I Exercices I I I I I I I-2

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "I Exercices I I I I I I I-2"

Transcription

1 Chapitre 4 Statistiques TABLE DES MATIÈRES page -1 Chapitre 4 Statistiques Table des matières I Exercices I I I I I I I-2 II Cours II-1 1 Moyenne d une série statistique II-1 1a Exemple II-1 1b À retenir II-1 2 Médiane, et quartiles d une série statistique II-2 3 Fréquences et effectifs cumulés, médiane, quartiles II-3 4 Courbe des fréquences cumulées, médiane, quartiles II-4

2 Chapitre 4 Statistiques I EXERCICES page I-1 I Exercices Manuel Transmath 2de Nathan Calculer la moyenne du devoir dans l exercice 2 page La même interrogation a été donnée a 50 élèves de 2de. Voici la répartition des notes. 3 Effectifs Calculer la moyenne de ce devoir, détailler le calcul en une seule expression. 2. (a) Compléter le tableau ci-dessous à gauche. (b) Multiplier chaque note par sa fréquence et ajouter les 4 résultats. Quel résultat retrouvet-on? 3. (a) Compléter le tableau ci-dessous à droite. (b) Faire à nouveau le calcul comme dans le 2b. Fréquences 8 50 Fréquences en % D après le tableau de l exercice 4 p 115, tracer un histogramme ci-dessous. 4 Fréquences en % Prix en euros Dans l exercice 9 page 117, le diagramme circulaire indique la répartition des tailles des joueurs de basket de plus de deux mètres. Calculer la taille moyenne en cm de ces joueurs. On ne demande pas de faire l exercice 9 page 117.

3 Chapitre 4 Statistiques I EXERCICES page I-2 5 Les deux premières lignes du tableau ci-dessous récapitulent les données de l exercice 10 p Compléter la 3e et la 4e ligne. 2. Que veulent dire l effectif cumulé et la fréquence cumulée écrites dans la 5e colonne? 3. On peut utiliser les fréquences cumulées pour trouver la médiane et les quartiles. Comment? Nombre d essais Total Effectifs (nombre de matchs) Effectifs cumulés croissants Un groupe est constitué de 50 individus souffrant d une maladie. Pour chaque individu on mesure la quantité d une molécule M en microgrammes par litre. 1. Compléter les tableaux ci-dessous (le 2e tableau est la suite du 1er tableau. 2. Déterminer la médiane et les quartiles. Quantités en microgrammes par litre Effectifs Effectifs cumulés croissants Quantités en microgrammes par litre Effectifs Effectifs cumulés croissants

4 Chapitre 4 Statistiques II COURS page II-1 II Cours 1 Moyenne d une série statistique 1a Exemple La même interrogation a été donnée a 50 élèves de 2de. Voici la répartition des notes. Effectifs Tableau de répartition avec les fréquences et les fréquences en pourcentages Fréquences = 1 Fréquences 16 % 32 % 28% 24 % 100% = 1 en % Calcul de la moyenne avec les effectifs : = Calcul de la moyenne avec les fréquences : = 13 Calcul de la moyenne avec les fréquences en pourcentages : = = = 5 0, , , , 24 = b À retenir La somme des fréquences est égale à 1. Calcul de la moyenne avec les effectifs : on multiplie chaque nombre par son effectif ; on ajoute ces produits ; on divise cette somme par l effectif total. Calcul de la moyenne avec les fréquences : on multiplie chaque nombre par sa fréquence ; on ajoute ces produits.

5 Chapitre 4 Statistiques II COURS page II-2 2 Médiane, et quartiles d une série statistique Une méthode de calcul d une médiane Pour obtenir une médiane dans une série ordonnée, on peut prendre le nombre «du milieu». si l effectif total est pair diviser l effectif total par 2, on obtient un nombre k prendre comme médiane un nombre entre le terme de rang k et celui de rang k + 1 si l effectif total est impair on divise l effectif total par 2 arrondir le résultat à l entier supérieur k on prend comme médiane le terme de rang k. Propriété Dans une série statistique au moins la moitié des termes de la série sont inférieur ou égaux à la médiane ; au moins la moitié des termes de la série sont supérieur ou égaux à la médiane. Une méthode de calculs des quartiles : Pour obtenir le 1 er quartile d une série ordonnée par ordre croissant diviser l effectif total par 4 arrondir le résultat à l entier supérieur r le 1 er quartile est le nombre de rang r Pour obtenir le 3 e quartile d une série ordonnée par ordre croissant calculer les trois quarts de l effectif total arrondir le résultat à l entier supérieur s le 3 e quartile est le nombre de rang s Propriété Un premier quartile d une série statistique est un nombre tel que au moins un quart des termes de la série est inférieur ou égal à ce nombre. Un troisième quartile d une série statistique est un nombre tel que au moins trois quarts des termes de la série est inférieur ou égal à ce nombre. Remarques La méthode de calcul du 1 er quartile indiquée ci-dessus fait que un quart ou un peu plus d un quart des termes de la série est inférieur ou égal à ce nombre. Même chose avec le 3 e quartile et trois quart. Il existe d autres méthodes de calcul des médianes et quartiles, comme celles utilisées par les calculatrices ou les tableurs (voir les tableaux plus loin). Exemple 1 : on relève 16 dépenses en euros de clients d un magasin au cours d une journée, et on veut déterminer la dépense médiane, le premier et le troisième quartile. On a ordonné la série de dépenses et on obtient la série ci-dessous : Médiane L effectif total est pair : 16 2 = 8 Le 8e terme est 60, le 9 e est 62. Médiane = 61 La moitié des dépenses sont inférieures à 61e, l autre la moitié des dépenses sont supérieures à 61e.

