Arbres binaires Version prof Version prof

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Arbres binaires Version prof Version prof"

Transcription

1 Arbres binaires Version prof Version prof types /* déclaration du type t_element */ t_arbrebinaire = t_noeudbinaire t_noeudbinaire = enregistrement t_element cle t_arbrebinaire fg, fd n enregistrement t_noeudbinaire 1 Mesures Exercice 1.1 (Taille) Écrire une fonction qui calcule la taille d'un arbre binaire. Solution 1.1 (Taille) Dénition : taille (arbre vide) = 0 taille (<r, G, D>) = 1 + taille (G) + taille (D) Spécications : La fonction taille () : entier calcule la taille de l'arbre binaire B. algorithme fonction taille : entier retourne (0) retourne (1 + taille (B.fg) + taille (B.fd)) n algorithme fonction taille Exercice 1.2 (Hauteur) Écrire une fonction qui calcule la hauteur d'un arbre binaire. Solution 1.2 (Hauteur) Dénition : hauteur (arbre vide) = -1 hauteur (<r, G, D>) = 1 + max (hauteur (G), hauteur (D)) Spécications : La fonction hauteur () : entier calcule la hauteur de l'arbre binaire B. Elle retourne -1 si ce dernier est vide. Elle utilise la fonction max (entier a, b) qui retourne la valeur maximale de ses deux paramètres. 1

2 algorithme fonction hauteur : entier retourne (-1) retourne (1 + max (hauteur (B.fg), hauteur (B.fd))) n algorithme fonction hauteur Exercice 1.3 (Longueur de cheminement externe) Écrire une fonction qui calcule la longueur de cheminement externe d'un arbre binaire. Solution 1.3 (Longueur de cheminement externe) Dénition : Soit prof (n), la profondeur du n ud n. lce (arbre vide) = 0 B arbre vide lce (B) = prof (f), f : feuilles de B. Spécications : La fonction lce () : entier calcule la longueur de cheminement de l'arbre binaire B. Elle utilise la fonction lce_rec (, entier prof) qui additionne les profondeurs des feuilles de B (non vide), prof étant la profondeur de la racine de B. algorithme fonction lce_rec : entier entier prof retourne 0 si B.fg = B.fd alors retourne prof /* feuille */ retourne (lce_rec (B.fg, prof+1) + lce_rec (B.fd, prof+1)) n algorithme fonction lce_rec algorithme fonction lce : entier retourne lce_rec (B, 0) n algorithme fonction lce Version sans appels sur les ls vides... : algorithme fonction lce_rec : entier entier prof 2

3 variables entier lce si B.fg = B.fd alors retourne prof lce 0 si B.fg <> nul alors lce lce_rec (B.fg, prof+1) si B.fd <> nul alors lce lce + lce_rec (B.fd, prof+1) retourne lce n algorithme fonction lce_rec algorithme fonction lce : entier retourne 0 retourne lce_rec (B, 0) n algorithme fonction lce 2 Parcours Exercice 2.1 (Parcours profondeur) V D I I S E A Q E T R T S U Figure 1 Arbre binaire pour parcours en profondeur 1. En considérant un parcours en profondeur main gauche de l'arbre de la gure 1 donner la liste des n uds pour chacun des trois ordres induits. 2. Donner l'arbre sous la forme <r, G, D> avec pour représenter l'arbre vide. 3. Écrire la procédure permettant d'acher un arbre binaire sous la forme <r, G, D>, avec pour représenter l'arbre vide. 3

4 Solution 2.1 (Parcours profondeur) 1. Parcours en profondeur main gauche : (a) Ordre préxe : V DIQUSET IERAT S (b) Ordre inxe : QUIDEST V ERIT AS (c) Ordre suxe : UQIET SDRET SAIV 2. <V, <D, <I, <Q,, <U,, > >, >, <S, <E,, >, <T,, > > >, <I, <E,, <R,, > >,<A, <T,, >,<S,, > > > > 3. Spécications : La procédure affiche_tad () ache l'arbre B sous la forme <r, G, D>. L'arbre vide est représenté par. algorithme procedure affiche_tad ecrire (" ") ecrire ("<", B.cle, ",") affiche_tad (B.fg) ecrire (",") affiche_tad (B.fd) ecrire (">") n algorithme procedure affiche_tad Exercice 2.2 (Parcours en largeur) Écrire un algorithme qui calcule la largeur d'un arbre binaire. Nous supposons implémentées les opérations sur les les (type t_file). Solution 2.2 (Parcours en largeur) Schéma du parcours : Le calcul de la largeur d'un arbre utilise un parcours en largeur, avec lequel on repère les changements de niveau : on commence par enler la racine, suivie d'une marque (NUL si l'arbre est représenté par un pointeur) tant que la le n'est pas vide, on déle le premier élément : si c'est une marque de changement de niveau : une autre marque est enlée si la le n'est pas vide ; on enle les ls non vides du n ud délé. Le calcul de la largeur se réduira donc à compter le nombre de n uds délés tant qu'on n'a pas changé de niveau. A chaque changement de niveau, on garde la largeur la plus grande déjà rencontrée. 4

5 Spécications : La fonction largeur (t_arbrebinaires B) retourne la largeur de l'arbre B. algorithme fonction largeur : entier variables entier larg, larg_max t_file f retourne (0) f file-vide () f enfiler (B, f) f enfiler (nul, f) /* marque de changement de niveau */ larg 0 larg_max 1 faire A defiler (f) si larg > larg_max alors larg_max larg si non est_vide (f) alors larg 0 f enfiler (nul, f) larg larg + 1 si B.fg <> nul alors f enfiler (B.fg, f) si B.fd <> nul alors f enfiler (B.fd, f) tant que non est_vide (f) retourne (larg_max) n algorithme fonction largeur 3 Applications Exercice 3.1 (Du dynamique au statique) Écrire un algorithme qui construit le vecteur contenant la représentation hiérarchique d'un arbre binaire représenté dynamiquement. La valeur particulière sera utilisée pour indiquer un arbre vide. Par exemple, ci-dessous la représentation de l'arbre de la gure 2 : L'arbre ici est considéré comme quelconque. Que peut-on modier si l'arbre est parfait? 5

