Cours 7 : Exemples. I- Régression linéaire simple II- Analyse de variance à 1 facteur III- Tests statistiques

Dimension: px
Commencer à balayer dès la page:

Download "Cours 7 : Exemples. I- Régression linéaire simple II- Analyse de variance à 1 facteur III- Tests statistiques"

Transcription

1 Cours 7 : Exemples I- Régression linéaire simple II- Analyse de variance à 1 facteur III- Tests statistiques

2 Exemple 1 : On cherche à expliquer les variations de y par celles d une fonction linéaire de x, i.e., à valider le modèle de RLS ε i où est une suite de variables aléatoires i.i.d. de moyenne nulle et de variance >x=1:100; X=sample(x,30,replace=TRUE) >Y=3+7*X+rnorm(30,0,100) >regression=lm(y~x); regression Call: lm(formula = Y ~ X) y = ax + b+ ε, i= 1,...,30. i i i σ ² Coefficients: (Intercept) X

3 > plot(x,y) >text(40,600, substitute(y==a*x+b, list(a=regression$coef[2], b=regression$coef[1]))) > lines(x,regression$fitted.values) > M=locator(); v=locator() > segments(0,m$y,m$x,m$y) > arrows(m$x,m$y,m$x,v$y,angle=30, code=3) > segments(m$x,v$y,0,v$y,lty=2) > text(0,350, "yi",col="red") > text(0,200, "^yi",col="red") > text(25,250, "ei",col="red") > title("nuage de points et droite de regression")

4

5 > names(regression) [1] "coefficients" "residuals" "effects" "rank" [5] "fitted.values" "assign" "qr" "df.residual" [9] "xlevels" "call" "terms" "model«coefficients (ou coef) : estimations des paramètres fitted.values (ou fitted): valeurs estimées yˆi Residuals (ou res) : résidus e = y yˆ i i i df.residual : nombre de ddl des résidus (n-2) ˆ et a bˆ

6 > anova(regression) Analysis of Variance Table SSM Response: Y SSR Df Sum Sq Mean Sq F value Pr(>F) X e-13 *** Residuals n-2 Signif. codes: 0 '***' '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 F=MSM/MSR MSM=SSM/dl=SSM MSR=SSR/dl=SSR/n-2

7 >summary(regression) Call: lm(formula = Y ~ X) â ^b Residuals: Min 1Q Median 3Q Max s(^b) s(â) Coefficients: Estimate Std. Error t value Pr(> t ) (Intercept) X e-13 *** --- Signif. codes: 0 '***' '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 tb=^b/s(^b) ta=â/s(â) S=sqrt(MSR) Residual standard error: on 28 degrees of freedom Multiple R-Squared: , Adjusted R-squared: F-statistic: on 1 and 28 DF, p-value: 4.312e-13 R²=SSM/(SSM +SSR)

8 Pertinence du modèle sur les données : >summary(regression) Call: lm(formula = Y ~ X) De petites valeurs sont un gage de stabilité du modèle donc du pouvoir prédictif: valeur de b pas très stable ici Residuals: Min 1Q Median 3Q Max Coefficients: Estimate Std. Error t value Pr(> t ) (Intercept) X e-13 *** --- Signif. codes: 0 '***' '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Residual standard error: on 28 degrees of freedom Multiple R-Squared: , Adjusted R-squared: F-statistic: on 1 and 28 DF, p-value: 4.312e-13 % de variations expliquées par le modèle R² doit être proche de 1 pour bon pouvoir explicatif: ok ici Écart-type résiduel doit être faible pour bon pouvoir prédictif

9 Conclusion 1 : le modèle a un bon pouvoir explicatif sur les données, mais le pouvoir prédictif risque d être entaché par l instabilité du coefficient b et une variance résiduelle importante.

10 Analyse des résidus Fonctions R utiles: - influence(): étude des points contribuant à l instabilité du modèle (prédiction). - residuals() ei ei rei = = - rstudent() : résidus réduits s( e ) s(1 h ) - acf() : graphe d autocorrelation des résidus - plot() - qqnorm() i ii

11 - Repérage des points aberrants et des points contribuant fortement à la détermination du modèle : Est suspect un point tel que le résidu réduit est supérieur à 2 en valeur absolue : si sa distance de Cook s est >1, le point suspect contribue trop fortement à la détermination du modèle - Vérifier les hypothèse sur les résidus : iid et normalité (préalable à l interprétation des tests) Le graphe des résidus ne doit pas présenter de structure (variance constante sur la verticale et symetrie par rapport aux abscisses).. Le graphe des résidus réduits doit être compris entre 2 et 2 et ne doit pas présenter de structure. D autres graphiques tels que le qqnorm() ou acf() peuvent aider.

12

13 > regression$res

14 > rstudent(regression)

15 > par(mfrow=c(2,2)); plot(regression)

16 >plot(regression$fitted,rstudent(regression),xlabel="fitted values", ylabel="standardized residuals"); >abline(h=2,col="red");abline(h=-2,col="red")

17 > par(mfrow=c(1,2)) > plot(regression$residuals) > acf(regression$res)

18 Conclusion 2 : Les résidus semblent approximativement gaussiens (qqnorm) et i.i.d. (pas de structure, de part et d autre de 0 sur les plots et le corrélogramme).deux points devraient être éventuellement enlevés du modèle : les points 2 et 3.

19 Les conséquences de la non-normalité sont : Les estimateurs ne sont pas optimaux - Les tests et intervalles de confiances sont invalides. En réalité seulement les distribution à queue très longue posent problème et une légère nonnormalité peut être ignorée, d autant plus que l échantillon est grand. Dans ce cas, on essaie généralement des transformations. Les conséquences d une variance non constante sont: Les estimations ne sont pas bonnes il faut utiliser les moindres carrés pondérés.

20 Validité du modèle sur la population >summary(regression) Call: lm(formula = Y ~ X) La variable X a une influence significative sur Y à 5%: le coefficient est significativement différent de zero Residuals: Min 1Q Median 3Q Max Coefficients: Estimate Std. Error t value Pr(> t ) (Intercept) X e-13 *** --- Signif. codes: 0 '***' '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Residual standard error: on 28 degrees of freedom Multiple R-Squared: , Adjusted R-squared: F-statistic: on 1 and 28 DF, p-value: 4.312e-13 Le terme constant n est pas significativement different de zero: on peut decider de refaire tourner le modèle sans lui Le modèle est pertinent à 5%

21 Conclusion 3: le modèle linéaire est pertinent pour expliquer variations de Y sur la population. Conclusion : L ajustement linéaire est pertinent ici. Pour obtenir un meilleur pouvoir prédictif, il faudrait éventuellement retirer les points 2 et 3 de l analyse et utiliser un modèle sans terme constant.