6 Chapitre 4 Statistiques II COURS page II-3 Quartiles 16 4 = = 12 Le 4e terme est 46, le 12 e est er quartile : 46 ; 3 e quartile 70. Un quart des dépenses sont inférieures ou égales à 46eet trois quarts des dépenses sont inférieures ou égales à 70e. Schéma Q Exemple 2 Me Q Au cours d une autre journée dans le même magasin, on relève 15 dépenses en euros de clients (série ordonnée ci-dessous). Calculons à nouveau la dépense médiane, le premier et le troisième quartile Médiane 15 2 = 7, 5, on arrondit à 8. On prend comme médiane le 8e nombre de la série ordonnée soit 27e. La moitié des dépenses sont inférieures ou égales à 27eet l autre la moitié des dépenses sont supérieures ou égales à 27e. Quartiles 15 4 = 3, 75, on arrondit à = 11, 25 on arrondit à 12. Le 4e terme est 14, le 12 e est er quartile : 14 ; 3 e quartile 44. Un peu plus d un quart des dépenses sont inférieures ou égales à 14eet un peu plus de trois quarts des dépenses sont inférieures ou égales à 44e. Récapitulation des médianes et quartiles des deux exemples Le tableau ci-dessous récapitule les résultats des deux exemples, en ajoutant les réponses données par la calculatrice, et par un tableur. Exemple 1 Q 1 Me Q 2 Résultats précédents Calculatrice ,5 Tableur Exemple 2 Q 1 Me Q 2 Résultats précédents Calculatrice Tableur 14, Fréquences et effectifs cumulés, médiane, quartiles. Exemple Les deux premières lignes du tableau ci-dessous indiquent les nombres d essais marqués au cours de 28 matchs de rugby pendant un tournoi : 2 matchs avec 0 essai, 10 matchs avec 1 essai, etc. Nombre d essais Effectifs (nombre de matchs) Effectifs cumulés croissants Fréquences cumulées 7,1% 42,9% 60,7% 67,9% 75,0% 82,1% 92,9% 96,4% 100,0 % croissantes en % Calcul des effectifs cumulés croissants : 2 ; = 12 ; = 17 ; = 19 ; etc. Signification des effectifs cumulés croissants : par exemple, l effectif cumulé 19 représente 19 matchs où il y a eu entre 0 et 3 essais.

7 Chapitre 4 Statistiques II COURS page II-4 Calcul des fréquences cumulées croissantes en % : par exemple 19 67, 9 0, 679 = = 67, 9% La fréquence cumulée 67,9 % représente le pourcentage de matchs où il y a eu entre 0 et 3 essais. Médiane : la médiane correspond à 50 % de l effectif total. La 1 re fréquence cumulée croissante supérieure ou égale à 50 % est 60,7 % qui correspond à 2. La médiane est donc 2 essais. 1 er quartile : le 1 er quartile correspond à 25 % de l effectif total. La 1 re fréquence cumulée croissante supérieure ou égale à 25 % est 42,9 % qui correspond à 1. Le 1 er quartile est 1 essai. 3 e quartile : le 3 e quartile correspond à 75 % de l effectif total. La 1 re fréquence cumulée croissante supérieure ou égale à 75 % est 75 % qui correspond à 4. Le 3 e quartile est 4 essais. 4 Courbe des fréquences cumulées, médiane, quartiles Exemple : exercice 12 page 119 Un ornithologue a mesuré la taille des œufs de coucous pondus dans des nids de fauvettes. La répartitions des tailles des œufs est indiquée dans le tableau ci-dessous : 7 % des œufs ont une taille entre 20 et 21 mm, 17 % entre 20 et 22 mm, etc. Intervalles de tailles en mm [20 ; 21[ [20 ; 22[ [20 ; 23[ [20 ; 24[ [20 ; 25] 7 % 17 % 31 % 86 % 100 % Courbe des fréquences cumulées croissantes, et détermination graphique de la médiane et des quartiles. À l aide de la courbe des fréquences cumulée croissantes, on lit les tailles qui correspondent à 25 %, 50 %, 75 %, et on obtient : Q 1 22, 6 mm Me 23, 3 mm Q 3 23, 8 mm % % % Tailles en mm Q 1 Me Q 3

I Exercices I I I I I I I I-6

I Exercices I I I I I I I I-6 Chapitre 4 Statistiques TABLE DES MATIÈRES page -1 Chapitre 4 Statistiques Table des matières I Exercices I-1 1................................................ I-1................................................

Plus en détail

I Exercices I-1 1... I-1 2... I-1 3... I-1 4... I-1 5... I-2 6... I-3 7... I-5 8... I-7

I Exercices I-1 1... I-1 2... I-1 3... I-1 4... I-1 5... I-2 6... I-3 7... I-5 8... I-7 Chapitre 4 Statistiques TABLE DES MATIÈRES page -1 Chapitre 4 Statistiques Table des matières I Exercices I-1 1................................................ I-1................................................

Plus en détail

Vocabulaire. Séries statistiques associées à un caractère discret. Classement des données. Effectifs cumulés

Vocabulaire. Séries statistiques associées à un caractère discret. Classement des données. Effectifs cumulés I Vocabulaire Population : c est l ensemble étudié. Individu : c est un élément de la population. Effectif total : c est le nombre total d individus. Caractère : c est la propriété étudiée. On distingue

Plus en détail

LES STATISTIQUES. 1) Définition: La fréquence d une valeur est le quotient de l effectif de cette valeur par l effectif total.

LES STATISTIQUES. 1) Définition: La fréquence d une valeur est le quotient de l effectif de cette valeur par l effectif total. LES STATISTIQUES I) Activité : II) Fréquence: 1) Définition: La fréquence d une valeur est le quotient de l effectif de cette valeur par l effectif total. ) Propriété : La somme des fréquences de toutes

Plus en détail

Séquence 10 : Les statistiques

Séquence 10 : Les statistiques Séquence 10 : Les statistiques Plan : I- Rappels : 1) Vocabulaire 2) Représentation graphique II- Caractéristiques de position d une série statistique. 1- La Moyenne d une série statistique a- Définition

Plus en détail

Exercices de statistique

Exercices de statistique Exercice 1 Exercices de statistique Partie A - Moyenne et écart-type Une équipe de baseball a participé à un tournoi avec 19 autres équipes. Pour le classement chaque match gagné rapporte 3 points, chaque

Plus en détail

STATISTIQUES. Déterminer la valeur médiane d une série sur des observations individuelles.

