Ch.G3 : Distances et tangentes

Dimension: px
Commencer à balayer dès la page:

Download "Ch.G3 : Distances et tangentes"

Transcription

1 4 e - programme 2011 mathématiques ch.g3 cahier élève Page 1 sur 14 1 DISTC D U PIT À U DRIT Ch.G3 : Distances et tangentes 1.1 Définition ex 1 DÉFIITI 1 : Soit une droite et un point n'appartenant pas à. La distance du point à la droite est égale à H où H désigne le pied de la perpendiculaire à passant par. Remarque 1 : La longueur H est alors la plus courte distance entre le point et tous les points de la droite. xemple 1 : Soit une droite et un point n'appartenant pas à. esure la distance du point à la droite. n trace la droite perpendiculaire à qui passe par le point. n mesure la longueur H où H est le pied de la perpendiculaire à. xercice n 1 page 178 Construis un triangle, rectangle en, tel que = 6,5 cm et = 2,5 cm. a) Calcule la distance du point à la droite (). 2 = ,5 2 = 2 + 2,5 2 2 = 6,5 2 2,5 2 2 = 36 = 36 = 6 () () 6 cm b) Peux-tu trouver un point P sur la droite () tel que P = 5,8 cm? Pourquoi? () P () P = 5,8 cm xercice n 1 page 179 bserve, recopie et complète : a) La distance du point S à la droite (LT) est. b) La distance du point T à la droite est 6 cm. c) Le point est situé à 10,5 cm de la droite. d) Le point est situé à de la droite (RF). e) La distance du point à la droite (R) est comprise entre... et. S (LT) 8 cm T (LS) 6 cm R 10,5 (F) 6 cm (RF) H. Rorthais (Collège.D. de l bbaye à antes)

2 4 e - programme 2011 mathématiques ch.g3 cahier élève Page 2 sur 14 (R) 10,5 cm 13,5 cm xercice n 2 page 179 ïe, aïe, aïe a) Sur ton cahier, trace deux droites (m) et ainsi qu'un point P, comme sur le dessin. b) Jean, debout sur la digue, veut aller se baigner mais il doit d'abord passer par le parasol (au point P) pour prévenir ses parents. Représente sur ton schéma le trajet que Jean doit emprunter afin de marcher le moins longtemps sur le sable rendu brûlant par les rayons du Soleil. (m) P xercice n 4 page 179 Un point étant donné, construis trois droites (d 1 ), (d 2 ) et (d 3 ) telles que soit situé à 4 cm de chacune d'entre elles. (d2) (d1) (d3) xercice n 6 page 179 Construis le triangle FG tel que G = 5 cm, FG = 6 cm et GF = 68. a) Construis le point S équidistant de F et G, le plus proche possible du point. b) Démontre que les droites (S) et (FG) sont parallèles. S G F H. Rorthais (Collège.D. de l bbaye à antes)

3 4 e - programme 2011 mathématiques ch.g3 cahier élève Page 3 sur 14 S F G S [FG] S (S) (S) (FG) (S) (FG) xercice n 7 page 179 Soient une droite et un point situé à 2 cm de. Fais une figure puis place tous les points situés à la fois à 4 cm de et à 3 cm du point. xercice n 8 page 179 Soient une droite et un point T appartenant à la droite. Fais une figure puis colorie en bleu la région du plan contenant les points situés à la fois à plus de 2 cm de et à moins de 3 cm de T. T H. Rorthais (Collège.D. de l bbaye à antes)

4 4 e - programme 2011 mathématiques ch.g3 cahier élève Page 4 sur 14 xercice n 30 page 182 n considère le triangle rectangle représenté ci-contre. Calcule l'arrondi au millimètre de la distance du point à la droite (). 3 cm [] 8 cm 2 = = = = = 55 cm 2 = 55 7,4 cm () xercice n 34 page 182 UL est un triangle tel que L = 28, UL = 45 et U = 53. Quelle est la distance du point U à la droite (L)? Justifie. UL [U] L U 2 = 53 2 = LU 2 + L 2 = = = U 2 = LU 2 + L 2 UL U L U (L) UL = 45 2 TGT À U CRCL U PIT X 4 À 6 DÉFIITI 2 : La tangente à un cercle ( ) de centre en un point de ( ) est la droite passant par et perpendiculaire au rayon []. Remarque 2 : La distance entre le centre d'un cercle et toute tangente à ce cercle est égale au rayon. xemples 3 : Soit ( ) un cercle de centre et un point de ce cercle. Trace la droite ( ) tangente au cercle ( ) en. ( ) ( ) ( ) n trace le rayon []. n trace la droite ( ) perpendiculaire en à la droite (). La droite ( ) est la tangente en au cercle ( ). xercice n 4 page 178 Trace un cercle ( ) de centre et de rayon 2 cm. Place trois points, et P sur le cercle puis construis les tangentes à ( ) en, et P. H. Rorthais (Collège.D. de l bbaye à antes)

5 4 e - programme 2011 mathématiques ch.g3 cahier élève Page 5 sur 14 P ( ) [] () ( ) xercice n 5 page 178 Soit ( ) un cercle de diamètre []. Trace ( ) et les tangentes au cercle ( ) respectivement en et. Démontre que les droites ( ) et sont parallèles. ( ) ( ) ( ) ( ) ( ) [] ( ) () ( ) () ( ) () xercice n 9 page 179 bserve la figure ci-contre et en te référant au codage, indique pour chacune des droites (d 1 ), (d 2 ), (d 3 ) et (d 4 ) à quel cercle et en quel point elles sont tangentes. ( ) (d 1 ) ( 1) ( 2) (d 2 ) R P Q U S T (d 4 ) (d 3 ) V W ( 3) (d 1 ) ( 1 ) R (d 2 ) ( 2 ) P ( 3 ) T H. Rorthais (Collège.D. de l bbaye à antes)

6 4 e - programme 2011 mathématiques ch.g3 cahier élève Page 6 sur 14 (d 3 ) ( 3 ) W (d 4 ) ( 1 ) S ( 2 ) xercice n 10 page 180 Un cercle et trois tangentes a) Trace un cercle ( ) de rayon 3,5 cm, trace un diamètre [] de ce cercle puis place un point sur ( ) à 4 cm de. b) Construis trois tangentes (d ), (d ) et (d ) en, et au cercle ( ). xercice n 11 page 180 Distances et tangentes a) Trace une droite et place un point à 5 cm de puis trace le cercle ( ) de diamètre 5 cm, passant par et 1 dont la droite est une tangente. b) Peux-tu tracer un cercle ( ) de diamètre 4,6 cm passant par et dont la droite est une tangente? Justifie. 2 ( ) 4,6 cm 2 xercice n 12 page 180 Trace deux droites parallèles et (d' ). Construis un cercle ( ) tel que et (d' ) soient toutes les deux tangentes à ( ). Quelle est la position de son centre? H. Rorthais (Collège.D. de l bbaye à antes)