22

23 II- Analyse de variance Six (k) insecticides (spray) ont été testés chacun sur 12 cultures. La réponse observée (count) est le nombre d'insectes. Les données sont contenues dans le data.frame «InsectSprays». On veut savoir si il existe un effet significatif du facteur insecticide, i.e. on veut valider le modèle d analyse de variance : ε i Count ij = µ + α j + ε ij, i = 1,... 12; j = 1,... 6 où est une suite de variables aléatoires i.i.d. de moyenne nulle et de variance σ ². >anov=aov(sqrt(count) ~ spray, data = InsectSprays)

24 II- Analyse de variance > summary(anov) Df Sum Sq Mean Sq F value Pr(>F) spray < 2.2e-16 *** Residuals SSInter SSIntra V Inter P(F>Fvalue) F suit F(k-1,n-k) Signif. codes: 0 '***' '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 k-1 n-k V intra V inter/v intra

25 II- Analyse de variance >names(anov) [1] "coefficients" "residuals" "effects" "rank" [5] "fitted.values" "assign" "qr" "df.residual" [9] "contrasts" "xlevels" "call" "terms" [13] "model" coefficients : moyennes dans les niveaux residuals : résidus estimes du modèle fitted.values : valeurs estimées y ˆ = ˆ µ + ˆ α ij α e = y yˆ ij ij ij j ˆ j

26 >boxplot(sqrt(insectspray$count))~insectspray$spray

27 II- Analyse de variance Le Boxplot montre : - les points aberrants - l asymetrie de la distribution - une inégalité dans les variances. Cependant, comme souvent il y a peu de données dans chaque niveau du facteur on peu s attendre à une grande variabilité même si les variances des souspopulations sont en réalité égales.

28 II- Analyse de variance Analyse des résidus (cf régression) >par(mfrow=c(2,2)); plot(anov)

29 >plot(rstudent(anov)) II- Analyse de variance

30 II- Analyse de variance >par(mfrow=c(2,1)) >acf(anov$res) >plot(anov$res)

31 II- Analyse de variance Les moyennes sont différentes La distribution des résidus semble gaussienne Les résidus sont i.i.d. si l on ne tient pas compte de la variance Il existe des points aberrants 39, 27, 25 dont les distances de Cook s montrent qu ils influencent trop les coefficients.

32 II- Analyse de variance >summary(anov) Df Sum Sq Mean Sq F value Pr(>F) spray < 2.2e-16 *** Residuals Signif. codes: 0 '***' '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Le test de Fisher montre que l on rejette fortement l hypothèse nulle (avec un risque de se tromper presque nul): le modèle est significatif :il existe un fort effet du facteur spray sur le nombre d insectes.

33 >boxplot(sqrt(insectspray$count))~insectspray$spray

34 II- Analyse de variance >anov$coeff (Intercept) sprayb sprayc sprayd spraye sprayf Le groupe A est le groupe de référence avec une moyenne de Le groupe B a une moyenne de ,. Les écarts les plus significatifs sont entre les groupes A B et F et les groupes C D et E, qui sont plus efficaces que les premiers.

35 III- Test de comparaison de moyenne Soient (X1,..., Xn) un echantillon issu d une population iid N(1, 1) et (Y1,..., Ym) un échantillon issu d une population iid E(1). On veut tester: H : E( X) = E( Y) contre H : E( X) E( Y) 0 1 > x = rnorm(100,1,1) >y = rexp(200,1) >st=t.test(x,y); st

36 III- Test de comparaison de moyenne Généralisation du test de Student au cas de Welch Two Sample t-test data: x and y variances inégales t = , df = , p-value = alternative hypothesis: true difference in means is not equal to 0 95 percent confidence interval: sample estimates: mean of x : mean of y : P( T >t) T suit T(179) > summary(st) Length Class Mode statistic 1 -none- numeric parameter 1 -none- numeric p.value 1 -none- numeric conf.int 2 -none- numeric estimate 2 -none- numeric null.value 1 -none- numeric alternative 1 -none- character method 1 -none- character data.name 1 -none- character X Y Nombre de ddl corrigé=179 Statistique t

37 III- Test de comparaison de moyenne >names(st) [1] "statistic" "parameter" "p.value" "conf.int" "estimate" [6] "null.value" "alternative" "method" "data.name" statistic : valeur de t alternative : type d alternative two-sided, one-sided. estimate : moyennes empiriques des echantillons null.value : hypothese nulle conf.int: intervalles de confiances parameter :ddl Conclusion : on ne peut pas rejeter l hypothèse nulle au seuil 5% : les moyennes ne sont pas significativement différentes.

Cours 7 : Rappels de cours et exemples sous R. I- Régression linéaire simple II- Analyse de variance à 1 facteur III- Tests statistiques

Cours 7 : Rappels de cours et exemples sous R. I- Régression linéaire simple II- Analyse de variance à 1 facteur III- Tests statistiques Cours 7 : Rappels de cours et exemples sous R I- Régression linéaire simple II- Analyse de variance à 1 facteur III- Tests statistiques I- Le modèle de régression linéaire simple: théorie Rappels On cherche

Plus en détail

Cours 6 : Les statistiques avec R. XVII- Généralités XVIII- Les formules XIX- Les sorties

Cours 6 : Les statistiques avec R. XVII- Généralités XVIII- Les formules XIX- Les sorties Cours 6 : Les statistiques avec R XVII- Généralités XVIII- Les formules XIX- Les sorties XX- Les fonctions génériques XVII- Généralités Fonctions d analyse statistique disponibles Package «stats» : contient

Plus en détail

Travaux dirigés - Régression linéaire simple: corrigé partiel Julien Chiquet et Guillem Rigaill 1er octobre 2015

Travaux dirigés - Régression linéaire simple: corrigé partiel Julien Chiquet et Guillem Rigaill 1er octobre 2015 Travaux dirigés - Régression linéaire simple: corrigé partiel Julien Chiquet et Guillem Rigaill 1er octobre 2015 Quelques révisions de R 1. Manipulation de vecteur. On rappelle que e x = k 0 Créer dans

Plus en détail

TESTS STATISTIQUES: COMPARAISON, INDÉPENDANCE ET RÉGRESSION LINÉAIRE

TESTS STATISTIQUES: COMPARAISON, INDÉPENDANCE ET RÉGRESSION LINÉAIRE TESTS STATISTIQUES: COMPARAISON, INDÉPENDANCE ET RÉGRESSION LINÉAIRE Les résultats donnés par R et SAS donnent les valeurs des tests, la valeur-p ainsi que les intervalles de confiance. TEST DE COMPARAISON

Plus en détail

a) Il n y a pas de contre indication à utiliser la loi normale. On peut donc utiliser des tests basés sur la loi normale comme ceux vus au cours.

a) Il n y a pas de contre indication à utiliser la loi normale. On peut donc utiliser des tests basés sur la loi normale comme ceux vus au cours. Probabilités et statistique Été 2006 ELEC, MICRO, MX Dr. Diego Kuonen Corrigé du TP 2 Exercice 1. Test de Student Normal Q Q Plot Sample Quantiles 985 990 995 1000 1005 1.5 1.0 0.5 0.0 0.5 1.0 1.5 a) Il

Plus en détail

Normalité des rendements?

