TS - Maths - D.S.7. Spécialités : Physique - SVT. Samedi 28 mars h

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "TS - Maths - D.S.7. Spécialités : Physique - SVT. Samedi 28 mars h"

Transcription

1 TS - Maths - D.S.7 Samedi 28 mars 205-4h Spécialités : Physique - SVT Exercice (5 points) Fonctions trigonométriques Soit f la fonction définie surrpar : f (x)=sin 2 x+ 3cos x et C sa courbe dans un repére orthogonal.. (a) Montrer que l axe des ordonnées est axe de symétrie de la courbe C. (b) Montrer que 2π est une période de la fonction f. 2. Dans cette question, pour l étude de f, on se limitera à l intervalle I = [0 : π] (a) Montrer que pour tout x de I, f (x)=sin x(2cos x 3) (b) Etudier les variations de f sur I. (c) Calculer les coefficients directeurs des tangentes à C en 0, π 6 et π. (d) Sur l annexe, tracer la courbe C sur I. (e) Sans la contruire, expliquer comment tracer C surr. Exercice 2 (5 points) QCM Pour les candidats n ayant pas suivi l enseignement de spécialité Cet exercice est un questionnaire à choix multiples. Pour chacune des questions, une seule des quatre propositions est correcte. On indiquera sur la copie le numéro de la question et la bonne réponse choisie.. Dans un repère orthonormé direct ( O ; u, v ) du plan, on considère les points A, B, C et D d affixes respectives 4+i, 2 i, 2+3i et. L écriture algébrique de i z A z B z C z D est : a i b i c. 2+2i d. aucune des trois propositions ci-dessus n est correcte Dans un repère orthonormé de l espace, on considère les points A(2 ; 5 ; ), B(3 ; 2 ; ) et C( ; 3 ; 2). Le triangle ABC est : a. rectangle et non isocèle b. isocèle et non rectangle c. rectangle et isocèle d. équilatéral TS - D.S.7 spe Phy-SVT - Page / 4

2 3. Dans cet hypermarché, un modèle d ordinateur est en promotion. Une étude statistique a permis d établir que, chaque fois qu un client s intéresse à ce modèle, la probabilité qu il l achète est égale à 0,3. On considère un échantillon aléatoire de dix clients qui se sont intéressés à ce modèle. La probabilité qu exactement trois d entre eux aient acheté un ordinateur de ce modèle a pour valeur arrondie au millième : a. 0,900 b. 0,092 c. 0,002 d. 0, h est la fonction définie surrpar h(x)= x+ ln(+e x ). a. Pour tout x R, h (x)= +e x b. Soit a un réel strictement positif. h(ln(a)) = ln(a + ). c. lim x + h(x)=0 d. La fonction H définie surrpar H(x)= x ln(+e x ) est une primitive de h surr 5. On considère la suite (u n ) définie pour tout entier naturel n non nul par : u n = n 2 k = n. k= a. La suite (u n ) est une suite géométrique b. La suite (u n ) converge vers. c. La suite (u n ) converge vers 0. d. Pour tout entier n> 20, u n < 0 8 Exercice 3 (5 points) Fonctions et aires On considère la fonction f définie surrpar f (x)=(x+ 2)e x. On note C la courbe représentative de la fonction f dans un repère orthogonal.. Etude de la fonction f. (a) Déterminer les coordonnées des points d intersection de la courbe C avec les axes du repère. (b) Etudier les limites de la fonction f en et en+. En déduire les éventuelles asymptotes de la courbe C. (c) Etudier les variations de f surr. (d) Montrer que la fonction f est positive sur l intervalle [0;]. 2. Calcul d une valeur approchée de l aire sous une courbe. On note D le domaine compris entre l axe des abscisses, la courbe C et les droites d équation x = 0 et x =. On approche l aire du domaine D en calculant une somme d aires de rectangles. (a) Dans cette question, [ on découpe l intervalle [0 ; ] en quatre intervalles de même longueur : Sur l intervalle 0 ; ], on construit un rectangle de hauteur f (0) [ 4 Sur l intervalle 4 ; ] ( ), on construit un rectangle de hauteur f 2 4 TS - D.S.7 spe Phy-SVT - Page 2/ 4

3 [ Sur l intervalle 2 ; 3 ], on construit un rectangle de hauteur f [ 4] 3 Sur l intervalle 4 ;, on construit un rectangle de hauteur f Cette construction est illustrée ci-dessous. 2 C ( ) ( 2) 3 4 O L algorithme ci-dessous permet d obtenir une valeur approchée de l aire du domaine D en ajoutant les aires des quatre rectangles précédents : Variables : k est un nombre entier naturel S est un nombre réel Initialisation : Affecter à S la valeur 0 Traitement : Pour k variant de 0 à 3 Affecter à S la valeur S+ ( ) k 4 f 4 Fin Pour Sortie : Afficher S Donner une valeur approchée à 0 3 près du résultat affiché par cet algorithme. (b) Dans cette question, N est un nombre entier strictement supérieur à. On découpe l intervalle [0 ; ] en N intervalles de même longueur. Sur chacun de ces intervalles, on construit un rectangle en procédant de la même manière qu à la question 2.a. Modifier l algorithme précédent afin qu il affiche en sortie la somme des aires des N rectangles ainsi construits. 3. Calcul de la valeur exacte de l aire sous une courbe. Soit g la fonction définie surrpar g (x)=( x 3)e x. On admet que g est une primitive de la fonction f surr. (a) Calculer l aire A du domaine D, exprimée en unités d aire. (b) Donner une valeur approchée à 0 3 près de l erreur commise en remplaçant A par la valeur approchée trouvée au moyen de l algorithme de la question 2. a, c est-à -dire l écart entre ces deux valeurs. TS - D.S.7 spe Phy-SVT - Page 3/ 4