7 4 e - programme 2011 mathématiques ch.g3 cahier élève Page 7 sur 14 (d' ) (d') xercice n 14 page 180 Un quadrilatère bien connu a) Trace un cercle ( ) de centre et deux rayons [] et [] perpendiculaires. Trace les tangentes à ( ) passant par et et place, leur point d'intersection. b) Quelle est la nature du quadrilatère? Justifie. () ( ) () () () () = xercice n 15 page 180 Sur la figure ci-contre, est la tangente en au cercle ( appartenant à tel que L = 38. Calcule, en justifiant, la mesure de l'angle L. ) de centre et L est un point L ( ) () L L = 38 L = 90 L = 180 ( ) = = 52 ctivité n 3 page 175 De qui est-ce la trace? Dans cette activité, tu vas manipuler la figure TracenPoche disponible à l'adresse : dans les compléments du niveau 4 e. H. Rorthais (Collège.D. de l bbaye à antes) 180

8 4 e - programme 2011 mathématiques ch.g3 cahier élève Page 8 sur 14 1) ature d'une trace a) Quel point peux-tu déplacer sur cette figure? Quels points bougent alors automatiquement? Comment, selon toi, a-t-on obtenu les points F et G? Vérifie avec Tracenpoche. b) Lorsqu'on déplace le point, il laisse parfois une trace rouge. Pour quelles positions du point cela se produit-il? Vérifie avec TracenPoche. Déplace le point afin d'avoir la plus grande trace rouge possible. F G F G [x) [y) 2) Une conjecture F = G a) À l'aide du bouton, trace la bissectrice de xy. Que remarques-tu? b) Place un point sur la bissectrice de xy en utilisant le bouton. c) Une fois les constructions nécessaires effectuées, fais afficher les distances de à chacun des deux côtés de l'angle. Que remarques-tu lorsque tu déplaces? d) Complète les deux propriétés suivantes (qu'on utilise dans la éthode 3 et qu'on démontre dans l'exercice 38.) : «Si un point est situé des côtés d'un angle alors il appartient à.», et réciproquement : «Si un point appartient à alors il est situé de cet angle.». xy ctivité n 4 page 175 Un cercle bien calé 1) Construction et observation a) vec TracenPoche, à l'aide du bouton, construis un cercle de centre et de rayon trois unités de longueur. Place trois points, et C sur ce cercle, trace les trois rayons [], [] et [C] puis les trois tangentes au cercle en ces points. b) Déplace si besoin, et C afin que ces trois tangentes forment un triangle contenant le cercle. omme D, et F les trois sommets de ce triangle. c) Utilise TracenPoche pour dire si le triangle DF peut posséder un angle obtus. Peut-il être rectangle? Peut-il être équilatéral? Précise alors la position du centre du cercle. H. Rorthais (Collège.D. de l bbaye à antes)

9 4 e - programme 2011 mathématiques ch.g3 cahier élève Page 9 sur 14 C DF DF DF d) est-il plus proche de (D) ou de (DF)? Justifie. Que peut-on en déduire concernant le point et l'angle DF? t que dire du point et des angles DF et FD? Vérifie ta réponse à l'aide de TracenPoche en effectuant les tracés nécessaires. [] [] = (D) (DF) DF DF FD 2) ise en situation et démonstration a) Sur ton cahier, trace un grand triangle DF puis les bissectrices des angles DF et DF qui se coupent en. b) Démontre que est équidistant des trois côtés du triangle DF. c) Comment tracer la bissectrice de FD en n'utilisant que ta règle non graduée? Justifie. d) n t'inspirant de la première partie, trace un cercle particulièrement intéressant! F D DF DF [D] [F] [DF] DF DF DF FD DF () DF 3 ISSCTRIC D'U GL T CRCL ISCRIT X 7 À 9 THÉRÈ 2 : Si un point est situé à la même distance des côtés d'un angle alors il appartient à la bissectrice de cet angle. Réciproquement, si un point appartient à la bissectrice d'un angle alors il est situé à la même distance des côtés de cet angle. xemple 4 : Soit un triangle C. Place à l'intérieur du triangle un point afin qu'il soit à égale distance des H. Rorthais (Collège.D. de l bbaye à antes)

10 4 e - programme 2011 mathématiques ch.g3 cahier élève Page 10 sur 14 côtés [] et [C]. Le point se situe à égale distance des côtés [] et [C]. Propriété : si un point est situé à la même distance des côtés d'un angle, alors il appartient à la bissectrice de cet angle. Donc le point se situe sur la bissectrice de l'angle C formé par les segments [] et [C]. C THÉRÈ 2 : Les trois bissectrices des angles d'un triangle sont concourantes. Leur point de concours est le centre du cercle inscrit dans le triangle. Remarque 3 : Les trois côtés d'un triangle sont tangents au cercle inscrit dans ce triangle. K R xercice n 7 page 178 Construis un triangle. n note (d 1 ) la droite (), (d 2 ) la droite () et (d 3 ) la droite (). Place le point U afin qu'il soit équidistant des droites (d 1 ) et (d 3 ) et équidistant des droites (d 1 ) et (d 2 ). U xercice n 8 page 178 Construis un triangle RS tel que R = 7 cm ; S = 8 cm et RS = 9 cm puis son cercle inscrit. S R xercice n 9 page 178 Soit un cercle ( ). Trace un triangle IL tel que ( ) soit inscrit dans le triangle IL. H. Rorthais (Collège.D. de l bbaye à antes)

11 4 e - programme 2011 mathématiques ch.g3 cahier élève Page 11 sur 14 I ( ) L xercice n 17 page 180 Sur la figure ci-contre, la droite (R) est la bissectrice de l'angle F. Démontre que le triangle FR est isocèle en R. F R F R R = RF FR R xercice n 19 page 180 Trace un cercle ( ) de centre puis place deux points et non diamétralement opposés sur ce cercle. Trace les tangentes en et en au cercle ( ) et place, leur point d'intersection. Démontre que le point appartient à la bissectrice de l'angle. = () () () () () () xercice n 20 page 181 bserve le dessin à main levée ci-contre. Démontre que le point U est équidistant des droites (RS) et (RT). S U R T RSU = SUT STU = RTU (SU) RST (TU) RTS H. Rorthais (Collège.D. de l bbaye à antes)

12 (ST) (RT) 4 e - programme 2011 mathématiques ch.g3 cahier élève Page 12 sur 14 U (RS) (ST) U U (RS) (RT) xercice n 21 page 181 Une histoire d'angles a) Détermine, en justifiant, la mesure de l'angle IR. b) Que représente le point I pour le triangle UR? Justifie. c) Déduis-en les mesures des angles UI et IU. U 70 I UR UR = 70 RU = R 180 UR = 180 ( ) = = 50 UI = 25 IR = = 25 UI = IR URI = IR (I) UR (RI) RU I UR UR I UR (UI) UR UI = IU = UR = = 35 xercice n 22 page 181 Cercle inscrit Dans chaque cas, construis le triangle C puis son cercle inscrit. a) C = 8 cm, C = 60 et C = 50. b) C = 10 cm, = 8 cm et C = 45. C H. Rorthais (Collège.D. de l bbaye à antes)