Normalité des rendements? Normalité des rendements? Daniel Herlemont 31 mars 2011 Table des matières 1 Introduction 1 2 Test de Normalité des rendements 2 3 Graphiques quantile-quantile 2 4 Estimation par maximum de vraisemblance

Plus en détail

Analyse de la variance Comparaison de plusieurs moyennes

Analyse de la variance Comparaison de plusieurs moyennes Analyse de la variance Comparaison de plusieurs moyennes Biostatistique Pr. Nicolas MEYER Laboratoire de Biostatistique et Informatique Médicale Fac. de Médecine de Strasbourg Mars 2011 Plan 1 Introduction

Plus en détail

Introduction aux Statistiques et à l utilisation du logiciel R

Introduction aux Statistiques et à l utilisation du logiciel R Introduction aux Statistiques et à l utilisation du logiciel R Christophe Lalanne Christophe Pallier 1 Introduction 2 Comparaisons de deux moyennes 2.1 Objet de l étude On a mesuré le temps de sommeil

Plus en détail

Exercices M1 SES 2014-2015 Ana Fermin (http:// fermin.perso.math.cnrs.fr/ ) 14 Avril 2015

Exercices M1 SES 2014-2015 Ana Fermin (http:// fermin.perso.math.cnrs.fr/ ) 14 Avril 2015 Exercices M1 SES 214-215 Ana Fermin (http:// fermin.perso.math.cnrs.fr/ ) 14 Avril 215 Les exemples numériques présentés dans ce document d exercices ont été traités sur le logiciel R, téléchargeable par

Plus en détail

Analyses statistiques avec

Analyses statistiques avec Analyses statistiques avec Introduction et éléments de base M. Bailly-Bechet, adapté de J. R. Lobry, adapté de Deepayan Sarkar Biostatistiques & Bioinformatique (L2) Table des matières Premiers pas en

Plus en détail

Analyse de la variance à un facteur

Analyse de la variance à un facteur Analyse de la variance à un facteur Frédéric Bertrand et Myriam Maumy-Bertrand IRMA, UMR 7501, Université de Strasbourg 08 juin 2015 F. Bertrand et M. Maumy-Bertrand (UdS) Analyse de la variance à un facteur

Plus en détail

Analyse de la variance

Analyse de la variance M2 Statistiques et Econométrie Fanny MEYER Morgane CADRAN Margaux GAILLARD Plan du cours I. Introduction II. Analyse de la variance à un facteur III. Analyse de la variance à deux facteurs IV. Analyse

Plus en détail

SEMIN- Introduction au modèle linéaire mixte. Sébastien BALLESTEROS UMR 7625 Ecologie Evolution Equipe Eco-Evolution mathématique ENS Ulm, UPMS

SEMIN- Introduction au modèle linéaire mixte. Sébastien BALLESTEROS UMR 7625 Ecologie Evolution Equipe Eco-Evolution mathématique ENS Ulm, UPMS SEMIN- Introduction au modèle linéaire mixte Sébastien BALLESTEROS UMR 7625 Ecologie Evolution Equipe Eco-Evolution mathématique ENS Ulm, UPMS SEMIN-R du MNHN 18 Décembre 2008 Introduction au modèle linéaire

Plus en détail

UNIVERSITÉ PARIS OUEST NANTERRE LA DÉFENSE U.F.R. SJAP Année universitaire 2013 2014. Cours de Statistiques et Économétrie.

UNIVERSITÉ PARIS OUEST NANTERRE LA DÉFENSE U.F.R. SJAP Année universitaire 2013 2014. Cours de Statistiques et Économétrie. UNIVERSITÉ PARIS OUEST NANTERRE LA DÉFENSE U.F.R. SJAP Année universitaire 2013 2014 Master Droit-Éco Cours de M. Desgraupes Cours de Statistiques et Économétrie Séance 05 1 Analyse de série temporelle

Plus en détail

Correction de l épreuve de Statistiques et Informatique appliquées à la Psychologie

Correction de l épreuve de Statistiques et Informatique appliquées à la Psychologie Université de Bretagne Occidentale Année Universitaire 2013-2014 U.F.R. de Lettres et Sciences Humaines CS 93837-29238 BREST CEDEX 3 Section : Psychologie - Licence 3è année Enseignant responsable : F.-G.

Plus en détail

REGRESSION MULTIPLE: CONSOMMATION D ELECTRICITE

REGRESSION MULTIPLE: CONSOMMATION D ELECTRICITE REGRESSION MULTIPLE: CONSOMMATION D ELECTRICITE LES DONNEES OBS KW SURFACE PERS PAVILLON AGE VOL SBAINS 1 4805 130 4 1 65 410 1 2 3783 123 4 1 5 307 2 3 2689 98 3 0 18 254 1 4 5683 178 6 1 77 570 3 5 3750

Plus en détail

Débuter avec R. Maxime Hervé. UMR 1099 INRA Agrocampus Ouest Université Rennes 1 BiO3P. 28 avril 2011

Débuter avec R. Maxime Hervé. UMR 1099 INRA Agrocampus Ouest Université Rennes 1 BiO3P. 28 avril 2011 Débuter avec R Maxime Hervé UMR 1099 INRA Agrocampus Ouest Université Rennes 1 BiO3P 28 avril 2011 Maxime Hervé (UMR BiO3P) Débuter avec R 28 avril 2011 1 / 23 R, c est quoi? Trois caractéristiques importantes

Plus en détail

COURS DE STATISTIQUES (24h)

COURS DE STATISTIQUES (24h) COURS DE STATISTIQUES (24h) Introduction Statistiques descriptives (4 h) Rappels de Probabilités (4 h) Echantillonnage(4 h) Estimation ponctuelle (6 h) Introduction aux tests (6 h) Qu est-ce que la statistique?