6 Figure 2 Arbre pour représentation hiérarchique Solution 3.1 (Numérotation hiérarchique) La procédure d'appel hierarchique (, t_ab_hierarchique T ) ci-dessous sert à initialiser tout le vecteur T à la valeur avant d'appeler la procédure construit qui construit le vecteur T représentation hiérarchique de l'arbre B (on supposera la taille du vecteur susante pour représenter B). Procédure d'appel algorithme procedure construit entier i parametres globaux t_ab_hierarchique T si B <> nul alors T[i] B.cle construit (B.fg, 2*i, T) construit (B.fd, 2*i+1, T) n algorithme procedure construit algorithme procedure hierarchique parametres globaux t_ab_hierarchique T variables entier i pour i 1 jusqu'a nbmaxnoeuds faire T[i] n pour construit (B, 1, T) n algorithme procedure hierarchique Remarque : On peut éviter l'initialisation complète du vecteur, il sut alors, dans la procédure récursive, de mettre la valeur dans T [i] lorsque l'arbre est vide. Tout dépend de l'utilisation que l'on fera de l'arbre : si on fait un parcours classique, l'initialisation est inutile. Si on veut pouvoir accéder à n'importe quel n ud directement, elle est nécessaire. 6

7 Dans la version ci-dessous (utilisant un parcours largeur), seuls les ls vides utiles `sont mis à. Les élément de le auront le type suivant : types t_elt_file = enregistrement entier no n enregistrement t_elt_file algorithme procedure dyn_to stat parametres globaux t_ab_hierarchique T variables t_file f t_elt_file e, e2 entier no T[1] f file_vide () e.arbre B e.no 1 f enfiler (e, f) faire e defiler (f) e2.no 2 * e.no si e.arbre.fg = nul alors T[e2.no] e2.arbre e.arbre.fg f enfiler (e2, f) e2.no e2.no + 1 si e.arbre.fg = nul alors T[e2.no] e2.arbre e.arbre.fd f enfiler (e2, f) tant que non est_vide (f) n algorithme procedure dyn_to_stat 7

8 Exercice 3.2 (Dégénéré, parfait ou complet) On suppose que les fonctions hauteur et taille sont implémentées. Les algorithmes sont à écrire en utilisant la représentation dynamique des arbres binaires. Toutefois, dans certains cas, il peut être intéressant de discuter des versions utilisant la représentation par numérotation hiérarchique. 1. Arbre dégénéré : (a) Rappeler ce qu'est un arbre dégénéré. (b) Comment tester si un arbre est dégénéré si on connaît sa taille et sa hauteur? (c) Écrire une fonction qui détermine si un arbre binaire n'est pas dégénéré (sans utiliser hauteur et taille). 2. Arbre complet : (a) Rappeler ce qu'est un arbre complet. (b) Comment tester si un arbre est complet en utilisant sa taille et sa hauteur? (c) Écrire un algorithme qui teste si un arbre est complet (vous pouvez utiliser la fonction hauteur). (d) Écrire à nouveau l'algorithme de test sans utiliser hauteur. 3. Arbre parfait : (a) Rappeler ce qu'est un arbre parfait. (b) Comment modier les algorithmes qui testent si un arbre est complet pour qu'ils testent si l'arbre est parfait? Solution 3.2 (Dégénéré, parfait ou complet) 1. Arbre dégénéré : (a) Un arbre dégénéré est un arbre dont tous les n uds internes sont des points simples. (b) L'arbre B est dégénéré si taille(a) = hauteur(a) + 1. (c) Spécications : La fonction non_degenere prend un arbre binaire en paramètre et retourne vrai s'il n'est pas dégénéré, faux. Principe : Il sut de vérier qu'il contient au moins un point double : si l'arbre n'est pas vide, alors si la racine est un point double, l'arbre n'est pas dégénéré. Sinon, on rappelle la fonction sur son ls unique. Si on arrive sur un arbre vide, il est dégénéré. 8

9 Première version, pas très optimale : algorithme fonction non_degenere : booleen retourne (faux) si (B.fg <> nul) et (B.fd <> nul) alors retourne (vrai) si B.fg = nul alors retourne (non_degenere (B.fd)) retourne (non_degenere (B.fd)) n algorithme fonction non_degenere Une autre version, plus optimale : algorithme fonction fili_rec : booleen si B.fg = nul alors si B.fd = nul alors retourne (vrai) retourne (fili_rec (B.fd)) si B.fd = nul alors retourne (fili_rec (B.fg)) retourne (faux) n algorithme fonction fili_rec algorithme fonction non_degenere : booleen retourne (faux) retourne (non fili_rec (B)) n algorithme fonction non_degenere 9

10 2. Arbre complet : (a) Un arbre dont tous les niveaux sont remplis est complet. (b) L'arbre B est complet si taille(b) = 2 hauteur(b)+1 1 ou log 2 (taille(b) + 1) = hauteur(b) + 1 (c) Spécications : La fonction test_complet retourne un booléen indiquant si l'arbre binaire passé en paramètre est complet. algorithme fonction est_complet_rec : booleen entier h retourne (h = -1) retourne (est_complet_rec (B.fg, h-1) et est_complet_rec (B.fd, h-1)) n algorithme fonction est_complet_rec algorithme fonction test_complet : booleen retourne (est_complet_rec (B, hauteur (B))) n algorithme test_complet 10

11 (d) Le même test avec un parcours en largeur : algorithme fonction est_complet_larg : booleen variables t_file f /* contient des t_arbrebinaire */ entier larg, larg_prochain /* actuelle, prochain niveau */ retourne (vrai) f file_vide () f enfiler (B, f) f enfiler (nul, f) larg 0 larg_prochain 1 faire B defiler (f) si larg <> larg_prochain alors vide_file (f) retourne (faux) si non est_vide (f) alors larg_prochain 2 * larg larg 0 f enfiler (nul, f) larg larg + 1 si B.fg <> nul alors f enfiler (B.fg, f) si B.fd <> nul alors f enfiler (B.fd, f) tant que non est_vide (f) retourne (vrai) n algorithme fonction est_complet_larg 11

12 3. Arbre parfait : (a) Un arbre est parfait si tous ses niveaux sont remplis, sauf le dernier dans lequel les feuilles sont rangées la plus à gauche possible. (b) Spécications : La fonction est_parfait_larg retourne un booléen indiquant si l'arbre binaire passé en paramètre est parfait. algorithme fonction est_parfait_larg : booleen variables t_file f /* contient des t_arbrebinaire */ booleen fils_vide, parfait retourne (vrai) f file_vide () f enfiler (B, f) fils_vide faux parfait faux faire B defiler (f) si B.fg = nul alors fils_vide vrai parfait B.fd = nul f enfiler (B.fg, f) si B.fd <> nul alors f enfiler (B.fd, f) fils_vide vrai tant que non est_vide (f) et non fils_vide tant que non est_vide (f) et parfait faire B defiler (f) parfait B.fg = B.fd n tant que vide_file (f) retourne(parfait) n algorithme fonction est_parfait_larg 12

