Année universitaire Exercice 1. Travaux Dirigés numéro 4 SERIES TEMPORELLES

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Année universitaire Exercice 1. Travaux Dirigés numéro 4 SERIES TEMPORELLES"

Transcription

1 U Année universiaire 2-2 Travaux Dirigés numéro 4 SERIES TEMPORELLES 1 Exercice 1 Nous avons simulé les séries suivanes, où es un brui aléaoire, s une série d effes saisonniers, une endance linéaire e a une consane posiive : a s s a a s a Associer à chaque série sa représenaion graphique, en jusifian Graphique 1 Graphique Graphique 3 Graphique Graphique 5 Graphique 6 1

2 2 Exercice 2 : Uilisaion des moennes mobiles cenrées sur une endance linéaire Soi deux séries chronologiques X e Y, comprenan une endance linéaire, définies de la manière suivane : x = = =1...,16 1. Calculer les moennes mobiles de longueur 3 e de longueur 4 sur les séries X e Y, noées mm 3 (X), mm 4 (X), mm 3 (Y ) e mm 4 (Y ). 2. Comparer la série X aux deux moennes mobiles mm 3 (X) e mm 4 (X). Commener les résulas. 3. Soi la série Z la somme des deux séries chronologiques X e Y Calculer les moennes mobiles de longueur 3 e de longueur 4 sur la série Z, noées mm 3 (Z) e mm 4 (Z) Calculer les sommes mm 3 (X)+mm 3 (Y ) e mm 4 (X)+mm 4 (Y ). Comparer ces résulas à ceux de la quesion précédene. Que peu-on consaer? Séries X Y Z Tab. 1 Valeurs des séries chronologiques X, Y e Z 2

3 3 Exercice 3 : Lissage par moenne mobile simple e désaisonnalisaion Nous donnons au ableau 2 la série des indices rimesriels de la producion indusrielle (base 1 en 197) de 1963 à 1982 : Année Trimesre 1 Trimesre 2 Trimesre 3 Trimesre Tab. 2 indice rimesriel de la producion indusrielle 1. A quoi cela ser-il de désaisonnaliser la chronique éudiée? A quel pe de quesions cherche--on à répondre lorsque l on décompose une chronique? 2. Au vu du graphique, quel modèle de décomposiion proposez-vous pour cee série? 3. Nous allons adoper un schéma de décomposiion addiif pour cee série : = f + s + ε, où f es la endance de la série, s le coefficien saisonnier e ε la perurbaion erraique. Rappelez la significaion e les hpohèses habiuelles faies pour ces différenes composanes. En pariculier, rappelez le principe de conservaion des aires pour les coefficiens saisonniers. Pourquoi cee conraine de renormalisaion es-elle nécessaire? 4. Esimaion de la endance par une moenne mobile simple cenrée sur 4 poins Serie brue Serie cvs Moenne mobile Fig. 1 Indice rimesriel de la producion indusrielle 4.1. Rappelez le principe de la moenne mobile simple cenrée sur 4 poins Calculez les valeurs manquanes du ableau 3 (année 1975) Calculez les valeurs manquanes du ableau 4 donnan des esimaions provisoires des coefficiens saisonniers (année 1979) Compléez le ableau 5 donnan les esimaions provisoires e finale des coefficiens saisonniers e commenez les valeurs rouvées : 3

4 Année Trimesre 1 Trimesre 2 Trimesre 3 Trimesre ,125 12, ,625 15,125 16,875 18, , 111,25 113, 114, , ,375 12, , , ,5 121,5 118, , , ,75 125, , ,75 125,5 126, , ,25 129,875 13, , 133,75 135, , , ,375 Tab. 3 Moenne mobile simple cenrée sur 4 poins Année Trimesre 1 Trimesre 2 Trimesre 3 Trimesre ,125 7, ,375 2,875-14,875 8, , 3,75-17, 8, ,375 3,625-17,125 8, ,625 5,5-13,5 7, ,375 2,875-18,25 7, ,625 4,125-16,75 8, ,875 4,25-18,5 6, ,125 5,75-19,875 9, ,625 2,625 Tab. 4 Première esimaion des coefficiens saisonniers Esimaion 1er rim 2eme rim 3eme rim 4eme rim provisoire -16,738 finale 3,663 7,875 Tab. 5 Esimaion finale des coefficiens saisonniers 4.5. Calculez les valeurs manquanes (année 1974) de la série corrigée des variaions saisonnières (ableau 6). Année Trimesre 1 Trimesre 2 Trimesre 3 Trimesre ,7 1,338 13,838 12, ,7 14,338 18,838 19, ,7 111, , , ,7 118, , , ,7 113, , , ,7 123, , , ,7 126, , , ,7 13, , , ,7 132, , , ,7 134, , ,125 Tab. 6 Série corrigée des variaions saisonnières 4

5 4 Exercice 4 : Un modèle muliplicaif sur une série mensuelle Une compagnie aérienne régionale désire connaîre la srucure du rafic aérien d une de ses lignes. Pour cela, elle fourni la série mensuelle du nombre de passagers enre 2 e 24. Mois janvier février mars avril mai juin juille aoû sepembre ocobre novembre décembre Tab. 7 Trafic mensuel d une ligne aérienne en nombre de passagers Fig. 2 Trafic mensuel d une ligne aérienne en nombre de passagers 1. Au vue du graphique, quel pe de modèle fau-il appliquer? 2. Après avoir jusifié la longueur de la moenne mobile à emploer, calculer la série Y des moennes mobiles. 3. Calculer les coefficiens saisonniers e donner la série Z corrigée des variaions saisonnières. Vérifier que ces coefficiens vérifien les hpohèses de dépar. 5