Plus en détail

Économétrie - Une Étude de la Création d Entreprise entre 1994 et 2007

Économétrie - Une Étude de la Création d Entreprise entre 1994 et 2007 LESAUX Loïc MAROT Gildas TANGUY Brewal Économétrie - Une Étude de la Création d Entreprise entre 1994 et 007 Charpentier Arthur Semestre 008 Master 1 Cadoret Isabelle 1 Plan Introduction... 3 Présentation

Plus en détail

Régression linéaire multiple

Régression linéaire multiple 1 1 IRMA, Université Louis Pasteur Strasbourg, France Master 1ère Année 23-03-2009 Régression linéaire simple Exemple Affiner le modèle Problème : Étude de la concentration d ozone dans l air. Modèle :

Plus en détail

Analyse de la variance à deux facteurs

Analyse de la variance à deux facteurs 1 1 IRMA, Université Louis Pasteur Strasbourg, France Master 1 Psychologie du développement 06-10-2008 Contexte Nous nous proposons d analyser l influence du temps et de trois espèces ligneuses d arbre

Plus en détail

Chapitre III Analyse de la variance

Chapitre III Analyse de la variance Chapitre III Analyse de la variance Licence 3 MIASHS - Université de Bordeaux Marie Chavent Chapitre 3 Analyse de la variance 1/30 1 Introduction - Analyse de la variance = ANOVA (ANalysis Of VAriance)

Plus en détail

Corrigé examen atelier de statistiques Cogmaster

Corrigé examen atelier de statistiques Cogmaster Corrigé examen atelier de statistiques Cogmaster Tous documents autorisés. Durée de l épreuve = 2h 1 Questions 1. La moyenne d un échantillon de 10 nombres distribués selon une loi normale centrée réduite

Plus en détail

3ICBE UFBC11 Statistique

3ICBE UFBC11 Statistique 3 ème année INSA-ICBE 2013/2014 UFBC11 contrôle de Statistique 1/8 3ICBE UFBC11 Statistique Contrôle du jeudi 7 novembre 2013 Les documents ne sont pas autorisés Modéliser la perte de poids du café lors

Plus en détail

TESTS DE NORMALITE. qu elle est symétrique ) son moment centré d ordre 3 est nul 3 = 0. 3 estimé par c 3 =

TESTS DE NORMALITE. qu elle est symétrique ) son moment centré d ordre 3 est nul 3 = 0. 3 estimé par c 3 = TESTS DE NORMALITE Dans le chapitre précédent on a vu les propriétés nécessaires sur les erreurs pour que les coe cients des MCO soient les meilleurs. Dans la pratique bien sur ce ne sera pas toujours

Plus en détail

S-Plus. Prise en main rapide

S-Plus. Prise en main rapide 1 S-Plus Prise en main rapide Rachid BOUMAZA INH Département ETIC rachid.boumaza@inh.fr AVANT-PROPOS Ce document n'est pas un manuel d'utilisation du logiciel S-Plus mais une invitation à aller découvrir

Plus en détail

TD de statistique : tests du Chi 2

TD de statistique : tests du Chi 2 TD de statistique : tests du Chi 2 Jean-Baptiste Lamy 6 octobre 2008 1 Test du Chi 2 C est l équivalent de la comparaison de moyenne, mais pour les variables qualitatives. 1.1 Cas 1 : comparer les répartitions

Plus en détail

Analyse des données individuelles groupées

Analyse des données individuelles groupées Analyse des données individuelles groupées Analyse des Temps de Réponse Le modèle mixte linéaire (L2M) Y ij, j-ième observation continue de l individu i (i = 1,, N ; j =1,, n) et le vecteur des réponses

Plus en détail

Tests Non Paramétriques. J Gaudart, LERTIM, Faculté de Médecine Marseille 1

Tests Non Paramétriques. J Gaudart, LERTIM, Faculté de Médecine Marseille 1 Tests Non Paramétriques J Gaudart, LERTIM, Faculté de Médecine Marseille 1 Plan 1. Paramétriques ou non? 2. Test d'une distribution de probabilité 3. Comparaison de moyennes 4. Comparaison de pourcentages

Plus en détail

Notes de cours Économétrie 1. Shuyan LIU Shuyan.Liu@univ-paris1.fr http ://samm.univ-paris1.fr/shuyan-liu-enseignement

Notes de cours Économétrie 1. Shuyan LIU Shuyan.Liu@univ-paris1.fr http ://samm.univ-paris1.fr/shuyan-liu-enseignement Notes de cours Économétrie 1 Shuyan LIU Shuyan.Liu@univ-paris1.fr http ://samm.univ-paris1.fr/shuyan-liu-enseignement Année 2013-2014 Chapitre 1 Introduction Qu est-ce que l économétrie? À quoi sert -

Plus en détail

Simulation Examen de Statistique Approfondie II **Corrigé **

Simulation Examen de Statistique Approfondie II **Corrigé ** Simulation Examen de Statistique Approfondie II **Corrigé ** Ces quatre exercices sont issus du livre d exercices de François Husson et de Jérôme Pagès intitulé Statistiques générales pour utilisateurs,

Plus en détail

Régression de Poisson

Régression de Poisson ZHANG Mudong & LI Siheng & HU Chenyang 21 Mars, 2013 Plan Composantes des modèles Estimation Qualité d ajustement et Tests Exemples Conclusion 2/25 Introduction de modèle linéaire généralisé La relation

Plus en détail

Statistique de base avec R Partie 2 : Test d hypothèses et régression linéaire

Statistique de base avec R Partie 2 : Test d hypothèses et régression linéaire Statistique de base avec R Partie 2 : Test d hypothèses et régression linéaire Julien JACQUES Polytech Lille - Université Lille 1 Julien JACQUES (Polytech Lille) Statistiques de base 1 / 48 Plan 1 Tests

Plus en détail

Dossier / TD Econométrie. Analyse de la demande d essence aux Etats-Unis entre 1960-1995 fichier : essence.xls

Dossier / TD Econométrie. Analyse de la demande d essence aux Etats-Unis entre 1960-1995 fichier : essence.xls Dossier / TD Econométrie Analyse de la demande d essence aux Etats-Unis entre 1960-1995 fichier : essence.xls Source : Greene "Econometric Analysis" Prentice Hall International, 4 ème édition, 2000 Council

Plus en détail

distribution quelconque Signe 1 échantillon non Wilcoxon gaussienne distribution symétrique Student gaussienne position

distribution quelconque Signe 1 échantillon non Wilcoxon gaussienne distribution symétrique Student gaussienne position Arbre de NESI distribution quelconque Signe 1 échantillon distribution symétrique non gaussienne Wilcoxon gaussienne Student position appariés 1 échantillon sur la différence avec référence=0 2 échantillons

Plus en détail

C- Liaison entre deux variables statistiques

C- Liaison entre deux variables statistiques C- Liaison entre deux variables statistiques 1- liaison entre 2 variables quantitatives 2- liaison entre 1 variable quantitative et 1 variables qualitative 3- liaison entre 2 variables qualitatives 4-