13 4 e - programme 2011 mathématiques ch.g3 cahier élève Page 13 sur 14 c) C est isocèle en tel que = 9 cm et C = 6 cm. C C d) C est un triangle équilatéral de côté 7,5 cm. C xercice n 23 page 181 Trace un triangle dont le cercle inscrit a un rayon de 2,7 cm. H. Rorthais (Collège.D. de l bbaye à antes)

14 4 e - programme 2011 mathématiques ch.g3 cahier élève Page 14 sur 14 2,7 cm xercice n 24 page 181 Une histoire d'angles, bis a) Trace un triangle C rectangle en tel que = 8 cm et C = 30. Trace les bissectrices des angles Cet C. C I b) n appelle I le centre du cercle inscrit dans le triangle C. Calcule, dans cet ordre, les angles C, IC, CI et IC. C C = 90 C = 30 C = 180 ( ) = = 60 (IC) C IC = C = 60 2 = 30 I C (I) C CI = C 2 = 90 2 = 45 IC CI = 45 IC = 30 IC = 180 ( ) = = H. Rorthais (Collège.D. de l bbaye à antes)

b. Explique précisément comment tu as placé le point H sur ton schéma.

b. Explique précisément comment tu as placé le point H sur ton schéma. ctivité 1 : Trouve le plus court chemin 1. Conjecture a. De la rive gauche d'un fleuve, lexia crie à amid qui est assis de l'autre côté du fleuve qu'elle ne sait pas nager. Trop éloigné d'elle, amid l'entend

Plus en détail

Comment pourrais-tu faire pour construire un triangle ABC si tu connais seulement : la mesure de deux angles : ABC = 40 et ACB = 110 ;

Comment pourrais-tu faire pour construire un triangle ABC si tu connais seulement : la mesure de deux angles : ABC = 40 et ACB = 110 ; omment pourrais-tu faire pour construire un triangle si tu connais seulement : la mesure de deux angles : = 40 et = 110 ; le périmètre du triangle : = 15 cm? 167 ctivité 1 : u côté des triangles... 1.

Plus en détail

Démonstration des propriétés géométriques du plan niveau collège

Démonstration des propriétés géométriques du plan niveau collège Démonstration des propriétés géométriques du plan niveau collège Propriété : Si un point est sur un segment et à égale distance de ses extrémités alors ce point est le milieu du segment. Si un point est

Plus en détail

Ch.G1 : Triangle rectangle

Ch.G1 : Triangle rectangle 4 e - programme 2011 mathématiques ch.g1 cahier élève Page 1 sur 18 1 RL T TRIGL RTGL h.g1 : Triangle rectangle 1.1 Pour démontrer qu'un point est sur un cercle ex 1 et 2 THÉRÈ 1 i un triangle est rectangle,

Plus en détail

TRIANGLE RECTANGLE. Chapitre 10. Triangle rectangle et cercle circonscrit Triangle rectangle et médiane

TRIANGLE RECTANGLE. Chapitre 10. Triangle rectangle et cercle circonscrit Triangle rectangle et médiane hapitre 10 TNGL TNGL Triangle rectangle et cercle circonscrit Triangle rectangle et médiane «git -Prop-Tram #2» de Dennis John shbaugh, 1974 TVTÉ TNGL TNGL T L NT TVTÉ 1 Dans un triangle rectangle oit

Plus en détail

Activité 2 : Parallélogramme et centre de symétrie

Activité 2 : Parallélogramme et centre de symétrie ctivités ctivité 1 : Les quadrilatères a. omment appelles-tu des figures géométriques qui ont plusieurs côtés? rois côtés? Quatre côtés? b. Quatre élèves ont nommé la igure 1. Quels sont ceux qui se sont

Plus en détail

FORMULAIRE DE MATHEMATIQUES CLASSE DE TROISIEME

FORMULAIRE DE MATHEMATIQUES CLASSE DE TROISIEME 2012 FORMULAIRE DE MATHEMATIQUES CLASSE DE TROISIEME NOUS VOUS PRESENTONS ICI UN FORMULAIRE CONTENANT LES DEFINITIONS, PROPRIETES ET THEOREMES VUS EN COURS DE MATHEMATIQUES TOUT AU LONG DE VOTRE SCOLARITE

Plus en détail

CHAPITRE 4 : LA SYMETRIE AXIALE ET FIGURES GEOMETRIQUES

CHAPITRE 4 : LA SYMETRIE AXIALE ET FIGURES GEOMETRIQUES HPITRE 4 : L SYMETRIE XILE ET FIGURES GEOMETRIQUES 1. La médiatrice d un segment On dit que est la médiatrice du segment [] si : - - Ex 1 : Trace la médiatrice de [IJ] et [MN] puis place G pour que soit

Plus en détail

Sommaire de la séquence 3

Sommaire de la séquence 3 Sommaire de la séquence 3 Séance 1..................................................................................................... 57 Je découvre la symétrie centrale par l expérience...................................................

Plus en détail

Si deux droites sont parallèles à une même troisième. alors les deux droites sont parallèles entre elles. alors

Si deux droites sont parallèles à une même troisième. alors les deux droites sont parallèles entre elles. alors N I) Pour démontrer que deux droites (ou segments) sont parallèles (d) // (d ) (d) // (d ) deux droites sont parallèles à une même troisième les deux droites sont parallèles entre elles (d) // (d) deux

Plus en détail

- Rappels sur la résolution d une équation de la forme. " oeuil "

- Rappels sur la résolution d une équation de la forme.  oeuil - EE Thème N 6 : TRIGONOETRIE Equation () e que je dois savoir à la fin du thème : - Rappels sur la résolution d une équation de la forme a ou b b a - onnaître et utiliser dans le triangle rectangle des

Plus en détail

ENSEIGNEMENT A DISTANCE

ENSEIGNEMENT A DISTANCE ours 269 Série 06 Mathématiques (2 ème degré) GEMETRIE ommunauté française de elgique ENSEIGNEMENT ISTNE (reproduction interdite sans autorisation) Plan de la série 06 Leçon 11 : Trois lieux géométriques

Plus en détail

5 ème Chapitre 4 Triangles

5 ème Chapitre 4 Triangles 5 ème Chapitre 4 Triangles 1) Médiatrices Définition : la médiatrice d'un segment est l'ensemble des points équidistants des extrémités du segment (cours de 6 ème ). Si M appartient à la médiatrice du

Plus en détail

A H A H. Exercices de 4 ème Chapitre 2 - Droites, cercles et triangles Énoncés. Exercice 1

A H A H. Exercices de 4 ème Chapitre 2 - Droites, cercles et triangles Énoncés. Exercice 1 xercices de 4 ème hapitre 2 - Droites, cercles et triangles Énoncés xercice 1 ur les figures suivantes, les droites repassées en gras sont parallèles. ndiquer, si possible, le numéro du théorème à appliquer

Plus en détail

b. Explique précisément comment tu as placé le point H sur ton schéma.