4 Exercice 4 (5 points) Géométrie dans l espace On considère un cube ABCDEFGH d arête de longueur. ( On se place dans le repère orthonormal A ; AB ; AD ; ) AE. On considère les points I ( ; 3 ) ; 0, J (0 ; 23 ) ( ) 3 ;, K 4 ; 0 ; et F A E G H D L( 4 ; ; 0). B C Les parties A et B sont indépendantes. Partie A. Déterminer une représentation paramétrique de la droite (IJ). 2. Démontrer que la droite (KL) a pour représentation paramétrique x = t y = 2t, t R z = +2t 3. Démontrer que les droites (IJ) et (KL) sont sécantes. Partie B. Démontrer que le quadrilatère IKJL est un parallélogramme. 2. La figure ci-dessous fait apparaître l intersection du plan (IJK) avec les faces du cube ABCDEFGH telle qu elle a été obtenue à l aide d un logiciel de géométrie dynamique. On désigne par M le point d intersection du plan (IJK) et de la droite (BF) et par N le point d intersection du plan (IJK) et de la droite (DH). E J H K F G N M A D L B I C Le but de cette question est de déterminer les coordonnées des points M et N. (a) Déterminer une représentation paramétrique du plan (IKJ) (b) Dans cette question toute trace de recherche même incomplète sera prise en compte dans l évaluation. Déterminer les coordonnées des points M et N. TS - D.S.7 spe Phy-SVT - Page 4/ 4

5 Annexe à rendre avec la copie Nom : Prénom : y.8 Exercice 0.2 O 0.2 π x

Baccalauréat S Polynésie 7 juin 2013

Baccalauréat S Polynésie 7 juin 2013 Baccalauréat S Polynésie 7 juin 203 EXERCICE Commun à tous les candidats 6 points On considère la fonction f définie sur R par f (x)=(x+ 2)e x. On note C la courbe représentative de la fonction f dans

Plus en détail

Polynésie 7 Juin Corrigé

Polynésie 7 Juin Corrigé Polynésie 7 Juin 2013 - Corrigé Exercice 1 (6 points) On considère la fonction définie sur R par. On note la courbe représentative de la fonction dans un repère orthogonal. 1) Étude de la fonction a) Déterminer

Plus en détail

Session avril 2015 BACCALAUREAT BLANC. Série : S. Épreuve : Mathématiques ( candidats n ayant pas suivi l enseignement de spécialité )

Session avril 2015 BACCALAUREAT BLANC. Série : S. Épreuve : Mathématiques ( candidats n ayant pas suivi l enseignement de spécialité ) BACCALAUREAT BLANC Session avril 2015 Série : S Épreuve : Mathématiques ( candidats n ayant pas suivi l enseignement de spécialité ) Durée de l'épreuve : 4 heures coefficient : 7 MATERIEL AUTORISE OU NON

Plus en détail

Produit scalaire dans l espace Types Bac

Produit scalaire dans l espace Types Bac Lycée Paul Doumer 2013/2014 TS 1 Exercices Produit scalaire dans l espace Types Bac Exercice 1 Pondichery avril 2012 Dans le repère orthonormé les plans P et P d équations : de l espace, on considère :

Plus en détail

BACCALAUREAT BLANC MATHEMATIQUES. Série S ENSEIGNEMENT OBLIGATOIRE. Durée de l épreuve : 4 heures Coefficient : 7

BACCALAUREAT BLANC MATHEMATIQUES. Série S ENSEIGNEMENT OBLIGATOIRE. Durée de l épreuve : 4 heures Coefficient : 7 BACCALAUREAT BLANC MATHEMATIQUES Série S ENSEIGNEMENT OBLIGATOIRE Durée de l épreuve : 4 heures Coefficient : 7 Ce sujet comporte 5 pages numérotées de à 5 Les calculatrices sont autorisées conformément

Plus en détail

Corrigé du baccalauréat S Centres étrangers 12 juin 2014

Corrigé du baccalauréat S Centres étrangers 12 juin 2014 Durée : 4 heures Corrigé du baccalauréat S Centres étrangers juin 4 A. P. M. E. P. Exercice 4 points Commun à tous les candidats Question Dans un hypermarché, 75 % des clients sont des femmes. Une femme

Plus en détail

55 questions incontournables

55 questions incontournables 55 questions incontournables 1 On considère la suite (u n ) définie par u 0 = 1 et pour tout entier naturel n par : u n+1 = u n + 1. Montrer que la suite est à termes positifs et qu elle est croissante.

Plus en détail

Epreuve commune mathématiques TS mardi 4 avril Sujet obligatoire

Epreuve commune mathématiques TS mardi 4 avril Sujet obligatoire Epreuve commune mathématiques TS mardi 4 avril 2017 Sujet obligatoire EXERCICE 1 Dans le plan muni d un repère orthonormé ( O, ı, j représentative de la fonction u définie sur l intervalle ]0 ; + [ par

Plus en détail

Baccalauréat S Pondichéry 17 avril 2015

Baccalauréat S Pondichéry 17 avril 2015 Baccalauréat S Pondichéry 17 avril 2015 EXERCICE 1 Commun à tous les candidats Partie A 4 points Soit f la fonction définie sur R par f x)= 3 1+e 2x Sur le graphique ci-après, on a tracé, dans un repère

Plus en détail

Devoir Commun de Mathématiques - Classes de premières S Lycée Saint-Exupéry - durée : 3h

Devoir Commun de Mathématiques - Classes de premières S Lycée Saint-Exupéry - durée : 3h Devoir Commun de Mathématiques - Classes de premières S Lycée Saint-Exupéry - durée : h Nom : Prénom : Classe : Il sera tenu compte de la qualité de la rédaction et de la présentation. Les calculatrices

Plus en détail

Mathématiques obligatoires Terminales S, , Lycée Newton

Mathématiques obligatoires Terminales S, , Lycée Newton Mathématiques obligatoires -6-05-3- Terminales S, 0-03, Lycée Newton Exercice. reservé aux élèves qui ne suivent pas l enseignement de spécialité 5 points Les résultats seront arrondis à 0 près. On s intéresse

Plus en détail

BACCALAUREAT BLANC. Session Durée de l'épreuve : 4 heures Coefficient : 7

BACCALAUREAT BLANC. Session Durée de l'épreuve : 4 heures Coefficient : 7 BACCALAUREAT BLANC Session 2014 Série : S Épreuve : Mathématiques ( candidats n ayant pas suivi l enseignement de spécialité ) Durée de l'épreuve : 4 heures Coefficient : 7 MATERIEL AUTORISE OU NON AUTORISE

Plus en détail

Baccalauréat S Liban 27 mai 2014

Baccalauréat S Liban 27 mai 2014 EXERCICE 1 Baccalauréat S Liban 27 mai 2014 Les trois parties A, B et C peuvent être traitées de façon indépendante. Les probabilités seront arrondies au dix millième. Un élève doit se rendre à son lycée

Plus en détail

L espace est rapporté à un repère et l on considère les droites D1 et D2 qui admettent pour représentations paramétriques respectives

L espace est rapporté à un repère et l on considère les droites D1 et D2 qui admettent pour représentations paramétriques respectives NOM : TS- AC DS6 lundi 6 février 07 La présentation, la rédaction et la rigueur des résultats entreront pour une part significative dans l évaluation de la copie. Le sujet est composé de 5 eercices indépendants.

