est la fréquence empirique des succès lors des 10 premières expériences.

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "est la fréquence empirique des succès lors des 10 premières expériences."

Transcription

1 Pierre Veuillez Statistiques iféretielle Sources, et pour e savoir plus : 1 Problématique : Exemple ue ure cotiet des boules rouges et blaches dot o e coaît pas la compositio. E 100 tirages o a obteu 30 Rouges et 70 Blaches. A combie peut-o estimer la proportio de boules rouges das l ure? Formalisatio X ue variable aléatoire liée à ue expériece aléatoire dot o e coaît que partiellemet la loi. (Ici, loi de Berouilli valat 1 si l o a R et 0 sio Typiquemet o coaît le type de la loi L mais pas so paramètre θ. O sait seulemet que ce paramètre pred ses valeurs das u esemble Θ R. (ici, le paramètre p qui est la proportio de boules Rouges La valeur x prise par X das ue expériece est appelée réalisatio de X. O cherche, via des réalisatios de X à estimer (trouver ue valeur approchée la valeur du paramètre θ de la loi de X -estimatio poctuelle- ou u itervalle das lequel il a ue certaie probabilité de se trouver -estimatio par itervalle de cofiace-. O pourra aussi faire ce travail pour d autres gradeurs (espérace, variace... liées à X Par exemple Pour u lacer de pièce truquée, das ue suite de lacers Pile/Face o a obteu Pile 8 Face, o peut estimer que la probabilité de Pile est la fréquece empirique /10 Fréquece empirique La fréquece empirique des succès est le ombre de succès sur le ombre d expérieces. O peut la défiir à partir de variables de Berouilli X i valat 1 pour succès et au ième lacer et 0 sio. i=1 F = X i 10 est la fréquece empirique des succès lors des 10 premières expérieces. Modélisatio Pour modéliser la répétitio de l expériece, o se doe ue liste (X 1,..., X de variables aléatoires idépedates et de même loi que X appelé -échatillo de variables aléatoires. Ue liste de valeurs (x 1,..., x prises par ces variables est appelé -échatillo de doées. Estimatio poctuelle U estimateur est ue variable aléatoire T foctio du du -échatillo de variables T = f (X 1,..., X ou plus exactemet ue suite de telles variables(t N La valeur f (x 1,..., x souvet otée ˆθ prise par l estimateur sur u -échatillo de doées est appelé estimatio de θ. (ou d autre gradeur.1 Qualités Biais Le biais de T comme estimateur de θ est b = E (T θ = E (T θ. C est l écart moye etre la valeur prise par T et la valeur à estimer θ. Quad le biais est ul, o dit l estimateur sas biais; il doe alors e moyee la boe valeur. Mais rie e l empêche de s e éloiger car les écarts par excès et par défaut peuvet se compeser.

2 Exemple Pour u lacer de pièce : X = 1 si Pile et = 0 si Face.X suit ue loi de Berouilli de paramètre p = P (Pile Et o se doe u -échatillo de variables de même loi que X : (X 1... X Soit T = X 1, o a E (T = E (X 1 = p l estimateur est sas biais mais les valeurs prises par T (0 ou 1 e s approcherot jamais de la valeur à estimer p. Risque quadratique. Le risque quadratique de T comme estimateur de θ est E ((T θ Ici, les écarts e plus et e mois se cumulet. (le carré est positif De plus, l écart de T avec θ état élevé au carré, les grad écarts pèserot ecore d avatage que das E ( T θ par exemple. C est lui que l o utilisera pour comparer deux estimateur. Plus le risque quadratique est petit, meilleur sera l estimateur. Théorème ( Le risque quadratique est : E (T θ = V (T + b avec b le biais de T comme estimateur de θ. Doc pour améliorer u estimateur,o peut dimiuer sot biais, ou sa variace. Exemple Das la suite de lacers Pile/Face, Soit T = X 1, a pour risque quadratique V (T + b = pq : quelque soit la taille de l échatillo, le risque quadratique restera le même. Soit T = i=1 X i Alors so biais est b = E la fréquece empirique. ( i=1 X i p = 1 p p = 0 doc T est sas biais égalemet. Pour calculer so risque quadratique, o cherche la variace de T : V ( T 1 ( = V Xi = 1 p q = p q Doc le risque quadratique de T est fois plus petit que celui de T. De plus, il dimiue avec la taille de l échatillo. Plus l échatillo est importat, plus petit sera le risque quadratique.. Estimatio de l espérace Pour ue variable X ayat ue espérace m et (X 1,..., X u -échatillo de variables, l espérace de X peut être estimée par la moyee empirique : X = Exercice : 1. Motrer que X est u estimateur sas biais de m.. O suppose de plus que X a ue variace Exemple i=1 X i Motrer qu alors le risque quadratique de X ted vers 0 quad ted vers + Pour estimer le paramètre d ue loi biomiale, d ue loi de Poisso ou d ue loi Normale N (m, ν : le paramètre est la moyee. O peut doc estimer ce paramètre par la moyee empirique avec u risque quadratique qui ted vers 0 quad ted vers l ifii.

3 .3 Règles de calculs E ( i=1 X i = i=1 E (X i et E (αx = αe (X si α est ue costate. E (X Y = E (X E (Y si X et Y sot idépedates. V ( i=1 X i = i=1 V (X i si les (X i ssot idépedates. V (αx + β = α V (X si α et β sot ue costate 3 Itervalle de cofiace. 3.1 Défiitio Soit X ue variable aléatoire de loi L (θ et (X 1... X u -échatillo de variables. Soiet U et V foctios de cet échatillo [U, V ] est u itervalle de cofiace de θ de au iveau de cofiace 1 α (ou de iveau de risque α si P (U θ V 1 α Très souvet, o predra u itervalle cetré autour d u estimateur de θ 3. Iégalité de Bieaymé-Tchebichev P ( X m ε V (X ε doc P ( X m < ε 1 V (X ε et P (X ε m X + ε 1 V (X ε 3.3 Covergece : théorème de la limite cetrée. Si (X 1... X est u -échatillo de variables idépedates idépedats et de même loi que X ayat ue espérace et ue variace alors la loi de la moyee empirique cetrée réduite, ou de la somme cetrée réduite coverge e loi vers N (0, 1 (peut être approchée par cette loi Ce qui se ramèe à dire que la loi de X peut être approchée par N ( m, ν (cf exercice Ou qu ue loi B (, p peut être approchée par N ( p, p q (coditio : 30 et p 15 et p q 5 das la littérature Exercice Détermier ue valeur approchée de la loi de la moyee empirique : E ( X = E (X, V ( X = 1 V (X doc X N ( E (X, 1 V (X 3.4 Loi Normale N.B. Si X N (0, 1 alors P ( t X t = Φ (t Φ ( t = Φ (t 1 Si X N (m, ν alors P (X t m X + t = P ( t X m t = Φ ( t 1 Doc P (X t m X + t 1 α Φ ( t 1 1 α Φ ( t 1 α/ Cas particulier : approximatio de Biomiales cetrée réduite : cf 4.4 Exemple : pour α = 0, 05 (risque de 5% o trouve Φ (1, 96 = 0, 975 = 1 0, 05/ doc pour t = 1, 96 o a le risque voulu et P (X 1, 96 m X + 1, 96 0, utilisable si o a la valeur de l écart type (sio, pratiquemet, o e pred ue estimatio.