b. Explique précisément comment tu as placé le point H sur ton schéma. ctivité 1 : Trouve le plus court chemin 1. Conjecture a. De la rive gauche d'un fleuve, lexia crie à amid qui est assis de l'autre côté du fleuve qu'elle ne sait pas nager. Trop éloigné d'elle, amid l'entend

Plus en détail

NOTIONS ÉLÉMENTAIRES DE GÉOMÉTRIE

NOTIONS ÉLÉMENTAIRES DE GÉOMÉTRIE NOTIONS ÉLÉMENTIRES I) Les points : Un point est souvent représenté par une croix et noté avec des lettres majuscules. II) Les Droites : 1) La droite Une droite est illimitée des deux cotés, on ne peut

Plus en détail

CINQUIEME PARTIE LA SYMETRIE CENTRALE. Cours de mathématique Classe de 5 ème

CINQUIEME PARTIE LA SYMETRIE CENTRALE. Cours de mathématique Classe de 5 ème INQUIEME PRTIE L SYMETRIE ENTRLE SYMETRIQUE D'UN PINT 120 FIGURES SYMETRIQUES 121 MPRER LES DEUX SYMETRIES 122 SYMETRIQUES DES DRITES 126 SEGMENTS SYMETRIQUES; LE PRLLELGRMME 128 ENTRE DE SYMETRIE D'UNE

Plus en détail

c) Calculer MP. 3) Déterminer l'arrondi au degré de la mesure de Dˆ.

c) Calculer MP. 3) Déterminer l'arrondi au degré de la mesure de Dˆ. Exercice :(Amiens 1995) Les questions 2, 3 et 4 sont indépendantes. L'unité est le centimètre. 1) Construire un triangle MAI rectangle en A tel que AM = 8 et IM = 12. Indiquer brièvement les étapes de

Plus en détail

ÉPREUVE EXTERNE COMMUNE CE1D 2010

ÉPREUVE EXTERNE COMMUNE CE1D 2010 NOM : Prénom : Classe : MINISTÈRE DE LA COMMUNAUTÉ FRANÇAISE ÉPREUVE EXTERNE COMMUNE CE1D 2010 Mathématiques Livret 1 Pour cette première partie : la calculatrice est interdite tu auras besoin de ton

Plus en détail

Module 8 : Périmètre et aire de figures planes

Module 8 : Périmètre et aire de figures planes RÉDUCTION DES ÉCARTS DE RENDEMENT 9 e année Module 8 : Périmètre et aire de figures planes Guide de l élève Module 8 Périmètre et aire de figures planes Évaluation diagnostique...3 Aire de parallélogrammes,

Plus en détail

a. Avec la règle et l équerre : La médiatrice d une segment [AB] est la droite (d) perpendiculaire à ce segment et passant par son milieu.

a. Avec la règle et l équerre : La médiatrice d une segment [AB] est la droite (d) perpendiculaire à ce segment et passant par son milieu. :.. 6 - TR - SYTR XL URS STRUT L TR U ST []. a. vec la règle et l équerre : La médiatrice d une segment [] est la droite perpendiculaire à ce segment et passant par son milieu.. n mesure le segment []

Plus en détail

Chapitre n 8 : «Parallélogrammes particuliers»

Chapitre n 8 : «Parallélogrammes particuliers» Chapitre n 8 : «Parallélogrammes particuliers» I. Rappels (parallélogramme) Un parallélogramme est un quadrilatère qui a ses côtés opposés parallèles. Construction Propriétés des parallélogrammes Dans

Plus en détail

I U. Exercices de 4 ème Chapitre 2 - Droites, cercles et triangles Énoncés. Exercice 1

I U. Exercices de 4 ème Chapitre 2 - Droites, cercles et triangles Énoncés. Exercice 1 xercices de 4 ème hapitre - Droites, cercles et triangles Énoncés xercice 1 ur le dessin ci-contre, on sait que (TH) // (). ontrer que T est le milieu du segment []. T H xercice n utilisant le codage du

Plus en détail

Collège Henri Meck lundi 4 mai 2009 Molsheim BREVET BLANC DE MATHEMATIQUES N 2. ( Extraits d'épreuves du brevet de 2007 et 2008 ) PRESENTATION 4 pts

Collège Henri Meck lundi 4 mai 2009 Molsheim BREVET BLANC DE MATHEMATIQUES N 2. ( Extraits d'épreuves du brevet de 2007 et 2008 ) PRESENTATION 4 pts Collège Henri Meck lundi 4 mai 2009 Molsheim BREVET BLANC DE MATHEMATIQUES N 2 ( Extraits d'épreuves du brevet de 2007 et 2008 ) PRESENTATION 4 pts Rappel : Présenter les parties de l'épreuve sur feuilles

Plus en détail

QUADRILATÈRES PARTICULIERS

QUADRILATÈRES PARTICULIERS hapitre 8 QURLTÈRES PRTULERS - REOMMNTONS. NTROUTON l s'agit de consolider les connaissances acquises en 6e sur les parallélogrammes particuliers (rectangle, losange, carré) et le trapèze, et de les approfondir

Plus en détail

La médiatrice d un segment

La médiatrice d un segment EXTRT DE CURS DE THS DE 4E 1 La médiatrice d un segment, la bissectrice d un angle La médiatrice d un segment Définition : La médiatrice d un segment est l ae de smétrie de ce segment ; c'est-à-dire que

Plus en détail

Triangle rectangle et cercle

Triangle rectangle et cercle Objectifs : 1 Savoir reconnaître et tracer une médiane. 2 Connaître et savoir utiliser la propriété qui caractérise le triangle rectangle par son inscription dans un demi-cercle. 3 Connaître et savoir

Plus en détail

CHAPITRE 1 CONSTRUCTIONS GEOMETRIQUES

CHAPITRE 1 CONSTRUCTIONS GEOMETRIQUES CHAPITRE 1 CONSTRUCTIONS GEOMETRIQUES 1. La médiatrice d'un segment 2 2. La bissectrice d'un angle 3 3. Les triangles 4 4. Parallèles et perpendiculaires 6 5. Les parallélogrammes 7 6. Le problème de Napoléon

Plus en détail

Thème N 12: EQUATION (2) TRIANGLE RECTANGLE (2) ( le cosinus ) - ESPACE (2) ( le cône )

Thème N 12: EQUATION (2) TRIANGLE RECTANGLE (2) ( le cosinus ) - ESPACE (2) ( le cône ) - 1 9 1 126 9 10 10 0, 0, 1 1 12 1 728 12 3 3 0,25 0,75 0,25-25 25 5 5 5 72 72 8 9 8 1 1 12 12 12 36 36 9 Thème N 12: EQUTION (2) TRINGLE RETNGLE (2) ( le cosinus ) - EPE (2) ( le cône ) Résoudre des équations

Plus en détail

Exercices de 3 ème Chapitre 3 Théorème de Thalès Énoncés

Exercices de 3 ème Chapitre 3 Théorème de Thalès Énoncés 2,5 cm xercices de 3 ème hapitre 3 héorème de halès Énoncés xercice 1 ur une planète lointaine, les hommes (au sens "masculin") portent tous une cagoule. 1. Écrire sous forme d'implication la loi qui est

Plus en détail

Problème : Session 2008 (fonctions affines) Partie I : Partie II :

Problème : Session 2008 (fonctions affines) Partie I : Partie II : Problème : Session 2008 (fonctions affines) Dans ce problème, on étudie deux méthodes permettant de déterminer si le poids d'une personne est adapté à sa taille. Partie I : Dans le graphique ci-dessous

Plus en détail

TRIGONOMETRIE DANS LE TRIANGLE RECTANGLE

TRIGONOMETRIE DANS LE TRIANGLE RECTANGLE TD TRIGNMETRIE DNS LE TRINGLE RETNGLE 1. Je me souviens 1. Dans le triangle TM rectangle en T : [T] est le côté adjacent à l angle TM? [M] est le côté adjacent à l angle TM? ou [T] est l hypoténuse? 2.