Plus en détail

Baccalauréat S Pondichéry 22 avril 2016

Baccalauréat S Pondichéry 22 avril 2016 Baccalauréat S Pondichéry avril 016 EXERCICE 1 Commun à tous les candidats Les deux parties A et B peuvent être traitées de façon indépendante 4 points Partie A Des études statistiques ont permis de modéliser

Plus en détail

ENSEIGNEMENT OBLIGATOIRE

ENSEIGNEMENT OBLIGATOIRE BACCALAURÉAT GÉNÉRAL SESSIN 2016 MATHÉMATIQUES Série S Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT BLIGATIRE Les calculatrices électroniques de poche sont autorisées, conformément à la réglementation

Plus en détail

Baccalauréat série S Amérique du Sud 17 novembre 2014

Baccalauréat série S Amérique du Sud 17 novembre 2014 Baccalauréat série S Amérique du Sud 17 novembre 2014 A. P. M. E. P. EXERCICE 1 Commun à tous les candidats 6 points Une entreprise est spécialisée dans la fabrication de ballons de football. Cette entreprise

Plus en détail

Fonction exponentielle Bac Série S

Fonction exponentielle Bac Série S Fonction exponentielle Bac Série S - 3 EXERCICE N Pondichéry 6 avril Partie On s intéresse à l évolution de la hauteur d un plant de maïs en fonction du temps. Le graphique ci-après représente cette évolution.,,8,6,4,,,8,6,4,

Plus en détail

b. Quel chiffre d'affaires l usine peut elle espérer faire sur la vente de cent pyjamas?

b. Quel chiffre d'affaires l usine peut elle espérer faire sur la vente de cent pyjamas? TS Évaluation n 1 de Mathématiques du Mercredi 9 Novembre 2016 Calculatrice autorisée - Aucun document n'est autorisé. Vous apporterez un grand soin à la présentation et à la rédaction de votre copie.

Plus en détail

Corrigé du baccalauréat S Pondichéry 17 avril 2015

Corrigé du baccalauréat S Pondichéry 17 avril 2015 Corrigé du baccalauréat S Pondichéry 17 avril 015 EXERCICE 1 Commun à tous les candidats Partie A points C 1 j - -1 O ı a 1 1 On sait que e x > 0 quel que soit le réel x, donc 1+e x > 1>0 Le dénominateur

Plus en détail

Baccalauréat S Pondichéry 26 avril 2017 Toutes les questions précédées d un (*) sont facultatives

Baccalauréat S Pondichéry 26 avril 2017 Toutes les questions précédées d un (*) sont facultatives Baccalauréat S Pondichéry 26 avril 2017 Toutes les questions précédées d * sont facultatives EXERCICE 1 Comm à tous les candidats Les parties A, B et C peuvent être traitées de façon indépendante Dans

Plus en détail

Annales Calcul intégral

Annales Calcul intégral Annales Calcul intégral Polynésie - Juin 2012 (5 points) Commun à tous les candidats Le plan est rapporté à un repère orthonormal On considère les points et et la droite d équation. On note la fonction

Plus en détail

OBLIGATOIRE et ENSEIGNEMENT DE SPÉCIALITÉ

OBLIGATOIRE et ENSEIGNEMENT DE SPÉCIALITÉ BACCALAURÉAT BLANC Août 2014 MATHÉMATIQUES Série S OBLIGATOIRE et ENSEIGNEMENT DE SPÉCIALITÉ Les calculatrices électroniques de poche sont autorisées, conformément à la réglementation en vigueur Le sujet

Plus en détail

x 1 0 et que, sur l intervalle ; 2 4

x 1 0 et que, sur l intervalle ; 2 4 Polynésie septembre 015 EXERCICE 1 7 points Commun à tous les candidats Les parties A et B peuvent être traitées de façon indépendante. On rappelle que la partie réelle d un nombre complexe z est notée

Plus en détail

Sujet Asie 2013 EXERCICE 1. [5 pts] Probabilités

Sujet Asie 2013 EXERCICE 1. [5 pts] Probabilités Sujet Asie 203 EXERCICE. [5 pts] Probabilités Dans cet exercice, les probabilités seront arrondies au centième. Partie A Une grossiste achète des boîtes de thé chez deux fournisseurs. Il achète 80% de

Plus en détail

Seconde sujets Année

Seconde sujets Année Seconde sujets Année 2016-2017 Ph DEPRESLE 0 avril 2017 Table des matières 1 Devoir n 1 Septembre 2016 2 heures 2 2 Devoir n 2 Octobre 2016 2 heures Devoir n Novembre 2016 2 heures 5 4 Devoir n 4 Novembre

Plus en détail

Éléments de correction du contrôle type bac

Éléments de correction du contrôle type bac Éléments de correction du contrôle type bac Exercice (Restitution organisée de connaissances points) Pré-requis : Si une variable aléatoire T suit la loi exponentielle de paramètre λ (avec λ > ), la densité

Plus en détail

EXERCICE 1 (4 points)

EXERCICE 1 (4 points) EXERCICE 1 4 points) Pour chaque question de cet exercice, plusieurs réponses sont proposées. Parmi elles, une seule est exacte. Le candidat devra choisir l une des réponses et justifier son choix. 1.

