MCMC et approximations en champ moyen pour les modèles de Markov

Dimension: px
Commencer à balayer dès la page:

Download "MCMC et approximations en champ moyen pour les modèles de Markov"

Transcription

1 MCMC et approximations en champ moyen pour les modèles de Markov Gersende FORT LTCI CNRS - TELECOM ParisTech En collaboration avec Florence FORBES (Projet MISTIS, INRIA Rhône-Alpes). Basé sur l article: A convergence theorem for Variational EM-like algorithms : application to image segmentation. IEEE Transactions on Image Processing, 16(3): ,2007

2 Problème y : Vecteur d observations, de (grande) dimension N. ψ : paramètre qui gouverne la loi des observations L Y ( ; ψ) Objectif : estimer le paramètre ψ au sens du maximum de vraisemblance max ψ L Y (y; ψ), dans un contexte de données latentes, à structure de dépendance complexe.

3 Problème 1. Inférence dans les modèles à données manquantes EM Champ de markov caché 2. EM variationnel VEM Champ moyen 3. Coupler approximation type champ moyen, et simulation Approches purement déterministes Approches purement stochastiques Approches déterministes + stochastiques. 4. Comparaison des approches : estimation de paramètres dans un modèle de Potts caché.

4 Inférence dans des modèles à données manquantes I. Inférence dans les modèles à données manquantes

5 Inférence dans des modèles à données manquantes Algorithme EM Algorithme EM Résolution itérative du problème d optimisation max ψ L Y (y; ψ). Chaque itération comporte deux étapes: (i) Etape E : Z Q(ψ; ψ (t) ) := ln L (Z,Y ) (z,y; ψ) L Z Y (z y; ψ (t) ) h = E ln L (Z,Y ) (Z,y; ψ) y; ψ (t)i. (ii) Etape M : ψ (t+1) := max ψ Q(ψ; ψ(t) ).

6 Inférence dans des modèles à données manquantes Algorithme EM Algorithme EM Résolution itérative du problème d optimisation max ψ L Y (y; ψ). Chaque itération comporte deux étapes: (i) Etape E : Z Q(ψ; ψ (t) ) := ln L (Z,Y ) (z,y; ψ) L Z Y (z y; ψ (t) ) h = E ln L (Z,Y ) (Z,y; ψ) y; ψ (t)i. (ii) Etape M : Par construction : ψ (t+1) := max ψ Q(ψ; ψ(t) ). L Y (y; ψ (t+1) ) L Y (y; ψ (t) ). Convergence de la suite {ψ (t) } vers un max local de ψ L Y (y; ψ).

7 Inférence dans des modèles à données manquantes Estimation de paramètres dans modèle HMRF Hidden Markov Random Field (discret): loi des données latentes: Champ de Markov (discret) L Z (z; ψ) = W (β) 1 exp( H(z; β)), ψ = (β, ) z Z avec W (β) = z exp( H(z; β)) H(z; β) = c C V c (z c ).

8 Inférence dans des modèles à données manquantes Estimation de paramètres dans modèle HMRF Hidden Markov Random Field (discret): loi des données latentes: Champ de Markov (discret) L Z (z; ψ) = W (β) 1 exp( H(z; β)), ψ = (β, ) z Z avec W (β) = z exp( H(z; β)) H(z; β) = c C V c (z c ). Attache aux données : N L Y Z (y z; ψ) = p k (y k z k ; θ) ψ = (β,θ). k=1

9 Inférence dans des modèles à données manquantes Estimation de paramètres dans modèle HMRF Hidden Markov Random Field (discret): loi des données latentes: Champ de Markov (discret) L Z (z; ψ) = W (β) 1 exp( H(z; β)), ψ = (β, ) z Z avec W (β) = z exp( H(z; β)) H(z; β) = c C V c (z c ). Attache aux données : N L Y Z (y z; ψ) = p k (y k z k ; θ) ψ = (β,θ). k=1 Difficultés Loi sur un espace de grande dimension. Constante de normalisation W (β) incalculable.