Plus en détail

Fiche d utilisation du logiciel. 4-Modèle linéaire. D. Chessel & J. Thioulouse 1. REGRESSION SIMPLE...2

Fiche d utilisation du logiciel. 4-Modèle linéaire. D. Chessel & J. Thioulouse 1. REGRESSION SIMPLE...2 Fiche d utilisation du logiciel 4-Modèle linéaire D. Chessel & J. Thioulouse Résumé La fiche contient le matériel nécessaire pour des séances de travaux dirigés consacrées au modèle linéaire. Elle illustre

Plus en détail

Révision. Oliver Sonnentag, PhD: GÉO1512 Géographie Quantitative I

Révision. Oliver Sonnentag, PhD: GÉO1512 Géographie Quantitative I 1 Révision 2 Table des matières Pondération Révision (11 decèmbre 2012 [moi] & 17 decèmbre 2012 [Margarita]) Structure de l'examen final! Examen final: première partie! questions théoriques (exemples)!

Plus en détail

Le provisionnement en assurance non-vie prise en compte de la dépendance

Le provisionnement en assurance non-vie prise en compte de la dépendance Le provisionnement en assurance non-vie prise en compte de la dépendance Arthur Charpentier http://freaconometrics.blog.free.fr Séminaire interne Desjardins Assurances Générales, février 2011 Les provisions

Plus en détail

Analyse de la Variance pour Plans à Mesures Répétées

Analyse de la Variance pour Plans à Mesures Répétées Analyse de la Variance pour Plans à Mesures Répétées Pr Roch Giorgi roch.giorgi@univ-amu.fr SESSTIM, Faculté de Médecine, Aix-Marseille Université, Marseille, France http://sesstim-orspaca.org http://optim-sesstim.univ-amu.fr/

Plus en détail

Analyse de variance à un facteur Tests d hypothèses Analyse de variance à deux facteurs. Analyse de la variance ANOVA

Analyse de variance à un facteur Tests d hypothèses Analyse de variance à deux facteurs. Analyse de la variance ANOVA Analyse de la variance ANOVA Terminologie Modèles statistiques Estimation des paramètres 1 Analyse de variance à un facteur Terminologie Modèles statistiques Estimation des paramètres 2 3 Exemple. Analyse

Plus en détail

Introduction au cours STA 102 Analyse des données : Méthodes explicatives

Introduction au cours STA 102 Analyse des données : Méthodes explicatives Analyse des données - Méthodes explicatives (STA102) Introduction au cours STA 102 Analyse des données : Méthodes explicatives Giorgio Russolillo giorgio.russolillo@cnam.fr Infos et support du cours Slide

Plus en détail

UNIVERSITÉ PARIS OUEST NANTERRE LA DÉFENSE U.F.R. SEGMI Année universitaire 2013 2014 MATHS/STATS. 1 Généralités sur les tests statistiques 2

UNIVERSITÉ PARIS OUEST NANTERRE LA DÉFENSE U.F.R. SEGMI Année universitaire 2013 2014 MATHS/STATS. 1 Généralités sur les tests statistiques 2 UNIVERSITÉ PARIS OUEST NANTERRE LA DÉFENSE U.F.R. SEGMI Année universitaire 2013 2014 Master d économie Cours de M. Desgraupes MATHS/STATS Document 4 : Les tests statistiques 1 Généralités sur les tests

Plus en détail

STATISTIQUE THÉORIQUE ET APPLIQUÉE COMPLÉMENTS : LOGICIEL R. Pierre Dagnelie. www.dagnelie.be

STATISTIQUE THÉORIQUE ET APPLIQUÉE COMPLÉMENTS : LOGICIEL R. Pierre Dagnelie. www.dagnelie.be STATISTIQUE THÉORIQUE ET APPLIQUÉE COMPLÉMENTS : LOGICIEL R Pierre Dagnelie www.dagnelie.be 2012 INTRODUCTION 2 Introduction Ce document présente une liste de commandes ou fonctions relatives au logiciel

Plus en détail

Statistiques industrielles Management de la production et de la qualité

Statistiques industrielles Management de la production et de la qualité Statistiques industrielles Management de la production et de la qualité Francois.Kauffmann@unicaen.fr Université de Caen Basse-Normandie 12 novembre 2015 Francois.Kauffmann@unicaen.fr UCBN MSP 12 novembre

Plus en détail

Analyse de variance. avec interaction. Données - notations. Données - exemple. Données - notations

Analyse de variance. avec interaction. Données - notations. Données - exemple. Données - notations Données - notations Analyse de variance F. Husson husson@agrocampus-ouest.fr avec interaction Lait Cacao Amer Acide Sucre Produit Juge Séance S1 J1 P6 3 5,5 7,5 S1 J1 P 1,, 6 7,6 5,5 S1 J1 P 1,8 3,6 5,

Plus en détail

Fonctions R. Pascal Bessonneau, Christophe Pallier 16 janvier 2010

Fonctions R. Pascal Bessonneau, Christophe Pallier 16 janvier 2010 Fonctions R Pascal Bessonneau, Christophe Pallier 16 janvier 2010 1 Recherche de l aide sur R La recherche s effectue sur 4 niveaux sur R. 1.1 help Le premier niveau consiste à rechercher de l aide sur

Plus en détail

Chapitre 3. Les distributions à deux variables

Chapitre 3. Les distributions à deux variables Chapitre 3. Les distributions à deux variables Jean-François Coeurjolly http://www-ljk.imag.fr/membres/jean-francois.coeurjolly/ Laboratoire Jean Kuntzmann (LJK), Grenoble University 1 Distributions conditionnelles

Plus en détail

y i = αx i + β + u i,

y i = αx i + β + u i, I.1 ) TD1 L3 Econométrie Rappel : L estimateur ˆα (resp. ˆβ)estaussinotéa (resp. b). 160 150 consommation Y 140 130 10 (x i, ŷ i ) e i 110 100 110 10 130 140 150 160 170 180 )a). Sous forme exacte y i

Plus en détail

MÉTHODES ET STATISTIQUES POUR LIRE UN ARTICLE

MÉTHODES ET STATISTIQUES POUR LIRE UN ARTICLE MÉTHODES ET STATISTIQUES POUR LIRE UN ARTICLE Forum HH 05.02.2013 Ghislaine Gagnon Unité HPCI Qualitatif ou quantitatif? Les 2 méthodes peuvent être utilisées séparément ou en conjonction - le qualitatif

Plus en détail

Notes de cours Statistique avec le logiciel R

Notes de cours Statistique avec le logiciel R Notes de cours Statistique avec le logiciel R Shuyan LIU Shuyan.Liu@univ-paris.fr http ://samm.univ-paris.fr/shuyan-liu-enseignement Année 204-205 Chapitre Introduction L objectif de ce cours est de mettre