4 4 Exercices 4.1 Variace Soit X ayat ue espérace m et ue variace v, sa variace empirique est W = 1 X i X avec X la moyee empirique de X et 1 X i la moyee empirique de X. 1. Soit Y ayat ue espérace et ue variace. Calculer E ( Y e foctio E (Y et V (Y. Calculer E ( ( ( X et V X et e déduire E X 3. Motrer efi que E (W = 1 V (X et e déduire u estimateur sas biais de la variace. 4. Questio cofidetielle. Certais sujets abordés das les equêtes d opiio sot parfois assez itimes, et o court le risque que les persoes iterrogées se refuset à répodre frachemet à l equêteur, faussat aisi le résultat. O peut alors avoir recours à ue astuce cosistat à iverser aléatoiremet les réposes. Cosidéros ue questio cofidetielle pour laquelle o veut estimer la probabilité p de réposes positives. L equêteur demade à chaque persoe iterrogée de lacer u dé. Si le dé tombe sur 6, la persoe doit doer sa répose sas metir, sio elle doit doer l opiio cotraire à la siee. Si l equêteur igore le résultat du dé, il e pourra pas savoir si la répose est frache ou o, et o peut espérer que la persoe sodée acceptera de jouer le jeu. Gééralisos légèremet la situatio e tirat pour chaque persoe ue variable de Beroulli de paramètre α. (α = 1 6 das l exemple itroductif Si le résultat de cette variable est 1, la répose est frache, sio, elle est iversée. Soit le ombre de persoes iterrogées. L equêteur e recueille que la fréquece empirique F des oui. 1. Motrer que la probabilité de oui à l issue de la procédure est q = α p + (1 α (1 p. Motrer que F, la fréquece observée par l equêteur, est u estimateur sas biais de q et de risque quadratique tedat vers 0 quad ted vers + 3. Pour α 1/ exprimer p e e foctio de q. 4. E déduire que T = F 1+α α 1 est u estimateur sas biais de p dot le risque quadratique ted vers 0 quad ted vers Pour fixé, quelle valeur attribuer à α pour que le risque quadratique soit miimum? Est-ce acceptable? Pour quelle valeur de α ce risque est-il maximum? Quel sera le risque quadratique avec le dé (α = 1/6

5 4.3 Loi uiforme Soit X de loi U [0, a] et (X 1,... X ue -échatillo de variables. Estimatio de a : X a ue espérace de a/. Soit X la moyee empirique. 1. Soit T = X. Motrer que T est sas biais et détermier so risque quadratique. Soit T = max (X 1,..., X Détermier la foctio de répartitio de X puis celle de T E déduire sa desité puis so biais et so risque quadratique. 3. Soit T = +1 T détermier so biais et so risque quadratique. 4. Quel est le meilleur estimateur de a pour de grades valeurs de? 4.4 Itervalle de cofiace pour le paramètre d ue variable de Beroulli. Lors d u sodage sur 100 persoes iterrogée, 60 peset voter pour A O modélise le choix par u échatillo (X 1,..., X 100 de variable idépedates de même loi de Berouilli de paramètre p. O cherche à détermier u itervalle de cofiace pour p au iveau de cofiace 99% (1% de risque 1. Détermier l espérace et la variace de la fréquece empirique F = i=1 X i?. O ote F la fréquece empirique cetrée réduite. Par quelle loi peut o approcher celle de F? O suppose désormais que F suit N (0, 1 ( 3. Détermier t tel que P ( t F p(1 p t 0, 99 et e déduire que P F t 10 p F + t 0, 99 p(1 p Motrer que pour tout p [0, 1], p (1 p 1 4 de cofiace de p au iveau de cofiace 99% et e déduire que [F t/0 ; F + t/0] est u itervalle 4.5 Itervalle de cofiace par Bieaymé-Tchebichev Soit a [ 0; 3 ], X U [0,a] et (X 1... X u -échatillo de variables de même loi que X et idépedates. O cherche u itervalle de cofiace de a au iveau de cofiace 99% (iveau de risque 1%. O ote X la moyee empirique 1. Rappeler la moyee m de X et motrer que V (X = a 1. E déduire la moyee et l espérace de X.. E déduire que P ( X a > 0, Détermier efi pour que [ X 0, 1 ; X + 0, 1 ] soit u itervalle de cofiace de a au iveau de cofiace 99% 4. Ecrire u programme PASCAL qui choisit u ombre a au hasard das [ 0; 3 ] effectue tirages das [0, a] calcule et affiche la moyee des résultats obteus. Le programme a affiché 0,534. Pesez vous que a = 0, 534? Pesez vous que a > 0, 7?

6 Pesez vous que a [0, 43 ; 0, 64]? 5. das la sutie, = Par quelle loi peut-o approcher celle de X (cetrée réduite? ( 6. Détermier t pour que P t 1 a 100 ( X a < t 0, 99 et e déduire u autre itervalle de cofiace de a au iveau α 4.6 Comptage par capture et recapture O cherche à évaluer le ombre N de poissos das u étag. Pour cela, o prélève das l étag m poissos que l o bague avat les remettre das l étag. O propose deux méthodes différetes d estimatio de N. Méthode 1 Soit N, m. O prélève des poissos das l étag, au hasard et avec remise. O ote X la variable aléatoire égale au ombre de poissos qu il a été écessaire de pêcher pour obteir poissos marqués. Pour tout i [, ], o pose D i = X i X i 1. O pose D 1 = X 1 et o suppose que les D i sot des variables idépedates. 1. a Pour tout i [, ], quelle est la sigificatio de D i? b Détermier, pour i [, ], la loi de D i, so espérace et sa variace. E déduire l espérace et la variace de X. c O pose A = m X. Motrer que A est u estimateur sas biais de N et détermier so risque quadratique.. a Pour assez grad, par quelle loi peut-o approcher la loi de la variable aléatoire X (cetrée réduite? b O a marqué 00 poissos puis effectué 450 prélèvemets pour obteir 50 poissos marqués. O pose = (A. O a pu prouver par ailleurs que 100. Détermier e foctio de, u itervalle de cofiace pour N au seuil 0.9 (O doe Φ(1, 64 0, 95. Méthode O prélève successivemet et avec remise poissos. Soit Y le ombre de poissos marqués parmi eux. 1. Motrer que 1 m Y est u estimateur sas biais de 1 N.. Pour quelle raiso évidete e peut-o pas predre m Y comme estimateur de N? O pose alors B = m(+1 Y +1 1 a Calculer l espérace de B (o motrera que ( k+1( k = k+1 b Est-il u estimateur sas biais de N?