10 Inférence dans des modèles à données manquantes Estimation de paramètres dans modèle HMRF EM pour inférence dans HMRF non implémentable car Etape E : intégration sous une loi complexe LZ Y, en grande dimension: ex. Z = {1,,K} N

11 Inférence dans des modèles à données manquantes Estimation de paramètres dans modèle HMRF EM pour inférence dans HMRF non implémentable car Etape E : intégration sous une loi complexe LZ Y, en grande dimension: ex. Z = {1,,K} N Etape M : Il faut savoir maximiser en ψ = (β,θ) X L Y Z (y z; θ) L Z Y (z y; ψ (t) ) ln W (β) X z z H(z; β) L Z Y (z y; ψ (t) ) En pratique, la maximisation en θ: explicite. Mais la maximisation en β demande la connaissance de W (β).

12 Variational EM et Approximation en champ moyen II. Variational EM et Approximation en champ moyen

13 Variational EM et Approximation en champ moyen Relecture de l EM Autre lecture de l EM: Pour toute probabilité q sur Z, ln L Y (y; ψ) = Z L (Z,Y ) (z,y; ψ) dz = ln { } L(Z,Y ) (z,y; ψ) ln q(z) Z Z L (Z,Y ) (z,y; ψ) q(z) q(z) dz =: F (q,ψ). q(z) dz,

14 Variational EM et Approximation en champ moyen Relecture de l EM Autre lecture de l EM: Pour toute probabilité q sur Z, ln L Y (y; ψ) = Z L (Z,Y ) (z,y; ψ) dz = ln { } L(Z,Y ) (z,y; ψ) ln q(z) Z Z L (Z,Y ) (z,y; ψ) q(z) q(z) dz =: F (q,ψ). Avec égalité : ln L Y (y; ψ) = F ( L Z Y (z y; ψ), ψ ) q(z) dz,

15 Variational EM et Approximation en champ moyen Relecture de l EM Autre lecture de l EM: Pour toute probabilité q sur Z, ln L Y (y; ψ) = Z L (Z,Y ) (z,y; ψ) dz = ln { } L(Z,Y ) (z,y; ψ) ln q(z) Z Z L (Z,Y ) (z,y; ψ) q(z) q(z) dz =: F (q,ψ). Avec égalité : ln L Y (y; ψ) = F ( L Z Y (z y; ψ), ψ ) EM = maximisation alternée de F : pour (q (t),ψ (t) ) mise à jour de la loi: q (t+1) = argmax q F (q,ψ (t) ) rép.: q (t+1) = L Z Y (z y; ψ (t) ) q(z) dz,

16 Variational EM et Approximation en champ moyen Relecture de l EM Autre lecture de l EM: Pour toute probabilité q sur Z, ln L Y (y; ψ) = Z L (Z,Y ) (z,y; ψ) dz = ln { } L(Z,Y ) (z,y; ψ) ln q(z) Z Z L (Z,Y ) (z,y; ψ) q(z) q(z) dz =: F (q,ψ). Avec égalité : ln L Y (y; ψ) = F ( L Z Y (z y; ψ), ψ ) EM = maximisation alternée de F : pour (q (t),ψ (t) ) mise à jour de la loi: q (t+1) = argmax q F (q,ψ (t) ) rép.: q (t+1) = L Z Y (z y; ψ (t) ) q(z) dz, mise à jour du paramètre: ψ (t+1) = argmax ψ F (q (t),ψ) = argmax ψ Q(ψ,ψ (t) ).

17 Variational EM et Approximation en champ moyen Variational EM (VEM) Variational EM Relâcher les contraintes d optimisation de l EM : considérer un sous-espace des probabilités sur Z, celles de forme produit NY q(z) = q k (z k ). ne rien changer pour ψ. k=1

18 Variational EM et Approximation en champ moyen Variational EM (VEM) Variational EM Relâcher les contraintes d optimisation de l EM : considérer un sous-espace des probabilités sur Z, celles de forme produit NY q(z) = q k (z k ). ne rien changer pour ψ. Choisir q revient à résoudre l équation au point fixe ln q k (e) = c k + ln L Z Y (z y; ψ (t) ) δ e(z k ) q j (z j ), z j k k=1 qui ne dépend que des q j,j N k, du fait de la structure markovienne.

19 Variational EM et Approximation en champ moyen Variational EM (VEM) Variational EM pour inférence dans les HMRF Résultats de convergence : oui. Identification des points limites: Pour l inférence dans les HMRF permet de contourner une des difficultés rencontrée par l EM: étape E. mais la mise à jour de ψ demande toujours le calcul de W (β).

