équipe de Mathématiques Appliquées UTC Février 2006 suivant Chapitre VIII Intégrale curviligne VIII.1 Abscisse

Plus en détail

1 Vecteurs de base en coordonnées curvilignes

1 Vecteurs de base en coordonnées curvilignes 1 Vecteurs de base en coordonnées curvilignes 1.1 Coordonnées cartésiennes Considérons l espace muni des coordonnées cartésiennes et soit P = (x,y,z) R 3. Si on fixe les variables y et z et qu on pose

Plus en détail

Produit scalaire. Expressions et propriétés du produit scalaire

Produit scalaire. Expressions et propriétés du produit scalaire Produit scalaire 1ère STI2D I - Expressions et propriétés du produit scalaire 1 Définitions Le produit scalaire de deux vecteurs non nuls u et v, noté u v, est le nombre, u v = u. u.cos ( u, v. u v θ u

Plus en détail

CORRECTION DM8. = - sin x( 1 + cos x) car la fonction sinus est impaire et la fonction cosinus est paire. = - f(x)

CORRECTION DM8. = - sin x( 1 + cos x) car la fonction sinus est impaire et la fonction cosinus est paire. = - f(x) ORRETION DM8 EXERIE : Etude d une fonction trigonométrique f est la fonction définie sur R par : f(x) sin x ( + cosx) ) a) i) Pour tout x R, (x + ) R ii) Pour tout x R, f(x + ) sin(x + )( +cos(x + ) sin

Plus en détail

8 Fonctions trigonométriques

8 Fonctions trigonométriques 8 Fonctions trigonométriques Rappel Voici le grape de la fonction sinus : 6 3 On rappelle quelques propriétés de la fonction sinus démontrées aux exercices.6 et.9 : ) elle est définie sur l ensemble des

Plus en détail

Nombres Complexes Exercice 1. [5 pts] Équations

Nombres Complexes Exercice 1. [5 pts] Équations Nombres Complexes Exercice 1. [5 pts] Équations On se propose d étudier les solutions de l équation (E) z + 1 = 0 1. Vérifier que pour tout nombre complexe z, on a : z + 1 = (z + 1)(z z + 1). En déduire

Plus en détail

1.6) ni l un ni l autre ne changent la direction du vecteur, par contre, la multiplication par un nombre négatif change le sens du vecteur.

1.6) ni l un ni l autre ne changent la direction du vecteur, par contre, la multiplication par un nombre négatif change le sens du vecteur. Vecteurs Solutions des exercices 1. Composantes 1.1) Le vecteur déplacement résultant est donné par D = D ouest + D sud-ouest. Le déplacement à l ouest est 225km + 78cos45 km = 280.2km et le déplacement

Plus en détail

Application du produit scalaire: Géométrie analytique

Application du produit scalaire: Géométrie analytique Application du produit scalaire: Géométrie analytique I) Vecteur normal et équation de droite 1) Vecteur normal à une droite Dire que est un vecteur non nul normal à une droite (d) de vecteur directeur

Plus en détail

Baccalauréat Polynésie 11 juin 2015 Sciences et technologies du design et des arts appliqués

Baccalauréat Polynésie 11 juin 2015 Sciences et technologies du design et des arts appliqués Baccalauréat Polynésie 11 juin 2015 Sciences et technologies du design et des arts appliqués EXERCICE 1 5 points Questionnaire à choix multiples : pour chaque question une seule des propositions est exacte,

Plus en détail

PRODUIT SCALAIRE. I Produit scalaire : définition. Définition première expression du produit scalaire ( voir animation ) Remarques ( voir animation )

PRODUIT SCALAIRE. I Produit scalaire : définition. Définition première expression du produit scalaire ( voir animation ) Remarques ( voir animation ) PRODUIT SCLIRE I Produit scalaire : définition Définition première expression du produit scalaire ( voir animation ) Soient et v deux vecteurs du plan. On considère trois points O, et tels que : O = u

Plus en détail

Terminale S Problème de synthèse n 5 Fonctions trigonométriques - Suites géométriques - Suites adjacentes - Intégrales

Terminale S Problème de synthèse n 5 Fonctions trigonométriques - Suites géométriques - Suites adjacentes - Intégrales Partie A a est un nombre réel appartenant à l intervalle [0 ;π]. On considère la suite géométrique (u n ) de premier terme u 0 cos a et de raison sin a. 1) Exprimer u n en fonction de n et déterminer la