6 5 Exercice 5 : Prévision par régression Nous nous inéressons à la consommaion C de vin en France (en millions d hecolires) de = 1967 à Année T C Année T C Année T C Année T C , , , , , , , , , , , , , , , , , , , , , , , , , , , ,663 On donne : T =13, 5, C =48, 295, Cov(C, T) = 56, 747, V(T )=65, 25, V(C) =5, 741. On choisi de modéliser la chronique par : où a e b son des paramères à esimer. 1. Inerpréez les coefficiens a e b. C = a + b, 2. Calculez les esimaions des moindres carrés â e b de a e b. Donnez le coefficien de déerminaion de la régression e l écar-pe des résidus. 3. Afin d éliminer la endance linéaire, on inrodui la chronique z = C C 1 pour > Monrez que lorsque C saisfai (1), la chronique z es elle que pour ou >1967, z = a Donnez une relaion enre z, C 1967 e C On désire prévoir la consommaion de vin. Commen faire des prévisions en uilisan le modèle de régression esimé précédemmen? 6

Séries chronologiques

Séries chronologiques Séries chronologiques 10 janvier 2007 1 Exercice 1 Nous avons simulé les séries suivantes, où ε t est un bruit aléatoire, s t une série d effets saisonniers, f t une tendance sinusoïdale et a une constante

Plus en détail

Série chronologique = Chronique, série temporelle Valeurs successivement prises par une variable statistique au cours du temps

Série chronologique = Chronique, série temporelle Valeurs successivement prises par une variable statistique au cours du temps Série chronologique = Chronique, série emporelle Valeurs successivemen prises par une variable saisique au cours du emps E Série saisique bidimensionnelle (, ) Objecifs de l analyse d une série chronologique

Plus en détail

BTS Mécanique et Automatismes Industriels. Fiabilité

BTS Mécanique et Automatismes Industriels. Fiabilité BTS Mécanique e Auomaismes Indusriels Fiabilié Lcée Louis Armand, Poiiers, Année scolaire 23 24 . Premières noions de fiabilié Fiabilié Dans ou ce paragraphe, nous nous inéressons à un disposiif choisi

Plus en détail

Exercice n HA Corrigé

Exercice n HA Corrigé ENAC/ISTE/HYDRAM HYDROTHEQUE : base de données d exercices en Hydrologie Cours : Hydrologie Appliquée / Thémaique : Processus & Réponse Hydrologiques Exercice n HA 0101 - Corrigé Logo opimisé par J.-D.Bonour,

Plus en détail

UNIVERSITE PARIS OUEST, NANTERRE LA DEFENSE UFR SEGMI

UNIVERSITE PARIS OUEST, NANTERRE LA DEFENSE UFR SEGMI UNIVERSIE PARIS OUES, NANERRE LA DEFENSE UFR SEGMI Année universiaire 202 203 Cours d économérie L3 Economie Cours de Valérie MIGNON D de Benoî CHEZE e David GUERREIRO Exercice : Données en coupe D Inroducion

Plus en détail

Correction de l exercice 1 du cours Management Bancaire : «Calcul de la VaR d une obligation»

Correction de l exercice 1 du cours Management Bancaire : «Calcul de la VaR d une obligation» Correcion de l exercice du cours Managemen Bancaire : «Calcul de la VaR d une obligaion» Quesion : calculer numériquemen la duraion e la convexié de l obligaion de coure maurié e de l obligaion de longue

Plus en détail

Correction - Séries chronologiques

Correction - Séries chronologiques Correction - Séries chronologiques 10 janvier 007 1 Exercice 1 y t = ε t : graphique 6 ; y t = s t + ε t : graphique 1 ; y t = at + s t + ε t : graphique 4 ; y t = at s t ε t : graphique 3 ; y t = f t

Plus en détail

SERIES CHRONOLOGIQUES

SERIES CHRONOLOGIQUES SERIES CHRONOLOGIQUES On appelle série chronologique ou chronique une série d'observaions échelonnées dans le emps. Les inervalles enre deux mesures peuven êre quelconques. En général, ils son de même

Plus en détail

1 Représentation des fonctions élémentaires de l'électronique

1 Représentation des fonctions élémentaires de l'électronique EN1 Foncions e composans élémenaires de l élecronique Foncions élémenaires de l'élecronique Les foncions élémenaires de l'élecronique son celles que l'on rerouve régulièremen dans les différenes applicaions

Plus en détail

PROPORTIONNALITE. Quatre nombres a, b, c et d étant non nuls, on dit que

PROPORTIONNALITE. Quatre nombres a, b, c et d étant non nuls, on dit que PROPORTIONNALITE a) Définiion d une proporion a Quare nombres a, b, c e d éan non nuls, on di que c l une des condiions suivanes (équivalenes) es vérifiée : b d es une proporion lorsque Condiion 1 : Les

Plus en détail

Réseau SCEREN. Ce document a été numérisé par le CRDP de Bordeaux pour la. Base Nationale des Sujets d Examens de l enseignement professionnel.

Réseau SCEREN. Ce document a été numérisé par le CRDP de Bordeaux pour la. Base Nationale des Sujets d Examens de l enseignement professionnel. Ce documen a éé numérisé par le CRDP de Bordeaux pour la Base Naionale des Sujes d Examens de l enseignemen professionnel. Campagne 2013 Ce fichier numérique ne peu êre reprodui, représené, adapé ou radui

Plus en détail

PHYSIQUE APPLIQUÉE. Durée : 4 heures Coefficient 3

PHYSIQUE APPLIQUÉE. Durée : 4 heures Coefficient 3 PHYSIQUE APPLIQUÉE Durée : 4 heures Coefficien 3 Le problème éudie l enraînemen d un venilaeur conrôlan le irage d une chaudière de fore puissance équipan une usine de pâe à papier. La régulaion de empéraure

Plus en détail

Chapitre 3. Pourcentages. Objectifs du chapitre : item références auto évaluation. relier évolutions et pourcentages

Chapitre 3. Pourcentages. Objectifs du chapitre : item références auto évaluation. relier évolutions et pourcentages Chapire 3 Pourcenages Objecifs du chapire : iem références auo évaluaion relier évoluions e pourcenages éudier des évoluions successives calculer le aux d évoluion réciproque 19 I lien enre une évoluion

Plus en détail

Problème d'examen (Représentation triangulaire, ACP et élections)