i la moyenne empirique de X n n v =

i la moyenne empirique de X n n v = Corrigé Statistiques iféretielle par par Pierre Veuillez Itervalle de cofiace. Exercice Détermier ue valeur approchée de la loi de la moyee empirique : E X E X, V X V X doc X N E X, V X Exercices. Variace

Plus en détail

ESTIMATION Exercices

ESTIMATION Exercices ESTIMATION Exercices EERCICE : Les variables aléatoires cosidérées das cet exercice sot défiies sur u espace probabilisable, AP, Soit a u réel strictemet positif et ue variable aléatoire de loi uiforme

Plus en détail

Divers exercices de probabilité

Divers exercices de probabilité Divers exercices de probabilité Traiter e priorité les quatre premiers exercices de chaque sectio. 1 Probabilité Exercice 1.1 Mo voisi a deux efats. 1- Le plus jeue est ue fille, quelle est la probabilité

Plus en détail

1 Lois des grands nombres. 2 Théorème central-limite. 3 Estimation ponctuelle à partir d échantillons. 4 Biais dans les estimations

1 Lois des grands nombres. 2 Théorème central-limite. 3 Estimation ponctuelle à partir d échantillons. 4 Biais dans les estimations Pla du cours 2 RFIDEC cours 2 : Échatillos, estimatios poctuelles Christophe Gozales LIP6 Uiversité Paris 6, Frace 1 Lois des grads ombres 2 Théorème cetral-limite 3 Estimatio poctuelle à partir d échatillos

Plus en détail

STATISTIQUES - ESTIMATION

STATISTIQUES - ESTIMATION STATISTIQUES - ESTIMATION I Echatilloage et estimatio : itroductio O se situe ici das 2 domaies des statistiques qui sot ceux de l «échatilloage» et de l «estimatio». Ces 2 domaies ot des cotextes d applicatio

Plus en détail

Introduction aux théorèmes limites et aux intervalles de confiance

Introduction aux théorèmes limites et aux intervalles de confiance Chapitre 5 Itroductio aux théorèmes limites et aux itervalles de cofiace Objectifs du chapitre. Savoir approcher ue loi biomiale par ue loi de Poisso ou ue loi ormale. 2. Savoir approcher ue loi e appliquat

Plus en détail

CONVERGENCE ET APPROXIMATION

CONVERGENCE ET APPROXIMATION 11-2- 2010 J.F.C. Cov. p. 1 CONVERGENCE ET APPROXIMATION I CONVERGENCE EN PROBABILITÉ 1. Défiitio 2. Ue coditio suffisate de covergece e probabilité 3. La loi faible des grads ombres 4. Ue coséquece de

Plus en détail

Exercices sur le chapitre «Variables aléatoires»

Exercices sur le chapitre «Variables aléatoires» Araud de Sait Julie - MPSI Lycée La Merci 2015-2016 1 Pour démarrer Exercices sur le chapitre «Variables aléatoires» Exercice 1 (Recostitutio de paires) O fixe deux etiers aturels 1 r. U placard cotiet

Plus en détail

Convergences et approximations

Convergences et approximations Covergeces et approximatios Probabilités : Chapitre 5 Das tout ce chapitre, les démostratios serot faites das le cas des variables discrètes et des variables à desité. I Iégalité de Bieaymé-Tchebychev

Plus en détail

Éléments de correction de la feuille d exercices # 3

Éléments de correction de la feuille d exercices # 3 Uiversité de Rees L SVE Probabilités et statistiques aée 25-26 Élémets de correctio de la feuille d exercices # 3 Exercice Exemple de loi discrète Soit X ue variable aléatoire discrète preat les valeurs

Plus en détail

Opérations sur les variables aléatoires Lois limites

Opérations sur les variables aléatoires Lois limites Opératios sur les variables aléatoires Lois limites A. Idépedace de deux variables aléatoires. Exemple 1. Pour améliorer le stockage d u produit u supermarché fait ue étude sur la vete de packs de 6 bouteilles

Plus en détail

Chapitre 6 Théorèmes de convergence

Chapitre 6 Théorèmes de convergence Chapitre 6 Théorèmes de covergece 1. La covergece e loi O a déjà recotré ue covergece e loi lors de l approximatio d ue loi biomiale par ue loi de Poisso. Ce problème se place das u cadre plus gééral où

Plus en détail

Convergence en loi. Théorème de la limite centrale.

Convergence en loi. Théorème de la limite centrale. Uiversité Pierre et Marie Curie 2013-2014 Probabilités et statistiques - LM345 Feuille 10 (semaie du 2 au 6 décembre 2013 Covergece e loi. Théorème de la limite cetrale. Covergece e loi 1. Soiet (X N ue

Plus en détail

II - Estimation d'un paramètre par intervalle de confiance

II - Estimation d'un paramètre par intervalle de confiance II - Estimatio d'u paramètre par itervalle de cofiace 1 ) - Gééralités sur la costructio O veut estimer u paramètre (moyee, proportio ) d'u caractère das ue populatio P. Ue estimatio poctuelle à partir

Plus en détail

1 Un peu de vocabulaire

1 Un peu de vocabulaire Statistiques - Échatilloage Cours Objectifs du chapitre Passer d u mode de représetatio des doées à u autre (doées brutes, tableau d effectifs, représetatio graphique) Calculer la moyee, la médiae, les

Plus en détail

Statistiques inférentielles. Introduction. Exemples. Définition (Échantillon aléatoire) Définition (Statistique inférentielle) Exemple 1.

Statistiques inférentielles. Introduction. Exemples. Définition (Échantillon aléatoire) Définition (Statistique inférentielle) Exemple 1. Statistiques iféretielles Pierre-Heri WUILLEMIN Licece d Iformatique Uiversité Paris 6 Itroductio Soit ue populatio de taille N sur laquelle o observe ue propriété, dot o veut calculer moyee µ et de variace

Plus en détail

Annexe I. Théorie des tests : Rappel très simplifié sur un exemple.