STATISTIQUES. Déterminer la valeur médiane d une série sur des observations individuelles. STATISTIQUES * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * A MEDIANE : Une caractéristique de position Définition : La médiane m d une série statistique

Plus en détail

STATISTIQUES. Pour représenter ces données statistiques, on peut construire un diagramme en barres:

STATISTIQUES. Pour représenter ces données statistiques, on peut construire un diagramme en barres: I Différentes représentations 1) Diagrammes en bâtons et en barres STATISTIQUES Pour comparer des données, on peut représenter un diagramme dans lequel les barres ou les bâtons ont des hauteurs proportionnelles

Plus en détail

Etudes statistiques. I- Etude statistique. 1) Vocabulaire. 2) Effectif, fréquence

Etudes statistiques. I- Etude statistique. 1) Vocabulaire. 2) Effectif, fréquence Etudes statistiques I- Etude statistique 1) Vocabulaire La population est l ensemble des individus sur lesquels portent l étude statistique. (Par exemple classe de seconde, habitants de la France...) Le

Plus en détail

STATISTIQUE. Le principal d un collège étudie les notes du dernier devoir de mathématiques de 20 élèves d une classe de 3 ème.

STATISTIQUE. Le principal d un collège étudie les notes du dernier devoir de mathématiques de 20 élèves d une classe de 3 ème. STATISTIQUE I / Vocabulaire Activité Le principal d un collège étudie les notes du dernier devoir de mathématiques de 20 élèves d une classe de 3 ème. Voici la liste des notes obtenues par les élèves :

Plus en détail

Vocabulaire. Séries statistiques associées à un caractère discret. Classement des données. Effectifs cumulés. Représentation graphique

Vocabulaire. Séries statistiques associées à un caractère discret. Classement des données. Effectifs cumulés. Représentation graphique I Vocabulaire Population : c est l ensemble étudié. Individu : c est un élément de la population. Effectif total : c est le nombre total d individus. Caractère : c est la propriété étudiée. On distingue

Plus en détail

Statistiques, cours, 2nde

Statistiques, cours, 2nde Statistiques, cours, 2nde Statistiques, cours, 2nde F.Gaudon http://mathsfg.net.free.fr 1 er octobre 2014 1 Vocabulaire et notations 2 Fréquences, séries cumulées 3 Moyenne étendue Médiane Quartiles Vocabulaire

Plus en détail

Statistiques. Christophe ROSSIGNOL. Année scolaire 2013/2014

Statistiques. Christophe ROSSIGNOL. Année scolaire 2013/2014 Statistiques Christophe ROSSIGNOL Année scolaire 2013/2014 Table des matières 1 Vocabulaire 2 1.1 Population, caractère, effectif, fréquence............................ 2 1.2 Représentations graphiques...................................

Plus en détail

STATISTIQUES. La population est l ensemble des individus sur lesquels portent l étude statistique

STATISTIQUES. La population est l ensemble des individus sur lesquels portent l étude statistique Chapitre 4 : STATISTIQUES I Définitions et vocabulaire des statistiques La population est l ensemble des individus sur lesquels portent l étude statistique Le caractère (ou variable statistique) d une

Plus en détail

Chapitre 11 : Statistiques

Chapitre 11 : Statistiques Chapitre 11 : Statistiques Objectifs : *Savoir faire une étude statistiques d un problème * Connaitre tous les outils statistiques à disposition ( fréquence, effectif cumulé croissant, représentations

Plus en détail

I) Vocabulaire de la statistique

I) Vocabulaire de la statistique Statistique Probabilité (I) Statistiques descriptives STAT 1 Compétences Connaître le vocabulaire des statistiques Exemples 1 et 2 Savoir calculer des fréquences, des fréquences cumulées Exemples 3 et

Plus en détail

Comme l effectif total = 43 = 2x est impair la médiane est la donnée de rang 22 soit 80 minutes

Comme l effectif total = 43 = 2x est impair la médiane est la donnée de rang 22 soit 80 minutes Statistiques I) Couple médiane. Intervalle interquatile 1) La médiane Définition: La médiane d une série statistique est la valeur du caractère qui partage la population en deux effectifs égaux. Il y a

Plus en détail

Statistiques. Christophe ROSSIGNOL. Année scolaire 2016/2017

Statistiques. Christophe ROSSIGNOL. Année scolaire 2016/2017 Statistiques Christophe ROSSIGNOL Année scolaire 2016/2017 Table des matières 1 Quelques rappels sur la moyenne 2 2 Médiane, quartiles, diagramme en boîte 2 2.1 Médiane..................................................

Plus en détail

Exercices de statistique

Exercices de statistique 1) 1) Exercices de statistique Partie A - Moyenne et écart-type Exercice 1 Une équipe de baseball a participé à un tournoi avec 19 autres équipes. Pour le classement chaque match gagné rapporte 3 points,

Plus en détail

Statistiques Cours 2 nde

Statistiques  Cours 2 nde Statistiques www.mathmaurer.com Cours 2 nde I Étude d'une série statistique à caractère discret (valeurs isolées) On relève les notes sur 10 obtenues par une classe d'élèves à un devoir de mathématiques.

Plus en détail

STATISTIQUES. L ensemble faisant l objet de l étude statistiques s appelle... Si la population est trop importante, on étudie un sous-ensemble:...

STATISTIQUES. L ensemble faisant l objet de l étude statistiques s appelle... Si la population est trop importante, on étudie un sous-ensemble:... STATISTIQUES I - But des statistiques :........... II - Vocabulaire des statistiques 1 - Population: L ensemble faisant l objet de l étude statistiques s appelle..... Si la population est trop importante,

Plus en détail

Les indicateurs statistiques

Les indicateurs statistiques Les indicateurs statistiques MODE, CLASSE MODALE Le mode d une série statistique est une valeur de la série pour laquelle l effectif associé est le plus Dans le cas d un regroupement en classes, la classe

Plus en détail

Boîte à moustaches ou diagramme en boîte

Boîte à moustaches ou diagramme en boîte Boîte à moustaches ou diagramme en boîte I) Rappels de seconde 1) La médiane (paramètre de position) a) Définition La liste des N données est rangée par ordre croissant Si est impair ) la médiane est la

Plus en détail

STATISTIQUES Introduction Séries statistiques sous forme de tableau... 5

STATISTIQUES Introduction Séries statistiques sous forme de tableau... 5 STATISTIQUES Introduction... 1) Population et caractère.... Exemples :... ) Paramètre central... Le mode :... La médiane :... La moyenne... 3) Paramètre de dispersion... L étendue... ) Elagage d une série...3

Plus en détail

EXERCICES : STATISTIQUES

EXERCICES : STATISTIQUES EXERCICES : STATISTIQUES Exercice 1 : Pour un échantillon de 6 véhicules, on connaît la marque et le km parcourus. la population : les 6 véhicules composant l échantillon (de véhicules) ; un individu :

Plus en détail

Statistiques. 1 Quelques graphiques pour commencer. Lettres. Philo 11 % 18 % Fra 13 % H-G 11 % 5 % EPS 11 % 11 % 10 % LV 1. Spé 5 % Sci.