TP 8 : Arbres binaires de recherche

TP 8 : Arbres binaires de recherche TP 8 : Arbres binaires de recherche Semaine du 17 Mars 2008 Exercice 1 Dénir une structure struct noeud_s permettant de coder un n ud d'un arbre binaire contenant une valeur entière. Ajouter des typedef

Plus en détail

Série d exercices N 9 Arbres

Série d exercices N 9 Arbres Série d exercices N 9 Arbres Exercice 1 a) Ecrire une fonction ARBIN creerarbreentiers() qui permet de créer et de renvoyer l arbre d entiers suivant : b) Ecrire une fonction int feuilles(arbin a) qui

Plus en détail

Structures de données, IMA S6

Structures de données, IMA S6 Structures de données, IMA S6 Arbres Binaires d après un cours de N. Devésa, Polytech Lille. Laure Gonnord http://laure.gonnord.org/pro/teaching/ Laure.Gonnord@polytech-lille.fr Université Lille 1 - Polytech

Plus en détail

C12. Les structures arborescentes. Août 2006

C12. Les structures arborescentes. Août 2006 Les structures arborescentes Août 2006 Objectifs du C12 Connaître le principe de la structure d arbre binaire Connaître les détails d implémentation de la structure d arbre binaire de recherche Les structures

Plus en détail

Arbres binaires de recherche (ABR) Binary Search Trees (BST)

Arbres binaires de recherche (ABR) Binary Search Trees (BST) LSVIII-BIM Algorithmie, 2015 Arbres binaires de recherche (ABR) Binary Search Trees (BST) I. Arbres binaires 1. Structure 2. Parcours II. Arbres binaires de recherche 1. Définition 2. Opérations sur les

Plus en détail

Gestion d'un entrepôt

Gestion d'un entrepôt Gestion d'un entrepôt Épreuve pratique d'algorithmique et de programmation Concours commun des écoles normales supérieures Durée de l'épreuve: 3 heures 30 minutes Juin/Juillet 2010 ATTENTION! N oubliez

Plus en détail

I Arbres binaires. Lycée Faidherbe 2014-2015. 1 Rappels 2 1.1 Définition... 2 1.2 Dénombrements... 2 1.3 Parcours... 3

I Arbres binaires. Lycée Faidherbe 2014-2015. 1 Rappels 2 1.1 Définition... 2 1.2 Dénombrements... 2 1.3 Parcours... 3 I Arbres binaires 2014-2015 Table des matières 1 Rappels 2 1.1 Définition................................................ 2 1.2 Dénombrements............................................ 2 1.3 Parcours.................................................

Plus en détail

10' - LES ARBRES BINAIRES

10' - LES ARBRES BINAIRES Ch 10' - LES ARBRES BINAIRES On va restreindre les capacités des arbres en obligeant les nœuds à posséder au maximum deux sous-arbres. Ces nouveaux arbres seront plus faciles à maîtriser que les arbres

Plus en détail

Arbres Binaire. PSI DAKHLA Prof Youssef El marzak. 1 Prof Youssef Elmarzak

Arbres Binaire. PSI DAKHLA Prof Youssef El marzak. 1 Prof Youssef Elmarzak Arbres Binaire PSI DAKHLA Prof Youssef El marzak 1 Prof Youssef Elmarzak 1.introduction: Les arbre sont très utilisées en informatique, d une part parce que les informations sont souvent hiérarchisées,

Plus en détail

Cours Algorithmique, 2ème partie AS IUT

Cours Algorithmique, 2ème partie AS IUT Cours Algorithmique, 2ème partie AS IUT Cours 2 : Arbres Binaires Anne Vilnat http://www.limsi.fr/individu/anne/coursalgo Plan 1 Représentations arborescentes 2 Définition d un arbre binaire récursive

Plus en détail

EXAMEN FINAL. 2 Février 2006-2 heures Aucun document autorisé

EXAMEN FINAL. 2 Février 2006-2 heures Aucun document autorisé MIE - E ANNÉE ALGORITHMIQUE GÉNÉRALE Vincent Mousseau EXAMEN FINAL Février 006 - heures Aucun document autorisé Exercice : On s intéresse à la gestion informatique des réservations sur l année d une salle

Plus en détail

Arbres ordonnés, binaires, tassés, FAP, tri par FAP, tas, tri par tas

Arbres ordonnés, binaires, tassés, FAP, tri par FAP, tas, tri par tas Arbres ordonnés, binaires, tassés, FAP, tri par FAP, tas, tri par tas 1. Arbres ordonnés 1.1. Arbres ordonnés (Arbres O) On considère des arbres dont les nœuds sont étiquetés sur un ensemble muni d'un

Plus en détail

Algorithmique IN102 TD 3

Algorithmique IN102 TD 3 Algorithmique IN10 TD 16 décembre 005 Exercice 1 Clairement, il existe des arbres de hauteur h à h + 1 éléments : il sut pour cela que leurs n uds internes aient au plus un ls non vide. On a alors un arbre

Plus en détail

Chap. VII : arbres binaires

Chap. VII : arbres binaires Chap. VII : arbres binaires 1. Introduction Arbre : collection d objets avec une structure hiérarchique Structure intrinsèque descendants d une personne (elle incluse) A ascendant connus d une personne

Plus en détail

Université Paris Diderot Paris 7. TD n 2. Arbres Binaire de Recherche

Université Paris Diderot Paris 7. TD n 2. Arbres Binaire de Recherche Université Paris Diderot Paris L Informatique Algorithmique Année 00-0, er semestre TD n Arbres Binaire de Recherche Le type de donné arbre" sera utilisé pour indiquer l ensemble de toutes les Arbres Binaires

Plus en détail

Les arbres binaires. Terminologie avancée (1) TAD arbre binaire. Terminologie avancée (2) Terminologie avancée (3)

Les arbres binaires. Terminologie avancée (1) TAD arbre binaire. Terminologie avancée (2) Terminologie avancée (3) Les arbres Structures les plus importantes et les plus utilisées en informatique Liste = cas dégénéré d arbre Eemples: Arbres généalogiques Arbres de classification Arbres d epression / - Traduction de