Plus en détail

Chapitre V. Polygones semblables

Chapitre V. Polygones semblables hapitre V Polygones semblables 1. Photocopieuse. Sur la photocopieuse du collège, on peut lire les pourcentages d agrandissement ou de réduction préprogrammés : 141%, 115%, 100%, 93%, 82%, 75%, 71%, et

Plus en détail

exercices travail autonome

exercices travail autonome travail autonome 1 On considère les quatre figures suivantes : 6 On considère les quatre figures suivantes : R R R T Fig. 1 Fig. 2 (d) R T Fig. 1 Fig. 2 T Fig. 3 Fig. 4 À l aide du codage des figures,

Plus en détail

Solides et patrons. Cours

Solides et patrons. Cours Solides et patrons EXERCICE 1 : Cours 1) Représenter un cube en perspective cavalière. 2) Qu est-ce qu un polyedre? 3) Qu est-ce qu un prisme droit? Si les bases du prisme ont n côtés combien le prisme

Plus en détail

CBD =45 et comme ces angles sont adjacents, alors ABD = ABC + CBD =18+45=63.

CBD =45 et comme ces angles sont adjacents, alors ABD = ABC + CBD =18+45=63. Chapitre 6 Les angles 1) Définitions et premières propriétés a) Angles adjacents (rappel) : Deux angles sont dits "adjacents" si ils ont un côté en commun et qu'ils sont situés de part et d'autre de ce

Plus en détail

ACTIVITES NUMERIQUES ( 18 points )

ACTIVITES NUMERIQUES ( 18 points ) Copie numéro :.. 4 points sont attribués pour l orthographe, le soin, les notations et la rédaction. L utilisation de la calculatrice est autorisée. NE PAS OUBLIER DE RENDRE L ANNEXE AVEC LA COPIE! ACTIVITES

Plus en détail

CORRECTION BREVET BLANC

CORRECTION BREVET BLANC Partie numérique Exercice 1 : CORRECTION BREVET BLANC Question 1 : on teste les trois valeurs en remplaçant x par la valeur. La solution est Question 2 : Les solutions sont et -2 Question 3 : on fait deux

Plus en détail

11 Géométrie. dans l espace. Chapitre

11 Géométrie. dans l espace. Chapitre hapitre éométrie dans l espace e chapitre reprend prolonge le travail fait en collège en géométrie dans l espace Les activités de conjecture de démonstration de construction de figures sont poursuivies

Plus en détail

PARTIE 1 : ACTIVITÉS NUMÉRIQUES (12 points)

PARTIE 1 : ACTIVITÉS NUMÉRIQUES (12 points) COLLÈGE LA PRÉSENTATION BREVET BLANC Février 2010 ÉPREUVE DE MATHÉMATIQUES classe de 3 e Durée : 2 heures Présentation et orthographe : points Les calculatrices sont autorisées, ainsi que les instruments

Plus en détail

E1 :aide E3 : les quotients (ON CITERA LES. puis calculer x et y

E1 :aide E3 : les quotients (ON CITERA LES. puis calculer x et y DM Devoir maison 4 lire une abscisse placer un point d'abscisse connu convertir un nombre dans une unité donnée le triangle isocèle construction à partir d'un dessin milieu d'un segment le cercle,construction

Plus en détail

Quelques activités. Activité n 1 : Le potager des frères TERIEUR

Quelques activités. Activité n 1 : Le potager des frères TERIEUR Quelques activités ctivité n 1 : Le potager des frères TERIEUR La famille Térieur, possédant une superbe ferme à la campagne, veut réorganiser leur potager. Les deux enfants, frères jumeaux, décident alors

Plus en détail

I) Activités numériques

I) Activités numériques revet 99 : ordeau I) ctivités numériques ercice : alculer les valeurs eactes des nombres suivants (on donnera les résultats sous forme fractionnaire irréductible) 8 Écrire les nombres suivants sous la

Plus en détail

D = 5 2 4 0,5. 4 points. D = 5 2 2 D = 5 donc D est un nombre entier. 0,5

D = 5 2 4 0,5. 4 points. D = 5 2 2 D = 5 donc D est un nombre entier. 0,5 ACTIVITÉS NUMÉRIQUES (12 s) Montrer que D est un nombre entier. Ê D = 5 12 2 D = 5 2 Exercice n 1 : Toutes les étapes de calcul devront figurer sur la copie. 1. On donne A = + 1 + 2. Calculer et donner

Plus en détail

Brevet Blanc nº2 avril 2015

Brevet Blanc nº2 avril 2015 durée : 2 heures Brevet Blanc nº2 avril 2015 L utilisation d une calculatrice est autorisée. Indication portant sur l ensemble du sujet. Toutes les réponses doivent être justifiées, sauf si une indication

Plus en détail

MON CAHIER DE VACANCES n 1. MATHEMATIQUES 3 ème 2

MON CAHIER DE VACANCES n 1. MATHEMATIQUES 3 ème 2 MON CAHIER DE VACANCES n 1 MATHEMATIQUES 3 ème 2 Ce cahier appartient à. Ce cahier est à rapporter le vendredi 6 Novembre 201, à Mme Viault. Les exercices sont à rédiger, sur ce livret, le plus sérieusement

Plus en détail

Devoir commun Décembre 2014 3 ème LV2

Devoir commun Décembre 2014 3 ème LV2 Devoir commun Décembre 2014 3 ème LV2 Collège OASIS Corrigé de l Epreuve de Mathématiques L usage de la calculatrice est autorisé, mais tout échange de matériel est interdit Les exercices sont indépendants

Plus en détail

Sujet de mathématiques du brevet des collèges

Sujet de mathématiques du brevet des collèges Sujet de mathématiques du brevet des collèges POLYNÉSIE Septembre 014 Durée : h00 Calculatrice autorisée Indication portant sur l ensemble du sujet. Toutes les réponses doivent être justifiées, sauf si

Plus en détail

Brevet Blanc n 1. Mathématiques

Brevet Blanc n 1. Mathématiques Brevet Blanc n 1 Novembre 2010 Mathématiques Durée de l'épreuve : 2h00 Le candidat répondra sur une copie L'usage de la calculatrice est autorisé, dans le cadre de la réglementation en vigueur. Activités

Plus en détail

Sommaire de la séquence 5

Sommaire de la séquence 5 Sommaire de la séquence 5 Séance 1.................................................................................................... 111 Je revois et j enrichis mon vocabulaire sur les angles.............................................