Problème d'examen (Représentation triangulaire, ACP et élections) ISFA 2 année 2-21 Problème d'examen (Représenaion riangulaire, ACP e élecions) D. Chessel Les exercices (17-2) son indépendans du problème (1-16). 1. Quesions On considère la marice A à n = 14 lignes e

Plus en détail

UN AUTRE PARADOXE : équation horaire du mouvement d un point

UN AUTRE PARADOXE : équation horaire du mouvement d un point UN AUTRE PARADOXE : équaion horaire du mouvemen d un poin. - INTRODUCTION La relaivié resreine es l obje de nombreu paradoes comme on a pu le consaer dans d aures ees proposés dans ce dossier. La majorié

Plus en détail

VIII Les gaz, partie F

VIII Les gaz, partie F VIII Les gaz, parie F Exercices de niveau A Le premier exercice de niveau A s appuie sur une analyse dimensionnelle vue dans le cours pour esimer une durée de diffusion. Le deuxième aide à apprendre l

Plus en détail

PROPORTIONNALITES ET POURCENTAGES I-La proportionnalité

PROPORTIONNALITES ET POURCENTAGES I-La proportionnalité PROPORTIONNALITES ET POURCENTAGES I-La proporionnalié -Acivié préparaoire n : Suies de nombres proporionnelles -l indicaion «0,88 /L» perme de calculer les pri manquans dans le ableau ci-dessous. Indiquer

Plus en détail

Conjoncture française

Conjoncture française Conjoncure française La fore hausse des imporaions manufacurières depuis 2014 reflèe la composiion de la demande, sauf dans les maériels de ranspor Depuis 2014, les imporaions françaises son dynamiques,

Plus en détail

Fiche d exercices 12 : Lois normales

Fiche d exercices 12 : Lois normales Fiche d exercices 1 : Lois normales Exercice 1 Loi normale cenrée e réduie N (0,1) Une variable aléaoire Z sui la loi N (0,1). On donne P ( Z 1,8 ) 0, 964 e P ( Z,3) 0, 989. Calculer les probabiliés suivanes

Plus en détail

Evaluations socio-économiques et financière des projets de transports collectifs : méthode de calcul, paramètres et conventions

Evaluations socio-économiques et financière des projets de transports collectifs : méthode de calcul, paramètres et conventions 1 Juille 2001 Evaluaions socio-économiques e financière des projes de ranspors collecifs : méhode de calcul, paramères e convenions Période de l éude La période de l éude débue à l année de mise en service.

Plus en détail

Exercice 1 du cours Management Bancaire : «Calcul de la VaR d une obligation»

Exercice 1 du cours Management Bancaire : «Calcul de la VaR d une obligation» Exercice du cours Managemen Bancaire : «Calcul de la VaR d une obligaion» L une des préoccupaions des gesionnaires des risques dans les banques es de prendre en compe les caracérisiques des porefeuilles

Plus en détail

Probabilités 5 : Loi normale centée réduite N (0 ; 1)

Probabilités 5 : Loi normale centée réduite N (0 ; 1) «I» : Théorème définiion / Théorème admis Probabiliés 5 : Loi normale cenée réduie N ( ; ) La foncion f définie sur R par f ()= π e es une densié de probabilié sur R Il es clair que f es coninue e posiive

Plus en détail

+ C. Figure En appliquant la loi d'additivité des tensions, établir une relation entre E, u R et u C.

+ C. Figure En appliquant la loi d'additivité des tensions, établir une relation entre E, u R et u C. Principe d une minuerie (Afrique 2006) 1. ÉTUDE THÉORIQUE D'UN DIPÔLE RC SOUMIS À UN ÉCHELON DE TENSION. Le monage du circui élecrique schémaisé ci-dessous (figure 1) compore : - un généraeur idéal de

Plus en détail

M1 Economie : "colle" d économie industrielle

M1 Economie : colle d économie industrielle M Economie : "colle" d économie indusrielle Armel JACQUES novembre 0 Les calcularices son auorisées ; en revanche les appareils permean de communiquer (éléphone porable ou aures) son inerdis. Concurrence

Plus en détail

SECONDE PARTIE - ELECTRONIQUE -

SECONDE PARTIE - ELECTRONIQUE - ENS de Cachan Concours d enrée en 3 ème année pour la préparaion à l agrégaion de Génie Elecrique Session 2001 SECONDE PARTIE - ELECTRONIUE - Ce problème se propose d éudier le foncionnemen de l élecronique

Plus en détail

II. Observation d une seule courbe à l oscilloscope

II. Observation d une seule courbe à l oscilloscope PC - Lycée Dumon D Urville TP 1 : uilisaion de l oscilloscope numérique I. Compéences à acquérir Les compéences évaluées au cours de ce TP son: - Uiliser un GBF - Uiliser un oscilloscope : Afficher des

Plus en détail

Dans les montages suivants à AO, il y a une rétroaction négative, l AO fonctionne donc en régime linéaire.

Dans les montages suivants à AO, il y a une rétroaction négative, l AO fonctionne donc en régime linéaire. TP COURS ELECTROCINETIQUE RDuperray Lycée FBUISSON PTSI AMPLIFICATEUR OPERATIONNEL: MONTAGES SUIVEURS Dans les monages suivans à AO, il y a une réroacion négaive, l AO foncionne donc en régime linéaire

Plus en détail

CONVERSION DE PUISSANCE

CONVERSION DE PUISSANCE Spé ψ 2015-2016 Devoir n 6 CNVERSIN DE PUISSANCE L obje de ce problème consise à éudier la producion d énergie élecrique à parir d une éolienne. Le disposiif pore alors le nom d «aérogénéraeur» e es consiué

Plus en détail

2 Compléter un tableau de proportionnalité

2 Compléter un tableau de proportionnalité 1 Reconnaire un ableau de proporionnalié OJECTIF 1 DÉFINITION Il y a proporionnalié dans un ableau de nombres à deux lignes lorsque les nombres de la deuxième ligne s obiennen en muliplian ceux de la première

Plus en détail

Echantillonnage d un signal : principe et conditions à satisfaire.