Plus en détail

Algorithmique et Structures de données Feuille 5 : Arbres binaires

Algorithmique et Structures de données Feuille 5 : Arbres binaires Université Bordeaux Algorithmique et Structures de données Feuille : Arbres binaires On considère le type abstrait arbrebinaire d objet défini en cours. Pour rappel voir annexe A. LicenceInformatique0-0

Plus en détail

Marches, permutations et arbres binaires aléatoires

Marches, permutations et arbres binaires aléatoires Marches, permutations et arbres binaires aléatoires Épreuve pratique d algorithmique et de programmation Concours commun des Écoles Normales Supérieures Durée de l épreuve: 4 heures Cœfficient: 4 Juillet

Plus en détail

ALGORITHMIQUE II. Récurrence et Récursivité. SMI AlgoII

ALGORITHMIQUE II. Récurrence et Récursivité. SMI AlgoII ALGORITHMIQUE II Récurrence et Récursivité Récurrence Suite récurrente: la déition d une suite est la donnée d un terme général déi en fonction du (ou des) terme(s) précédant(s) D un terme initial qui

Plus en détail

pedigree d'un cheval Zoe ; son père est Tonnerre et sa mère Belle ; mère de Belle est Rose et père de Belle est Eclair jean jean marc paul luc

pedigree d'un cheval Zoe ; son père est Tonnerre et sa mère Belle ; mère de Belle est Rose et père de Belle est Eclair jean jean marc paul luc Chap. 3 Les arbres binaires Un arbre est un ensemble de nœuds, organisés de façon hiérarchique, à partir d'un nœud distingué, appelé racine. La structure d'arbre est l'une des plus importantes et des plus

Plus en détail

Les types somme. 1 Préparation du TP. 2 Interface du module Carte. Algorithmes et Programmation Impérative 2. 2.1 Les types de donnees

Les types somme. 1 Préparation du TP. 2 Interface du module Carte. Algorithmes et Programmation Impérative 2. 2.1 Les types de donnees Univ. Lille1 - Licence Informatique 2ème année 2014-15 Algorithmes et Programmation Impérative 2 Les types somme 1 Préparation du TP Dans le prochain TP, vous allez réaliser un programme de jeu de poker

Plus en détail

Arbres binaires de recherche

Arbres binaires de recherche Chapitre 1 Arbres binaires de recherche 1 Les arbre sont très utilisés en informatique, d une part parce que les informations sont souvent hiérarchisées, et peuvent être représentées naturellement sous

Plus en détail

Partie 3. Gilles Lebrun (gilles.lebrun@unicaen.fr)

Partie 3. Gilles Lebrun (gilles.lebrun@unicaen.fr) Partie 3 Gilles Lebrun (gilles.lebrun@unicaen.fr) Les arbres binaires Définition : C est une structure arborescente ou hiérarchique ou récursive Chaque élément (nœud) constituant la structure de l arbre

Plus en détail

Programmation récursive

Programmation récursive Année 2004-2005 F. Lévy IUT De Villetaneuse Dép t informatique Cours d'algorithmique 2 éme Année Cours 8 Programmation récursive 1. Qu'est-ce que la programmation récursive Définition : la programmation

Plus en détail

Algorithmique et Programmation Impérative 2 Les arbres binaires de recherche

Algorithmique et Programmation Impérative 2 Les arbres binaires de recherche Algorithmique et Programmation Impérative 2 Les arbres binaires de recherche N.E. Oussous oussous@lifl.fr FIL USTL SDC - Licence p.1/16 Arbres binaires de recherche Un arbre binaire T est un arbre binaire

Plus en détail

Structures de données non linéaires

Structures de données non linéaires Structures de données non linéaires I. Graphes Définition Un graphe (simple) orienté G est un couple (S, A), où : S est un ensemble dont les éléments sont appelés les sommets. A est un ensemble de couples

Plus en détail

Types et Structures de Données LI213

Types et Structures de Données LI213 Types et Structures de Données LI213 Interrogation du 3 mars 2013 Aucun document n est autorisé. 1 Listes, piles et files Pour l exercice suivant, on a besoin de définir une liste chaînée de personnes.

Plus en détail

3.3 Les Files d attente (Queues)

3.3 Les Files d attente (Queues) 3.3 Les Files d attente (Queues) 3.3.1 Définition La file d attente est une structure qui permet de stocker des objets dans un ordre donné et de les retirer dans le même ordre, c est à dire selon le protocole

Plus en détail

Les arbres Florent Hivert

Les arbres Florent Hivert 1 de 1 Algorithmique Les arbres Florent Hivert Mél : Florent.Hivert@lri.fr Page personnelle : http://www.lri.fr/ hivert 2 de 1 Algorithmes et structures de données La plupart des bons algorithmes fonctionnent

Plus en détail

Exercice sur les arbres binaires de recherche

Exercice sur les arbres binaires de recherche Exercice sur les arbres binaires de recherche Voici une liste aléatoire de 1 éléments. Notez que vous pouvez faire cet exercice en prenant une autre liste aléatoire ; évidemment, il y a peu de chances

Plus en détail

Initiation aux algorithmes des arbres binaires

Initiation aux algorithmes des arbres binaires Initiation aux algorithmes des arbres binaires Plan I. Les arbres biniaires I. Définition II. Représentation graphique d un arbre III. Terminologie IV. Représentation en mémoire des arbres binaires V.

Plus en détail

Université Laval Faculté des sciences et de génie Département d'informatique et de génie logiciel IFT-3101. Travail pratique #2

Université Laval Faculté des sciences et de génie Département d'informatique et de génie logiciel IFT-3101. Travail pratique #2 Université Laval Faculté des sciences et de génie Département d'informatique et de génie logiciel IFT-3101 Danny Dubé Hiver 2014 Version : 11 avril Questions Travail pratique #2 Traduction orientée-syntaxe

Plus en détail

chapitre 4 Nombres de Catalan

chapitre 4 Nombres de Catalan chapitre 4 Nombres de Catalan I Dénitions Dénition 1 La suite de Catalan (C n ) n est la suite dénie par C 0 = 1 et, pour tout n N, C n+1 = C k C n k. Exemple 2 On trouve rapidement C 0 = 1, C 1 = 1, C

Plus en détail

Les structures de données. Rajae El Ouazzani

Les structures de données. Rajae El Ouazzani Les structures de données Rajae El Ouazzani Les arbres 2 1- Définition de l arborescence Une arborescence est une collection de nœuds reliés entre eux par des arcs. La collection peut être vide, cad l

Plus en détail

Programmation C++ (débutant)/les tableaux statiques

Programmation C++ (débutant)/les tableaux statiques Programmation C++ (débutant)/les tableaux statiques 1 Programmation C++ (débutant)/les tableaux statiques Le cours du chapitre 6 : les tableaux statiques Les tableaux Une variable entière de type int ne

Plus en détail

Info0101 Intro. à l'algorithmique et à la programmation. Cours 5. Tableaux

Info0101 Intro. à l'algorithmique et à la programmation. Cours 5. Tableaux Info0101 Intro. à l'algorithmique et à la programmation Cours 5 Tableaux Pierre Delisle, Cyril Rabat et Christophe Jaillet Université de Reims Champagne-Ardenne Département de Mathématiques et Informatique

Plus en détail

Chaîne d additions ATTENTION!