Plus en détail

BAC BLANC. Terminale S. Epreuve de Mathématiques spécialité Coefficient 9. Durée 4 heures

BAC BLANC. Terminale S. Epreuve de Mathématiques spécialité Coefficient 9. Durée 4 heures BAC BLANC Terminale S Epreuve de Mathématiques spécialité Coefficient 9 Durée 4 heures Le candidat doit rédiger l exercice de spécialité sur une copie à part Le sujet comporte 5 pages. L utilisation de

Plus en détail

Baccalauréat S Amérique du Sud 16 novembre 2011

Baccalauréat S Amérique du Sud 16 novembre 2011 Durée : 4 heures Baccalauréat S Amérique du Sud 6 novembre 20 Exercice Soit f la fonction définie sur l intervalle ] ; + [ par : On considère la suite définie pour tout n N par : f x)=3 4 x+. { u0 = 4

Plus en détail

BAC BLANC DE MATHEMATIQUES Durée : 4 heures

BAC BLANC DE MATHEMATIQUES Durée : 4 heures Terminale S Jeudi 1 avril 2010 BAC BLANC DE MATHEMATIQUES Durée : 4 heures L usage de la calculatrice est autorisé. Le sujet comporte pages. Exercice 1 (6 points) : Pour les candidats n ayant pas suivi

Plus en détail

Baccalauréat S Polynésie juin 2009

Baccalauréat S Polynésie juin 2009 Baccalauréat S Polynésie juin 2009 EXERCICE 1 4 points Une entreprise fabrique des lecteurs MP3, dont 6 % sont défectueux. Chaque lecteur MP3 est soumis à une unité de contrôle dont la fiabilité n est

Plus en détail

BACCALAURÉAT GÉNÉRAL SESSION MATHÉMATIQUES Série S Candidats n ayant pas suivi l enseignement de spécialité. Durée de l épreuve : 4 heures

BACCALAURÉAT GÉNÉRAL SESSION MATHÉMATIQUES Série S Candidats n ayant pas suivi l enseignement de spécialité. Durée de l épreuve : 4 heures BACCALAURÉAT GÉNÉRAL SESSION 015 MATHÉMATIQUES Série S Candidats n ayant pas suivi l enseignement de spécialité Durée de l épreuve : 4 heures Coefficient : 7 OBLIGATOIRE Ce sujet comporte 7 pages numérotées

Plus en détail

Baccalauréat S Métropole 19 juin 2014

Baccalauréat S Métropole 19 juin 2014 Baccalauréat S Métropole 19 juin 2014 EXERCICE 1 Partie A A. P. M. E. P. Dans le plan muni d un repère orthonormé, on désigne par C 1 la courbe représentative de la fonction f 1 définie sur R par : f 1

Plus en détail

Baccalauréat S Métropole La Réunion 9 septembre 2015

Baccalauréat S Métropole La Réunion 9 septembre 2015 accalauréat S Métropole La Réunion 9 septembre 215 A. P. M. E. P. EXERCICE 1 Commun à tous les candidats 5 POINTS Cet exercice est un questionnaire à choix multiples. Pour chacune des questions, quatre

Plus en détail

Annales Logarithme népérien

Annales Logarithme népérien Annales Logarithme népérien Antilles Guyane Juin 2012 (5 points) Commun à tous les candidats Soit la suite définie pour tout entier naturel non nul par 1) Calculer et. 2) a) Démontrer que, pour tout entier

Plus en détail

Baccalauréat S Pondichéry 8 avril 2014

Baccalauréat S Pondichéry 8 avril 2014 Baccalauréat S Pondichéry 8 avril 014 EXERCICE 1 Commun à tous les candidats 4 points Dans cet exercice, sauf indication contraire, les résultats seront arrondis au centième. 1. La durée de vie, exprimée

Plus en détail

DST 3 Corrigé. b) B : «les 2e et 3e sondages sont négatifs». et d après l énoncé ; D où :

DST 3 Corrigé. b) B : «les 2e et 3e sondages sont négatifs». et d après l énoncé ; D où : DST 3 Corrigé Exercice 1 (4 points) Avant le début des travaux de construction d une autoroute, une équipe d archéologie préventive procède à des sondages successifs en des points régulièrement espacés

Plus en détail

Courbe n 2. Courbe n 3 b. Montrer que, pour toute fonction f de (E), I f 0.

Courbe n 2. Courbe n 3 b. Montrer que, pour toute fonction f de (E), I f 0. Polynésie septembre 007 EXERCICE 7 points Commun à tous les candidats On désigne par (E) l ensemble des fonctions f continues sur l intervalle [0 ; ] et vérifiant les conditions (P ), (P ) et (P ) suivantes

Plus en détail

Terminale S1. Devoir Surveillé

Terminale S1. Devoir Surveillé Devoir Surveillé EXERCICE 1 : 5 POINTS Cet exercice est un QCM (questionnaire à choix multiple). Pour chaque question, une seule des quatre réponses proposées est exacte. Le candidat indiquera SUR la copie

Plus en détail

NOM : PRÉNOM : Série S

NOM : PRÉNOM : Série S Ne rien inscrire dans ce cadre NOM : PRÉNOM : Centre d'écrit : N Inscription : SUJET DE MATHÉMATIQUES Ne rien inscrire ci-dessous Série S Mercredi 11 mai 2016 1 Nous vous conseillons de répartir équitablement

Plus en détail

DEVOIR SURVEILLÉ DE MATHÉMATIQUES CONTRÔLE COMMUN N 1. Exercice n 1 (sur 9,5 points)

DEVOIR SURVEILLÉ DE MATHÉMATIQUES CONTRÔLE COMMUN N 1. Exercice n 1 (sur 9,5 points) 5 ème /6 ème année décembre 2015 durée : 4 x 60 mn DEVOIR SURVEILLÉ DE MATHÉMATIQUES CONTRÔLE COMMUN N 1 Exercice n 1 (sur 9,5 points) Partie A. On considère la fonction définie sur l intervalle par (

Plus en détail

Durée : 1 heure 30 Épreuves communes ENI GEIPI POLYTECH Série S 11 mai 2016

Durée : 1 heure 30 Épreuves communes ENI GEIPI POLYTECH Série S 11 mai 2016 Durée : 1 heure 30 Épreuves communes ENI GEIPI POLYTECH Série S 11 mai 2016 Nous vous conseillons de répartir équitablement les 3 heures d épreuves entre les sujets de mathématiques et de physique-chimie

Plus en détail

Pour chaque proposition, indiquer si elle est vraie ou fausse et justifier soigneusement la réponse. Les questions sont indépendantes entre elles.