Plus en détail

Les séries entières. () Les séries entières 1 / 42

Les séries entières. () Les séries entières 1 / 42 Les séries entières () Les séries entières 1 / 42 1 Séries entières d une variable complexe 2 Série entière d une variable réelle 3 Développements en séries entières 4 Exponentielle complexe et fonctions

Plus en détail

III. Géométrie du plan

III. Géométrie du plan 1 Repérage dans le plan 11 Repérage cartésien Définition 1 On appelle base du plan un couple ( i, avec i et deux vecteurs non colinéaires du plan Tout vecteur u du plan s exprime de manière unique comme

Plus en détail

Capacité travaillée: Utiliser le cercle trigonométrique pour déterminer le cosinus et sinus d angles associées

Capacité travaillée: Utiliser le cercle trigonométrique pour déterminer le cosinus et sinus d angles associées Capacité travaillée: Utiliser le cercle trigonométrique pour déterminer le cosinus et sinus d angles associées Contenu: Radian; Cercle trigonométrique; Mesure d un angle orienté; Mesure principale. Mevel

Plus en détail

BACCALAURÉAT GÉNÉRAL MATHÉMATIQUES

BACCALAURÉAT GÉNÉRAL MATHÉMATIQUES BACCALAURÉAT GÉNÉRAL Session 2007 MATHÉMATIQUES - Série S - ENSEIGNEMENT OBLIGATOIRE CORRECTION par Martial LENZEN (martial.lenzen@capes-de-maths.fr) L énoncé est en police grasse, les réponses en police

Plus en détail

NOM : PRENOM : Centre d écrit : N Inscription : Série S. Mercredi 14 mai Epreuves communes ENIT et Geipi Polytech

NOM : PRENOM : Centre d écrit : N Inscription : Série S. Mercredi 14 mai Epreuves communes ENIT et Geipi Polytech Ne rien inscrire dans ce cadre NOM : PRENOM : Centre d écrit : N Inscription : SUJET DE MATHÉMATIQUES Ne rien inscrire ci-dessous Série S Mercredi 14 mai 2014 Epreuves communes ENIT et Geipi Polytech Nous

Plus en détail

( ) Trigonométrie - équations. Lycée Jules Siegfried - Le Havre - Marc Bizet - Classe de Première STI2D. 1. unité d angle : le radian

( ) Trigonométrie - équations. Lycée Jules Siegfried - Le Havre - Marc Bizet - Classe de Première STI2D. 1. unité d angle : le radian Lycée Jules Siegfried - Le Havre - Marc Bizet - Classe de Première STID Trigonométrie - équations 1. unité d angle : le radian Dans un cercle de rayon r, on définit un angle AOB de 1 radian si la longueur

Plus en détail

Trigonométrie (Méthodes et objectifs)

Trigonométrie (Méthodes et objectifs) Trigonométrie (Méthodes et objectifs) G. Petitjean Lycée de Toucy 28 janvier 2009 G. Petitjean (Lycée de Toucy) Trigonométrie (Méthodes et objectifs) 28 janvier 2009 1 / 45 1 Repérer un point ou un ensemble

Plus en détail

Chapitre 8 : Nombres complexes QCM Pour bien commencer (cf. p. 280 du manuel)

Chapitre 8 : Nombres complexes QCM Pour bien commencer (cf. p. 280 du manuel) Chapitre 8 : Nombres complexes QCM Pour bien commencer (cf. p. 80 du manuel) Pour chaque question, il y a une ou plusieurs bonnes réponses. Exercice n 1 La mesure principale de l angle A 1 π. B 1π est

Plus en détail

Produit scalaire. A) Définitions et propriétés.