Statistiques. 1 Quelques graphiques pour commencer. Lettres. Philo 11 % 18 % Fra 13 % H-G 11 % 5 % EPS 11 % 11 % 10 % LV 1. Spé 5 % Sci. Statistiques 1 Quelques graphiques pour commencer 1.1 Diagramme en toile d araignée Relevé des notes d un élève à l issue du trimestre. Matières EPS LV1 LV2 Fra H-G SES SVT Phys Math Notes 15 18 18 17

Plus en détail

Chapitre 3 - Statistiques descriptives

Chapitre 3 - Statistiques descriptives 2nde Chapitre 3 - Statistiques descriptives 2012-2013 Chapitre 3 - Statistiques descriptives I Effectifs, fréquences et représentations statistiques TD1 : Choisir et interpréter un graphique Les graphiques

Plus en détail

STATISTIQUES. Statistiques (1ESL) Page 1/7

STATISTIQUES.  Statistiques (1ESL) Page 1/7 Activité de recherche : Où sont les prématurés? A la maternité "Bon Jour", il y a eu 57 naissances en janvier 2015; les tailles (en cm) des nouveaux-nés sont données dans le tableau ci contre. A la maternité

Plus en détail

CHAPITRE 8 Séries statistiques : étude et comparaison. Tableur-grapheur.

CHAPITRE 8 Séries statistiques : étude et comparaison. Tableur-grapheur. CHAPITRE 8 Séries statistiques : étude et comparaison. Tableur-grapheur. (Voir : 5 ème, chapitre 11 ; 4 ème, chapitre 13.) I) Une nouvelle caractéristique de position La valeur médiane d une série statistique

Plus en détail

Statistiques EXERCICE 1 : TEMPS PASSÉ DEVANT LA TÉLÉVISION. On a interrogé des adolescents pour

Statistiques EXERCICE 1 : TEMPS PASSÉ DEVANT LA TÉLÉVISION. On a interrogé des adolescents pour Statistiques EXERCICE 1 : TEMPS PASSÉ DEVANT LA TÉLÉVISION 1 cm 2 représente un effectif 4 On a interrogé des adolescents pour 16 connaître la durée hebdomadaire d audience des émissions télévisées. 12

Plus en détail

Chapitre 4 Statistique. Table des matières. Chapitre 4 Statistique TABLE DES MATIÈRES page -1

Chapitre 4 Statistique. Table des matières. Chapitre 4 Statistique TABLE DES MATIÈRES page -1 Chapitre 4 Statistique TABLE DES MATIÈRES page -1 Chapitre 4 Statistique Table des matières I Exercices I-1 1................................................ I-1 2................................................

Plus en détail

COURS 1 : Fréquence. SAVOIR FAIRE : Calculer une fréquence

COURS 1 : Fréquence. SAVOIR FAIRE : Calculer une fréquence CHAPITRE 1 : STATISTIQUES Etude statistique en classe de la pointure de chaque élève. Liste discrète des pointures, calcul de la fréquence, la moyenne, recherche de la médiane. Utilisation d un tableau

Plus en détail

STATISTIQUES. ( classes, enquête, unité statistique, quantitatif, population, classement, effectif, qualitatif, sondage, dépouillement )

STATISTIQUES. ( classes, enquête, unité statistique, quantitatif, population, classement, effectif, qualitatif, sondage, dépouillement ) STATISTIQUES I - But des statistiques :......... II - Compléter le texte à l aide des mots suivants : ( classes, enquête, unité statistique, quantitatif, population, classement, effectif, qualitatif, sondage,

Plus en détail

INTRODUCTION. Faire des statistiques, c est collecter, organiser puis traiter des données numériques

INTRODUCTION. Faire des statistiques, c est collecter, organiser puis traiter des données numériques INTRODUCTION Faire des statistiques, c est collecter, organiser puis traiter des données numériques concernant une population (plus généralement un ensemble de «choses») Collecter : On réunit des nombres

Plus en détail

STATISTIQUES A UNE VARIABLE

STATISTIQUES A UNE VARIABLE STATISTIQUES A UNE VARIABLE 1 ) VOCABULAIRE A ) GÉNÉRALITES L ensemble sur lequel on travaille en statistique est appelé population. Si cet ensemble est trop vaste, on en restreint l étude à une partie

Plus en détail

CHAPITRE 7. Statistiques. 1. Calculer une moyenne. 2. Déterminer une médiane

CHAPITRE 7. Statistiques. 1. Calculer une moyenne. 2. Déterminer une médiane CHAPITRE 7 Statistiques 1. Calculer une moyenne Rappel Pour calculer la moyenne d une série, on divise la somme des valeurs par le nombre de valeurs. 1. Déterminer la moyenne des notes obtenues par Jeanne

Plus en détail

Vocabulaire. Séries statistiques associées à un caractère discret. Classement des données. Effectifs cumulés. Représentation graphique

Vocabulaire. Séries statistiques associées à un caractère discret. Classement des données. Effectifs cumulés. Représentation graphique I Vocabulaire Population : c est l ensemble étudié. Individu : c est un élément de la population. Effectif total : c est le nombre total d individus. Caractère : c est la propriété étudiée. On distingue

Plus en détail

STATISTIQUES. Exo1 : on a relevé la taille, en cm, de 20 hommes : Taille Effectif

STATISTIQUES. Exo1 : on a relevé la taille, en cm, de 20 hommes : Taille Effectif STATISTIQUES. Caractéristiques de position et de dispersion Exo1 : on a relevé la taille, en cm, de 20 hommes : Taille 172 174 176 178 180 182 184 186 Effectif 2 2 4 2 5 3 1 1 1) Calculer la taille moyenne

Plus en détail

L'effectif est le nombre d'individus prenant une ou des valeurs du caractère.