20 Variational EM et Approximation en champ moyen Approximation en champ moyen Champ moyen A l origine, pour approcher le calcul de l espérance sous une loi de Gibbs. Négliger les fluctuations des voisins, en les fixant à leur valeur moyenne pour la loi ainsi définie.

21 Variational EM et Approximation en champ moyen Approximation en champ moyen Champ moyen A l origine, pour approcher le calcul de l espérance sous une loi de Gibbs. Négliger les fluctuations des voisins, en les fixant à leur valeur moyenne pour la loi ainsi définie. En pratique: Q définir une loi produit q(z) = N k=1 q k(z k ), solution d une équation au point fixe. Dans le contexte : mesure de Gibbs loi a posteriori L Z Y (z y; ψ (t) ) même équation au point fixe que pour VEM.

22 Variational EM et Approximation en champ moyen Approximation en champ moyen Champ moyen A l origine, pour approcher le calcul de l espérance sous une loi de Gibbs. Négliger les fluctuations des voisins, en les fixant à leur valeur moyenne pour la loi ainsi définie. En pratique: Q définir une loi produit q(z) = N k=1 q k(z k ), solution d une équation au point fixe. Dans le contexte : mesure de Gibbs loi a posteriori L Z Y (z y; ψ (t) ) même équation au point fixe que pour VEM. En conclusion : Approximation champ moyen Variational EM

23 Approximations déterministes, Approximations par simulation III. Approximations déterministes, Approximations par simulation

24 Approximations déterministes, Approximations par simulation Approximations de l EM purement déterministes Approx. purement déterministes ex. Algorithme Mean-Field Etape E : substituée par une espérance sous la loi produit q (t+1) Etape M : propager cette approximation à l expression de la loi jointe: l étape de maximisation devient explicite. Pas de résultats sur le comportement asymptotique de l algorithme.

25 Approximations déterministes, Approximations par simulation Approximations de l EM purement stochastiques Approx. purement stochastiques ex. Algorithme MC2-EM Etape E : calcul des espérances par Monte Carlo (MCMC). Etape M : calcul de la constante de normalisation par Monte Carlo W (β) = X z exp( H(z; β)) = X z exp( H(z; β)) π(z) π(z). Dès lors que l erreur d approximation dûe à la simulation est contrôlée : convergence vers les mêmes points limites que l EM.

26 Approximations déterministes, Approximations par simulation Coupler les deux approches VEM et Simulations (I) ex. Algorithme MC VEM Etape E : substituée par une espérance sous la loi produit q (t+1) Etape M : calcul de la constante de normalisation par Monte Carlo W (β) = X z exp( H(z; β)) = X z exp( H(z; β)) π(z) π(z). Dès lors que l erreur d approximation dûe à la simulation est contrôlée : convergence vers les mêmes points limites que le VEM.

27 Approximations déterministes, Approximations par simulation Coupler les deux approches VEM et Simulations (II) ex. Algorithme Simulated Field Etape E : type VEM en fixant les voisins à une valeur simulée (ne pas résoudre l équation au point fixe) Etape M : propager l approximation champ moyen à l expression de la loi jointe; l étape de maximisation devient réalisable. Pas de résultats sur le comportement asymptotique de l algorithme. A priori, {ψ (t) } chaîne de Markov, pas de raisons d observer une convergence trajectorielle.

28 Estimation d un Potts caché IV. Applications

29 Estimation d un Potts caché Modèle Champs de Markov (caché): Potts à K classes, voisinage 1er ordre L Z (z; ψ) exp( β i j z i,z j,) z i {e 1,,e K }. Attache aux données: gaussien L Y Z (y z; ψ) = N k=1 N (µ zk,σ 2 z k )(y k ). Paramètre: β,µ 1,,µ K,σ 2 1,,σ 2 K. Possibilité aussi : d estimer les données cachées (ex. par MAP).