Chaîne d additions ATTENTION! Chaîne d additions Épreuve pratique d algorithmique et de programmation Concours commun des écoles normales supérieures Durée de l épreuve: 3 heures 30 minutes Juin 2012 ATTENTION! N oubliez en aucun cas

Plus en détail

Fiche de TD-TP no. 4

Fiche de TD-TP no. 4 Master 1 Informatique Programmation Fonctionnelle, p. 1 Fiche de TD-TP no. 4 Exercice 1. Voici trois façons différentes de définir le type Image : type Image = [[ Int ]] data Image = Image [[ Int ]] newtype

Plus en détail

Listes et arbres binaires

Listes et arbres binaires Des structures de données dynamiques Listes, Listes ordonnées Arbres binaires, arbre binaires de recherche Listes chaînées Utile si le nombre d éléments n est pas connu à l avance et évolue beaucoup. Permet

Plus en détail

Arbres binaires de recherche et arbres rouge noir

Arbres binaires de recherche et arbres rouge noir Institut Galilée lgo, rbres, Graphes I nnée 006-007 License rbres binaires de recherche et arbres rouge noir Rappels de cours et correction du TD rbres binaires de recherche : définitions Un arbre binaire

Plus en détail

Algorithmique et Analyse d Algorithmes

Algorithmique et Analyse d Algorithmes Algorithmique et Analyse d Algorithmes L3 Info Cours 5 : Structures de données linéaires Benjamin Wack 2015-2016 1 / 37 La dernière fois Logique de Hoare Dichotomie Aujourd hui Type Abstrait de Données

Plus en détail

Arbres Binaires de Recherche : Introduction

Arbres Binaires de Recherche : Introduction Arbres Binaires de Recherche : Introduction I. Guessarian cours ISN 11 janvier 2012 LIAFA, CNRS and University Paris Diderot 1/13 Arbre Binaire de Recherche Un Arbre Binaire de Recherche (ABR) est un arbre

Plus en détail

Recherche dans un tableau

Recherche dans un tableau Chapitre 3 Recherche dans un tableau 3.1 Introduction 3.1.1 Tranche On appelle tranche de tableau, la donnée d'un tableau t et de deux indices a et b. On note cette tranche t.(a..b). Exemple 3.1 : 3 6

Plus en détail

J0MS7301 : Algorithmique et Programmation Objet. Feuille d'exercices 2. Structures

J0MS7301 : Algorithmique et Programmation Objet. Feuille d'exercices 2. Structures Master MIMSE - Spécialité 3-1ère Année J0MS7301 : Algorithmique et Programmation Objet Feuille d'exercices 2 Structures Exercice 1 : Ecrire un programme qui : dénit une structure horaire au format heures,

Plus en détail

Séance de TD 05 TD05. 1 Exercice 1. 1.1 Question 1 : dessins des ABR avec hauteurs différentes AG51

Séance de TD 05 TD05. 1 Exercice 1. 1.1 Question 1 : dessins des ABR avec hauteurs différentes AG51 Séance de TD 05 1 Exercice 1 1. Dessinez les arbres binaires de recherche de hauteur 2,3,4,5 et 6 pour le même ensemble de clés S = 1,4,5,10,16,17,21. 2. Donnez l algorithme de l opération ArbreRechercher(x,k)

Plus en détail

Option Informatique Arbres binaires équilibrés

Option Informatique Arbres binaires équilibrés Option Informatique Arbres binaires équilibrés Sujet novembre 2 Partie II : Algorithmique et programmation en CaML Cette partie doit être traitée par les étudiants qui ont utilisé le langage CaML dans

Plus en détail

Langage C/C++ TD 3-4 : Création dynamique d objets. Hubert Godfroy. 27 novembre 2014

Langage C/C++ TD 3-4 : Création dynamique d objets. Hubert Godfroy. 27 novembre 2014 Langage C/C++ TD 3-4 : Création dynamique d objets Hubert Godfroy 7 novembre 014 1 Tableaux Question 1 : Écrire une fonction prenant un paramètre n et créant un tableau de taille n (contenant des entiers).

Plus en détail

Algorithmique P2. HeapSort et files de priorité Ulg, 2009-2010 Renaud Dumont

Algorithmique P2. HeapSort et files de priorité Ulg, 2009-2010 Renaud Dumont Algorithmique P2 HeapSort et files de priorité Ulg, 2009-2010 Renaud Dumont Structure de tas - arbre Un tas est une structure de données qui Permet un nouveau type de tri (Tri par tas) Permet l'implémentation

Plus en détail

Introduction: Arbres de recherche + Rappel: Arbres binaires de recherche

Introduction: Arbres de recherche + Rappel: Arbres binaires de recherche Introduction: Arbres de recherche + Rappel: Arbres binaires de recherche Dictionnaires ordonnés: Opérations principales: trouver(k): find(k): Si le dictionnaire a une entrée de clé k, retourne la valeur

Plus en détail

Points fixes de fonctions à domaine fini

Points fixes de fonctions à domaine fini ÉCOLE POLYTECHNIQUE ÉCOLE NORMALE SUPÉRIEURE DE CACHAN ÉCOLE SUPÉRIEURE DE PHYSIQUE ET DE CHIMIE INDUSTRIELLES CONCOURS D ADMISSION 2013 FILIÈRE MP HORS SPÉCIALITÉ INFO FILIÈRE PC COMPOSITION D INFORMATIQUE

Plus en détail

1 Définition. 2 Recherche dans un Arbre-B. 3 Insertion dans un Arbre-B. 4 Suppression dans un Arbre-B. Arbre-B

1 Définition. 2 Recherche dans un Arbre-B. 3 Insertion dans un Arbre-B. 4 Suppression dans un Arbre-B. Arbre-B Déition Recherche Arbre-B Insertion Arbre-B Suppression Arbre-B Déition Recherche Arbre-B Insertion Arbre-B Suppression Arbre-B Plan... Les arbres-b Géraldine Del Mondo, Nicolas Delestre 1 Déition 2 Recherche