Annexe I. Théorie des tests : Rappel très simplifié sur un exemple. Théorie des tests : Rappel très simplifié sur u exemple. Aexe I Test de l efficacité d u remède sur des malades atteit d u rhume. p 0 : probabilité de guérir das les huit jours avec u placebo p 1 : probabilité

Plus en détail

TD 4 : Variables aléatoires discrètes

TD 4 : Variables aléatoires discrètes MA40 : Probabilités TD 4 : Variables aléatoires discrètes Exercice Soit N u etier aturel supérieur ou égal à.. Motrer les égalités suivates : N k k N N + ) N k k N N + ) N + ). Ue ure cotiet ue boule blache

Plus en détail

1 lois usuelles. 2 Estimation. 1.1 Loi Binomiale. 1.2 Loi de Poisson. 1.3 Loi normale. 2.1 Estimation ponctuelle de la moyenne

1 lois usuelles. 2 Estimation. 1.1 Loi Binomiale. 1.2 Loi de Poisson. 1.3 Loi normale. 2.1 Estimation ponctuelle de la moyenne 1 lois usuelles 11 Loi Biomiale B(, p) q = 1 p p(x = k) = C k p k q k Espérace E(X) = p Variace : V ar(x) = pq Écart type : σ = pq 12 Loi de Poisso P(λ) : loi de Poisso de paramètre λ > 0 : X(Ω) = N λ

Plus en détail

Statistiques inférentielles

Statistiques inférentielles Statistiques iféretielles LI323 Hugues Richard (otes de cours: Pierre-Heri Wuillemi) Uiversité Pierre et Marie Curie (UPMC) Laboratoire géomique des microorgaismes (LGM) Itroductio Soit ue populatio de

Plus en détail

Annexe : Leçon 10 - Échantillonnage

Annexe : Leçon 10 - Échantillonnage Aexe : Leço 10 - Échatilloage Clémet BOULONNE pour la sessio 01 I Niveau, prérequis, référeces Niveau BTS Prérequis Probabilités, lois discrètes et cotiues Référeces [1,,, 4, 5] II Coteu de la leço 1 Approximatio

Plus en détail

Chapitre 9 La loi binomiale

Chapitre 9 La loi binomiale A) Variables aléatoires 1) Défiitio Chapitre 9 La loi biomiale O appelle variable aléatoire X ue foctio qui associe à tout résultat (évéemet élémetaire) u ombre réel. Pour ue même expériece aléatoire,

Plus en détail

Estimation de paramètres

Estimation de paramètres CHAPITRE 8 Estimatio de paramètres 1. Distributio des moyees des échatillos Das ce chapitre, ous étudieros commet est distribué la moyee de tous les échatillos de taille possibles d ue certaie populatio.

Plus en détail

Quelques notions élementaires de probabilités et statistiques

Quelques notions élementaires de probabilités et statistiques Chapitre 6 Quelques otios élemetaires de probabilités et statistiques 6.1 Probabilités U uivers Ω est u esemble modélisat les réalisatios possibles d ue expériece. U esemble A P(Ω) modélise la otio d évéemet

Plus en détail

Université Pierre et Marie Curie Mathématiques L2 UE 2M231 Probabilités-Statistiques Année Examen du 13 mai 2015

Université Pierre et Marie Curie Mathématiques L2 UE 2M231 Probabilités-Statistiques Année Examen du 13 mai 2015 Uiversité Pierre et Marie Curie Mathématiques L2 UE 2M231 Probabilités-Statistiques Aée 2014-15 Exame du 13 mai 2015 Le sujet comporte 2 pages. L épreuve dure 2 heures. Les documets, calculatrices et téléphoes

Plus en détail

LA LOI DES GRANDS NOMBRES ET LE THÉORÈME DE LA LIMITE CENTRALE

LA LOI DES GRANDS NOMBRES ET LE THÉORÈME DE LA LIMITE CENTRALE LA LOI DES GRANDS NOMBRES ET LE THÉORÈME DE LA LIMITE CENTRALE MATTHIEU KOWALSKI 1. INTRODUCTION La démarche statistique cosiste à observer ue expériece aléatoire das le but de mieux coaître ses caractéristiques.

Plus en détail

TD10. Loi des grands nombres, théorème central limite.

TD10. Loi des grands nombres, théorème central limite. Uiversité Pierre & Marie Curie Licece de Mathématiques L3 UE LM345 Probabilités élémetaires Aée 2014 15 TD10. Loi des grads ombres, théorème cetral limite. 1. Soit (U ) 1 ue suite de variables aléatoires

Plus en détail

Probabilités générales

Probabilités générales Chapitre 4 termiale s Probabilités géérales Les probabilités (rappels) : ) Quelques otios de vocabulaire : Nous allos étudier selo quelle mesure u fait proveat du hasard peut être prévisible a) Ue expériece

Plus en détail

Loi binomiale. Loi de Bernoulli

Loi binomiale. Loi de Bernoulli Loi biomiale Loi de Beroulli O s itéresse ici à la réalisatio ou o d u évéemet. Autremet dit, o étudie les expérieces aléatoires qui ot que deux issues possibles : Obteir Pile ou Face Doer aissace à u

Plus en détail

IUT HSE Introduction aux probabilités et statistiques Applications Variables aux statistiques aléatoires 4 / 1

IUT HSE Introduction aux probabilités et statistiques Applications Variables aux statistiques aléatoires 4 / 1 IUT HSE Itroductio aux probabilités et statistiques Variables aléatoires Philippe Jamig Istitut Mathématique de Bordeaux PhilippeJamig@gmailcom http://wwwmathu-bordeaux1fr/ pjamig/ X variable aléatoire

Plus en détail

Calcul des probabilités 2 (M-2.1)

Calcul des probabilités 2 (M-2.1) Calcul des probabilités (M-.) I. Probabilités sur u esemble fii. Défiitios Défiitio Ue expériece aléatoire est ue expériece dot il est impossible de prévoir l issue (mais o coaît toutes les issues possibles)

Plus en détail

Echantillon : Collection d'individus prélevés dans la population statistique.

Echantillon : Collection d'individus prélevés dans la population statistique. SONDAGE (ECHANTILLONNAGE) POPULATION STATISTIQUE N idividus possédat ue modalité yi de la (ou des) variable(s) y ( i N) PARAMETRES valeur cetrale dispersio corrélatio µ σ² ρ moyee variace coef. corr. ECHANTILLON

Plus en détail

C.1- Lois discrètes- Loi uniforme

C.1- Lois discrètes- Loi uniforme C- Lois usuelles C.1- Lois discrètes- Loi uiforme Loi d ue variable aléatoire X preat ses valeurs das {1,,} avec la même probabilité: 1 P ( X = x ) = x {1,,... } Ex : E=«lacer d u dé régulier» X=uméro

Plus en détail

Master Eseec Statistique pour l expertise - partie2

Master Eseec Statistique pour l expertise - partie2 Master Eseec Statistique pour l expertise - partie2 Christia Laverge Uiversité Paul Valéry - Motpellier 3 http://moodle-miap.uiv-motp3.fr http://www.uiv-motp3.fr/miap/es (UPV) Eseec 1 / 57 Lois limites

Plus en détail

D- Convergence de variables aléatoires

D- Convergence de variables aléatoires D-1 Notatios O cosidère ( ) N (évetuellemet (Y ) N ) ue suite de variables aléatoires défiies sur l espace probabilisé (Ω, A, ) et X (évetuellemet Y ) ue variable aléatoire défiie sur le même espace. O