Plus en détail

Triangle rectangle : Cercle circonscrit et médiane

Triangle rectangle : Cercle circonscrit et médiane Triangle rectangle : Cercle circonscrit et médiane I) Vocabulaire 1) Hypoténuse Définition : Dans un triangle rectangle le côté opposé à l angle droit est appelé hypoténuse. 2) Hauteurs, médianes, médiatrices

Plus en détail

Activité 1 : Du rectangle au parallélogramme

Activité 1 : Du rectangle au parallélogramme ctivités ctivité 1 : u rectangle au parallélogramme a. onstruis, sur une feuille, un rectangle de 10 cm de long sur 4 cm de large. Repasse en rouge les longueurs et en vert les largeurs. alcule l'aire

Plus en détail

DES ANGLES. Les angles des dessins suivants présentent des particularités. Mesure-les et indique ces particularités

DES ANGLES. Les angles des dessins suivants présentent des particularités. Mesure-les et indique ces particularités DES NGLES Les angles des dessins suivants présentent des particularités. Mesure-les et indique ces particularités Les deux droites sont sécantes en O... Deux droites sont parallèles...... est un triangle

Plus en détail

Les maths au collège : Cours, Techniques et Exercices. Denis LE FUR Collège Zéphir, Cayenne

Les maths au collège : Cours, Techniques et Exercices. Denis LE FUR Collège Zéphir, Cayenne Les maths au collège : ours, Techniques et Exercices Denis LE FUR ollège Zéphir, ayenne 11 mars 2004 L objet de ce document est de fournir aux élèves de niveau 3ème un recueil de cours, de techniques et

Plus en détail

1 LES DIFFÉRENTES FORMES DU THÉORÈME DES MILIEUX

1 LES DIFFÉRENTES FORMES DU THÉORÈME DES MILIEUX e - programme 011 mathématiques ch.g1 cahier élève age 1 sur 1 h.g : riangle et parallèles 1 É U HÉÈ UX 1.1 ontrer que des droites sont parallèles ex 1 HÉÈ 1 i, dans un triangle, une droite passe par les

Plus en détail

38 Triangle. 1 - Par pliage, marque quatre droites. Combien de triangles peux-tu compter?

38 Triangle. 1 - Par pliage, marque quatre droites. Combien de triangles peux-tu compter? .M.1 38 Triangle 1 - Par pliage, marque quatre droites. ombien de triangles peux-tu compter? Trois droites qui se coupent déterminent un triangle. La quatrième droite recoupe les trois autres aux points,,.

Plus en détail

L17 : Médiatrice d un segment.

L17 : Médiatrice d un segment. L17 : édiatrice d un segment. édiatrice d un segment : Définition : La médiatrice d un segment [] est la droite (d) perpendiculaire à ce segment et passant par son milieu. d Construction d une médiatrice

Plus en détail

Calcul de longueurs :

Calcul de longueurs : Calcul de longueurs : Exercice : (Japon 96) C est un triangle rectangle en A. On donne 5 cm et A B ˆC 5. 1) Construire la figure en vraie grandeur. 2) Déterminer la longueur, arrondie au dixième de centimètre.

Plus en détail

CHAPITRE IV. Utiliser la définition de la médiatrice d un segment ainsi que la caractérisation de ses points par la propriété d équidistance ( )

CHAPITRE IV. Utiliser la définition de la médiatrice d un segment ainsi que la caractérisation de ses points par la propriété d équidistance ( ) HPITRE IV TRINGLES OMPÉTENES ÉVLUÉES DNS E HPITRE : (T : compétences transversales, N : activités numériques, G : activités géométriques, F : gestion de données et fonctions) Intitulé des compétences Eval.1

Plus en détail

Exercice 1 Le plan est muni d'un repère. On donne les points, et. 1/ Soit D le point tel que ABCD est un parallélogramme.

Exercice 1 Le plan est muni d'un repère. On donne les points, et. 1/ Soit D le point tel que ABCD est un parallélogramme. Devoir Maison A rendre le mercredi 2 mai 2nde 1 Le plan est muni d'un repère. On donne les points, et. 1/ Soit D le point tel que ABCD est un parallélogramme. Calculer les coordonnées du point D. 2/ a)

Plus en détail

1. Montrer que, si on choisit le nombre 10, le résultat obtenu est 260. 3. Quels nombres peut-on choisir pour que le résultat obtenu soit 0?

1. Montrer que, si on choisit le nombre 10, le résultat obtenu est 260. 3. Quels nombres peut-on choisir pour que le résultat obtenu soit 0? Exercice 1 : ACTIVITÉS NUMÉRIQUES. Métropole Juin 2008 On donne le programme de calcul suivant : Choisir un nombre. a) Multiplier ce nombre par 3. b) Ajouter le carré du nombre choisi. c) Multiplier par

Plus en détail

MARS 2014 MATHEMATIQUES LYCEE STANISLAS-NICE. Durée de l épreuve : 2 h 00. L usage de la calculatrice est autorisé.

MARS 2014 MATHEMATIQUES LYCEE STANISLAS-NICE. Durée de l épreuve : 2 h 00. L usage de la calculatrice est autorisé. COMPOSITION SECONDE MARS 2014 MATHEMATIQUES LYCEE STANISLAS-NICE Durée de l épreuve : 2 h 00 L usage de la calculatrice est autorisé. Toutes les réponses devront être justifiées. Exercice 1 Soit la fonction

Plus en détail

Envoi no. 6 : géométrie

Envoi no. 6 : géométrie Envoi no. 6 : géométrie Exercice 1. Soit un triangle rectangle isocèle en. Soit un point de l arc du cercle de centre passant par et, H son projeté orthogonal sur (). On note I le centre du cercle inscrit

Plus en détail

Ce document regroupe les 6 devoirs à la maison proposés dans la progression.

Ce document regroupe les 6 devoirs à la maison proposés dans la progression. Ce document regroupe les 6 devoirs à la maison proposés dans la progression. Le document a été paginé de façon à ce que chaque devoir corresponde à une page pour en faciliter l impression. Page 2... Devoir

Plus en détail

Parallélogramme. Commentaires généraux. Objectifs des activités

Parallélogramme. Commentaires généraux. Objectifs des activités 10 arallélogramme 1 ommentaires généraux e chapitre a pour but l étude du parallélogramme. Les propriétés caractéristiques du parallélogramme sont établies en liaison avec la symétrie centrale. lles sont

Plus en détail

Brevet Amérique du sud novembre 2011

Brevet Amérique du sud novembre 2011 ACTIVITÉS NUMÉRIQUES (12 POINTS) Exercice 1 Cet exercice est un exercice à choix multiples (QCM). Pour chaque question, une seule réponse est exacte. Une réponse correcte rapportera 1 point. L absence

Plus en détail

f(p)= p f(p)= 85 6 k est une fonction linéaire telle que k(4) = 3. Est-il possible que k( 8) = 5? Justifie. 4 ( 2) = 8. Or 3 ( 2) 5.

f(p)= p f(p)= 85 6 k est une fonction linéaire telle que k(4) = 3. Est-il possible que k( 8) = 5? Justifie. 4 ( 2) = 8. Or 3 ( 2) 5. ÉRIE : GÉNÉRALITÉSG ÉNÉRALITÉS SUR LES FONCTIONS LINÉAIRES Complète le tableau en indiquant les fonctions linéaires et leur coefficient. f : k : 7 g : h : j : Fonction linéaire Coefficient l :, m : ( n

Plus en détail

Vecteurs Translation et rotation

Vecteurs Translation et rotation HPTR 10 Vecteurs Translation et rotation bjectifs Établir une relation entre les vecteurs et la translation. onstruire un représentant du vecteur somme à l aide d un parallélogramme. onstruire et caractériser

Plus en détail

Il suffit de tracer deux médiatrices pour obtenir le centre du cercle circonscrit..