30 Estimation d un Potts caché Data 1 : données simulées K = 2, images Paramètre θ (attache aux données) : toujours bien estimé. Résultat d estimation de β et erreur de classification: algorithm β error rate ref. true values ind-em (0.33) (0.26) Mean Field 0.94 ( e-2) (0.49) 9.77 (0.42) Simulated Field 0.78 ( e-2) (0.43) (0.48) MCVEM 0.73 ( e-2) 9.87 (0.42) 9.77 (0.42) MC2-EM 0.77 ( e-2) 9.81 (0.39) 9.81 (0.39) Gibbsian-EM 0.77 ( e-2) 9.79 (0.40) 9.81 (0.39)

31 Estimation d un Potts caché Data 2 : données simulées K = 3, images Paramètre θ (attache aux données) : toujours bien estimé. Résultat d estimation de β et erreur de classification: algorithm β error rate ref. true values ind-em (0.60) (0.50) Mean Field 1.03 ( e-2) (0.60) (0.59) Simulated Field 0.90 ( e-2) (0.56) (0.64) MCVEM 0.85 ( e-2) (0.59) (0.59) MC2-EM 0.89 ( e-2) (0.53) (0.54) Gibbsian-EM 0.89 ( e-2) (0.53) (0.54)

32 Estimation d un Potts caché Data 3 : données simulées K = 4, images Paramètre θ (attache aux données) : toujours bien estimé. Résultat d estimation de β et erreur de classification: algorithm β error rate ref. true values ind-em (0.54) (0.45) Mean Field 1.05 ( e-2) (0.51) (0.45) Simulated Field 0.90 ( e-2) (0.55) (0.48) MCVEM 0.81 ( e-2) (0.50) (0.45) MC2-EM 0.89 ( e-2) (0.49) (0.47) Gibbsian-EM 0.89 ( e-2) (0.50) (0.47)

33 Estimation d un Potts caché Data 4: Logo Image ; 2 couleurs. Estimation des paramètres algorithm β µ 1 µ 2 σ 1 σ 2 error rate true values ind-em Mean Field Simulated Field MCVEM MC2-EM Gibbsian-EM

34 Estimation d un Potts caché Data 4: Logo (suite) (gauche) Sensibilité aux paramètres d implémentation Mean Field, Simulated Field and MCVEM (droite) Evolution de l erreur de classification en fonction de β (et sensibilité à la non-unicité de la solution de l équation au point fixe)

35 Estimation d un Potts caché Data 4: Logo (suite) Image ; 2 couleurs. Segmentation : Fig.: [top, from left to right] original image, noise-corrupted image, initial segmentation using kmeans, ind-em, MC2-EM; [bottom, from left to right] Gibbsian-EM, Simulated Field, Mean Field, MCVEM, MCVEM + Median Filter

36 Estimation d un Potts caché Data 5: Image satellite Image Segmentation :

Champ de Markov couple pour la segmentation d images texturées

Champ de Markov couple pour la segmentation d images texturées Champ de Markov couple pour la segmentation d images texturées Juliette Blanchet INRIA Rhône-Alpes Equipes Mistis et Lear 1 Segmention d images par champ de Markov caché 2 Segmentation de textures 3 Résultats

Plus en détail

5 Méthodes algorithmiques

5 Méthodes algorithmiques Cours 5 5 Méthodes algorithmiques Le calcul effectif des lois a posteriori peut s avérer extrêmement difficile. En particulier, la prédictive nécessite des calculs d intégrales parfois multiples qui peuvent

Plus en détail

INTRODUCTION AUX MÉTHODES DE MONTE CARLO PAR CHAÎNES DE MARKOV

INTRODUCTION AUX MÉTHODES DE MONTE CARLO PAR CHAÎNES DE MARKOV Séminaire MTDE 22 mai 23 INTRODUCTION AUX MÉTHODES DE MONTE CARLO PAR CHAÎNES DE MARKOV Vincent Mazet CRAN CNRS UMR 739, Université Henri Poincaré, 5456 Vandœuvre-lès-Nancy Cedex 1 juillet 23 Sommaire

Plus en détail

Principales caractéristiques de Mixmod

Principales caractéristiques de Mixmod Modèle de mélanges Principales caractéristiques de Mixmod Gérard Govaert et Gilles Celeux 24 octobre 2006 1 Plan Le modèledemélange Utilisations du modèle de mélange Les algorithmes de Mixmod Modèle de

Plus en détail

Projet : Recherche de source d onde gravitationnelle (analyse de données Metropolis Hastings Markov Chain) 1