Echantillonnage d un signal : principe et conditions à satisfaire. Page 1 Echanillonnage d un signal : principe e condiions à saisfaire. I. Inroducion. L acquisiion d une grandeur analogique par l inermédiaire d une care d acquisiion possédan plusieurs enrées analogiques

Plus en détail

IUT GEII Nîmes. DUT 2 - Alternance Représentation fréquentielle - Séries de Fourier. Yaël Thiaux

IUT GEII Nîmes. DUT 2 - Alternance Représentation fréquentielle - Séries de Fourier. Yaël Thiaux 1 héorie DU2-Al IU GEII Nîmes DU 2 - Alernance Représenaion fréquenielle - Séries de Fourier Yaël hiaux yael.hiaux@iu-nimes.fr Janvier 2015 2 DU2-Al héorie 1 héorie 2 3 3 DU2-Al Une somme de sinusoïdes?

Plus en détail

Mémoire soutenu pour l Institut des Actuaires le 15 décembre David Sudries Introduction

Mémoire soutenu pour l Institut des Actuaires le 15 décembre David Sudries Introduction Modélisaion e exrapolaion de l évoluion de la moralié française à parir de modèles sochasiques Analyse des qualiés prédicives de ces modèles Applicaions praiques Mémoire souenu pour l Insiu des Acuaires

Plus en détail

L APPARITION DU REGIME «AUTO-ENTREPRENEUR» : CONSEQUENCES SUR LA DESAISONNALISATION DES CREATIONS D ENTREPRISES

L APPARITION DU REGIME «AUTO-ENTREPRENEUR» : CONSEQUENCES SUR LA DESAISONNALISATION DES CREATIONS D ENTREPRISES L APPARITION DU REGIME «AUTO-ENTREPRENEUR» : CONSEQUENCES SUR LA DESAISONNALISATION DES CREATIONS D ENTREPRISES Thomas Balcone 1 (*) (*) Insee, Direcion de la méhodologie e de la coordinaion saisique e

Plus en détail

CH V Mouvements. Deux personnes A et B se trouvent immobiles sur un escalier roulant. Sol

CH V Mouvements. Deux personnes A et B se trouvent immobiles sur un escalier roulant. Sol CH V Mouvemens I) Mouvemens e référeniel : Pour éudier un mouvemen, il fau définir : - le mobile (obje qui es en mouvemen) - le référeniel (sysème par rappor auquel le mobile se déplace) 1) Siuaion : Deux

Plus en détail

Leçon 15 Les formes des signaux électriques Page 1/7

Leçon 15 Les formes des signaux électriques Page 1/7 Leçon 15 Les formes des signaux élecriques Page 1/7 1. Les différenes formes de ension ou de couran élecriques 1.1 Signal unidirecionnel C es un signal qui circule oujours dans le même sens Couran unidirecionnel

Plus en détail

EXAMEN FINAL Économie Monétaire Internationale 27 janvier heures

EXAMEN FINAL Économie Monétaire Internationale 27 janvier heures niversié de Paris X Nanerre École Docorale MP DA conomie Inernaionale, Modélisaion e Analyse des Poliiques Économiques Année 2004-2005 XAMN FINAL Économie Monéaire Inernaionale 27 janvier 2005 2 heures

Plus en détail

Contrôle de physique n 4

Contrôle de physique n 4 Conrôle de physique n 4 Un groupe délèves musiciens souhaie réaliser un diapason élecronique capable démere des sons purs, en pariculier la noe la 3 (noe la roisième ocave). Cee noe ser de référence aux

Plus en détail

ESD : Loi exponentielle

ESD : Loi exponentielle Aueur du corrigé : Gilber Julia ESD 2008 0702 : Loi exponenielle Averissemen : ce documen a éé réalisé avec la version 14 de TI-Nspire Fichier associé : esd2008_0702ns 1 Le suje L exercice proposé au candida

Plus en détail

Première STG Chapitre 4 : taux d'évolution. page n

Première STG Chapitre 4 : taux d'évolution. page n Première STG Chapire 4 : aux d'évoluion. page n 1 On peu lire dans un journal : " Le prix de la able basse, qui es passé de 500 à 502, n'a praiquemen pas bougé. " e plus loin : " Hausse impressionnane

Plus en détail

MATHÉMATIQUES II. et x désigne alors la matrice à 1 ligne et n colonnes : x = [ x 1 x 2 x n ] ;

MATHÉMATIQUES II. et x désigne alors la matrice à 1 ligne et n colonnes : x = [ x 1 x 2 x n ] ; MATHÉMATIQUES II Dans ce problème, nous éudions les propriéés de ceraines classes de marices carrées à coefficiens réels e cerains sysèmes linéaires de la forme Ax = b d inconnue x IR n, A éan une marice

Plus en détail

ÉLECTROCINÉTIQUE CHAP 00

ÉLECTROCINÉTIQUE CHAP 00 ÉLECTROCINÉTIQUE CHAP 00 Filrage d'une ension riangulaire par un passe-bande On considère un filre de foncion de ransfer : f 0 =2kHz e de coefficien de qualié Q=0.. Déerminer la naure du filre 2. Tracer

Plus en détail

L inflation sous-jacente en Tunisie : une application de l approche VAR structurel

L inflation sous-jacente en Tunisie : une application de l approche VAR structurel Inernaional Journal of Innovaion and Scienific Research ISSN 351-8014 Vol. 1 No. 1 Apr. 014, pp. 41-50 014 Innovaive Space of Scienific Research Journals hp://www.iisr.issr-ournals.org/ L inflaion sous-acene

Plus en détail

Équations différentielles.