Il suffit de tracer deux médiatrices pour obtenir le centre du cercle circonscrit.. Correction-Exercices sur les droites remarquables 1. Construire un triangle ABC tel que AB = 5cm, BC = 6cm et AC= 8 cm et le cercle circonscrit à ce triangle Il suffit de tracer deux médiatrices pour obtenir

Plus en détail

SYMÉTRIE CENTRALE. Chapitre 9

SYMÉTRIE CENTRALE. Chapitre 9 hapitre 9 SYÉTR NTRL Symétrique d une figure par rapport à un point Symétrique d un point par rapport à un point Propriétés de la symétrie centrale TVTÉS SYÉTRQU UN FGUR PR RPPRT À UN PNT TVTÉ 1 u tour

Plus en détail

Mathématiques Logiciel de géométrie: GeoGebra. GeoGebra. Mode d'emploi

Mathématiques Logiciel de géométrie: GeoGebra. GeoGebra. Mode d'emploi Mathématiques Logiciel de géométrie: GeoGebra GeoGebra Avant propos: Mode d'emploi Dans les programmes officiels de Mathématiques, un élève doit savoir utiliser un logiciel de géométrie pour construire

Plus en détail

4G2. Triangles et parallèles

4G2. Triangles et parallèles 4G2 Triangles et parallèles ST- QU TU T SOUVINS? 1) On te donne une droite (d) et un point n'appartenant pas à cette droite. vec une équerre et une règle non graduée, sais-tu construire la parallèle à

Plus en détail

Comment démontrer que deux droites sont perpendiculaires?

Comment démontrer que deux droites sont perpendiculaires? omment démontrer que deux droites sont perpendiculaires? Utilisons On sait que (hypothèses) or...(propriété, définition) donc...(conclusion) Réciproque de Pythagore,5 1,5 = + Si dans un triangle le carré

Plus en détail

Trigonométrie. Guesmi.B. I) Déterminer une longueur... C 4 cm F 8. 5 cm. 5 m. 70 mm. II) Déterminer le cosinus d'un angle... B D

Trigonométrie. Guesmi.B. I) Déterminer une longueur... C 4 cm F 8. 5 cm. 5 m. 70 mm. II) Déterminer le cosinus d'un angle... B D Trigonométrie I) Déterminer une longueur... C 4 cm D I 3) Déterminer GI au millième près A 5 cm 25 E 30 2) Déterminer DF au millimètre près F 8 1) Déterminer C au centième près P 4) Déterminer QR au centimètre

Plus en détail

Ch.G2 : Trigonométrie

Ch.G2 : Trigonométrie 3 e - programme 01 mathématiques ch.g cahier élève Page 1 sur 15 1 CSUS, SUS ET TGETE D'U GLE GU Ch.G : Trigonométrie 1.1 Définitions ex. 1 à 3 DÉFTS 1 Dans un triangle rectangle, le cosinus d'un angle

Plus en détail

Utilisation de l outil numérique via «géogébra» pour la pratique de la géométrie au cycle 3. Déroulement de l animation :

Utilisation de l outil numérique via «géogébra» pour la pratique de la géométrie au cycle 3. Déroulement de l animation : Utilisation de l outil numérique via «géogébra» pour la pratique de la géométrie au cycle 3 Déroulement de l animation : - 0] Préambule (30 min) a) Introduction b) Programme du cycle 3 - I] Première prise

Plus en détail

DROITES REMARQUABLES D'UN TRIANGLE. I - Médiatrices - Cercle circonscrit Les médiatrices des côtés d'un triangle se coupent en un même point

DROITES REMARQUABLES D'UN TRIANGLE. I - Médiatrices - Cercle circonscrit Les médiatrices des côtés d'un triangle se coupent en un même point DROITES REMARQUABLES D'UN TRIANGLE I - Médiatrices - Cercle circonscrit Les médiatrices des côtés d'un triangle se coupent en un même point Leur point d'intersection est le centre d'un cercle passant par

Plus en détail

3G1. Théorème de Thalès EST-CE QUE TU TE SOUVIENS?

3G1. Théorème de Thalès EST-CE QUE TU TE SOUVIENS? @options; repereortho(10,270,0,1,1) { 0, moyen, noir, num1,i}; @figure; K = point( -4.7, 1 ) { noir, (- 0.97,-0.27) }; J = point( -2.65, 0.1 ) { noir, (0.28,-0.52) }; = point( -.85, 4.2 ) { noir, (-0.28,-0.97)

Plus en détail

Chapitre Bissectrice Cercle inscrit Distance d un point à une droite Tangente

Chapitre Bissectrice Cercle inscrit Distance d un point à une droite Tangente Chapitre issectrice Cercle inscrit Distance d un point à une droite Tangente Connaître et utiliser la définition de la bissectrice. Utiliser différentes méthodes pour tracer : La médiatrice d un segment.

Plus en détail

Exercice 6 : Brevet des Collèges - Orléans-Tours - 94 L unité est le cm. Exercice 7 : Brevet des Collèges - Antilles-Guyane - 92

Exercice 6 : Brevet des Collèges - Orléans-Tours - 94 L unité est le cm. Exercice 7 : Brevet des Collèges - Antilles-Guyane - 92 THM : THLS T S RIPROQU XRIS xercice n 1 : revet des ollèges - ix-marseille - 1993 On considère la figure ci-après telle que les droites () et () sont parallèles, et telle que : = 3 = 7 = 4 = 4 L'unité

Plus en détail

a) Effectuer les calculs suivants et donner les résultats sous la forme de fractions irréductibles : C = 7 36 R = 36 4 (2 5)²

a) Effectuer les calculs suivants et donner les résultats sous la forme de fractions irréductibles : C = 7 36 R = 36 4 (2 5)² ème Fiches Révisions revet lanc 1/8 Puissances, Fractions : Effectuer les calculs suivants (donner l écriture scientifique de et écrire sous forme d un entier ou d une fraction). 1 = 15 x 10- x (10 ) 4

Plus en détail

Triangles isométriques Triangles semblables

Triangles isométriques Triangles semblables Triangles isométriques Triangles semblables Les transformations du plan ont permis de dégager des propriétés de figures superposables. Le théorème de Thalès a permis de s initier aux notions de réduction

Plus en détail

On a demandé à dix élèves de la classe de tracer deux droites et on a obtenu : 1. Classe ces dessins dans un tableau en les groupant par catégories.