Plus en détail

Les statistiques en biologie expérimentale

Les statistiques en biologie expérimentale Les statistiques en biologie expérimentale Qualités attendues d une méthode de quantification : Le résultat numérique de la mesure permet d estimer avec précision la grandeur mesurée (ex. : il lui est

Plus en détail

R i = a 0 +b 0 B i +ε i, R = Xβ +ε,

R i = a 0 +b 0 B i +ε i, R = Xβ +ε, Statistiques 2010-2011 TP sur le Modèle linéaire gaussien avec R 1 Les exercices Vous traiterez les exercices suivants avec le logiciel R. Exercice 1 Des photographies aériennes de champs d orge sont analysées

Plus en détail

Les variables indépendantes catégorielles

Les variables indépendantes catégorielles Les variables indépendantes catégorielles Jean-François Bickel Statistique II SP08 Jusqu à maintenant, nous avons considéré comme variables indépendantes uniquement des variables intervalles (âge) ou traitées

Plus en détail

Le modèle linéaire généralisé avec R : fonction glm()

Le modèle linéaire généralisé avec R : fonction glm() SEMIN- Le modèle linéaire généralisé avec R : fonction glm() Sébastien BALLESTEROS UMR 7625 Ecologie Evolution Ecole Normale Supérieure 46 rue d'ulm F-75230 Paris Cedex 05 sebastien.ballesteros@biologie.ens.fr

Plus en détail

EXEMPLE : FAILLITE D ENTREPRISES

EXEMPLE : FAILLITE D ENTREPRISES EXEMPLE : FAILLITE D ENTREPRISES Cet exemple a pour objectif d étudier la faillite d entreprises. Les données proviennent de l ouvrage de R.A.Johnson et D.W Wichern : «Applied Multivariate Statistical

Plus en détail

Sélection de modèles avec l AIC et critères d information dérivés

Sélection de modèles avec l AIC et critères d information dérivés Sélection de modèles avec l AIC et critères d information dérivés Renaud LANCELOT et Matthieu LESNOFF Version 3, Novembre 2005 Ceci n est pas une revue exhaustive mais une courte introduction sur l'utilisation

Plus en détail

Modèle GARCH Application à la prévision de la volatilité

Modèle GARCH Application à la prévision de la volatilité Modèle GARCH Application à la prévision de la volatilité Olivier Roustant Ecole des Mines de St-Etienne 3A - Finance Quantitative Décembre 2007 1 Objectifs Améliorer la modélisation de Black et Scholes

Plus en détail

Cours 8 Les tests statistiques

Cours 8 Les tests statistiques Cours 8 Les tests statistiques Intervalle de confiance pour une proportion Dans le cas de grands échantillons (np>5 et n(1-p)>5 ) l'intervalle de confiance au niveau (1- α ) est pour la proportion inconnue

Plus en détail

Une introduction. Lionel RIOU FRANÇA. Septembre 2008

Une introduction. Lionel RIOU FRANÇA. Septembre 2008 Une introduction INSERM U669 Septembre 2008 Sommaire 1 Effets Fixes Effets Aléatoires 2 Analyse Classique Effets aléatoires Efficacité homogène Efficacité hétérogène 3 Estimation du modèle Inférence 4

Plus en détail

Introduction à l approche bootstrap

Introduction à l approche bootstrap Introduction à l approche bootstrap Irène Buvat U494 INSERM buvat@imedjussieufr 25 septembre 2000 Introduction à l approche bootstrap - Irène Buvat - 21/9/00-1 Plan du cours Qu est-ce que le bootstrap?

Plus en détail

Régression linéaire multiple Analyse de variance

Régression linéaire multiple Analyse de variance Chapitre 7 Introduction à la statistique avec R Régression linéaire multiple Analyse de variance Régression linéaire multiple La durée d entretien est liée À l âge À l existence d une dépression Régression

Plus en détail

Régression linéaire simple

Régression linéaire simple Résumé Ce chapitre introduit la notion de modèle linéaire par la version la plus élémentaire : epliquer Y par une fonction affine de X. Après avoir epliciter les hypothèses nécessaires et les termes du

Plus en détail

Mémoire de n d'étude: Etudes statistiques. Mémoire de n d'étude: Etudes statistiques. Nicolas Sutton-Charani. Université Montpellier 1 1/31

Mémoire de n d'étude: Etudes statistiques. Mémoire de n d'étude: Etudes statistiques. Nicolas Sutton-Charani. Université Montpellier 1 1/31 1/31 Mémoire de n d'étude: Etudes statistiques Nicolas Sutton-Charani Université Montpellier 1 Plan Rappels de cours La base La Statistique Types des variables Outils mathématiques Statistiques descriptives

Plus en détail

Introduction à la statistique non paramétrique

Introduction à la statistique non paramétrique Introduction à la statistique non paramétrique Catherine MATIAS CNRS, Laboratoire Statistique & Génome, Évry http://stat.genopole.cnrs.fr/ cmatias Atelier SFDS 27/28 septembre 2012 Partie 2 : Tests non

Plus en détail

X1 = Cash flow/ Dette totale. X2 = Revenu net / Total des actifs au bilan. X3 = Actif réalisable et disponible / Passif courant

X1 = Cash flow/ Dette totale. X2 = Revenu net / Total des actifs au bilan. X3 = Actif réalisable et disponible / Passif courant EXEMPLE : FAILLITE D ENTREPRISES Cet exemple a pour objectif d étudier la faillite d entreprises. Les données proviennent de l ouvrage de R.A.Johnson et D.W Wichern : Applied Multivariate Statistical Analysis»,

Plus en détail

Introduction aux modèles mixtes Comparaison de k moyennes à partir d échantillons non indépendants. 27 mai 2009 Pierre INGRAND

Introduction aux modèles mixtes Comparaison de k moyennes à partir d échantillons non indépendants. 27 mai 2009 Pierre INGRAND Introduction aux modèles mixtes Comparaison de k moyennes à partir d échantillons non indépendants 27 mai 2009 Pierre INGRAND Position du problème. Exemple On cherche à comparer la réponse pharmacologique

Plus en détail

Modèles de prévision Partie 2 - séries temporelles

Modèles de prévision Partie 2 - séries temporelles Modèles de prévision Partie 2 - séries temporelles Arthur Charpentier charpentier.arthur@uqam.ca http ://freakonometrics.blog.free.fr/ Automne 2012 Plan du cours Motivation et introduction aux séries temporelles

Plus en détail

Régression linéaire multiple en R Exemple détaillé

Régression linéaire multiple en R Exemple détaillé Modèle Linéaire 2016-2017 Régression linéaire multiple en R Exemple détaillé Préambule : récupération et mise en forme des données On utilise la base state de R, que nous mettons en forme. > data(state)

Plus en détail

SEMIN- Rééchantillonnage sous R : bootstrap et jackknife. Loïc PONGER. MNHN USM 503 Régulation et Dynamique des Génomes ponger@mnhn.