Produit scalaire. A) Définitions et propriétés. Produit scalaire A) Définitions et propriétés Soient u et v sont deux vecteurs non nuls Les quatre définitions suivantes sont équivalentes, on pourrait donc choisir comme point de départ chacune d elle

Plus en détail

Le produit scalaire et ses applications

Le produit scalaire et ses applications 1 Le produit scalaire et ses applications Table des matières 1 Définitions et propriétés 1.1 Définition initiale............................. 1. Définition dans un repère orthonormal................. 1.3

Plus en détail

DEVOIR SURVEILLÉ DE MATHÉMATIQUES CONTRÔLE COMMUN N 1. Exercice n 1 (sur 9,5 points)

DEVOIR SURVEILLÉ DE MATHÉMATIQUES CONTRÔLE COMMUN N 1. Exercice n 1 (sur 9,5 points) 5 ème /6 ème année décembre 2015 durée : 4 x 60 mn DEVOIR SURVEILLÉ DE MATHÉMATIQUES CONTRÔLE COMMUN N 1 Exercice n 1 (sur 9,5 points) Partie A. On considère la fonction définie sur l intervalle par (

Plus en détail

FONCTIONS NUMÉRIQUES : DÉRIVATION

FONCTIONS NUMÉRIQUES : DÉRIVATION FONCTIONS NUMÉRIQUES : DÉRIVATION Ph DEPRESLE 30 septembre 05 Table des matières Dérivée en un point Continuité et dérivabilité 3 Fonction dérivée 4 Sens de variation d une fonction dérivable 3 5 Dérivées

Plus en détail

Fonctions d'une variable réelle (M-1.1)

Fonctions d'une variable réelle (M-1.1) Fonctions d'une variable réelle (M-.) I. Fonctions définies par morceaux Définition des fonctions en escalier : une fonction en escalier est une fonction constante par intervalles. Sa représentation graphique

Plus en détail

Examen de Mécanique Analytique. Professeur: P. De Los Rios. Epreuve du 20 février Durée: 4 heures - Sans document

Examen de Mécanique Analytique. Professeur: P. De Los Rios. Epreuve du 20 février Durée: 4 heures - Sans document Examen de Mécanique Analytique Professeur: P. De Los Rios Epreuve du 2 février 27 - Durée: 4 heures - Sans document Exercice 1 Plan incliné (6 points On considère une masse m glissant sans frottement sur

Plus en détail

BACCALAURÉAT TECHNOLOGIQUE Session 2015

BACCALAURÉAT TECHNOLOGIQUE Session 2015 BACCALAURÉAT TECHNOLOGIQUE Session 2015 Épreuve : MATHÉMATIQUES Série : SCIENCES ET TECHNOLOGIES DU DESIGN ET DES ARTS APPLIQUÉS Le sujet comporte six pages numérotées de 1 à 6. Deux annexes situées en

Plus en détail

Exercices du chapitre 4 avec corrigé succinct

Exercices du chapitre 4 avec corrigé succinct Exercices du chapitre 4 avec corrigé succinct Exercice IV.1 Ch4-Exercice1 Montrer que l intersection d un nombre fini de voisinages de a est un voisinage de a. Soient (V k=1,...,p ) p voisinages de a.

Plus en détail

Corrigé du baccalauréat S Amérique du Sud novembre 2008

Corrigé du baccalauréat S Amérique du Sud novembre 2008 Durée : heures Corrigé du baccalauréat S Amérique du Sud novembre 008 EXERCICE 1 1. AB = b a = +i = +1=5 ; AC = c a = 1+i = 1+=5. AB = AC AB=AC ABC est isocèle en A. 5 points. Z I = 1 + i 7. z z ( I z

Plus en détail

Corrections. Fig. 1: La cycloïde ; l intervalle t ( π, π] se trouve au centre (gras, bleu)

Corrections. Fig. 1: La cycloïde ; l intervalle t ( π, π] se trouve au centre (gras, bleu) Corrections 1 Paramétrage Cartésien Correction de l exercice 1.1 (La cycloïde) Soit (Γ) la courbe définie par la représentation x(t) = 3(t sin(t)), y(t) = 3(1 cos(t)). 1. x(t) et y(t) sont bien définies

Plus en détail

cosinus - mathématiques. 1 PRÉSENTATION

cosinus - mathématiques. 1 PRÉSENTATION cosinus - mathématiques. 1 PRÉSENTATION cosinus, fonction trigonométrique, complémentaire de la fonction sinus, introduites toutes deux dans la définition de la mesure d un angle en géométrie euclidienne.