L'effectif est le nombre d'individus prenant une ou des valeurs du caractère. Recopier et compléter ce tableau avec des définitions précises, rigoureuses et en français correct. Les notions sont celles du collège et concernent les séries statistiques à une variable... Ne recopiez

Plus en détail

Fiche de travail - Paramètres d une série statistique. Exercice 1

Fiche de travail - Paramètres d une série statistique. Exercice 1 Fiche de travail - Paramètres d une série statistique Exercice 1 On a réalisé une enquête portant sur le nombre de livres lus pendant l année par les élèves d une classe de seconde. Les résultats sont

Plus en détail

les déciles année TD n 3 Math-SES Exemple : le niveau de vie des individus en France en 2009.

les déciles année TD n 3 Math-SES Exemple : le niveau de vie des individus en France en 2009. TD n 3 Math-SES les déciles année 2012-2013 Objectif du TD : réinvestissement des connaissances de statistiques, médiane, diagrammes en boîte, quartiles, déciles, rapport interdécile. Les données, tableaux

Plus en détail

STATISTIQUES. discrètes. continues

STATISTIQUES. discrètes. continues STATISTIQUES Classe de 2 nde Introduction : Toute étude statistique s'appuie sur des données. Dans le cas ou ces données sont numériques (99% des cas), on distingue les données discrètes (qui prennent

Plus en détail

Chapitre 3 : Statistiques

Chapitre 3 : Statistiques Chapitre 3 : Statistiques En mathématiques, la notion de statistique est utilisée depuis l Antiquité afin de faire des recensements de la population. Aujourd hui, elle aide beaucoup afin d interpréter

Plus en détail

CHAPITRE 7 : Statistiques Seconde, 2014, L. JAUNATRE

CHAPITRE 7 : Statistiques Seconde, 2014, L. JAUNATRE CHAPITRE 7 : Statistiques Seconde, 2014, L. JAUNATRE 1. Introduction 1.1. Statistique Définition 1. La statistique est le domaine des mathématiques qui vise à recueillir des données et les interpréter,

Plus en détail

DÉFINITION L effectif d une valeur est le nombre de fois où cette valeur apparait.

DÉFINITION L effectif d une valeur est le nombre de fois où cette valeur apparait. 1 Effectifs et fréquences OJECTIF 1 Vocabulaire En statistique, on étudie sur une population un caractère qui peut prendre plusieurs valeurs. : on a interrogé les élèves d'une classe de 5 e au sujet de

Plus en détail

Chapitre M1 Statistique 1 STATISTIQUE A UNE VARIABLE

Chapitre M1 Statistique 1 STATISTIQUE A UNE VARIABLE SBP Chapitre M1 (SP1) Page 1/15 Chapitre M1 Statistique 1 STATISTIQUE A UNE VARIABLE Capacités - Organiser des données statistiques en choisissant un mode de représentation adapté à l'aide des fonctions

Plus en détail

Statistique : Résumé de cours et méthodes

Statistique : Résumé de cours et méthodes Statistique : Résumé de cours et méthodes 1 Vocabulaire : Population : c est l ensemble étudié. Individu : c est un élément de la population. Effectif total : c est le nombre total d individus. Caractère

Plus en détail

statistiques 1 Mots clés - Notations - Formules Vocabulaire Notations Formules... 5

statistiques 1 Mots clés - Notations - Formules Vocabulaire Notations Formules... 5 statistiques Table des matières 1 Mots clés - Notations - Formules 3 1.1 Vocabulaire............................................ 3 1.2 Notations............................................. 4 1.3 Formules..............................................

Plus en détail

La statistique est la science qui consiste à collecter des données chiffrées, à les analyser, à les commenter et à les critiquer.

La statistique est la science qui consiste à collecter des données chiffrées, à les analyser, à les commenter et à les critiquer. nde CHAPITRE 6 : STATISTIQUES www.coursapprendre.fr La statistique est la science qui consiste à collecter des données chiffrées, à les analyser, à les commenter et à les critiquer. I Vocabulaire Population

Plus en détail

STATISTIQUES. On considère la série statistique donnée par le tableau : Valeur x 1 x 2 x p Effectif n 1 n 2 n p i = p

STATISTIQUES. On considère la série statistique donnée par le tableau : Valeur x 1 x 2 x p Effectif n 1 n 2 n p i = p STATISTIQUES I Rappels : moyenne - médiane - quartiles Exercice 01 (voir réponses et correction) Le service de contrôle d'une usine de meubles mesure la longueur en cm d'un élément. On a obtenu les mesures

Plus en détail

Seconde Fiche d objectifs du module Statistiques

Seconde Fiche d objectifs du module Statistiques Seconde Fiche d objectifs du module 7 2012-2013 Statistiques SAVOIR SAVOIR FAIRE EULER Vocabulaire statistique Population, individu, caractère, effectif, fréquence Représenter graphiquement une série statistique

Plus en détail

Statistiques. Remarque : L'effectif total de la série est le nombre total d'individus de la population étudiée.