Pour chaque proposition, indiquer si elle est vraie ou fausse et justifier soigneusement la réponse. Les questions sont indépendantes entre elles. TS - Maths - D.S.5 Samedi 17 janvier 015-4h Spécialités : SVT - Physique Exercice 1 (5 points) Pour les candidats n ayant pas suivi l enseignement de spécialité Pour chaque proposition, indiquer si elle

Plus en détail

BACCALAURÉAT GÉNÉRAL MATHÉMATIQUES. Série S ENSEIGNEMENT OBLIGATOIRE

BACCALAURÉAT GÉNÉRAL MATHÉMATIQUES. Série S ENSEIGNEMENT OBLIGATOIRE BACCALAURÉAT GÉNÉRAL Session 2010 MATHÉMATIQUES Série S ENSEIGNEMENT OBLIGATOIRE Durée de l épreuve : 4 heures Coefficient : 7 Les calculatrices électroniques de poche sont autorisées, conformément à la

Plus en détail

Intégration et primitives

Intégration et primitives Eercices mars 6 Intégration et primitives Notion d intégrale Eercice Pour chaque fonction affine définie par morceau f, représentée ci-dessous, calculer, en utilisant les aires, l intégrale I de f sur

Plus en détail

Bac S Polynésie juin 2010

Bac S Polynésie juin 2010 Bac S Polynésie juin 2010 EXERCICE 1 (5 points) Le plan complexe est rapporté à un repère orthonormal direct O u v. Partie A - Restitution organisée de connaissances Prérequis Soit z un nombre complexe

Plus en détail

BACCALAURÉAT GÉNÉRAL SESSION 2013 OBLIGATOIRE MATHÉMATIQUES. Série S. Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE

BACCALAURÉAT GÉNÉRAL SESSION 2013 OBLIGATOIRE MATHÉMATIQUES. Série S. Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE BACCALAURÉAT GÉNÉRAL SESSION 2013 MATHÉMATIQUES Série S Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE Les calculatrices électroniques de poche sont autorisées, conformément à la

Plus en détail

BACCALAURÉAT GÉNÉRAL MATHÉMATIQUES

BACCALAURÉAT GÉNÉRAL MATHÉMATIQUES BACCALAURÉAT GÉNÉRAL Session 2012 MATHÉMATIQUES Série S Enseignement Obligatoire Durée de l épreuve : 4 heures Coefficient : 7 Ce sujet comporte 6 pages numérotées de 1 à 6. Du papier millimétré est mis

Plus en détail

TS2 - TS3 - LYCÉE PRÉVERT DS 9 mai Préparation au baccalauréat 2013 MATHÉMATIQUES SÉRIE : S. DURÉE DE L ÉPREUVE : 4 HEURES (13h25 17h25)

TS2 - TS3 - LYCÉE PRÉVERT DS 9 mai Préparation au baccalauréat 2013 MATHÉMATIQUES SÉRIE : S. DURÉE DE L ÉPREUVE : 4 HEURES (13h25 17h25) TS2 - TS3 - LYCÉE PRÉVERT DS 9 mai 2013 Préparation au baccalauréat 2013 MATHÉMATIQUES SÉRIE : S DURÉE DE L ÉPREUVE : 4 HEURES (13h25 17h25 COEFFICIENT : 7 Ce sujet comporte 6 pages numérotées de 1 à 6

Plus en détail

BACCALAUREAT GENERAL. MATHEMATIQUES Série S. Enseignement Obligatoire

BACCALAUREAT GENERAL. MATHEMATIQUES Série S. Enseignement Obligatoire Session 2011 BACCALAUREAT GENERAL MATHEMATIQUES Série S Enseignement Obligatoire Durée de l épreuve : 4 heures Coefficient : 7. Ce sujet comporte 7 pages numérotées de 1 à 7 Du papier millimétré est mis

Plus en détail

BACCALAURÉAT GÉNÉRAL SESSION MATHÉMATIQUES Série S Candidats ayant suivi l enseignement de spécialité. Durée de l épreuve : 4 heures

BACCALAURÉAT GÉNÉRAL SESSION MATHÉMATIQUES Série S Candidats ayant suivi l enseignement de spécialité. Durée de l épreuve : 4 heures BACCALAURÉAT GÉNÉRAL SESSION 2015 MATHÉMATIQUES Série S Candidats ayant suivi l enseignement de spécialité Durée de l épreuve : 4 heures Coefficient : 9 SPÉCIALITÉ Ce sujet comporte 6 pages numérotées

Plus en détail

Terminale S Vendredi 13 décembre 2013 MINI BACCALAURÉAT BLANC DE MATHÉMATIQUES SÉRIE S OBLIGATOIRE. Durée de l épreuve : 3 HEURES

Terminale S Vendredi 13 décembre 2013 MINI BACCALAURÉAT BLANC DE MATHÉMATIQUES SÉRIE S OBLIGATOIRE. Durée de l épreuve : 3 HEURES MINI BACCALAURÉAT BLANC DE MATHÉMATIQUES SÉRIE S Durée de l épreuve : 3 HEURES Les calculatrices électroniques de poche sont autorisées conformément à la réglementation en vigueur, pas leur échange. Le

Plus en détail

BACCALAURÉAT BLANC. OBLIGATOIRE et ENSEIGNEMENT DE SPÉCIALITÉ

BACCALAURÉAT BLANC. OBLIGATOIRE et ENSEIGNEMENT DE SPÉCIALITÉ BACCALAURÉAT BLANC Mercredi 5 Septembre 03 3h 7 h MATHÉMATIQUES Série S OBLIGATOIRE et ENSEIGNEMENT DE SPÉCIALITÉ Les calculatrices électroniques de poche sont autorisées, conformément à la réglementation

Plus en détail

Baccalauréat S Polynésie juin 2007

Baccalauréat S Polynésie juin 2007 Baccalauréat S Polynésie juin 007 EXERCICE Commun à tous les candidats Pour réaliser une loterie, un organisateur dispose d une part d un sac contenant exactement un jeton blanc et 9 jetons noirs indiscernables

Plus en détail

SESSION 2017 ÉPREUVE DU MERCREDI 21 JUIN 2017 MATHÉMATIQUES. - Série S - Enseignement Spécialité Coefficient : 9. Durée de l épreuve : 4 heures

SESSION 2017 ÉPREUVE DU MERCREDI 21 JUIN 2017 MATHÉMATIQUES. - Série S - Enseignement Spécialité Coefficient : 9. Durée de l épreuve : 4 heures BACCALAURÉAT GÉNÉRAL SESSION 2017 ÉPREUVE DU MERCREDI 21 JUIN 2017 MATHÉMATIQUES - Série S - Enseignement Spécialité Coefficient : 9 Durée de l épreuve : 4 heures Les calculatrices électroniques de poche

Plus en détail

Epreuve de Mathématiques - Durée : 4 heures.