Plus en détail

TRIGONOMÉTRIE REPÉRAGE POLAIRE

TRIGONOMÉTRIE REPÉRAGE POLAIRE TRIGNMÉTRIE REPÉRAGE PLAIRE I Angles orientés Remarque n considère le cercle de centre et de rayon, que l'on appelle cercle trigonométrique. Le périmètre de ce cercle est. n considère la droite graduée

Plus en détail

Baccalauréat S Métropole La Réunion 21 juin 2012

Baccalauréat S Métropole La Réunion 21 juin 2012 Baccalauréat S Métropole La Réunion juin 0 EXERCICE Commun à tous les candidats 4 points. Sur l intervalle [ 3, ], tous les points de la courbe ont une ordonnée négative. VRAIE. Sur l intervalle ] ; [,

Plus en détail

I- Cercle trigonométrique, Radian

I- Cercle trigonométrique, Radian er S TRIGONOMETRIE Objectifs : Cercle trigonométrique. Radian. Mesure d un angle orienté, mesure principale. Déterminer les cosinus et les sinus d angles associés. Résoudre dans les équations d inconnue

Plus en détail

LES ANGLES ORIENTES. Lycée Stendhal Première S M Obaton

LES ANGLES ORIENTES. Lycée Stendhal Première S M Obaton L équipe des professeurs de mathématiques Lycée Stendhal J'aimais et j'aime encore les mathématiques pour elles-mêmes comme n'admettant pas l'hypocrisie et le vague, mes deux bêtes d'aversion. Stendhal

Plus en détail

NOM : TRIGONOMETRIE 1ère S

NOM : TRIGONOMETRIE 1ère S Exercice 1 Résoudre sur R les équations suivantes : 1) sin 2 x = 3 4 ; 2) cos 2 x = 1 2 ; 3) sin(2x) = cos(x). D. LE FUR 1/ 50 Exercice 2 1) Simplifier au maximum les expressions suivantes : ( π ) a) A(x)

Plus en détail

Exercices sur le produit scalaire

Exercices sur le produit scalaire Exercices sur le produit scalaire Exercice 1 : Sur les expressions du produit scalaire Pour les sept figures suivantes, calculer AB AC. Exercice : Sur les expressions du produit scalaire Sur la figure

Plus en détail

BAC BLANC 2013 MATHÉMATIQUES STI2D. Toutes options

BAC BLANC 2013 MATHÉMATIQUES STI2D. Toutes options BACCALAURÉAT TECHNOLOGIQUE CORRIGÉ BAC BLANC 03 MATHÉMATIQUES STID Toutes options Durée de l épreuve : heures Coefficient : Ce sujet comporte pages numérotées (celle-ci comprise) L usage de la calculatrice

Plus en détail

Applications du produit scalaire

Applications du produit scalaire Applications du produit scalaire Christophe ROSSIGNOL Année scolaire 014/015 Table des matières 1 Relations métriques dans un triangle quelconque 1.1 Quelques notations............................................

Plus en détail

CORRIGE de l épreuve MATH IIB BANQUE PT =

CORRIGE de l épreuve MATH IIB BANQUE PT = LSportisse Lycée Mimard St-Etienne CORRIGE de l épreuve MATH II ANQUE PT 998 lsportis@netsystemenet I ) Le plan P est orthogonal à la droite D = P dirigée par le vecteur unitaire K = Soit p D le projecteur

Plus en détail

Produit scalaire. Christophe ROSSIGNOL. Année scolaire 2014/2015

Produit scalaire. Christophe ROSSIGNOL. Année scolaire 2014/2015 Produit scalaire Christophe ROSSIGNOL Année scolaire 014/015 Table des matières 1 Différentes expressions du produit scalaire 1.1 Norme d un vecteur........................................... 1. Définition

Plus en détail

Pondichéry Enseignement spécifique. Corrigé

Pondichéry Enseignement spécifique. Corrigé Pondichéry. 06. Enseignement spécifique. Corrigé EXERCICE Partie A ) a) Le symétrique x du réel par rapport au réel 3,9 vérifie x+ Graphique. = 3,9 et donc x = 3,9 =,8. 0.8 0 3,9 b) P,8 T ) = PT,8) PT

Plus en détail

Trigonométrie. Chapitre Enroulement de la droite des réels Le cercle trigonométrique

Trigonométrie. Chapitre Enroulement de la droite des réels Le cercle trigonométrique Chapitre 4 Trigonométrie 4. Enroulement de la droite des réels 4.. Le cercle trigonométrique Dénition. On se place dans le plan repéré par le repère orthonormé (O; u; v). Le cercle trigonométrique est