Statistiques. Remarque : L'effectif total de la série est le nombre total d'individus de la population étudiée. Statistiques 1 / 6 Lorsque l on mène une enquête, on s intéresse à une population d individus (ex : élèves d une classe) et on étudie une propriété commune à ces individus appelée un caractère (ex : leur

Plus en détail

Statistique : Dans une boite il y a 100 billes. 30 sont rouges, 20 sont bleues, 40 sont jaunes et 10 sont vertes. Couleur : Bleu rouge jaune verte

Statistique : Dans une boite il y a 100 billes. 30 sont rouges, 20 sont bleues, 40 sont jaunes et 10 sont vertes. Couleur : Bleu rouge jaune verte Statistique : En statistique il faut savoir calculer une moyenne, une médiane, l effectif total, la fréquence ainsi que la fréquence totale et les Quartiles. Il faut aussi savoir lire et faire un histogramme,

Plus en détail

Calculs de certains paramètres de position. Centre de la classe xi = a + b 2

Calculs de certains paramètres de position. Centre de la classe xi = a + b 2 Calculs de certains paramètres de position Exemple 1 : Caractère quantitatif discret a. Compléter la dernière colonne du tableau suivant : Nombre d enfants par famille (x i ) Nombre de familles(n i ) x

Plus en détail

Statistique (4 em ) Le 1er réseau éducatif du Sénégal

Statistique (4 em )  Le 1er réseau éducatif du Sénégal Statistique (4 em ) Statistiques, branche des mathématiques qui a pour objet la collecte, le traitement et l analyse de données numériques relatives à un ensemble d objets, d individus ou d éléments. La

Plus en détail

Chapitre 3 : Statistiques descriptives

Chapitre 3 : Statistiques descriptives Première ES-L 014/015 Chapitre 3 : Statistiques descriptives Cours 1 Comment résumer une série statistique? 1.1 Le couple médiane - écart interquartile Définition 1 On considère une série statistique ayant

Plus en détail

FICHE DE RÉVISION DU BAC

FICHE DE RÉVISION DU BAC Note liminaire Programme selon les sections : - pourcentages : toutes sections - étude d une série statistique : S ES/L STMG STL hôtellerie - nuage de points : ST2S STMG STL hôtellerie - ajustement affine

Plus en détail

Poids en kg Effectifs Effectifs cumulés croissants Effectifs cumulés décroissants

Poids en kg Effectifs Effectifs cumulés croissants Effectifs cumulés décroissants Les statistiques forment une partie des mathématiques qui consiste à réunir des données chiffrées, à les analyser et à les commenter. A l'origine, les statistiques consistaient à faire des études démographiques

Plus en détail

Statistiques descriptives

Statistiques descriptives Statistiques descriptives Item Intitulé Exercices du livre p 114 à 131 2S10 : Connaître et utiliser le vocabulaire de base en statistiques. Ex 1 à 6 ; 31 ; 32 ; 34 2S11 : Calculer des effectifs cumulés,

Plus en détail

STATISTIQUES. 1 Quelques rappels Vocabulaire et définitions Exemple-utilisation de la calculatrice Médiane-quartiles-déciles 3

STATISTIQUES. 1 Quelques rappels Vocabulaire et définitions Exemple-utilisation de la calculatrice Médiane-quartiles-déciles 3 Table des matières 1 Quelques rappels 2 1.1 Vocabulaire et définitions........................................ 2 1.2 Exemple-utilisation de la calculatrice.................................. 3 2 Médiane-quartiles-déciles

Plus en détail

EC 9A : ELEMENTS DE MATHEMATIQUES STATISTIQUES COURS. 1. Vocabulaire

EC 9A : ELEMENTS DE MATHEMATIQUES STATISTIQUES COURS. 1. Vocabulaire EC 9A : ELEMENTS DE MATHEMATIQUES STATISTIQUES COURS Objectifs du chapitre : Savoir calculer la moyenne, une valeur de la médiane, l étendue, une valeur des 1 er et 3 ème quartiles d une série statistique.

Plus en détail

STATISTIQUES. Valeurs Effectifs Effectifs cumulés croissants

STATISTIQUES. Valeurs Effectifs Effectifs cumulés croissants STATISTIQUES I Rappels : moyenne - médiane - quartiles Exercice 01 Le service de contrôle d'une usine de meubles mesure la longueur en cm d'un élément. On a obtenu les mesures suivantes : 101 99 102 101

Plus en détail

STATISTIQUES-PROBABILITES. A.Effectif cumulé

STATISTIQUES-PROBABILITES. A.Effectif cumulé STATISTIQUES-PROBABILITES I.Statistiques A.Effectif cumulé Dans un tableau statistique dont les valeurs sont rangées par ordre croissant, l'effectif cumulé croissant d'une valeur s'obtient en ajoutant

Plus en détail

Statistiques - cours - 1 STG

Statistiques - cours - 1 STG Statistiques - cours - 1 STG F.Gaudon 12 février 2008 Table des matières 1 Vocabulaire des statistiques 2 2 Représentations graphiques 2 2.1 Caractères qualitatifs ou quantitatifs discrets.......... 2

Plus en détail

Statistiques. Seconde. Lycée E. Ionseco. (Lycée E. Ionseco) Statistiques Année / 7

Statistiques. Seconde. Lycée E. Ionseco. (Lycée E. Ionseco) Statistiques Année / 7 Statistiques Seconde Lycée E. Ionseco Année 2016 2017 (Lycée E. Ionseco) Statistiques Année 2016 2017 1 / 7 Sommaire 1 Effectif et fréquence cumulés (Lycée E. Ionseco) Statistiques Année 2016 2017 2 /

Plus en détail

Rappel du plan. 1 Série statistique. Tableau d effectifs. Fréquences d apparition. 2 Médiane et quartiles. 3 Moyenne. Statistiques.

Rappel du plan. 1 Série statistique. Tableau d effectifs. Fréquences d apparition. 2 Médiane et quartiles. 3 Moyenne. Statistiques. Seconde Lycée Jacquard 2014/2015 Rappel du plan 1 2 3 Vocabulaires Lorsqu on étudie un certain caractère sur une population donnée, on relève une valeur du caractère par individu. L ensemble des données

Plus en détail

Effectifs cumulés croissants

Effectifs cumulés croissants Mathématiques Année 2016 2017 Feuille d exercices du chapitre n 3 : 2 nde Statistiques Exercice 1 : Dans chacun des cas suivants, on a relevé les notes d un élève sur pronote. Calculer la moyenne de l

Plus en détail

Voici les températures mensuelles moyennes relevées à Paris et à New York durant une année.