Plus en détail

Estimation par intervalle de confiance

Estimation par intervalle de confiance 62 CHAPITRE 12 Estimatio par itervalle de cofiace 1. Estimatio de la moyee par itervalle de cofiace 1.1. Calcul de la marge d erreur. O veut maiteat faire ue estimatio par itervalle de cofiace de la moyee

Plus en détail

P(X> ) = f(..) + f(...).. MAIS si on ne sait pas le max à 1-P(X< )* P(X< ) = f(..) + f( ).. Type de donnée Ex Main Excel

P(X> ) = f(..) + f(...).. MAIS si on ne sait pas le max à 1-P(X< )* P(X< ) = f(..) + f( ).. Type de donnée Ex Main Excel Les lois discrètes Réalisatios déombrables Poits portet probabilités P(X> ) = f(..) + f(...).. MAIS si o e sait pas le max à -P(X< )* P(X< )= f(..) + f(...).. P(X> ) = *-P(X< ) = F( ) è soit f( ) f( )

Plus en détail

Expérience aléatoire - modélisation - langage des probabilités

Expérience aléatoire - modélisation - langage des probabilités T.S Probabilités coditioelles L 5 I Expériece aléatoire - modélisatio - lagage des probabilités Ue expériece aléatoire est ue expériece liée au hasard. Les mathématiques itervieet pour apporter u modèle

Plus en détail

Chapitre 4 Lois discrètes

Chapitre 4 Lois discrètes Chapitre 4 Lois discrètes 1. Loi de Beroulli Ue variable aléatoire X est ue variable de Beroulli si elle e pred que les valeurs 0 et 1 avec des probabilités o ulles. P(X = 1) = p, P(X = 0) = 1 p = q, avec

Plus en détail

Variables aléatoires. Exercices

Variables aléatoires. Exercices Variables aléatoires Exercices 04-05 Les idispesables Loi d ue variable aléatoire, espérace et variace O répète idéfiimet le lacer d u dé équilibré à 6 faces Soit la variable aléatoire doat la valeur du

Plus en détail

Échantillonnage. I Rappels sur les lois usuelles 2

Échantillonnage. I Rappels sur les lois usuelles 2 BTS DOMOTIQUE Échatilloage 2008-2010 Échatilloage Table des matières I Rappels sur les lois usuelles 2 II Approximatios de la loi biomiale 2 II.1 Approximatio par la loi de poisso................................

Plus en détail

Autour de la loi de Poisson

Autour de la loi de Poisson Agrégatio Itere de Mathématiques Thierry Champio séace du 25 ovembre 2016 Autour de la loi de Poisso Notatios - Itroductio Das tout ce problème, (Ω, T, P) est u espace probabilisé. Toutes les variables

Plus en détail

Résumé : Probabilités Niveau : Bac Sciences de l informatique Réalisé par : Prof. Benjeddou Saber

Résumé : Probabilités Niveau : Bac Sciences de l informatique Réalisé par : Prof. Benjeddou Saber Résumé : Niveau : Bac Scieces de l iformatique Réalisé par : Prof. Bejeddou Saber Tableau récapitulatif sur le déombremet: Type du tirage : Simultaé Successif sas remise Successif avec remise U tirage

Plus en détail

POLYNESIE Série S Juin 2001 Exercice

POLYNESIE Série S Juin 2001 Exercice OLYNESIE Série S Jui 00 Exercice gros rouges et 3 petits rouges Ue boîte cotiet 8 cubes : gros verts et petit vert petit jaue U efat choisit au hasard et simultaémet 3 cubes de la boîte (o admettra que

Plus en détail

Exercices - Variables aléatoires discrètes : corrigé. Variables discrètes finies - Exercices pratiques

Exercices - Variables aléatoires discrètes : corrigé. Variables discrètes finies - Exercices pratiques Variables discrètes fiies - Exercices pratiques Exercice 1 - Loi d u dé truqué - Deuxième aée - 1. X pred ses valeurs das {1,..., 6}. Par hypothèse, il existe u réel a tel que P (X k) ka. Maiteat, puisque

Plus en détail

TS DEVOIR n 3 lundi 13 novembre lim x. 1. Lire dans le tableau les limites de f en et en +. En déduire une asymptote à la courbe de f.

TS DEVOIR n 3 lundi 13 novembre lim x. 1. Lire dans le tableau les limites de f en et en +. En déduire une asymptote à la courbe de f. TS DEVOIR 3 ludi 3 ovembre 207 sur 4,5 poits Calculer les trois ites suivates : a) 3x 4 x x 2 x b) 2si( x) x x c) 8x 5 x 2 x 3 2 sur 3,5 poits Soit f ue foctio défiie sur dot o doe ci-dessous le tableau

Plus en détail

EXERCICES SIMULATION LOIS DISCRETES

EXERCICES SIMULATION LOIS DISCRETES EXERCICES SIMULATION LOIS DISCRETES EXERCICE 1 : 1) Ecrire u programme qui revoie le lacer d u lacer de dé équilibré 2) Trasformer le programme précédet pour qu il simule ue série de 100 lacers d u dé

Plus en détail

CHAPITRE 2 : Estimation non-paramétrique 1. Estimateurs empiriques

CHAPITRE 2 : Estimation non-paramétrique 1. Estimateurs empiriques CHAPITRE 2 : Estimatio o-paramétrique 1. Estimateurs empiriques Soit u échatillo i.i.d. de durées T i i1,..., de foctio de survie S Défiitio: L estimateur empirique de la foctio de survie est S x 1 i1

Plus en détail

Texte Filtre de Kalman-Bucy

Texte Filtre de Kalman-Bucy Page 1. Texte Filtre de Kalma-Bucy 1 e modèle U avio se déplace etre Paris et odres. Il suit ue trajectoire théorique appelée trajectoire omiale dot les coordoées sot coues de tous. a trajectoire de l

Plus en détail

Tests. Chapitre 2. 1 Principe d un test Définitions Méthode générale... 3

Tests. Chapitre 2. 1 Principe d un test Définitions Méthode générale... 3 Tests Chapitre Table des matières 1 Pricipe d u test 1 11 Défiitios 1 Méthode géérale 3 Test de coformité à u paramètre 3 1 Test de coformité à ue moyee 3 Test de coformité à ue proportio 4 3 Test d homogééité

Plus en détail

Intervalles de fluctuations et intervalles de confiance

Intervalles de fluctuations et intervalles de confiance Complémets e statistique. Préparatio au Capes. Uiversité de Rees 1. 2015. Complémets e Statistique Préparatio au Capes Uiversité de Rees 1 Itervalles de fluctuatios et itervalles de cofiace Table des matières

Plus en détail

Corrigé du baccalauréat ES Asie 23 juin 2016

Corrigé du baccalauréat ES Asie 23 juin 2016 Corrigé du baccalauréat ES Asie jui 16 A.. M. E.. EXERCICE 1 Commu à tous les cadidats 6 poits Das u repère orthoormé du pla, o doe la courbe représetative C f d ue foctio f défiie et dérivable sur l itervalle

Plus en détail

Correction Exercices Chapitre 08 - Couples de variables aléatoires réelles discrètes

Correction Exercices Chapitre 08 - Couples de variables aléatoires réelles discrètes 08. O dispose de boîtes umérotées de à. La boîte k cotiet k boules umérotées de à k. O choisit au hasard ue boîte, puis ue boule das cette boîte. Soit X le uméro de la boîte et Y le uméro de la boule..