Plus en détail

Collège Sainte-Croix. Programme de mathématiques niveau standard

Collège Sainte-Croix. Programme de mathématiques niveau standard Programme de mathématiques niveau standard Mathématiques niveau standard 1/5 Juin 2015 Première année Algèbre Notions de base : ensembles de nombres, opérations sur les ensembles, intervalles, fractions

Plus en détail

w = 0 si u et v sont colinéaires

w = 0 si u et v sont colinéaires IUT Orsay Mesures Physiques Géométrie et différentielle Cours du ème semestre A Rappel sur produit scalaire, produit vectoriel A-I Produit scalaire Définition : Si u et v sont des vecteurs du plan ou de

Plus en détail

Devoir de Mathématiques numéro 4

Devoir de Mathématiques numéro 4 Lcée La Prat s Pour le jeudi 7 janvier 06 Classe de PT Devoir de Mathématiques numéro 4 Correction Eercice Le domaine de définition est R. Il n a pas de smétries. Donc Le domaine d étude est R Variations

Plus en détail

PRODUIT SCALAIRE. 1. Produit scalaire de deux vecteurs. v dans. 1) Norme d un vecteur

PRODUIT SCALAIRE. 1. Produit scalaire de deux vecteurs. v dans. 1) Norme d un vecteur PRODUIT SCALAIRE Cours Première S Hermann Grassmann (1809 1877) Au XIX e siècle, le mathématicien allemand Grassmann étudiant le phénomène des marées, développe le calcul vectoriel et définit le produit

Plus en détail

Angles orientés et repérage, cours, première S

Angles orientés et repérage, cours, première S Angles orientés et repérage, cours, première S F.Gaudon 24 mai 2010 Table des matières 1 Cercle trigonométrique et radian 2 2 Angles orientés 3 3 Propriétés des mesures d'angles orientés 4 4 Cosinus et

Plus en détail

Correction du baccalauréat S La Réunion juin 2007

Correction du baccalauréat S La Réunion juin 2007 Durée : 4 heures Correction du baccalauréat S La Réunion juin 007 EXERCICE Commun à tous les candidats y ln a. a. Aa ; ln a.mx ; y A T x a = a y = x ln a. a b. P0 ; y T y = ln a. P0 ; ln a. Longueur PQ

Plus en détail

Concours commun 2009 des écoles des mines d Albi, Alès, Douai, Nantes.

Concours commun 2009 des écoles des mines d Albi, Alès, Douai, Nantes. Concours commun 009 des écoles des mines d Albi, Alès, Douai, Nantes. Corrigé Problème (Algèbre et géométrie Partie (Étude de deu applications Nous noterons deg P le degré du polynôme P. Pour tout polynôme

Plus en détail

Fonctions trigonométriques

Fonctions trigonométriques Fonctions trigonométriques Dans tout le chapitre, le plan est muni d'un repère orthonormé (O ; i ; j ). Les fonctions trigonométriques sont des fonctions dont la variable est une mesure d'angle. Elles

Plus en détail

EL - EXERCICES SUR LES FONCTIONS CIRCULAIRES RECIPROQUES ET HYPERBOLIQUES

EL - EXERCICES SUR LES FONCTIONS CIRCULAIRES RECIPROQUES ET HYPERBOLIQUES EL - EXERCICES SUR LES FONCTIONS CIRCULAIRES RECIPROQUES ET HYPERBOLIQUES Calculer les nombres suivants a) arcsin sin 8π ) 5 c) arcsin sin 5π ) 7 e) sin arcsin ) 3 b) arccos sin 8π ) 5 d) arcsin sin 0π

Plus en détail

BTS Maintenance industrielle - Les fonctions

BTS Maintenance industrielle - Les fonctions de référence. en escaliers Une fonction en escaliers est une fonction constante par intervalles. Eemple. la fonction f définie sur [,[ - 5 6 7 8. affines Une fonction affine f est définie sur par où a

Plus en détail

Courbes en coordonnées polaires

Courbes en coordonnées polaires [http://mp.cpgedupuydelome.fr] édité le 10 juillet 2014 Enoncés 1 Courbes en coordonnées polaires Exercice 1 [ 00597 ] [correction] Etudier la courbe d équation polaire Exercice 2 [ 00592 ] [correction]

Plus en détail