Voici les températures mensuelles moyennes relevées à Paris et à New York durant une année. Avant de commencer Trois statisticiens partent à la chasse au gros gibier munis d arcs et de flèches. A la vue d un cerf, deux d entre eux se mettent en position de tir. La flèche du premier passe trois

Plus en détail

STATISTIQUES. x est le nombre réel : x = 1 x 1 + n 2 x 2 + +n p x i p

STATISTIQUES. x est le nombre réel : x = 1 x 1 + n 2 x 2 + +n p x i p STATISTIQUES I Rappels : moyenne - médiane Exercice 01 Le service de contrôle d'une usine de meubles mesure la longueur en cm d'un élément. On a obtenu les mesures suivantes : 101 99 102 101 99 101 100

Plus en détail

I. MOYENNE d une SERIE de DONNEES STATISTIQUES Activité 1 : moyenne d une série de notes

I. MOYENNE d une SERIE de DONNEES STATISTIQUES Activité 1 : moyenne d une série de notes Séquence 9 : statistiques, classe de 3 ème (Février 2015) I. MOYENNE d une SERIE de DONNEES STATISTIQUES Activité 1 : moyenne d une série de notes Anne, Hugo et Marc veulent savoir qui a obtenu les meilleurs

Plus en détail

Statistiques. Christophe ROSSIGNOL. Année scolaire 2015/2016

Statistiques. Christophe ROSSIGNOL. Année scolaire 2015/2016 Statistiques Christophe ROSSIGNOL Année scolaire 2015/2016 Table des matières 1 Série statistique à une variable 2 1.1 Médiane et écart interquartile...................................... 2 1.2 Moyenne

Plus en détail

Maths - 2nde INTERRO : STATISTIQUE - A -

Maths - 2nde INTERRO : STATISTIQUE - A - Maths - 2nde INTERRO : STATISTIQUE - A - Exercice 1 : Au large de l Afrique du sud, on a étudié la taille en mètres des requins blancs. Pour cela on a mesuré 120 requins, et les mesures ont été résumées

Plus en détail

Première L COMPOSITION DE MATHEMATIQUES - INFORMATIQUE. 3ème trimestre Durée de l épreuve : 1 h 30

Première L COMPOSITION DE MATHEMATIQUES - INFORMATIQUE. 3ème trimestre Durée de l épreuve : 1 h 30 Première L COMPOSITION DE MATHEMATIQUES - INFORMATIQUE 3ème trimestre 2010 Durée de l épreuve : 1 h 30 Le candidat doit traiter les 3 exercices La qualité de la rédaction, la clarté et la précision des

Plus en détail

On considère un ensemble E (la population) et on s'intéresse à une caractéristique (caractère statistique) que présente chaque élément de E.

On considère un ensemble E (la population) et on s'intéresse à une caractéristique (caractère statistique) que présente chaque élément de E. Statistique A. Série statistique à un caractère On considère un ensemble E (la population) et on s'intéresse à une caractéristique (caractère statistique) que présente chaque élément de E. s - on s'intéresse

Plus en détail

Première L Cours quartiles et diagrammes en boîte

Première L Cours quartiles et diagrammes en boîte 1 Quartiles Exemple : Quels sont les pays de l ex-europe des 15 ayant la population la plus jeune? Dans le tableau ci-dessous, on a rangé ces pays dans l ordre croissant du pourcentage P de jeunes de moins

Plus en détail

Diagramme en boîte. Médiane. Dans cette leçon nous ne considèrerons que des séries quantitative, discrète et même nie. Généralités.

Diagramme en boîte. Médiane. Dans cette leçon nous ne considèrerons que des séries quantitative, discrète et même nie. Généralités. I Diagramme en boîte. Médiane. Dans cette leçon nous ne considèrerons que des séries quantitative, discrète et même nie. Généralités. Dénition 1 La médiane d'un ensemble (ni) de valeurs est une valeur

Plus en détail

STATISTIQUE. Réaliser une étude statistique consiste à classer les individus d une population en fonction d un caractère.

STATISTIQUE. Réaliser une étude statistique consiste à classer les individus d une population en fonction d un caractère. STATISTIQUE Faire des statistiques, c est recueillir, organiser, synthétiser, représenter et exploiter des données, numériques ou non, dans un but de comparaison, de prévision, de constat... Les plus gros

Plus en détail

STATISTIQUES DESCRIPTIVES

STATISTIQUES DESCRIPTIVES 1 sur 8 STATISTIQUES DESCRIPTIVES En italien, «stato» désigne l état. Ce mot à donné «statista» pour «homme d état». En 1670, le mot est devenu en latin «statisticus» pour signifier ce qui est relatif

Plus en détail

OBJECTIFS DU CHAPITRE

OBJECTIFS DU CHAPITRE Chapitre 19 Les statistiques OBJECTIFS DU CHAPITRE - Savoir calculer la moyenne, une valeur de la médiane, l étendue, une valeur des 1 er et 4 e quartiles d une série statistique. - Savoir interpréter

Plus en détail

Groupe PPRE Projet 3.1 : Les élèves du collège des pieds à la tête Juillet

Groupe PPRE Projet 3.1 : Les élèves du collège des pieds à la tête Juillet Aide 1 Distribuer à chaque élève un tableau du type : Sexe (G ou F) Date de naissance (JJ/MM/AAAA) Taille en mètres Pointure de chaussures La deuxième colonne est facultative si l on n étudie pas les âges

Plus en détail

Exercice 3 : On interroge un groupe de personnes sur le nombre de voyages effectués dans les douze derniers mois.

Exercice 3 : On interroge un groupe de personnes sur le nombre de voyages effectués dans les douze derniers mois. Exercice 1 : A un contrôle, les élèves d une classe ont obtenu les notes suivantes : 1. Quelle est l étendue de cette série? 2. Calculer la fréquence de la note 13. 3. Déterminer la médiane et la moyenne

Plus en détail

1ère S Statistiques I. Présentation générale Echantillon Population Recueil de données Traitement des données Tableaux Calculs graphiques

1ère S Statistiques I. Présentation générale Echantillon  Population  Recueil de données Traitement des données Tableaux Calculs graphiques ère S Statistiques I. Présentation générale Echantillon Population Recueil de données (enquêtes, sondages) Traitement des données Tableaux graphiques Calculs (moyennes ) Interprétation II. Vocabulaire

Plus en détail

Statistiques descriptives

Statistiques descriptives Méthode 1 Calculer les fréquences. Pour calculer la fréquence d'une modalité : diviser l'effectif de cette modalité par l'effectif total multiplier le résultat par 100 pour exprimer la fréquence en % La

Plus en détail

Statistiques. 1.2 Présentation des données et représentations graphiques

Statistiques. 1.2 Présentation des données et représentations graphiques Statistiques 1 Séries statistiques à une variable 1.1 Vocabulaire Une population est un ensemble d individus sur lesquels on étudie un caractère ou une variable, qui prend différentes valeurs ou modalités.