Plus en détail

Résumé de statistique inductive

Résumé de statistique inductive Uiversité de Bourgoge Faculté de Médecie et de Pharmacie Résumé de statistique iductive NB : les iformatios coteues das ce polycopié e fot e aucu cas office de référece pour le cocours, il s agit uiquemet

Plus en détail

MAP 311: Aléatoire PC 8 Marc Lelarge 20 juin 2016

MAP 311: Aléatoire PC 8 Marc Lelarge 20 juin 2016 MAP 3: Aléatoire PC 8 Marc Lelarge 0 jui 06 Exercice Soit (X ) ue suite de v.a. idépedates et de même loi. itégrable, de moyee m et de variace σ > 0. O défiit: O suppose que X est de carré ˆm = X + + X,

Plus en détail

Tous les quatre pensent ensuite utiliser la formule bien connue : f

Tous les quatre pensent ensuite utiliser la formule bien connue : f Exercices sur les Itervalles de cofiace Exercice Le parti d u cadidat commade u sodage réalisé à partir de 600 persoes à l issue duquel il est doé gagat avec 52% des voix. A-t-il des raisos d être cofiat?

Plus en détail

LOIS NORMALES. I. Introduction. Voici quelques exemples de courbes provenant de la vie quotidienne :

LOIS NORMALES. I. Introduction. Voici quelques exemples de courbes provenant de la vie quotidienne : I. Itroductio. LOIS NORMALES. Voici quelques exemples de courbes proveat de la vie quotidiee : La répartitio du QI das la populatio Le poids d ue populatio de chatos Répartitio des coscrits e 1907 Age

Plus en détail

Suites de variables aléatoires.

Suites de variables aléatoires. Uiversité Pierre et Marie Curie 200-20 Probabilités et statistiques - LM345 Feuille 8 Suites de variables aléatoires.. Soit Ω, F, P u espace de probabilités. Détermier pour chacue des covergeces suivates

Plus en détail

Chapitre 1. Modélisation statistique. 1.1 Exemple du jeu de pile ou face

Chapitre 1. Modélisation statistique. 1.1 Exemple du jeu de pile ou face Chapitre 1 Modélisatio statistique 1.1 Exemple du jeu de pile ou face Ue pièce a ue probabilité icoue θ 0 ]0,1[ de tomber sur pile. Sur les 1000 lacers réalisés idépedammet les us des autres, 520 piles

Plus en détail

Techniques d enquête

Techniques d enquête Sodage aléatoire simple Techiques d equête Exercice 1 Sur les 500 élèves de M1 de l Uiversité d Auverge, o veut coaître la proportio P qui souhaitet faire u Master à Clermot-Ferrad. Parmi les 150 élèves

Plus en détail

ECOLE DES HAUTES ETUDES COMMERCIALES E.S.C.P.-E.A.P. ECOLE SUPERIEURE DE COMMERCE DE LYON MATHEMATIQUES I

ECOLE DES HAUTES ETUDES COMMERCIALES E.S.C.P.-E.A.P. ECOLE SUPERIEURE DE COMMERCE DE LYON MATHEMATIQUES I CHAMBRE DE COMMERCE ET D INDUSTRIE DE PARIS DIRECTION DE L ENSEIGNEMENT Directio des Admissios et cocours ECOLE DES HAUTES ETUDES COMMERCIALES E.S.C.P.-E.A.P. ECOLE SUPERIEURE DE COMMERCE DE LYON CONCOURS

Plus en détail

EXERCICES de Statistiques

EXERCICES de Statistiques EXERCICES de Statistiques Aette Corpart lycée Jea Zay de Thiers EXERCICES sur la LOI NORMALE La variable aléatoire X suit la loi ormale N ( 12 ; 4 ). Calculer les probabilités suivates : P ( X 15 ) ; P

Plus en détail

TD1. Dénombrements, opérations sur les ensembles.

TD1. Dénombrements, opérations sur les ensembles. Uiversité Pierre & Marie Curie Licece de Mathématiques L3 UE LM345 Probabilités élémetaires Aée 2014 15 TD1. Déombremets, opératios sur les esembles. 1. Combie de faços y a-t-il de classer 10 persoes à

Plus en détail

Z = 1 4i. z = On multiplie par le conjugué du dénominateur S = 5. = b + i. z 2 = z 1. 2 = 3 i 2. = 6 + 2i 4. { 3 + i. 2 ; 3 i }

Z = 1 4i. z = On multiplie par le conjugué du dénominateur S = 5. = b + i. z 2 = z 1. 2 = 3 i 2. = 6 + 2i 4. { 3 + i. 2 ; 3 i } Nom :........................ DS Préom :..................... Devoir o 7 Mars 6.../... Le soi et la rédactio serot pris e compte das la otatio. Faites des phrases claires et précises. Le barème est approximatif.

Plus en détail

Amérique du Nord. Terminale S mai 2014

Amérique du Nord. Terminale S mai 2014 Termiale S mai 2014 Amérique du Nord 1 Exercice 1 (5 poits) Das cet exercice, tous les résultats demadés serot arrodis à 10 3 près Ue grade eseige de cosmétiques lace ue ouvelle crème hydratate Partie

Plus en détail

Estimation paramétrique

Estimation paramétrique Retour au pla du cours Soit Ω, A, P u espace probabilisé et X ue v.a. de Ω, A das E, E. La doée d u modèle statistique c est la doée d ue famille de probabilités sur E, E, {P θ, θ Θ}. Le modèle état doé,

Plus en détail

X 1 = { X si X est impair 0 sinon

X 1 = { X si X est impair 0 sinon Corrigé ECRICOME 998 par Pierre Veuillez Das tout le problème, X désige ue variable aléatoire défiie sur u espace probabilisé (Ω, A, P et à valeurs das N et E(X l espérace de X si elle eiste. O ote A l

Plus en détail

Baccalauréat S Centres étrangers 10 juin 2016

Baccalauréat S Centres étrangers 10 juin 2016 Baccalauréat S Cetres étragers 0 jui 206 Exercice I (4 poits) Pour chacue des quatre affirmatios suivates, idiquer si elle est vraie ou fausse, e justifiat la répose. il est attribué u poit par répose

Plus en détail

Éléments de probabilité.