Epreuve de Mathématiques - Durée : 4 heures. Lycée Saint-Exupéry BAC BLANC - Février 04 - Terminales S Epreuve de Mathématiques - Durée : 4 heures. Le sujet est composé de exercices communs à tous les candidats, d un exercice réservé aux candidats

Plus en détail

Session janvier 2015

Session janvier 2015 BACCALAUREAT BLANC Session janvier 2015 Série : S Épreuve : Mathématiques ( candidats ayant suivi l enseignement de spécialité ) Durée de l'épreuve : 4 heures MATERIEL AUTORISE OU NON AUTORISE : Calculatrice

Plus en détail

Session janvier 2015

Session janvier 2015 BACCALAUREAT BLANC Session janvier 2015 Série : S Épreuve : Mathématiques ( candidats n ayant pas suivi l enseignement de spécialité ) Durée de l'épreuve : 4 heures MATERIEL AUTORISE OU NON AUTORISE :

Plus en détail

Sujet Obligatoire MATHÉMATIQUES CENTRES ÉTRANGERS BAC S

Sujet Obligatoire MATHÉMATIQUES CENTRES ÉTRANGERS BAC S Sujet Obligatoire MATHÉMATIQUES CENTRES ÉTRANGERS BAC S - 206 Sujets Bac Maths 206 Annales Mathématiques Bac 206 Sujets + Corrigés - Alain Piller Centres étrangers BACCALAURÉAT GÉNÉRAL Annales Bac Maths

Plus en détail

BAC BLANC 2014 MATHÉMATIQUES Terminale S

BAC BLANC 2014 MATHÉMATIQUES Terminale S BAC BLANC 2014 MATHÉMATIQUES Terminale S L utilisation d une calculatrice est autorisée Le sujet est composé de 4 exercices indépendants Il comporte 5 pages Le premier exercice est spécifique aux spécialistes

Plus en détail

Baccalauréat S Géométrie Index des exercices de géométrie de septembre 1999 à juin 2012 Tapuscrit : DENIS VERGÈS

Baccalauréat S Géométrie Index des exercices de géométrie de septembre 1999 à juin 2012 Tapuscrit : DENIS VERGÈS Baccalauréat S Géométrie Index des exercices de géométrie de septembre 1999 à juin 2012 Tapuscrit : DENIS VERGÈS N o Lieu et date Q.C.M. Algébrique Géométrie Application 1 Asie juin 2012 2 Centres étrangers

Plus en détail

Baccalauréat S Centres étrangers 10 juin 2015

Baccalauréat S Centres étrangers 10 juin 2015 Durée : 4 heures Baccalauréat S Centres étrangers 10 juin 2015 A. P. M. E. P. Il est rappelé que la qualité de la rédaction, la clarté et la précision des raisonnements entreront pour une part importante

Plus en détail

Corrigé entrée à Sciences Po ADMISSION AU COLLÈGE UNIVERSITAIRE 2016 Samedi 20 février 2016 MATHÉMATIQUES durée de l épreuve : 3 h.

Corrigé entrée à Sciences Po ADMISSION AU COLLÈGE UNIVERSITAIRE 2016 Samedi 20 février 2016 MATHÉMATIQUES durée de l épreuve : 3 h. Corrigé entrée à Sciences Po ADMISSION AU COLLÈGE UNIERSITAIRE 206 Samedi 20 février 206 MATHÉMATIQUES durée de l épreuve : 3 h A. P. M. E. P. Les calculatrices sont autorisées. Problème La partie A est

Plus en détail

Montrer que le vecteur n

Montrer que le vecteur n Polynésie juin 4 EXERCICE (5 points) Dans un repère orthonormé de l espace, on considère les points A (5 ; 5 ; ), B ( ; ; ), C ( ; ; ) et D (6 ; 6 ; ).. Déterminer la nature du triangle BCD et calculer

Plus en détail

Exercices de Mathématiques 1 ère S

Exercices de Mathématiques 1 ère S Exercices de Mathématiques 1 ère S Pour préparer la rentrée en TS Fonctions, équations et inéquations Exercice 1 1. Pour quelle(s) valeur(s ) de m, l'équation x² - (m+1) x +4 = 0 a-t-elle une seule solution

Plus en détail

FONCTIONS NUMÉRIQUES : DÉRIVATION

FONCTIONS NUMÉRIQUES : DÉRIVATION FONCTIONS NUMÉRIQUES : DÉRIVATION Ph DEPRESLE 30 septembre 05 Table des matières Dérivée en un point Continuité et dérivabilité 3 Fonction dérivée 4 Sens de variation d une fonction dérivable 3 5 Dérivées

Plus en détail

Baccalauréat S Asie 16 juin 2015

Baccalauréat S Asie 16 juin 2015 Exercice 1 Baccalauréat S Asie 16 juin 15 A. P. M. E. P. Les trois parties de cet exercice sont indépendantes. Les probabilités seront arrondies au millième. Partie A Un concurrent participe à un concours

Plus en détail

Corrigé du baccalauréat série S Amérique du Sud 17 novembre 2014

Corrigé du baccalauréat série S Amérique du Sud 17 novembre 2014 orrigé du baccalauréat série S Amérique du Sud 17 novembre 014 A. P. M. E. P. Exercice 1 ommun à tous les candidats 6 points Une entreprise est spécialisée dans la fabrication de ballons de football. ette

Plus en détail

La fonction exponentielle

La fonction exponentielle Exercices 16 octobre 014 La fonction exponentielle Opération sur la fonction exponentielle Exercice 1 Simplifier les écritures suivantes : a) (e x ) 3 e x b) ex 1 e x+ e) e 3x f) ex e y (e x ) e x e x