Plus en détail

I le vocabulaire des statistiques.

I le vocabulaire des statistiques. STATISTIQUES I le vocabulaire des statistiques. Définition 1 : L ensemble sur lequel on travaille en statistique est appelé population. Si cet ensemble est trop vaste, on en restreint l étude à une partie

Plus en détail

26 - Les statistiques

26 - Les statistiques I. Série statistique - Les statistiques La population étudiée est l ensemble des élèves d une classe de e dans un collège. Le caractère ou la variable étudiée est la note de ces élèves à un devoir de mathématiques.

Plus en détail

B. Résoudre des problèmes de proportionnalité

B. Résoudre des problèmes de proportionnalité Sommaire Organisation et gestion de données A. Interpréter, représenter des données 1. Série statistique 6 14. Effectifs et fréquences 64 15. Moyenne et médiane d une série statistique 66 16. Étendue d

Plus en détail

OUTILS POUR LES STATISTIQUES

OUTILS POUR LES STATISTIQUES Chapitre 5 STATISTIQUES OUTILS POUR LES STATISTIQUES 1 ) Vocabulaire. Une série statistique est une liste de données qui permet d étudier un caractère chez une population précise. On appelle individu un

Plus en détail

2de Exercices de mathématiques 9 octobre Ch. 3 Statistiques

2de Exercices de mathématiques 9 octobre Ch. 3 Statistiques 2de Exercices de mathématiques 9 octobre 2009 Ch. 3 Statistiques Exercice 1 Vrai ou Faux? On s intéresse aux élèves de la classe. 1. Le mois de naissance est un caractère quantitatif discret. 2. La pointure

Plus en détail

STATISTIQUES. Caractère étudié ou variable statistique: Propriété étudiée dans la population.

STATISTIQUES. Caractère étudié ou variable statistique: Propriété étudiée dans la population. STATISTIQUES L'étude du vocabulaire et des notions de statistique du programme de ère L sera illustrée par un exemple: voir la fiche d'accompagnement du travail à réaliser sur tableur et la fiche d'exemples

Plus en détail

Chapitre IV : Statistiques

Chapitre IV : Statistiques Extrait du programme : Chapitre IV : Statistiques I. Diagrammes en boite 1. Rappels des indicateurs Médiane-Quartiles Définitions : Si l on range les valeurs de la série par ordre croissant, la médiane

Plus en détail

Statistiques descriptives

Statistiques descriptives IUT Aix-en-Provence Année 2012-201 DUT Informatique TD Probabilités feuille n 1 Statistiques descriptives Exercice 1 Dans une salle, 9 personnes sont assises, leur moyenne d âge est de 25 ans. Dans une

Plus en détail

Statistique descriptive

Statistique descriptive Statistique descriptive Effectuer une étude statistique consiste à recueillir, présenter et exploiter des informations sur un caractère d'une population. A. Effectifs et fréquences Les 30 élèves d'une

Plus en détail

= n i : effectif de la valeur N : effectif total N

= n i : effectif de la valeur N : effectif total N Maths SERIES STATISTIQUES A UNE VARIABLE I. VOCABULAIRE, FREQUENCE ET REPRESENTATION GRAPHIQUE Population : Ensemble des éléments sur lesquels porte l étude statistique. Caractère : Sujet sur lequel porte

Plus en détail

Statistique. Exemple Le tableau ci-dessous représente les moyens de transport utilisés pour venir au lycée par les 32 élèves d une classe de 2 nde.

Statistique. Exemple Le tableau ci-dessous représente les moyens de transport utilisés pour venir au lycée par les 32 élèves d une classe de 2 nde. hapitre 11 Statistique Le rôle de la statistique descriptive est de présenter une masse de donnée sous forme lisible. Puis, si possible, de la résumé par quelques nombres caractéristiques (moenne, médiane,

Plus en détail

Seconde 4 DS1 statistiques Sujet 1

Seconde 4 DS1 statistiques Sujet 1 Seconde 4 DS1 statistiques 01-013 Sujet 1 Exercice 1 : Espérance de vie (10 points) Le tableau ci-dessous donne l espérance de vie, à la naissance, des hommes (H) et des femmes (F) en France. Année 1999

Plus en détail

Les indicateurs statistiques

Les indicateurs statistiques Mode, classe modale Les indicateurs statistiques Le mode d une série statistique est une valeur de la série pour laquelle l effectif associé est le plus grand Dans le cas d un regroupement en classes,

Plus en détail

Durée d en min [100; 120[ [120; 160[ [160; 180[ [180; 260] Effectif

Durée d en min [100; 120[ [120; 160[ [160; 180[ [180; 260] Effectif Statistique 1 Rappel sur le vocabulaire 1.1 Qu est-ce qu une étude statistique? Une étude statistique porte sur une population qui est composée d individus : le nombre d individus composant la population

Plus en détail

STATISTIQUE. 3) Construire un tableau donnant les effectifs cumulés, les fréquences (en % au dixième près) et les fréquences cumulées.

STATISTIQUE. 3) Construire un tableau donnant les effectifs cumulés, les fréquences (en % au dixième près) et les fréquences cumulées. STATISTIQUE Exercice 1 Les 33 élèves d une classe ont obtenu les notes suivantes lors d un devoir : Note 5 8 10 11 1 1 15 18 0 Effectif 1 1 7 6 3 1 ECC Fréquences FCC 1) Déterminer l étendue et le mode

Plus en détail

DEVOIR COMMUN DE MATHÉMATIQUES Seconde 2 heures

DEVOIR COMMUN DE MATHÉMATIQUES Seconde 2 heures DEVOIR COMMUN DE MATHÉMATIQUES Seconde heures Mars 013 L usage de la calculatrice est autorisé pour cette épreuve. Le candidat est invité à faire figurer toute trace de recherche, même incomplète ou non

Plus en détail