Équations différentielles. IS BTP, 2 année NNÉE UNIVERSITIRE 205-206 CONTRÔLE CONTINU Équaions différenielles. Durée : h30 Les calcularices son auorisées. Tous les exercices son indépendans. Il sera enu compe de la rédacion e de

Plus en détail

Cinétique de l oxydation du sulfite de cuivre

Cinétique de l oxydation du sulfite de cuivre Cinéique de l oxydaion du sulfie de cuivre Grégory Vial 11 avril 2006 Résumé On s inéresse à l oxydaion du sulfie de cuivre : il s agi d une réacion d auocaalyse don l éude cinéique condui à un problème

Plus en détail

Chapitre 2- Les cycles endogènes. Université d Auvergne- L Christopher Grigoriou

Chapitre 2- Les cycles endogènes. Université d Auvergne- L Christopher Grigoriou Chapire 2- Les cycles endogènes Universié d Auvergne- L3 2008-2009 Chrisopher Grigoriou Les cycles endogènes Explicaion réelle e endogène: les cycles peuven êre expliqués par le foncionnemen même de l

Plus en détail

Exercices sur les courbes paramétrées dans le plan

Exercices sur les courbes paramétrées dans le plan Exercices sur les courbes paramérées dans le plan Dans le plan P muni d un repère orhonormé O, i, j, on considère la courbe C définie par les équaions x paramériques y ) Eudier les variaions de x e y Donner

Plus en détail

TP 7 : Numérisation d un signal : quantification et traitement numérique

TP 7 : Numérisation d un signal : quantification et traitement numérique Parie I : Élecronique TP TP 7 : Numérisaion d un : quanificaion e raiemen numérique I Inroducion Lors du précéden TP, nous avons éudiée une éape de la numérisaion d un : l éape d échanillonnage. Il ne

Plus en détail

MOUVEMENT UNIFORME ET UNIFORMEMENT VARIE

MOUVEMENT UNIFORME ET UNIFORMEMENT VARIE TERMINALE S.T.I. MOUVEMENT UNIFORME ET / hp://perso.orange.fr/herve.jardin-nicolas/ MOUVEMENT UNIFORME ET mv uniforme e uniformemen I. Domaine d applicaion de ce cours Ce chapire sera relaif d une par

Plus en détail

FIABILITE. Eléments de cours CONCEPTION - RÉALISATION FIABILITÉ DE CONDUITE FIABILITÉ PRÉVISIONNELLE FIABILITÉ FIABILITÉ D'EXPLOITATION

FIABILITE. Eléments de cours CONCEPTION - RÉALISATION FIABILITÉ DE CONDUITE FIABILITÉ PRÉVISIONNELLE FIABILITÉ FIABILITÉ D'EXPLOITATION Ce chapire es le premier, d une série de rois, consacré à ce que l on appelle en mainenance le concep «FMD» ; c es à dire, MAINTENABILITE e DISPONIBILITE. Les objecifs de ce chapire seron de déerminer

Plus en détail

MQ22 TP n 6 : Flexion : concentration de contraintes

MQ22 TP n 6 : Flexion : concentration de contraintes MQ TP n 6: Fleion : concenraion de conraines MQ TP n 6 : Fleion : concenraion de conraines u : e bu de ce TP es de déerminer la concenraion de conraines d une poure cangean de secion Pré-requis : onsidérons

Plus en détail

Appliquer un pourcentage de t %, c'est multiplier par 100. c'est-à-dire 0,24 ; 53% c'est

Appliquer un pourcentage de t %, c'est multiplier par 100. c'est-à-dire 0,24 ; 53% c'est Première L Pourcenages : cours 1. Pourcenage de proporion Exercice 1 La bauxie es un minerai renferman de l'alumine dans la proporion de 24%. Par élecrolyse de l'alumine, on obien de l'aluminium dans la

Plus en détail

Numéro 2014/03 Décembre 2014 Prévisions de court terme du PIB : modèles à facteurs dynamiques et non stationnarité

Numéro 2014/03 Décembre 2014 Prévisions de court terme du PIB : modèles à facteurs dynamiques et non stationnarité Numéro 214/3 Décembre 214 Prévisions de cour erme du PIB : modèles à faceurs dynamiques e non saionnarié Séphanie COMBES Caherine DOZ PRÉVISION DE COURT TERME DU PIB : MODÈLES À FACTEURS DYNAMIQUES ET

Plus en détail

Minisère de l éducaion & de la formaion D. R. E. N Lycée Secondaire -Haouaria Devoir de conrôle N 1 Classes : 4 e Sc- Exp & Mah Dae : 15/11 /2008 Durée : 2 H Maière : Sciences Physiques profs: Laroussi

Plus en détail

Résolution approchée de problèmes de dynamique en régime transitoire par superposition modale F. Louf

Résolution approchée de problèmes de dynamique en régime transitoire par superposition modale F. Louf Résoluion approchée de problèmes de dynamique en régime ransioire par superposiion modale F. Louf Dans cee fiche, on monre commen calculer une soluion approchée à un problème de dynamique ransioire par

Plus en détail

I - Variation et suites

I - Variation et suites I - Variaion e suies Résulas d apprenissage généraux décrire e effecuer des opéraions sur des ableaux pour résoudre des problèmes, en uilisan des ouils echnologiques, si nécessaire produire e analyser

Plus en détail

Chapitre 4: Les modèles linéaires

Chapitre 4: Les modèles linéaires Chapire 4: Les modèles linéaires. Inroducion: Dans ce chapire on va voir successivemen les modèles linéaires saionnaires: auoregressifs (AR), de moyennes mobiles (MA) e mixes (ARMA) en pariculier. Finalemen,

Plus en détail

POURCENTAGES. 1 ) x = L'alumine représentant 24% de la bauxite, 5 250kg de bauxite permettront d'obtenir 1260 kg d'alumine.