Plus en détail

Lycée Marlioz - Aix les Bains. Bac Blanc Mathématiques - Terminale S. 2 avril 2015

Lycée Marlioz - Aix les Bains. Bac Blanc Mathématiques - Terminale S. 2 avril 2015 Lycée Marlioz - Aix les Bains Bac Blanc 205 Mathématiques - Terminale S Candidats n ayant pas choisi la spécialité maths 2 avril 205 Pour cette épreuve, la rédaction, la clarté et la précision des explications

Plus en détail

Exercices de synthèse

Exercices de synthèse Exercices de synthèse Les exercices suivants sont regroupés par thème (Analyse, Géométrie, Probabilités Statistiques, Divers). Ils sont faits pour vous entraîner une fois que le cours est parfaitement

Plus en détail

Kooli Mohamed Hechmi

Kooli Mohamed Hechmi Equations à coefficients complexes 4 eme Sc Expérimentales Dans tous les exercices le plan complexe P est rapporté à un repère orthonormé direct,,. Exercice 1 Résoudre dans l ensemble C des nombres complexes

Plus en détail

BACCALAUREAT GENERAL. MATHEMATIQUES Série S. ENSEIGNEMENT de SPECIALITE

BACCALAUREAT GENERAL. MATHEMATIQUES Série S. ENSEIGNEMENT de SPECIALITE Session 2006 BACCALAUREAT GENERAL Session 2006 MATHEMATIQUES Série S ENSEIGNEMENT de SPECIALITE Durée de l épreuve : 4 heures Coefficient : 9 Les calculatrices électroniques de poche sont autorisées, conformément

Plus en détail

Lycée Privé Catholique Maintenon TERMINALE FASCICULE MATHEMATIQUES M. MAGNE

Lycée Privé Catholique Maintenon TERMINALE FASCICULE MATHEMATIQUES M. MAGNE Lycée Privé Catholique Maintenon TERMINALE FASCICULE --------------- DE --------------- MATHEMATIQUES DEVOIRS MAISON Année 2010/2011 M. MAGNE Thème : Les Fonctions Devoir Maison à rendre le : Partie A

Plus en détail

Concours Fesic/Puissance 11

Concours Fesic/Puissance 11 Terminale S mai 0 Concours Fesic/Puissance Calculatrice interdite ; traiter eercices sur les 6 en h 30 ; répondre par Vrai ou Fau sans justification + si bonne réponse, si mauvaise réponse, 0 si pas de

Plus en détail

Baccalauréat blanc Lycée Janson de Sailly Epreuve de Mathématiques Série S durée : 4 heures

Baccalauréat blanc Lycée Janson de Sailly Epreuve de Mathématiques Série S durée : 4 heures Baccalauréat blanc 2014-2015 Lycée Janson de Sailly Epreuve de Mathématiques Série S durée : 4 heures L usage de la calculatrice est autorisé Le numéro de la classe devra figurer dans la partie anonymée.

Plus en détail

BACCALAURÉAT GÉNÉRAL SESSION MATHÉMATIQUES Série S Candidats n ayant pas suivi l enseignement de spécialité. Durée de l épreuve : 4 heures

BACCALAURÉAT GÉNÉRAL SESSION MATHÉMATIQUES Série S Candidats n ayant pas suivi l enseignement de spécialité. Durée de l épreuve : 4 heures BACCALAURÉAT GÉNÉRAL SESSION 2014 MATHÉMATIQUES Série S Candidats n ayant pas suivi l enseignement de spécialité Durée de l épreuve : 4 heures Coefficient : 7 OBLIGATOIRE Ce sujet comporte 5 pages numérotées

Plus en détail

Sujets de bac : Géométrie dans l espace 1

Sujets de bac : Géométrie dans l espace 1 Sujets de bac : Géométrie dans l espace Sujet n : La Réunion juin 23 On considère un cube d arête. Le nombre désigne un réel strictement positif. On considère le point de la demi-droite défini par. ) Déterminer

Plus en détail

Sujet + Corrigé. Correction Réalisée SUJET 4 CENTRES ÉTRANGERS BAC S ANNALES MATHÉMATIQUES BAC S NOMBRES COMPLEXES alainpiller.

Sujet + Corrigé. Correction Réalisée SUJET 4 CENTRES ÉTRANGERS BAC S ANNALES MATHÉMATIQUES BAC S NOMBRES COMPLEXES alainpiller. Sujet + Corrigé ANNALES MATHÉMATIQUES BAC S NOMBRES COMPLEXES - 2016 SUJET 4 CENTRES ÉTRANGERS BAC S - 2016 Correction Réalisée Par Alain PILLER alainpiller.fr Sujets Bac Maths 2016 Annales Mathématiques

Plus en détail

Corrigé du baccalauréat S Polynésie 7 juin 2013

Corrigé du baccalauréat S Polynésie 7 juin 2013 Corrigé du baccalauréat S Polynésie 7 juin 20 Exercice : Commun à tous les candidats 6 points (a Les coordonnées du point d intersection de la courbe C avec l axe des ordonnées est le point de coordonnées

Plus en détail

Bac Blanc GE épreuve de mathématiques Année 2005/2006

Bac Blanc GE épreuve de mathématiques Année 2005/2006 Bac Blanc GE épreuve de mathématiques Année 005/00 L usage de la calculatrice est autorisée. Le prêt de calculatrice entre les candidats n est pas autorisé. La qualité de la rédaction et de la présentation,

Plus en détail

1 ( 8 points ) Sur le graphique de l annexe 1, on a tracé, dans le plan muni d un repère orthonormé

1 ( 8 points ) Sur le graphique de l annexe 1, on a tracé, dans le plan muni d un repère orthonormé TS. Contrôle 4 -Correction 8 points ) Sur le graphique de l annee, on a tracé, dans le plan muni d un repère orthonormé la courbe représentative C d une fonction f définie et dérivable sur l intervalle

Plus en détail

Baccalauréat L 2001 L intégrale de juin à septembre 2001

Baccalauréat L 2001 L intégrale de juin à septembre 2001 Baccalauréat L 2001 L intégrale de juin à septembre 2001 Antilles-Guyane juin 2001............................... 3 Métropole juin 2001..................................... 5 Métropole septembre 2001..............................