On a demandé à dix élèves de la classe de tracer deux droites et on a obtenu : 1. Classe ces dessins dans un tableau en les groupant par catégories. ctivité 1 : Position relative de deux droites On a demandé à dix élèves de la classe de tracer deux droites et on a obtenu : a. b. c. d. e. f. g. h. i. j. 1. lasse ces dessins dans un tableau en les groupant

Plus en détail

S13. Autour des théorèmes de PYTHAGORE et THALES

S13. Autour des théorèmes de PYTHAGORE et THALES CRPE S1. Autour des théorèmes de PYTHAGORE et THALES Mise en route A. Dans chaque exercice, une configuration à reconnaître une propriété à connaitre une démonstration à rédiger 1. ARC est un triangle

Plus en détail

Les droites (d 1 ) et (d 2 ) sont sécantes en A Le point A est le point d intersection des 2 droites

Les droites (d 1 ) et (d 2 ) sont sécantes en A Le point A est le point d intersection des 2 droites I Droites perpendiculaires Lorsque deux droites se coupent, on dit qu elles sont sécantes Les droites (d 1 ) et (d 2 ) sont sécantes en A Le point A est le point d intersection des 2 droites Lorsque deux

Plus en détail

Brevet Juin 2007 Métropole Réunion Corrige Page 1 sur 7

Brevet Juin 2007 Métropole Réunion Corrige Page 1 sur 7 Brevet Juin 2007 Métropole Réunion Corrige Page 1 sur 7 Exercice 1 : ACTIVITES NUMERIQUES (12 points) 1. (3x + 5)² = (3x) 2 + 2 3x 5 + 5 2 = 9x² + 30x + 25 2. 4(4 + 1) = 20 (4 + 1)(4 2) = 10 (4 + 1)² =

Plus en détail

BREVET BLANC *** MATHEMATIQUES *** Année 2015

BREVET BLANC *** MATHEMATIQUES *** Année 2015 BREVET BLANC *** MATHEMATIQUES *** Année 2015 L orthographe, le soin, la qualité, la clarté et la précision des raisonnements seront pris en compte à hauteur de 4 points sur 40 dans l appréciation de la

Plus en détail

Construction de la bissectrice d un angle

Construction de la bissectrice d un angle onstruction de la bissectrice d un angle 1. Trace un angle. 1. 2. Trace un angle cercle. de centre (le sommet de l angle) et de rayon quelconque. 1. 2. 3. Trace Le cercle un angle cercle coupe. de la demi-droite

Plus en détail

Fragments de géométrie du triangle

Fragments de géométrie du triangle Fragments de géométrie du triangle Pierre Jammes (version préliminaire du 2 août 2013) 1. Dénitions On donne ici les dénitions des principaux objets mis en jeu dans le début du texte. Dans le plan euclidien,

Plus en détail

4 e Révisions Triangles

4 e Révisions Triangles 4 e Révisions Triangles vant de commencer ces exercices, il faut connaître les définitions et propriétés du cours. xercice 1 Tracer les médianes et le centre de gravité G du Tracer les médiatrices et le

Plus en détail

Brevet blanc de mathématiques

Brevet blanc de mathématiques Brevet blanc de mathématiques avril 2011 L'usage de la calculatrice est autorisé. I Activités numériques 12 points II Activités géométriques 12 points III Problème 12 points Qualité de rédaction et présentation

Plus en détail

BREVET BLANC de Mathématiques. Jeudi 16 mai 2013

BREVET BLANC de Mathématiques. Jeudi 16 mai 2013 BREVET BLANC de Mathématiques Jeudi 16 mai 2013 ********************************** Durée de l épreuve : 2 heures ********************************** Le sujet comporte 5 pages. Dès que ce sujet vous est

Plus en détail

Secondaire DOMAINE DE LA MATHÉMATIQUE. Mon cahier de conjecture. Le cercle

Secondaire DOMAINE DE LA MATHÉMATIQUE. Mon cahier de conjecture. Le cercle Secondaire 2 DOMAINE DE LA MATHÉMATIQUE Mon cahier de conjecture Le cercle COMMISSION SCOLAIRE DE LA CAPITALE Mon cahier de conjecture Commission scolaire de la Capitale 1900, Place Côté Québec, Qc G1N

Plus en détail

Emilien Suquet, suquet@automaths.com

Emilien Suquet, suquet@automaths.com THEOREE DE THLES Emilien Suquet, suquet@automaths.com I Le théorème de Thalès? Thalès est un mathématicien grec qui aurait vécu au VI ème siècle avant Jésus hrist. ous ne le connaissons qu à travers les

Plus en détail

Exercice 2. Exercice 3

Exercice 2. Exercice 3 Feuille d eercices n 10 Eercice 1 Une voiture parcours 150 km. Elle effectue une première partie du trajet à la vitesse moyenne de 80 km/h. On notera la longueur de cette partie, eprimée en km Suite à

Plus en détail

Démontrer qu'un point est le milieu d'un segment

Démontrer qu'un point est le milieu d'un segment émntrer qu'un pint est le milieu d'un segment P 1 Si un pint est sur un segment et à égale distance de ses etrémités alrs ce pint est le milieu du segment. P 2 Si un quadrilatère est un alrs ses diagnales

Plus en détail

1 ANGLE INSCRIT ex. 1 et 2

1 ANGLE INSCRIT ex. 1 et 2 3 e - programme 2012 mathématiques ch.g4 cahier élève Page 1 sur 9 h.g4 : ngles et polygones 1 G IIT ex. 1 et 2 DÉFIITI 1 Un angle inscrit dans un cercle est un angle dont le sommet est un point du cercle

Plus en détail

Bonne définition: La médiatrice d'un segment est la droite perpendiculaire au segment en son milieu. Phrase correcte. (d)

Bonne définition: La médiatrice d'un segment est la droite perpendiculaire au segment en son milieu. Phrase correcte. (d) Correction du contrôle 1: Voici quelques phrases trouvées dans vos copies pour la partie cours: Définition de la médiatrice d'un segment La médiatrice d'un segment est la droite qui coupe un segment en

Plus en détail

Activités numériques

Activités numériques Sujet et correction Stéphane PASQUET, 25 juillet 2008 2008 Activités numériques Exercice On donne le programme de calcul suivant : Choisir un nombre. a) Multiplier ce nombre pas 3. b) Ajouter le carré

Plus en détail

Paris et New-York sont-ils les sommets d'un carré?

Paris et New-York sont-ils les sommets d'un carré? page 95 Paris et New-York sont-ils les sommets d'un carré? par othi Mok (3 ), Michel Vongsavanh (3 ), Eric hin (3 ), iek-hor Lim ( ), Eric kbaraly ( ), élèves et anciens élèves du ollège Victor Hugo (2

Plus en détail