POURCENTAGES. 1 ) x = L'alumine représentant 24% de la bauxite, 5 250kg de bauxite permettront d'obtenir 1260 kg d'alumine. POURCENTAGES Pourcenage de proporion Exercice 1 La bauxie es un minerai renferman de l'alumine dans la proporion de 24%. Par élecrolyse de l'alumine, on obien de l'aluminium dans la proporion de 53%. 1

Plus en détail

Introduction à la programmation d'un automate. Sommaire

Introduction à la programmation d'un automate. Sommaire Inroducion à la programmaion d'un auomae Sommaire Présenaion du sysème de gesion de rafic... Fiche pédagogique...2 Travail demandé...3. Programmaion d'une foncion OUI...3 2. Programmaion d'une foncion

Plus en détail

Nombre dérivé et interprétation graphique. h valeurs approchées du nombre dérivé de la fonction f en t 0

Nombre dérivé et interprétation graphique. h valeurs approchées du nombre dérivé de la fonction f en t 0 DÉRIVONS EN VITESSE Objecif Ouils Comparer deux approximaions du nombre dérivé d une foncion numérique en un poin, l une issue de la définiion maémaique usuelle, l aure uilisée par les calcularices. Nombre

Plus en détail

UNIVERSITÉ DU QUÉBEC À MONTRÉAL LA COURBE DE PHILLIPS AU CANADA : Y A-T-IL PRÉSENCE DE NON-LINÉARITÉ? MÉMOIRE PRÉSENTÉ COMME EXIGENCE PARTIELLE

UNIVERSITÉ DU QUÉBEC À MONTRÉAL LA COURBE DE PHILLIPS AU CANADA : Y A-T-IL PRÉSENCE DE NON-LINÉARITÉ? MÉMOIRE PRÉSENTÉ COMME EXIGENCE PARTIELLE UNIVERSITÉ DU QUÉBEC À MONTRÉAL LA COURBE DE PHILLIPS AU CANADA : Y A-T-IL PRÉSENCE DE NON-LINÉARITÉ? MÉMOIRE PRÉSENTÉ COMME EXIGENCE PARTIELLE DE LA MAÎTRISE EN SCIENCE ÉCONOMIQUE PAR MINH TUAN THAO AVRIL

Plus en détail

Le transistor bipolaire

Le transistor bipolaire Le ransisor bipolaire onsiuion- Symbole 2 1. aracérisiques Foncionnemen 2 1.1. aracérisiques d enrée I =f(v E ) 2 1.2. aracérisiques de Transfer I =f(i ) 3 aracérisiques de sorie I =f(v E ) 4 1.4. Résumé

Plus en détail

( V 1 -E )/ R. v 2 V 1 E

( V 1 -E )/ R. v 2 V 1 E Chapire B.3. Conversion coninu-coninu : hacheur série C'es un converisseur coninu-coninu, qui perme d'alimener une charge sous ension réglable à parir d'une ension coninue consane. Son rendemen es généralemen

Plus en détail

Chapitre 10 Etude des tensions électriques ; Nature de la tension du secteur.

Chapitre 10 Etude des tensions électriques ; Nature de la tension du secteur. Chapire 1 Eude des ensions élecriques ; Naure de la ension du seceur. On a vu que la ension produie par un alernaeur dans une cenrale élecrique changeai ou le emps. On ne peu donc pas se conener de brancher

Plus en détail

Corrigé du devoir surveillé de Mathématiques

Corrigé du devoir surveillé de Mathématiques Corrigé du devoir surveillé de Mahémaiques Eercice Soien a e b deu réels avec < a < b.. La foncion h : e a e b es coninue e posiive sur ], + [ a < b e a > e b. Au voisinage de, on a : h e a e b Ce calcul

Plus en détail

OPTIQUE. Spé ψ Devoir n 7

OPTIQUE. Spé ψ Devoir n 7 Spé ψ 2012-2013 Devoir n 7 OPTIQUE Toues les figures son regroupées à la fin du suje Parie I PRINCIPES DE L HOLOGRAPHIE La réalisaion d un hologramme es consiuée de deux éapes. La première, l enregisremen,

Plus en détail

Représentations multiples d un signal électrique triphasé

Représentations multiples d un signal électrique triphasé Représenaions muliples d un signal élecrique riphasé Les analyseurs de puissance e d énergie Qualisar+ permeen de visualiser insananémen les caracérisiques d un réseau élecrique riphasé. Représenaion emporelle

Plus en détail

Les indices de prix du bois. Méthodologie

Les indices de prix du bois. Méthodologie Les indices de prix du bois Méhodologie Le Minisère de l agriculure, de l alimenaion, de la pêche, de la ruralié e de l aménagemen du errioire (MAARAT) a décidé de mere en place un indice d'évoluion du

Plus en détail

2. Quelle est la valeur de la prime de l option américaine correspondante? Utilisez pour cela la technique dite de remontée de l arbre.

2. Quelle est la valeur de la prime de l option américaine correspondante? Utilisez pour cela la technique dite de remontée de l arbre. 1 Examen. 1.1 Prime d une opion sur un fuure On considère une opion à 85 jours sur un fuure de nominal 18 francs, e don le prix d exercice es 175 francs. Le aux d inérê (coninu) du marché monéaire es 6%

Plus en détail

6. Étude de courbes paramétrées (C) : Ces équations sont appelées équations paramétriques de (C). { x = x t. On note parfois également.

6. Étude de courbes paramétrées (C) : Ces équations sont appelées équations paramétriques de (C). { x = x t. On note parfois également. ÉTUDE DE COURBES PARAMÉTRÉES 39 6. Éude de courbes paramérées 6.. Définiions Remarques La courbe (C) n es pas nécessairemen le graphe d une foncion ; c es pourquoi on parle de courbe paramérée e non pas

Plus en détail

CHAÎNE D ACTION. écart Réguler. mesure Mesurer CHAÎNE D INFORMATION

CHAÎNE D ACTION. écart Réguler. mesure Mesurer CHAÎNE D INFORMATION ANALYSE DES SYSTÈMES ASSERVIS 7. Caracérisaion des sysèmes asservis 7.. Srucure des sysèmes asservis Un sysème asservi linéaire peu se représener par le schéma 7.. On y rerouve, une chaîne d acion qui

Plus en détail

( V 1 -E )/ R. v 2 V 1 E

( V 1 -E )/ R. v 2 V 1 E Chapire B.3.2 Conversion coninu-coninu : hacheur série C'es un converisseur coninu-coninu, qui perme d'alimener une charge sous ension réglable à parir d'une ension coninue consane. Son rendemen es généralemen

Plus en détail

Représentations multiples d un signal électrique triphasé

Représentations multiples d un signal électrique triphasé Représenaions muliples d un signal élecrique riphasé Les analyseurs de puissance e d énergie Qualisar+ permeen de visualiser insananémen les caracérisiques d un réseau élecrique riphasé. Les Qualisar+