Projet : Recherche de source d onde gravitationnelle (analyse de données Metropolis Hastings Markov Chain) 1 Université Paris Diderot Physique L2 2014-2015 Simulations Numériques SN4 Projet : Recherche de source d onde gravitationnelle (analyse de données Metropolis Hastings Markov Chain) 1 Objectifs : Simuler

Plus en détail

Chaînes de Markov Cachées Floues et Segmentation d Images

Chaînes de Markov Cachées Floues et Segmentation d Images Introduction Chaînes de Markov Cachées Floues et Segmentation d Images Cyril Carincotte et Stéphane Derrode Équipe GSM Groupe Signaux Multi-dimensionnels Institut Fresnel (UMR 6133) EGIM Université Paul

Plus en détail

Modélisation aléatoire en fiabilité des logiciels

Modélisation aléatoire en fiabilité des logiciels collection Méthodes stochastiques appliquées dirigée par Nikolaos Limnios et Jacques Janssen La sûreté de fonctionnement des systèmes informatiques est aujourd hui un enjeu économique et sociétal majeur.

Plus en détail

Modélisation aléatoire en fiabilité des logiciels

Modélisation aléatoire en fiabilité des logiciels collection Méthodes stochastiques appliquées dirigée par Nikolaos Limnios et Jacques Janssen La sûreté de fonctionnement des systèmes informatiques est aujourd hui un enjeu économique et sociétal majeur.

Plus en détail

Vision par ordinateur

Vision par ordinateur Vision par ordinateur Stéréoscopie par minimisation d'énergie Frédéric Devernay d'après le cours de Richard Szeliski Mise en correspondance stéréo Quels algorithmes possibles? mettre en correspondance

Plus en détail

Analyse des données individuelles groupées

Analyse des données individuelles groupées Analyse des données individuelles groupées Analyse des Temps de Réponse Le modèle mixte linéaire (L2M) Y ij, j-ième observation continue de l individu i (i = 1,, N ; j =1,, n) et le vecteur des réponses

Plus en détail

Segmentation non supervisée d images par chaîne de Markov couple

Segmentation non supervisée d images par chaîne de Markov couple Segmentation non supervisée d images par chaîne de Markov couple Stéphane Derrode 1 et Wojciech Pieczynski 2 1 École Nationale Supérieure de Physique de Marseille, Groupe Signaux Multidimensionnels, laboratoire

Plus en détail

Analyse d images, vision par ordinateur. Partie 6: Segmentation d images. Segmentation? Segmentation?

Analyse d images, vision par ordinateur. Partie 6: Segmentation d images. Segmentation? Segmentation? Analyse d images, vision par ordinateur Traitement d images Segmentation : partitionner l image en ses différentes parties. Reconnaissance : étiqueter les différentes parties Partie 6: Segmentation d images

Plus en détail

Regime Switching Model : une approche «pseudo» multivarie e

Regime Switching Model : une approche «pseudo» multivarie e Regime Switching Model : une approche «pseudo» multivarie e A. Zerrad 1, R&D, Nexialog Consulting, Juin 2015 azerrad@nexialog.com Les crises financières survenues dans les trente dernières années et les

Plus en détail

Analyse de survie appliquée à la modélisation de la transmission des maladies infectieuses : mesurer l impact des interventions

Analyse de survie appliquée à la modélisation de la transmission des maladies infectieuses : mesurer l impact des interventions Analyse de survie appliquée à la modélisation de la transmission des maladies infectieuses : mesurer l impact des interventions Génia Babykina 1 & Simon Cauchemez 2 1 Université de Lille, Faculté Ingénierie

Plus en détail

Méthodes de Simulation

Méthodes de Simulation Méthodes de Simulation JEAN-YVES TOURNERET Institut de recherche en informatique de Toulouse (IRIT) ENSEEIHT, Toulouse, France Peyresq06 p. 1/41 Remerciements Christian Robert : pour ses excellents transparents

Plus en détail

Segmentation conjointe d images et copules Joint image segmentation and copulas

Segmentation conjointe d images et copules Joint image segmentation and copulas Segmentation conjointe d images et copules Joint image segmentation and copulas Stéphane Derrode 1 et Wojciech Pieczynski 2 1 École Centrale Marseille & Institut Fresnel (CNRS UMR 6133), 38, rue F. Joliot-Curie,