Éléments de probabilité. Élémets de probabilité.. Gééralités Les probabilités s'occupet de phéomèes aléatoires, c'est à dire qui sot liés au hasard. Défiitio : O appelle expériece aléatoire, ue expériece dot les résultats, o tous

Plus en détail

Séance 2 : Estimateurs convergents, non biaisés et exhaustifs.

Séance 2 : Estimateurs convergents, non biaisés et exhaustifs. Exercice Séace 2 : Estimateurs covergets, o biaisés et exhaustifs. Soiet les variables aléatoires X i i =,..., i.i.d. Motrez que S 2 = X i X 2 est u estimateur o biaisé de σ 2, où σ 2 = V ar[x ]. O utilise

Plus en détail

IREM Martine Quinio. 5 février 2013

IREM Martine Quinio. 5 février 2013 : 1 IREM 2013 Martie Quiio 5 février 2013 1 La loi de Gauss, ou loi ormale Itroductio : Lire court article C.Villai das Le Mode du 14-15/12 : il compare le traitemet médiatique boso de Higgs et rats OGM

Plus en détail

Variables aléatoires finies Présentation

Variables aléatoires finies Présentation Variables aléatoires fiies Présetatio. Défiitio élémetaire (tombola).... Le prix de vete d'u billet de la tombola... 3 3. Espérace mathématique d ue variable aléatoire fiie... 4 4. Variace et écart type

Plus en détail

Correction de l exercice 1

Correction de l exercice 1 IUT Orsa Iformatique S3 Correctio de l exercice. Ω est l esemble des résultats possibles de l experiece aléatoire lacer u dé à faces : Ω {,, 3,,, }, et Ω.. Si k Ω sort, le gai du jeu est k euros. Doc la

Plus en détail

- Représenter un schéma de Bernoulli par un arbre pondéré. - Reconnaître des situations relevant de la loi binomiale

- Représenter un schéma de Bernoulli par un arbre pondéré. - Reconnaître des situations relevant de la loi binomiale www.mathselige.com STI2D - P2 - LOI IOMIALE COURS (/5) Le travail sur les séries statistiques et les probabilités meé e classe de secode se poursuit avec la mise e place de ouveaux outils. Les scieces

Plus en détail

Loi faible des grands nombres Loi forte des grands nombres Loi des grands nombres de Kolmogorov. Probabilités. Loi des grands nombres.

Loi faible des grands nombres Loi forte des grands nombres Loi des grands nombres de Kolmogorov. Probabilités. Loi des grands nombres. Itérêt Loi faible des grads ombres Loi forte des grads ombres Loi des grads ombres de Kolmogorov Loi des grads ombres Julia Tugaut Télécom Sait-Étiee Julia Tugaut Sommaire 1 Itérêt Approche fréquetiste

Plus en détail

Exercices d oraux de la banque CCP Corrigés BANQUE PROBABILITÉS

Exercices d oraux de la banque CCP Corrigés BANQUE PROBABILITÉS Exercices d oraux de la baque CCP 204-20 - Corrigés BANQUE PROBABILITÉS EXERCICE 96 (a La variable aléatoire X est régie par ue loi biomiale E effet, expérieces idetiques et idépedates (car les tirages

Plus en détail

Corrigé Fiche 6 Septembre 2016

Corrigé Fiche 6 Septembre 2016 Corrigé Fiche 6 Septembre 2016 1. Estimatio de la moyee, variace coue, cas gaussie O dispose d u -échatillo X 1,..., X i.i.d. tel que X i suit ue loi ormale N µ, σ 2 ). L objectif est d estimer µ. Supposos

Plus en détail

ANOVA avec un facteur aléatoire

ANOVA avec un facteur aléatoire Chapitre 7 ANOVA avec u facteur aléatoire Jusqu à maiteat, o a supposé que les modalités du facteur étudié ot été choisies parce qu elles étaiet itrisèquemet itéressates. Le modèle à effets fixes porte

Plus en détail

Contrôle du vendredi (45 minutes) 1 ère S1. II. (3 points) (E). Résoudre dans l équation sin 3x

Contrôle du vendredi (45 minutes) 1 ère S1. II. (3 points) (E). Résoudre dans l équation sin 3x 1 ère S1 Cotrôle du vedredi --01 ( miutes) Préom et om : ote : / 0 II ( poits) 1 Résoudre das l équatio si (E) Il est pas demadé d écrire l esemble des solutios I ( poits) f e foctio de cos et si O doera

Plus en détail

x + (2 α) y = 0 3 L donc P

x + (2 α) y = 0 3 L donc P 1 Corrigé ESC 009 par Pierre Veuillez Exercice 1 O cosidère les matrices A, B, D, P, E de M (R) suivates : ( ) 5 1 4 ( ) A B 3 3 1 3 0 7 D P 3 3 ( ) { x (1 α) x y 0 1) a: (A αi) 0 y x + ( α) y 0 ( 1 )

Plus en détail

b) Calculer la dérivée de la fonction. La fonction est dérivable sur comme quotient de deux fonctions dérivables sur.

b) Calculer la dérivée de la fonction. La fonction est dérivable sur comme quotient de deux fonctions dérivables sur. DST 6 Correctio Exercice 1 (5 poits) (Asie, jui 11) Le pla est rapporté à u repère orthoormal. 1) Étude d ue foctio. O cosidère la défiie sur l itervalle par. O ote la foctio dérivée de la foctio sur l

Plus en détail

TD Modélisation Statistique

TD Modélisation Statistique Licece 3 Mathématiques TD Modélisatio Statistique Ex 1. Soit X ue variable aléatoire réelle de desité f cotiue et de foctio répartitio F. 1. Calculer la foctio de répartitio de Y = αx + β pour α, β R,

Plus en détail

EXERCICES PROBABILITES

EXERCICES PROBABILITES EXERCICE : Calculer, pour EXERCICES PROBABILITES Soit,,3, 4,5,6, ( ) x, l itégrale I dx. 0 x ; détermier le réel pour que l o défiisse ue probabilité p sur * e posat, pour tout etier,6 p I Quelle est la

Plus en détail

NOTION DE PROBABILITÉ Site MathsTICE de Adama Traoré Lycée Technique Bamako

NOTION DE PROBABILITÉ Site MathsTICE de Adama Traoré Lycée Technique Bamako I Itroductio : NOTION DE PROBABILITÉ Site MathsTIE de Adama Traoré Lycée Techique Bamako ) Exemple : O lace fois e l air u dé o pipé (ormal), x et y fot u pari Si 66 apparaît alors x gage 600Frs Si ou

Plus en détail

Sup Galilée - Maths pour l Ingénieur Corrigé du Partiel du 19 Novembre 2008

Sup Galilée - Maths pour l Ingénieur Corrigé du Partiel du 19 Novembre 2008 Sup Galilée - Maths pour l Igéieur Corrigé du Partiel du 9 Novembre 008 Étude d ue suite récurrete Soit u 0 ]0, [ O cosidère la suite (u ) défiie par u + u 3 u ) Justifier que la suite u est borée O motre

Plus en détail

Lois normales. Intervalle de fluctuation. Estimation.