Plus en détail

Diagrammes de décisions binaires

Diagrammes de décisions binaires Diagrammes de décisions binaires Épreuve pratique d'algorithmique et de programmation Concours commun des écoles normales supérieures Durée de l'épreuve: 3 heures 30 minutes Juillet 2009 ATTENTION! N oubliez

Plus en détail

Devoir Surveillé informatique MP, PC, PSI

Devoir Surveillé informatique MP, PC, PSI NOM : Classe : Devoir Surveillé informatique MP, PC, PSI L utilisation des calculatrices n est pas autorisée pour cette épreuve. Le langage de programmation choisi est Python. L espace laissé pour les

Plus en détail

Algorithmes pour les graphes

Algorithmes pour les graphes Algorithmes pour les graphes 1 Définitions Un graphe est représenté par : V : L ensemble des noeuds ou sommets. E : L ensemble des arcs ou arrêtes. E est un sous-ensemble de V xv. On note G = (V, E). Si

Plus en détail

Arbres binaires de recherche

Arbres binaires de recherche Chapitre 6 Arbres binaires de recherche 6.1 Introduction On a étudié le problème de la recherche dans une collection d éléments ordonnés entre eux : on a montré que Pour une liste contiguë, la recherche

Plus en détail

Correction langage Java

Correction langage Java MINISTÈRE DE L ÉCOLOGIE, DU DÉVELOPPEMENT DURABLE, DES TRANSPORTS ET DU LOGEMENT EXAMEN PROFESSIONNEL DE VÉRIFICATION D APTIDUDE AUX FONCTIONS DE PROGRAMMEUR Session 2010 Correction langage Java Langage:

Plus en détail

Partie I : Automates et langages

Partie I : Automates et langages 2 Les calculatrices sont interdites. N.B. : Le candidat attachera la plus grande importance à la clarté, à la précision et à la concision de la rédaction. Si un candidat est amené à repérer ce qui peut

Plus en détail

Projet d informatique M1BI : Compression et décompression de texte. 1 Généralités sur la compression/décompression de texte

Projet d informatique M1BI : Compression et décompression de texte. 1 Généralités sur la compression/décompression de texte Projet d informatique M1BI : Compression et décompression de texte Le but de ce projet est de coder un programme réalisant de la compression et décompression de texte. On se proposera de coder deux algorithmes

Plus en détail

INF601 : Algorithme et Structure de données

INF601 : Algorithme et Structure de données Cours 2 : TDA Liste B. Jacob IC2/LIUM 15 février 2010 Plan 1 Définition du TDA Liste 2 Réalisation du TDA Liste 3 Type de stockage des éléments 4 Recherche d un élément Dans une liste non triée Dans une

Plus en détail

Plan. Bases de données. Cours 3 : Indexation. Opérations sur les fichiers. Le fichier comme abstraction du support physique. Polytech Paris-Sud

Plan. Bases de données. Cours 3 : Indexation. Opérations sur les fichiers. Le fichier comme abstraction du support physique. Polytech Paris-Sud Plan Bases de données Polytech Paris-Sud Apprentis 4 ème année Cours 3 : Indexation kn@lri.fr http://www.lri.fr/~kn 3.1 Introduction 3.2 Types d'indexes 3.3 Structures de données pour les indexes 3.4 Hash-index

Plus en détail

Algorithmique et Programmation Projets 2012/2013

Algorithmique et Programmation Projets 2012/2013 3 Dames 3. Objectif Il s agit d écrire un programme jouant aux Dames selon les règles. Le programme doit être le meilleur possible. Vous utiliserez pour cela l algorithme α β de recherche du meilleur coup

Plus en détail

INF130 - Ordinateurs et programmation. Semaine 08. Document présenté par Frédérick Henri et conçu par les enseignants en informatique du SEG

INF130 - Ordinateurs et programmation. Semaine 08. Document présenté par Frédérick Henri et conçu par les enseignants en informatique du SEG INF130 - Ordinateurs et programmation Semaine 08 Document présenté par Frédérick Henri et conçu par les enseignants en informatique du SEG Retour sur l'examen intra Objectifs Tableaux à deux dimensions

Plus en détail

Compte-rendu de projet de Système de gestion de base de données

Compte-rendu de projet de Système de gestion de base de données Compte-rendu de projet de Système de gestion de base de données Création et utilisation d'un index de jointure LAMBERT VELLER Sylvain M1 STIC Université de Bourgogne 2010-2011 Reponsable : Mr Thierry Grison

Plus en détail

Programmation avancée

Programmation avancée Programmation avancée Chapitre 1 : Complexité et les ABR (arbres binaires de recherche) 1 1 IFSIC Université de Rennes-1 M2Crypto, octobre 2011 Plan du cours 1 2 3 4 5 6 7 8 9 10 Algorithmes Définition

Plus en détail

Cours numéro 9 : arbres binaires et de recherche

Cours numéro 9 : arbres binaires et de recherche Cours numéro 9 : arbres binaires et de recherche LI213 Types et Structures de données Licence d Informatique Université Paris 6 Arbre Arbre Un arbre est un ensemble fini A d éléments, liés entre eux par

Plus en détail

Licence STIC, Semestre 1 Algorithmique & Programmation 1

Licence STIC, Semestre 1 Algorithmique & Programmation 1 Licence STIC, Semestre 1 Algorithmique & Programmation 1 Exercices Alexandre Tessier 1 Introduction 2 instruction de sortie 3 expressions 4 variable informatique 5 séquence d instructions, trace Exercice

Plus en détail

Le problème des multiplications matricielles enchaînées peut être énoncé comme suit : étant

Le problème des multiplications matricielles enchaînées peut être énoncé comme suit : étant Licence informatique - L Année 0/0 Conception d algorithmes et applications (LI) COURS Résumé. Dans cette cinquième séance, nous continuons l exploration des algorithmes de type Programmation Dynamique.