Plus en détail

Les processus d évolution génétique en filtrage de signaux et en analyse de risques

Les processus d évolution génétique en filtrage de signaux et en analyse de risques Les processus d évolution génétique en filtrage de signaux et en analyse de risques P. Del Moral IRIA Centre Bordeaux-Sud Ouest Séminaire de Stat. et Santé Publique de l IFR 99, décembre 08 qq-références

Plus en détail

Mathématiques et Applications 57. Modèles aléatoires. Applications aux sciences de l'ingénieur et du vivant

Mathématiques et Applications 57. Modèles aléatoires. Applications aux sciences de l'ingénieur et du vivant Mathématiques et Applications 57 Modèles aléatoires Applications aux sciences de l'ingénieur et du vivant Bearbeitet von Jean-François Delmas, Benjamin Jourdain 1. Auflage 2006. Taschenbuch. xxv, 431 S.

Plus en détail

Introduction aux Méthodes de Monte Carlo

Introduction aux Méthodes de Monte Carlo Méthodes de Monte Carlo pour la Modélisation et le Calcul Intensif Applications à la Physique Numérique et à la Biologie Séminaire CIMENT GRID Introduction aux Méthodes de Monte Carlo Olivier François

Plus en détail

Régression de Poisson

Régression de Poisson ZHANG Mudong & LI Siheng & HU Chenyang 21 Mars, 2013 Plan Composantes des modèles Estimation Qualité d ajustement et Tests Exemples Conclusion 2/25 Introduction de modèle linéaire généralisé La relation

Plus en détail

Modèles de Markov Couples et Triplets et quelques applications

Modèles de Markov Couples et Triplets et quelques applications Modèles de Markov Couples et Triplets et quelques applications F. Salzenstein Université De Strasbourg Laboratoire ICube, équipe IPP Sommaire 1 chaînes de Markov Algorithme d inférence général Chaînes

Plus en détail

Rev. Ivoir. Sci. Technol., 19 (2012) 59 71. ISSN 1813-3290, http://www.revist.ci

Rev. Ivoir. Sci. Technol., 19 (2012) 59 71. ISSN 1813-3290, http://www.revist.ci 59 ISSN 1813-3290, http://www.revist.ci RÉGRESSION LOGISTIQUE DANS LES ESSAIS CLINIQUES PAR MCMC Ahlam LABDAOUI * et Hayet MERABET Département de Mathématiques, Université Mentouri-Constantine, Route d

Plus en détail

Raisonnement probabiliste

Raisonnement probabiliste Plan Raisonnement probabiliste IFT-17587 Concepts avancés pour systèmes intelligents Luc Lamontagne Réseaux bayésiens Inférence dans les réseaux bayésiens Inférence exacte Inférence approximative 1 2 Contexte

Plus en détail

Problème de contrôle optimal pour une chaîne de Markov

Problème de contrôle optimal pour une chaîne de Markov Problème de contrôle optimal pour une chaîne de Markov cours ENSTA MA206 Il s agit de résoudre un problème d arrêt optimal pour une chaîne de Markov à temps discret. Soit X n une chaîne de Markov à valeurs

Plus en détail

Optimisation de la géométrie du voisinage pour la segmentation d images texturées

Optimisation de la géométrie du voisinage pour la segmentation d images texturées Optimisation de la géométrie du voisinage pour la segmentation d images texturées Pierre Beauseroy & André Smolarz Institut des Sciences et Technologies de l Information de Troyes (FRE 73) Université de

Plus en détail

Master Modélisation Statistique M2 Finance - chapitre 4 Mouvement Brownien et modèle de Black-Scholes

Master Modélisation Statistique M2 Finance - chapitre 4 Mouvement Brownien et modèle de Black-Scholes Master Modélisation Statistique M2 Finance - chapitre 4 Mouvement Brownien et modèle de Black-Scholes Clément Dombry, Laboratoire de Mathématiques de Besançon, Université de Franche-Comté. C.Dombry (Université

Plus en détail

1 Introduction 1 1.1 Contexte de l étude... 1 1.2 Contributions de ce travail... 3

1 Introduction 1 1.1 Contexte de l étude... 1 1.2 Contributions de ce travail... 3 Table des matières Introduction. Contexte de l étude....................................2 Contributions de ce travail............................... 3 2 Signaux aléatoires à densité de probabilité à queue