SEMIN- Rééchantillonnage sous R : bootstrap et jackknife. Loïc PONGER. MNHN USM 503 Régulation et Dynamique des Génomes ponger@mnhn. SEMIN- Rééchantillonnage sous R : bootstrap et jackknife Loïc PONGER MNHN USM 503 Régulation et Dynamique des Génomes ponger@mnhn.fr SEMIN-R du MNHN 06 Mai 2008 Rééchantillonnage sous R bootstrap et jackknife

Plus en détail

Analyses de Variance à un ou plusieurs facteurs Régressions Analyse de Covariance Modèles Linéaires Généralisés

Analyses de Variance à un ou plusieurs facteurs Régressions Analyse de Covariance Modèles Linéaires Généralisés Analyses de Variance à un ou plusieurs facteurs Régressions Analyse de Covariance Modèles Linéaires Généralisés Professeur Patrice Francour francour@unice.fr Une grande partie des illustrations viennent

Plus en détail

TP 1. Introduction au logiciel SAS Analyse Statistique Univariée

TP 1. Introduction au logiciel SAS Analyse Statistique Univariée IMIS : Master 1 Université Paris Est Marne la Vallée TP 1. Introduction au logiciel SAS Analyse Statistique Univariée 1. Premier contact avec SAS 1. Lancez le logiciel sas. Vous voyez apparaître les fenètres

Plus en détail

TABLE DES MATIERES. C Exercices complémentaires 42

TABLE DES MATIERES. C Exercices complémentaires 42 TABLE DES MATIERES Chapitre I : Echantillonnage A - Rappels de cours 1. Lois de probabilités de base rencontrées en statistique 1 1.1 Définitions et caractérisations 1 1.2 Les propriétés de convergence

Plus en détail

Économétrie des Marchés Financiers - Faits Stylisés & Modélisations

Économétrie des Marchés Financiers - Faits Stylisés & Modélisations Faits stylisés Faits stylisés = propriétés statistiques communes à la plupart des actifs financiers les prix suivent un processus multiplicatifs la variable à modéliser est le rendement δ p/p, ce faisant

Plus en détail

Étude des flux d individus et des modalités de recrutement chez Formica rufa

Étude des flux d individus et des modalités de recrutement chez Formica rufa Étude des flux d individus et des modalités de recrutement chez Formica rufa Bruno Labelle Théophile Olivier Karl Lesiourd Charles Thevenin 07 Avril 2012 1 Sommaire Remerciements I) Introduction p3 Intérêt

Plus en détail

Traitements statistiques et Informatique. Utilisation du logiciel R

Traitements statistiques et Informatique. Utilisation du logiciel R Traitements statistiques et Informatique. Utilisation du logiciel R Avertissement : Ce document est en cours d élaboration. La présente version n est donc que la version alpha d un travail qui demande

Plus en détail

Principe d un test statistique

Principe d un test statistique Biostatistiques Principe d un test statistique Professeur Jean-Luc BOSSON PCEM2 - Année universitaire 2012/2013 Faculté de Médecine de Grenoble (UJF) - Tous droits réservés. Objectifs pédagogiques Comprendre

Plus en détail

Introduction au langage R et à RStudio

Introduction au langage R et à RStudio Introduction au langage R et à RStudio Christophe Lalanne & Bruno Falissard Ce document regroupe des informations utiles pour démarrer avec le langage R en utilisant le logiciel RStudio. Les instructions

Plus en détail

CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE. Cinquième épreuve d admissibilité STATISTIQUE. (durée : cinq heures)

CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE. Cinquième épreuve d admissibilité STATISTIQUE. (durée : cinq heures) CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE Cinquième épreuve d admissibilité STATISTIQUE (durée : cinq heures) Une composition portant sur la statistique. SUJET Cette épreuve est composée d un

Plus en détail

Méthodes Statistiques Appliquées à la Qualité et à la Gestion des Risques - Le Contrôle Statistique

Méthodes Statistiques Appliquées à la Qualité et à la Gestion des Risques - Le Contrôle Statistique Méthodes Statistiques Appliquées à la Qualité et à la Gestion des Risques - Le Contrôle Statistique Jean Gaudart Laboratoire d Enseignement et de Recherche sur le Traitement de l Information Médicale jean.gaudart@univmed.fr

Plus en détail

Fiches de Cours. CQLS : Jean-François Coeurjolly & Rémy Drouilhet Jean-Francois.Coeurjolly@upmf-grenoble.fr, Remy.Drouilhet@upmf-grenoble.

Fiches de Cours. CQLS : Jean-François Coeurjolly & Rémy Drouilhet Jean-Francois.Coeurjolly@upmf-grenoble.fr, Remy.Drouilhet@upmf-grenoble. Fiches de Cours CQLS : Jean-François Coeurjolly & Rémy Drouilhet Jean-Francois.Coeurjolly@upmf-grenoble.fr, Remy.Drouilhet@upmf-grenoble.fr 2 Table des matières 1 Phénomène de colinéarité 5 1.1 Appréhension

Plus en détail

Principe des tests statistiques : Application à la comparaison d une moyenne à une valeur de référence

Principe des tests statistiques : Application à la comparaison d une moyenne à une valeur de référence 1 / 57 Principe des tests statistiques : Application à la comparaison d une moyenne à une valeur de référence M-A Dronne 2016-2017 2 / 57 Introduction Remarques préliminaires Etablir un plan d expérience

Plus en détail

STATISTIQUES. Cours I : Test d hypothèses. Télécom Physique Strasbourg Module 2101. Fabrice Heitz. Octobre 2014

STATISTIQUES. Cours I : Test d hypothèses. Télécom Physique Strasbourg Module 2101. Fabrice Heitz. Octobre 2014 Télécom Physique Strasbourg Module 2101 STATISTIQUES Cours I : Test d hypothèses Fabrice Heitz Octobre 2014 Fabrice Heitz (Télécom PS) Statistiques 2014 1 / 75 Cours I TESTS D HYPOTHÈSES Fabrice Heitz

Plus en détail

Évaluation de la régression bornée

Évaluation de la régression bornée Thierry Foucart UMR 6086, Université de Poitiers, S P 2 M I, bd 3 téléport 2 BP 179, 86960 Futuroscope, Cedex FRANCE Résumé. le modèle linéaire est très fréquemment utilisé en statistique et particulièrement