Plus en détail

Séries chronologiques

Séries chronologiques 1. Définition et composantes Séries chronologiques Ce sont des séries d'observations échelonnées dans le temps. On étudie les séries chronologiques pour : analyser un phénomène temporel en mettant en évidence

Plus en détail

Unité 6 : La proportionnalité numérique 3 ème ESO

Unité 6 : La proportionnalité numérique 3 ème ESO UITÉ 6 : LA PROPORTIOALITÉ UMÉRIQUE POUR DÉBUTER Il fau rappeler - Définiion de grandeur : Une grandeur es une caracérisique qui es mesurée, e la valeur es exprimée par un nombre. Le concep de grandeur

Plus en détail

TP de physique n 7 charge et décharge d'un condensateur Terminale

TP de physique n 7 charge et décharge d'un condensateur Terminale TP de physique n 7 charge e décharge d'un condensaeur Terminale I. CHARG T DCHARG D'UN CONDNSATUR SOUS UN TNSION CONSTANT 1) Monage u R u C ma COM i + - 2 1 R = 5,6 k C = 1500 F = 10 V coninu V COM ATTNTION:

Plus en détail

- PROBABILITE : c est le rapport (Nbr de cas favorable/nbr de cas possible). C est un nombre compris entre 0 et 1.

- PROBABILITE : c est le rapport (Nbr de cas favorable/nbr de cas possible). C est un nombre compris entre 0 et 1. Les premières consaaions sur l inapiude des produis indusriels à assurer les foncions qu ils éaien censés remplir pendan un emps suffisan remonen à la seconde guerre mondiale. En France cee prise de conscience

Plus en détail

Pluviométrie, croissance et pauvreté : cas du Sénégal et du Burkina Faso

Pluviométrie, croissance et pauvreté : cas du Sénégal et du Burkina Faso Pluviomérie, croissance e pauvreé : cas du Sénégal e du Burkina Faso François Joseph CABRAL CRES FASEG/UCAD joecabral7@gmail.com PLAN 1. Conexe e problémaique 2. Objecif 3. Méhodologie 4. Simulaions e

Plus en détail

Chapitre 4. Séries chronologiques.

Chapitre 4. Séries chronologiques. Chapitre 4. Séries chronologiques nicolas.chenavier@lmpa.univ-littoral.fr Exemple introductif 1 On considère la consommation mensuelle, exprimée en kwh, d un particulier, relevée durant trois années consécutives.

Plus en détail

IRM fonctionnelle : QUELQUES IDEES SUR LE TRAITEMENT STATISTIQUE DES DONNEES

IRM fonctionnelle : QUELQUES IDEES SUR LE TRAITEMENT STATISTIQUE DES DONNEES IRM foncionnelle : QUELQUES IDEES SUR LE TRAITEMENT STATISTIQUE DES DONNEES Le principe général d'une éude IRMf consise à analyser le signal BOLD (Blood Oxygen Level Dependen) qui radui l'augmenaion d'afflux

Plus en détail

Étude d un chariot de golf électrique (corrigé)

Étude d un chariot de golf électrique (corrigé) élec PÉDAGOGIE Concours Cenrale-Supélec 2003 Filière TSI Sciences indusrielles Éude d un chario de golf élecrique (corrigé) La prédéerminaion des caracérisiques élecriques d une machine ournane débue oujours

Plus en détail

Àpartir des enquêtes de conjoncture auprès des entreprises, l Insee publie des

Àpartir des enquêtes de conjoncture auprès des entreprises, l Insee publie des De nouveaux indicaeurs coïncidens e avancés de la producion manufacurière française Mahieu Cornec Aurélien D Isano Division des Enquêes de conjoncure Àparir des enquêes de conjoncure auprès des enreprises,

Plus en détail

Petit dictionnaire physique-chimie/maths des équations différentielles. Tension aux bornes du condensateur dans un circuit RC

Petit dictionnaire physique-chimie/maths des équations différentielles. Tension aux bornes du condensateur dans un circuit RC Pei dicionnaire physique-chimie/mahs des équaions différenielles On compare les différenes manières de présener la résoluion d une équaion différenielle dans les différenes disciplines. Le bu de cee fiche

Plus en détail

Lycée René Cassin. Chap 10 Chapitre 9 et 10 Chutes verticales et mouvements plans DM18 : Etude de mouvements plans - Correction.

Lycée René Cassin. Chap 10 Chapitre 9 et 10 Chutes verticales et mouvements plans DM18 : Etude de mouvements plans - Correction. Chap Chapire 9 e Chues vericales e mouvemens plans DM8 : Eude de mouvemens plans - Correcion Dae : Un cascadeur doi sauer avec sa voiure sur la errasse d un immeuble. Pour cela, il uilise un remplin disan

Plus en détail

Un modèle de propagation d un nuage de fumée

Un modèle de propagation d un nuage de fumée Un modèle de propagaion d un nuage de fumée Gabriel Caloz & Grégory Vial 9 février 26 Résumé L obe de ce documen es de présener à l aide d ouils élémenaires le problème de ranspor dans R. Une modélisaion

Plus en détail

En France, l investissement des entreprises repartira-t-il en 2014? Dossier de la Note de Conjoncture de décembre 2013

En France, l investissement des entreprises repartira-t-il en 2014? Dossier de la Note de Conjoncture de décembre 2013 En France, l invesissemen des enrerises rearira--il en 2014? Dossier de la Noe de Conjoncure de décembre 2013 Jean-François Eudeline Yaëlle Gorin Gabriel Sklenard Adrien Zakharchouk Inroducion Bu de l

Plus en détail

Chapitre III DÉRIVÉE D'UNE FONCTION COMPOSÉE

Chapitre III DÉRIVÉE D'UNE FONCTION COMPOSÉE Chapire III DÉRIVÉE DUNE FONCTION COMPOSÉE. RÈGLES DE DÉRIVATION DUNE FONCTION COMPOSÉE..... DÉFINITION DUNE FONCTION COMPOSÉE..... LOI DE DÉRIVATION DUNE FONCTION COMPOSÉE....3. DÉRIVATION DES FONCTIONS