Plus en détail

Baccalauréat STI Génie électronique Antilles septembre 2005

Baccalauréat STI Génie électronique Antilles septembre 2005 Durée : 4 heures Baccalauréat SI Génie électronique Antilles septembre 5 EXERCICE 5 points Un professeur d Éducation Physique et Sportive s adresse à un groupe de vingt élèves au sujet de leurs loisirs

Plus en détail

Baccalauréat S Amérique du Sud novembre 2005

Baccalauréat S Amérique du Sud novembre 2005 Durée : 4 heures Baccalauréat S Amérique du Sud novembre 5 EXERCICE 1 Commun à tous les candidats 4 points Les parties A et B sont indépendantes Alain fabrique, en amateur, des appareils électroniques.

Plus en détail

BAC BLANC. Bac Blanc wicky-math.fr.nf Février Le plan complexe est rapporté à un repère orthonormal direct (O; u, v) (unité graphique : 2 cm).

BAC BLANC. Bac Blanc wicky-math.fr.nf Février Le plan complexe est rapporté à un repère orthonormal direct (O; u, v) (unité graphique : 2 cm). Bac Blanc wicky-math.fr.nf Février 0 BAC BLANC Exercice. Le plan complexe est rapporté à un repère orthonormal direct (O; u, v) (unité graphique : cm). Partie A On considère l équation : (E) : z + 6z +

Plus en détail

4. Calculer. En déduire la nature du triangle DAC.

4. Calculer. En déduire la nature du triangle DAC. Nouvelle-alédonie novembre 2011 EXERIE 1 5 points ommun à tous les candidats Le plan complexe est muni d un repère orthonormal direct (O ; u, v). On prendra 1 cm pour unité graphique. 1. Résoudre dans

Plus en détail

x x π. En déduire que le point J a pour affixe i.

x x π. En déduire que le point J a pour affixe i. Asie juin EXERCICE 5 points Commun à tous les candidats Le plan est rapporté à un repère orthonormal ( O ; i, j ).. Étude d une fonction f On considère la fonction f définie sur l intervalle ] ; + [ par

Plus en détail

GÉOMÉTRIE DANS L ESPACE

GÉOMÉTRIE DANS L ESPACE GÉOMÉTRIE DANS L ESPACE On se place dans un repère orthonormal du plan ( O ; i, j, k ) I Équation de plan Exercice 1 : On considère le point A ( 0;1;4) et le vecteur n ( ;3; ) Déterminer une équation du

Plus en détail

Baccalauréat S Amérique du Nord mai 2006

Baccalauréat S Amérique du Nord mai 2006 Baccalauréat S Amérique du Nord mai 006 EXERCICE 3points Commun à tous les candidats Pour chacune des 3 questions, une seule des trois propositions est exacte. Le candidat indiquera sur la copie le numéro

Plus en détail

Devoir surveillé de mathématiques Enseignement de spécialité

Devoir surveillé de mathématiques Enseignement de spécialité Lycée Eugène Delacroix Terminales S samedi décembre 04 Devoir surveillé de mathématiques Enseignement de spécialité Durée : 4 heures L utilisation d UNE ET D UNE SEULE calculatrice est autorisée. Tout

Plus en détail

NOM : PRENOM : Centre d écrit : N Inscription : Série S. Mercredi 14 mai Epreuves communes ENIT et Geipi Polytech

NOM : PRENOM : Centre d écrit : N Inscription : Série S. Mercredi 14 mai Epreuves communes ENIT et Geipi Polytech Ne rien inscrire dans ce cadre NOM : PRENOM : Centre d écrit : N Inscription : SUJET DE MATHÉMATIQUES Ne rien inscrire ci-dessous Série S Mercredi 14 mai 2014 Epreuves communes ENIT et Geipi Polytech Nous

Plus en détail

lycée Franco Australien de Canberra Narrabundah College Baccalauréat blanc n 1 MATHEMATIQUES Terminale S (obligatoire + spécialité)

lycée Franco Australien de Canberra Narrabundah College Baccalauréat blanc n 1 MATHEMATIQUES Terminale S (obligatoire + spécialité) Décembre 2015 lycée Franco Australien de Canberra Narrabundah College Baccalauréat blanc n 1 MATHEMATIQUES Terminale S obligatoire + spécialité) * * * * * * * DUREE DE L EPREUVE = 4 h 00 * * * * * * *

Plus en détail

Lycée Polyvalent de Taaone. Mathématiques Série S (Mars-2014) Durée : 4 heures

Lycée Polyvalent de Taaone. Mathématiques Série S (Mars-2014) Durée : 4 heures Mathématiques Série S (Mars-2014) Durée : 4 heures L usage de la calculatrice est autorisé Tout autre document est interdit Ce sujet s adresse aux élèves qui n ont pas suivi la spécialité Mathématiques

Plus en détail

Nouvelle-Calédonie mars 2012

Nouvelle-Calédonie mars 2012 Nouvelle-Calédonie mars EXERCICE 5 points Commun à tous les candidats Partie A : On considère le polynôme P défini sur C par P() = ( + i ) + ( + i ) i.. Montrer que le nombre complee = i est solution de

Plus en détail

EXERCICE 1 (4 points) Commun à tous les candidats Partie A Partie B Intervalle de confiance

EXERCICE 1 (4 points) Commun à tous les candidats Partie A Partie B Intervalle de confiance EXERCICE (4 points) Commun à tous les candidats Les deux parties A et B peuvent être traitées de façon indépendante. Des études statistiques ont permis de modéliser le temps hebdomadaire, en heures, de

Plus en détail

Correction du Baccalauréat S Centres étrangers 10 juin 2015

Correction du Baccalauréat S Centres étrangers 10 juin 2015 urée : 4 heures Correction du Baccalauréat S Centres étrangers 10 juin 015 A. P. M. E. P. Exercice 1 4 points Commun à tous les candidats Tous les résultats demandés dans cet exercice seront arrondis au

Plus en détail

Fonction exponentielle TD Année

Fonction exponentielle TD Année Fonction exponentielle TD Année 009-010 Exercice 1 Sans l aide de la calculatrice, simplifier les nombres suivants : 1. ln(e 5 ) 3. ln( 5. eln+ln3. e ln7 4. e ln4 1 ) e 3 Exercice En utilisant notamment

Plus en détail