Plus en détail

Cours (7) de statistiques à distance, élaboré par Zarrouk Fayçal, ISSEP Ksar-Said, 2011-2012 LES STATISTIQUES INFERENTIELLES

Cours (7) de statistiques à distance, élaboré par Zarrouk Fayçal, ISSEP Ksar-Said, 2011-2012 LES STATISTIQUES INFERENTIELLES LES STATISTIQUES INFERENTIELLES (test de Student) L inférence statistique est la partie des statistiques qui, contrairement à la statistique descriptive, ne se contente pas de décrire des observations,

Plus en détail

Exemples d application

Exemples d application Institut National Agronomique Paris - Grignon Exemples d application du modèle linéaire E Lebarbier, S Robin Département OMIP 12 février 2007 Table des matières 1 Introduction 4 11 Avertissement 4 12 Notations

Plus en détail

Bureau : 238 Tel : 04 76 82 58 90 Email : dominique.muller@upmf-grenoble.fr

Bureau : 238 Tel : 04 76 82 58 90 Email : dominique.muller@upmf-grenoble.fr Dominique Muller Laboratoire Inter-universitaire de Psychologie Bureau : 238 Tel : 04 76 82 58 90 Email : dominique.muller@upmf-grenoble.fr Supports de cours : webcom.upmf-grenoble.fr/lip/perso/dmuller/m2r/acm/

Plus en détail

Statistiques appliquées aux études médicamenteuses cliniques. Pierre BOUTOUYRIE Pharmacologie HEGP

Statistiques appliquées aux études médicamenteuses cliniques. Pierre BOUTOUYRIE Pharmacologie HEGP Statistiques appliquées aux études médicamenteuses cliniques Pierre BOUTOUYRIE Pharmacologie HEGP Grands principes méthodologiques Tout dépend de la formulation de la question scientifique Exemple : on

Plus en détail

Projetde SériesTemporelles

Projetde SériesTemporelles COMMUNAUTE ECONOMIQU E ET MONETAIRE DE L AFRIQUE CENTRALE (CEMAC) INSTITUT SOUS REGIONAL DE STATISTIQUES ET D ECONOMIE APPLIQUEE (ISSEA) Projetde SériesTemporelles MODELISATION DE LA RENTABILITE DE L INDICE

Plus en détail

MODELE A CORRECTION D ERREUR ET APPLICATIONS

MODELE A CORRECTION D ERREUR ET APPLICATIONS MODELE A CORRECTION D ERREUR ET APPLICATIONS Hélène HAMISULTANE Bibliographie : Bourbonnais R. (2000), Econométrie, DUNOD. Lardic S. et Mignon V. (2002), Econométrie des Séries Temporelles Macroéconomiques

Plus en détail

L essentiel sur les tests statistiques

L essentiel sur les tests statistiques L essentiel sur les tests statistiques 21 septembre 2014 2 Chapitre 1 Tests statistiques Nous considérerons deux exemples au long de ce chapitre. Abondance en C, G : On considère une séquence d ADN et

Plus en détail

Chapitre 3 RÉGRESSION ET CORRÉLATION

Chapitre 3 RÉGRESSION ET CORRÉLATION Statistique appliquée à la gestion et au marketing http://foucart.thierry.free.fr/statpc Chapitre 3 RÉGRESSION ET CORRÉLATION La corrélation est une notion couramment utilisée dans toutes les applications

Plus en détail

Introduction à l analyse quantitative

Introduction à l analyse quantitative Introduction à l analyse quantitative Vue d ensemble du webinaire Le webinaire sera enregistré. Les diapositives et tous les autres documents seront envoyés aux participants après la séance. La séance

Plus en détail

Etude des propriétés empiriques du lasso par simulations

Etude des propriétés empiriques du lasso par simulations Etude des propriétés empiriques du lasso par simulations L objectif de ce TP est d étudier les propriétés empiriques du LASSO et de ses variantes à partir de données simulées. Un deuxième objectif est

Plus en détail

ANALYSE : OUTIL D ANALYSE DE DONNEES POUR LES SCIENCES HUAMINES MANUEL DE L UTILISATEUR : PRISE EN MAIN

ANALYSE : OUTIL D ANALYSE DE DONNEES POUR LES SCIENCES HUAMINES MANUEL DE L UTILISATEUR : PRISE EN MAIN Pôle Informatique de Recherche et d Enseignement en Histoire ANALYSE : OUTIL D ANALYSE DE DONNEES POUR LES SCIENCES HUAMINES MANUEL DE L UTILISATEUR : PRISE EN MAIN A. PREMIER PAS 1. INTEGRATION DU TABLEAU

Plus en détail

Régression linéaire. Nicolas Turenne INRA nicolas.turenne@jouy.inra.fr

Régression linéaire. Nicolas Turenne INRA nicolas.turenne@jouy.inra.fr Régression linéaire Nicolas Turenne INRA nicolas.turenne@jouy.inra.fr 2005 Plan Régression linéaire simple Régression multiple Compréhension de la sortie de la régression Coefficient de détermination R

Plus en détail

Statistiques. Rappels de cours et travaux dirigés. Master 1 Biologie et technologie du végétal. Année 2010-2011

Statistiques. Rappels de cours et travaux dirigés. Master 1 Biologie et technologie du végétal. Année 2010-2011 Master 1 Biologie et technologie du végétal Année 010-011 Statistiques Rappels de cours et travaux dirigés (Seul ce document sera autorisé en examen) auteur : Jean-Marc Labatte jean-marc.labatte@univ-angers.fr

Plus en détail

Analyse de l évolution de la structure des ménages dans l enquête sur le budget des ménages

Analyse de l évolution de la structure des ménages dans l enquête sur le budget des ménages Analyse de l évolution de la structure des ménages dans l enquête sur le budget des ménages S. Winandy, R. Palm OCA GxABT/ULg oca.gembloux@ulg.ac.be décembre 2011 1 Introduction La Direction Générale Statistique

Plus en détail

La régression logistique. Par Sonia NEJI et Anne-Hélène JIGOREL

La régression logistique. Par Sonia NEJI et Anne-Hélène JIGOREL La régression logistique Par Sonia NEJI et Anne-Hélène JIGOREL Introduction La régression logistique s applique au cas où: Y est qualitative à 2 modalités Xk qualitatives ou quantitatives Le plus souvent

Plus en détail

Lire ; Compter ; Tester... avec R

Lire ; Compter ; Tester... avec R Lire ; Compter ; Tester... avec R Préparation des données / Analyse univariée / Analyse bivariée Christophe Genolini 2 Table des matières 1 Rappels théoriques 5 1.1 Vocabulaire....................................

Plus en détail