Lois normales. Intervalle de fluctuation. Estimation. Lois ormales. Itervalle de fluctuatio. Estimatio.. Loi ormale cetrée réduite... p. Théorème de Moivre-Laplace... p 3. Loi ormale (µ ; σ²)... p3 Copyright meilleuremaths.com. Tous droits réserwidevec{}vés

Plus en détail

Corrigé : EM Lyon 2005

Corrigé : EM Lyon 2005 Corrigé : EM Lyo 5 Optio écoomique Eercice :. Par défiitio de E, la famille (I,J,K) est ue famille géératrice de E. Cette famille est-elle libre? O cherche tous les réels a, b et c tels que : ai +bj +ck

Plus en détail

Covariance et ajustement affine par la méthode des moindres carrés

Covariance et ajustement affine par la méthode des moindres carrés Uiversité de Poitiers - 205-206 A. Moreau Algèbre - Géométrie M MEEF Covariace et ajustemet affie par la méthode des moidres carrés Das tout le documet, la lettre désige u etier aturel o ul. Les deux parties

Plus en détail

MÉTHODES STATISTIQUES EXAMEN INTRA HIVER 2009 Date : Dimanche 15 mars 2009 de 14h00 à 17h00

MÉTHODES STATISTIQUES EXAMEN INTRA HIVER 2009 Date : Dimanche 15 mars 2009 de 14h00 à 17h00 MAT 2080 MÉTHODES STATISTIQUES EXAMEN INTRA HIVER 2009 Date : Dimache 15 mars 2009 de 14h00 à 17h00 INSTRUCTIONS 1. Détachez la feuille-réposes à la fi de ce cahier et iscrivez-y immédiatemet votre om,

Plus en détail

B2 - Intervalle de confiance d une moyenne avec écart-type inconnu dans le cas d une population Gaussienne

B2 - Intervalle de confiance d une moyenne avec écart-type inconnu dans le cas d une population Gaussienne B2 - Itervalle de cofiace d ue moyee avec écart-type icou das le cas d ue populatio Gaussiee Das le cas précédet, o a costruit l IdC à partir de la var X m σ{?. Mais, maiteat σ état icou, il coviet de

Plus en détail

3.1 Loi de Bernouilli Loi Binomiale Loi géométrique Loi de Pascal (loi négative binomiale)...3

3.1 Loi de Bernouilli Loi Binomiale Loi géométrique Loi de Pascal (loi négative binomiale)...3 3- Lois de distributio discrètes -1 Chapitre 3 : Lois de distributio discrètes 3.1 Loi de Berouilli...1 3. Loi Biomiale...1 3.3 Loi géométrique... 3.4 Loi de Pascal (loi égative biomiale)...3 3.5 Loi hypergéométrique...4

Plus en détail

Proposition : la droite d équation «y= 4» est asymptote horizontale à la courbe de f en. . Calculer : a) lim f( x) h( x) xlim

Proposition : la droite d équation «y= 4» est asymptote horizontale à la courbe de f en. . Calculer : a) lim f( x) h( x) xlim NOM : Termiale S- ABC S3 ludi ovembre 06 La présetatio, la rédactio et la rigueur des résultats etrerot pour ue part sigificative das l évaluatio de la copie. Le sujet est composé de 5 eercices idépedats.

Plus en détail

PROBABILITES. TD n 1. Bg sachant que PA

PROBABILITES. TD n 1. Bg sachant que PA TD 1 1. Quel est l uivers Ω pour l'expériece : o lace 2 fois de suite u dé (o truqué). A quelles parties de Ω correspodet les évéemets suivats : a) A : o obtiet pas d as au cours des 2 lacers ; b) B :

Plus en détail

I Exercices I I I-1 3 Coefficients binomiaux et triangle de Pascal... I I I I I I

I Exercices I I I-1 3 Coefficients binomiaux et triangle de Pascal... I I I I I I Chapitre Loi biomiale TABLE DES MATIÈRES page - Chapitre Loi biomiale Table des matières I Exercices I-................................................ I-................................................

Plus en détail

Vendredi 20 octobre CONTRÔLE DE MATHEMATIQUES N 2 Classe de TERM 07. En salle 206, deux heures de 8 h à 10 h : LES SUITES et PROBABILITES.

Vendredi 20 octobre CONTRÔLE DE MATHEMATIQUES N 2 Classe de TERM 07. En salle 206, deux heures de 8 h à 10 h : LES SUITES et PROBABILITES. Vedredi 0 octobre 07. CONTRÔLE DE MATHEMATIQUES N Classe de TERM 07. E salle 06, deux heures de 8 h à 0 h : LES SUITES et PROBABILITES. La première feuille de ce devoir doit être ue feuille double. Lisez

Plus en détail

Estimations. Les Moyennes des échantillons suivent une loi normale : = m et d' écart - type σ X

Estimations. Les Moyennes des échantillons suivent une loi normale : = m et d' écart - type σ X Estimatios Problématique. A partir d'observatios faites sur u échatillo, o se propose de tirer des coclusios sur la populatio toute etière. Aisi cotrairemet à la logique déductive, qui va du gééral au

Plus en détail

GRAPHES ALÉATOIRES D ERDÖS-RÉNYI

GRAPHES ALÉATOIRES D ERDÖS-RÉNYI GRAPHES ALÉATOIRES D ERDÖS-RÉNYI U grad réseau de commuicatio (iteret, Facebook, etc.) est modélisé par u graphe G = (V, E), dot les sommets v V sot les agets de ce réseau, et dot les arêtes e = {u, v}

Plus en détail

Loi des grands nombres.

Loi des grands nombres. Uiversité Pierre et Marie Curie 213-214 Probabilités élémetaires - LM345 Feuille 9 (semaie du 25 au 29 ovembre 213) Loi des grads ombres. 1. Soit (U ) 1 ue suite de variables aléatoires idépedates toutes

Plus en détail

Séries à termes positifs

Séries à termes positifs Séries à termes positifs Das toute la suite N désigera les etiers aturels positifs 0,,,..., Z tous les etiers aturels...,,, 0,,, 3,... et Q les ombres ratioels. Efi R désigera les réels, et C les complexes.

Plus en détail

Probabilités : programme pour le concours EDHEC AST1

Probabilités : programme pour le concours EDHEC AST1 : programme pour le cocours EDHEC AST1 1 Espaces de probabilité Défiitio. O fixe u esemble Ω qui sera esuite appelé l uivers. O appelle tribu, ou σ-algèbre sur Ω tout esemble F de parties de Ω (aisi F

Plus en détail