Plus en détail

Analyse numérique des équations différentielles

Analyse numérique des équations différentielles Analse numérique des équaions différenielles Grégor Vial mars Le bu de ces quelques pages es de monrer commen programmer facilemen e efficacemen les schémas classiques de résoluion numérique des équaions

Plus en détail

Formalisme des processus aléatoires

Formalisme des processus aléatoires HAPITRE Formalisme des processus aléaoires. - Signal déerminise e signal aléaoire.. - Signal déerminise Les signaux déerminises son connus par leur représenaion emporelle e specrale. Dans le domaine emporel,

Plus en détail

CHAP. 5 : LES CONDENSATEURS

CHAP. 5 : LES CONDENSATEURS CHAP. 5 : LES CONDENSATEURS I. Descripion e symboles Un condensaeur es un composan consiué par, appelés séparés sur oue l'éendue de leur surface par un milieu nommé. Le es de faible épaisseur e il s exprime

Plus en détail

MODULE: VIBRATIONS. Chapitre 4: Mouvement forcé à un degré de liberté. Dr. Fouad BOUKLI HACENE E S S A - T L E M C E N

MODULE: VIBRATIONS. Chapitre 4: Mouvement forcé à un degré de liberté. Dr. Fouad BOUKLI HACENE E S S A - T L E M C E N ECOLE SUPÉRIEURE EN SCIENCES APPLIQUÉES --T L E M C E N- FORMATION PRÉPARATOIRE NIVEAU : IEME ANNÉE MODULE: VIBRATIONS Chapire 4: Mouvemen forcé à un degré de liberé Dr. Fouad BOUKLI HACENE E S S A - T

Plus en détail

Travaux dirigés - L3 DIM Traitement Numérique du Signal

Travaux dirigés - L3 DIM Traitement Numérique du Signal Faculé des sciences e d ingénierie. Universié Paul Sabaier Travaux dirigés - L3 DIM Traiemen Numérique du Signal Exercice n o : Soi le signal x)=3 cos00 Π ). Calculez la valeur des échanillons de x) si

Plus en détail

MAITRISE ECONOMIE APPLIQUEE ECONOMETRIE II : EXAMEN TERMINAL (durée 2 h) Filières : Economie Internationale, Monnaie, Finance

MAITRISE ECONOMIE APPLIQUEE ECONOMETRIE II : EXAMEN TERMINAL (durée 2 h) Filières : Economie Internationale, Monnaie, Finance UNIVERSITE DE PARIS-DAUPHINE Février 2004 MAITRISE ECONOMIE APPLIQUEE ECONOMETRIE II : EXAMEN TERMINAL (durée 2 h) Filières : Economie Inernaionale, Monnaie, Finance Noes de Cours Auorisées, seules les

Plus en détail

ANALYSE DE L IMPACT D UN CHANGEMENT DE MÉTHODE DE RACCORDEMENT DES SÉRIES TEMPORELLES APPROCHES THÉORIQUE ET EMPIRIQUE

ANALYSE DE L IMPACT D UN CHANGEMENT DE MÉTHODE DE RACCORDEMENT DES SÉRIES TEMPORELLES APPROCHES THÉORIQUE ET EMPIRIQUE Ocobre 2004 ANALYSE DE L IMPACT D UN CHANGEMENT DE MÉTHODE DE ACCODEMENT DES SÉIES TEMPOELLES APPOCHES THÉOIQUE ET EMPIIQUE Frédéric Parro, ichard McKenzie e Adrien Gambier, OCDE SOMMAIE Inroducion :...

Plus en détail

Une estimation de la cible implicite d inflation dans la zone Euro

Une estimation de la cible implicite d inflation dans la zone Euro 09-137 Research Group: Macroeconomics décembre 2009 Une esimaion de la cible implicie d inflaion dans la zone Euro PATRICK FÈVE, JULIEN MATHERON ET JEAN-GUILLAUME SAHUC Une esimaion de la cible implicie

Plus en détail

Exercices chapitre 9

Exercices chapitre 9 Exercices chapire Exercice onsidéran l ordonnancemen basé sur MA : a) Expliquez ce qu on enend, lorsqu on di que la condiion d ordonnancemen de Liu e Layland (eq. ) es une condiion suffisane, mais pas

Plus en détail

Épreuve de Mathématiques

Épreuve de Mathématiques Épreuve de Mahémaiques La claré des raisonnemens e la qualié de la rédacion inerviendron pour une par imporane dans l appréciaion des copies. L usage d un insrumen de calcul e du formulaire officiel de

Plus en détail

Changement technique induit rôle des normes et des prix dans les mécanismes d induction : une approche de longue période

Changement technique induit rôle des normes et des prix dans les mécanismes d induction : une approche de longue période Changemen echnique indui rôle des normes e des prix dans les mécanismes d inducion : une approche de longue période Rappor final pour l IFE Troisième année Mai 2005 Mourad Ayouz Franck Nadaud Sous la direcion

Plus en détail

M1 Economie : "colle" d économie industrielle

M1 Economie : colle d économie industrielle M Economie "colle" d économie indusrielle Armel JACQUES novembre 0 Les calcularices son auorisées ; en revanche les appareils permean de communiquer (éléphone porable ou aures) son inerdis. Concurrence

Plus en détail

INTRODUCTION AUX MODÈLES ESPACE-ÉTAT ET AU FILTRE DE KALMAN

INTRODUCTION AUX MODÈLES ESPACE-ÉTAT ET AU FILTRE DE KALMAN INTRODUCTION AUX MODÈLES ESPACE-ÉTAT ET AU FILTRE DE KALMAN Mahieu Lemoine * Déparemen analyse e prévision de l OFCE Florian Pelgrin * Banque du Canada, Eurequa, Universié Paris I e OFCE Nous déaillons

Plus en détail

Interpolation de positions-clefs

Interpolation de positions-clefs Inerpolaion de posiions-clefs François Faure able des maières rajecoires. Inerpolaion linéaire...............................2 Inerpolaion cubique...............................3 Courbes en dimension n............................

Plus en détail