Plus en détail

Architecture des Systèmes d Information Architecture des Systèmes d Information

Architecture des Systèmes d Information Architecture des Systèmes d Information Plan... Tableaux et tris I3 - Algorithmique et programmation 1 Rappels Nicol Delestre 2 Tableaux à n dimensions 3 Initiation aux tris Tableaux - v2.0.1 1 / 27 Tableaux - v2.0.1 2 / 27 Rappels : tableau

Plus en détail

Corrigé des exercices

Corrigé des exercices hapitre 1 option informatique orrigé des eercices Arbres binaires Eercice 1 La première solution qui vient à l esprit est sans doute celle-ci : let rec profondeur p = function Nil > [] a when p = 0 > [a]

Plus en détail

INF601 : Algorithme et Structure de données

INF601 : Algorithme et Structure de données Cours 2 : TDA Arbre Binaire B. Jacob IC2/LIUM 27 février 2010 Plan 1 Introuction 2 Primitives u TDA Arbin 3 Réalisations u TDA Arbin par cellules chaînées par cellules contiguës par curseurs (faux pointeurs)

Plus en détail

L2 - Algorithmique et structures de données (Année 2010/2011) Examen (2 heures)

L2 - Algorithmique et structures de données (Année 2010/2011) Examen (2 heures) L2 - lgorithmique et structures de données (nnée 2010/2011) Delacourt, Phan Luong, Poupet xamen (2 heures) Les documents (cours, TD, TP) sont autorisés. Les quatre exercices sont indépendants. À la fin

Plus en détail

alg - Arbres binaires de recherche [br] Algorithmique

alg - Arbres binaires de recherche [br] Algorithmique alg - Arbres binaires de recherche [br] Algorithmique Karine Zampieri, Stéphane Rivière, Béatrice Amerein-Soltner Unisciel algoprog Version 25 avril 2015 Table des matières 1 Définition, Parcours, Représentation

Plus en détail

Feuille d'exercices 1. Prise en main. Ecrire un programme qui ache la phrase Bonjour le monde! à l'écran.

Feuille d'exercices 1. Prise en main. Ecrire un programme qui ache la phrase Bonjour le monde! à l'écran. Master MIMSE - Spécialité 3-1ère Année J0MS7301 : Algorithmique et Programmation Objet Feuille d'exercices 1 Prise en main Exercice 0 : Ecrire un programme qui ache la phrase Bonjour le monde! à l'écran.

Plus en détail

4.2 Les arbres binaires de recherche

4.2 Les arbres binaires de recherche 4.2 Les arbres binaires de recherche 4.2.1 Définition Les arbres binaires de recherche sont utilisés pour accélérer la recherche dans les arbres m-aires. Un arbre binaire de recherche est un arbre binaire

Plus en détail

X2012 INF421 Examen de rattrapage / 25 novembre 2013. 1 Le compte est bon

X2012 INF421 Examen de rattrapage / 25 novembre 2013. 1 Le compte est bon X2012 INF421 Examen de rattrapage / 25 novembre 2013 Tous documents autorisés (poly, notes de cours, notes de PC). Dictionnaires électroniques autorisés pour les élèves étrangers. L'énoncé est composé

Plus en détail

Trier des tableaux en C++ : efficacité du std::sort (STL) et tris paramétrés

Trier des tableaux en C++ : efficacité du std::sort (STL) et tris paramétrés Trier des tableaux en C++ : efficacité du std::sort (STL) et tris paramétrés Hélène Toussaint, juillet 2014 Sommaire 1. Efficacité du std::sort... 1 1.1. Conditions expérimentales... 1 1.2. Tableaux de

Plus en détail

Licence informatique - L3 Année 2012/2013. Conception d algorithmes et applications (LI325) COURS 2

Licence informatique - L3 Année 2012/2013. Conception d algorithmes et applications (LI325) COURS 2 Licence informatique - L Année 0/0 Conception d algorithmes et applications (LI) COURS Résumé. Cette deuxième séance est entièrement consacrée aux applications du principe Diviser pour Régner. Nous regarderons

Plus en détail

Introduction Tableaux / Vecteurs Listes chaînées Un principe général Quelques algorithmes de tri À faire pour lundi prochain. Tableaux VS Listes

Introduction Tableaux / Vecteurs Listes chaînées Un principe général Quelques algorithmes de tri À faire pour lundi prochain. Tableaux VS Listes Tableaux VS Listes Tableaux VS Listes Petit chapitre. Plan Introduction Tableaux / Vecteurs Définition abstraite Qu a-t-on fait avec des vecteurs? Que peut-on faire avec des vecteurs? Listes chaînées Définition

Plus en détail

ARBRES BINAIRES DE RECHERCHE

ARBRES BINAIRES DE RECHERCHE ARBRES BINAIRES DE RECHERCHE Table de symboles Recherche : opération fondamentale données : éléments avec clés Type abstrait d une table de symboles (symbol table) ou dictionnaire Objets : ensembles d

Plus en détail

Algorithmes de tris. Chapitre 4

Algorithmes de tris. Chapitre 4 Chapitre 4 Algorithmes de tris Trier un ensemble d objets consiste à ordonner ces objets en fonction de clés et d une relation d ordre définie sur cette clé. Par exemple, chaque étudiant inscrit à l université

Plus en détail

Application des arbres binaires. Plan

Application des arbres binaires. Plan Application des arbres binaires. Plan Compter les arbres binaires Tétrarbres (quad trees) Problème des n corps Recherche dans un intervalle Recherche dans un nuage de points Recherche dans un arbre d intervalles

Plus en détail

1 Les arbres binaires en Java

1 Les arbres binaires en Java Université de Nice-Sophia Antipolis Deug MIAS-MI 1 Algorithmique & Programmation 2002 2003 TP N 10 Arbres binaires Buts : structuration des arbres binaires en Java. classes internes. objets de parcours.

Plus en détail

Parcours d un arbre Arbres de recherche CHAPITRE 6. Arbres binaires. Karelle JULLIAN. MPSI, Option Info 2014/2015. Karelle JULLIAN

Parcours d un arbre Arbres de recherche CHAPITRE 6. Arbres binaires. Karelle JULLIAN. MPSI, Option Info 2014/2015. Karelle JULLIAN CHAPITRE 6 Arbres binaires Lycée Kléber MPSI, Option Info 2014/2015 1 Définitions 2 Parcours en largeur Parcours en profondeur Parcours préfixe, infixe, postfixe Reconstitution 3 Recherche Complexité Insertion

Plus en détail

Algorithmique P2. Optimisation d'un algorithme de tri 2009-2010, Ulg R.Dumont

Algorithmique P2. Optimisation d'un algorithme de tri 2009-2010, Ulg R.Dumont Algorithmique P2 Optimisation d'un algorithme de tri 2009-2010, Ulg R.Dumont Sources supplémentaires Cours Algorithms and Data Structures in Java, Patrick Prosser, 2000, Glasgow University Algorithmique

Plus en détail

M2 MPRO. Optimisation dans les Graphes 2014-2015

M2 MPRO. Optimisation dans les Graphes 2014-2015 M2 MPRO Optimisation dans les Graphes 2014-2015 Programmation linéaire et problèmes d'optimisation dans les graphes 1 Problèmes d'optimisation dans les graphes : quelles méthodes pour les résoudre? Théorie

Plus en détail

Chapitre 4 Automates à pile et langages hors-contexte

Chapitre 4 Automates à pile et langages hors-contexte Chapitre 4 Automates à pile et langages hors-contexte 87 Introduction Langage a n b n n est pas accepté par un automate fini. Par contre L k = {a n b n n k} est accepté. Mémoire finie, mémoire infinie,

Plus en détail

Concours 2015 Épreuve d Informatique Filière : MP Durée de l épreuve : 3 heures. L utilisation d une calculatrice est autorisée.

Concours 2015 Épreuve d Informatique Filière : MP Durée de l épreuve : 3 heures. L utilisation d une calculatrice est autorisée. A 2015 INFO. MP École des Ponts ParisTech, SUPAERO (ISAE), ENSTA ParisTech, Télécom ParisTech, Mines ParisTech, Mines de Saint-étienne, Mines Nancy, Télécom Bretagne, ENSAE ParisTech (filière MP), École

Plus en détail

Travaux dirigés n o 6

Travaux dirigés n o 6 Travaux dirigés n o 6 Lycée Kléber MPSI, Option Info 2014/2015 Exercice 1 (Indexation d un arbre binaire) Ecrire une fonction Caml indexation : ( f, n) arbre_binaire -> (string,string) arbre_binaire qui

Plus en détail

Cours d Algorithmique et Complexité

Cours d Algorithmique et Complexité Cours d Algorithmique et Complexité Structures de données (2e suite) Catalin Dima Arbres binaires de recherche Propriété de base des arbres binaires de recherche Soit x un noeud de l arbre. Alors : 1.

Plus en détail

1 Introduction. 2 Algorithmes sans élagage. 2.1 Minimax. Chapitre 3 : Jeux (Février 2007, Pierre Gançarski)

1 Introduction. 2 Algorithmes sans élagage. 2.1 Minimax. Chapitre 3 : Jeux (Février 2007, Pierre Gançarski) Chapitre 3 : Jeux (Février 2007, Pierre Gançarski) 1 Introduction Quatre caractérisques pour les jeux étudiés : jeux à deux : deux adversaires eectuent alternativement des coups, chaque défaillance de

Plus en détail

Programmation avancée en C

Programmation avancée en C Département Informatique Nom : Prénom : Année scolaire : 2007 2008 Date : 23 juin 2008 Module INF446 Session de juin Programmation avancée en C Contrôle de connaissance 1 de 45 minutes ÅERCI de répondre

Plus en détail

( n) !n! 0. Compter les arbres binaires (1) Application des arbres binaires. Plan

( n) !n! 0. Compter les arbres binaires (1) Application des arbres binaires. Plan pplication des arbres binaires. Plan ompter les arbres binaires Tétrarbres (quad trees) Problème des n corps Recherche dans un intervalle Recherche dans un nuage de points Recherche dans un arbre d intervalles

Plus en détail

Algorithmique avancée en Python TDs

Algorithmique avancée en Python TDs Algorithmique avancée en Python TDs Denis Robilliard sept. 2014 1 TD 1 Révisions 1. Ecrire un programme qui saisit un entier, et détermine puis affiche si l entier est pair où impair. 2. Ecrire un programme

Plus en détail

Exercice 1 : Questions diverses (5 points)

Exercice 1 : Questions diverses (5 points) Université Claude Bernard Lyon 1 Licence Sciences, Technologies, Santé L2 Année 2010-2011, 2ème semestre LIF5 Algorithmique & Programmation procédurale Contrôle final du 20 juin 2011 Durée : 1h30 Note

Plus en détail

Induction sur les arbres

Induction sur les arbres Induction sur les arbres Planning Motivations Comment définir les arbres? Équations récursives sur les arbres Complexité de fonctions sur les arbres Recherche dans un arbre binaire de recherche Recherche

Plus en détail

UNIVERSITE SAAD DAHLAB DE BLIDA

UNIVERSITE SAAD DAHLAB DE BLIDA Chapitre 5 :. Introduction aux méthodes par séparation et évaluation Les méthodes arborescentes ( Branch and Bound Methods ) sont des méthodes exactes d'optimisation qui pratiquent une énumération intelligente

Plus en détail

Sauf mention contraire, le contenu de cet ouvrage est publié sous la licence : Creative Commons BY-NC-SA 2.0 La copie de cet ouvrage est autorisée

Sauf mention contraire, le contenu de cet ouvrage est publié sous la licence : Creative Commons BY-NC-SA 2.0 La copie de cet ouvrage est autorisée Sauf mention contraire, le contenu de cet ouvrage est publié sous la licence : Creative Commons BY-NC-SA 2.0 La copie de cet ouvrage est autorisée sous réserve du respect des conditions de la licence Texte

Plus en détail

M2 Informatique/Réseaux Université Pierre et Marie Curie UE APMM

M2 Informatique/Réseaux Université Pierre et Marie Curie UE APMM TD TECHNIQUES DE CODAGE ET DE COMPRESSION. LANGAGE / CODAGE / VALENCE.. Rappels Toute fraction intelligible d un message est constituée de symboles. Le langage est l ensemble de ces symboles. Un codage

Plus en détail

II arbres binaires de recherche

II arbres binaires de recherche I arbres binaires On définit un arbre binaire par : type arbin=^noeud; noeud=record filsg,filsd:arbin; cle:longint Un arbre binaire a peut être vide (si a=nil). Sinon il est formé d un noeud (a^) contenant

Plus en détail

,QIRUPDWLTXHVHVVLRQOLFHQFHGHSV\FKRORJLH '21'86$1*

,QIRUPDWLTXHVHVVLRQOLFHQFHGHSV\FKRORJLH '21'86$1* ,QIRUPDWLTXHVHVVLRQOLFHQFHGHSV\FKRORJLH '21'86$1* Remarque : Une question non résolue n empêche pas de répondre aux suivantes. 3$57,($ Un centre de transfusion sanguine a besoin de manière urgente de sang

Plus en détail