Plus en détail

Apprentissage statistique et Big Data, focus sur l algorithme online-em

Apprentissage statistique et Big Data, focus sur l algorithme online-em Apprentissage statistique et Big Data, focus sur l algorithme online-em Olivier Cappé Laboratoire Traitement et Communication de l Information CNRS, Télécom ParisTech, 75013 Paris 8 octobre 2013 0. Cappé

Plus en détail

Informatique visuelle - Vision par ordinateur. Pré-traitement d images

Informatique visuelle - Vision par ordinateur. Pré-traitement d images Informatique visuelle - Vision par ordinateur Pré-traitement d images Elise Arnaud elise.arnaud@imag.fr cours inspiré par X. Descombes, J. Ros, A. Boucher, A. Manzanera, E. Boyer, M Black, V. Gouet-Brunet

Plus en détail

Approche bayésienne des modèles à équations structurelles

Approche bayésienne des modèles à équations structurelles Manuscrit auteur, publié dans "42èmes Journées de Statistique (2010)" Approche bayésienne des modèles à équations structurelles Séverine Demeyer 1,2 & Nicolas Fischer 1 & Gilbert Saporta 2 1 LNE, Laboratoire

Plus en détail

I Stabilité, Commandabilité et Observabilité 11. 1 Introduction 13 1.1 Un exemple emprunté à la robotique... 13 1.2 Le plan... 18 1.3 Problème...

I Stabilité, Commandabilité et Observabilité 11. 1 Introduction 13 1.1 Un exemple emprunté à la robotique... 13 1.2 Le plan... 18 1.3 Problème... TABLE DES MATIÈRES 5 Table des matières I Stabilité, Commandabilité et Observabilité 11 1 Introduction 13 1.1 Un exemple emprunté à la robotique................... 13 1.2 Le plan...................................

Plus en détail

Processus Markoviens Déterministes par Morceaux et Fiabilité Dynamique

Processus Markoviens Déterministes par Morceaux et Fiabilité Dynamique Processus Markoviens Déterministes par Morceaux et Fiabilité Dynamique Karen Gonzalez Benoîte de Saporta et François Dufour IMB, Université Bordeaux Neuvième Colloque Jeunes Probabilistes et Statisticiens

Plus en détail

Analyse d images en vidéosurveillance embarquée dans les véhicules de transport en commun

Analyse d images en vidéosurveillance embarquée dans les véhicules de transport en commun des s Analyse d images en vidéosurveillance embarquée dans les véhicules de transport en commun Sébastien Harasse thèse Cifre LIS INPG/Duhamel le 7 décembre 2006 1 Système de surveillance des s Enregistreur

Plus en détail

Introduction à la simulation de Monte Carlo

Introduction à la simulation de Monte Carlo Introduction à la simulation de 6-601-09 Simulation Geneviève Gauthier HEC Montréal e 1 d une I Soit X 1, X,..., X n des variables aléatoires indépendantes et identiquement distribuées. Elles sont obtenues

Plus en détail

Filtrage stochastique non linéaire par la théorie de représentation des martingales

Filtrage stochastique non linéaire par la théorie de représentation des martingales Filtrage stochastique non linéaire par la théorie de représentation des martingales Adriana Climescu-Haulica Laboratoire de Modélisation et Calcul Institut d Informatique et Mathématiques Appliquées de

Plus en détail

CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE. Cinquième épreuve d admissibilité STATISTIQUE. (durée : cinq heures)

CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE. Cinquième épreuve d admissibilité STATISTIQUE. (durée : cinq heures) CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE Cinquième épreuve d admissibilité STATISTIQUE (durée : cinq heures) Une composition portant sur la statistique. SUJET Cette épreuve est composée d un

Plus en détail

Introduction au modèle linéaire général

Introduction au modèle linéaire général Résumé Introductions au modèle linéaire général Retour au plan du cours Travaux pratiques 1 Introduction L objet de ce chapitre est d introduire le cadre théorique global permettant de regrouper tous les

Plus en détail

Quantification Scalaire et Prédictive

Quantification Scalaire et Prédictive Quantification Scalaire et Prédictive Marco Cagnazzo Département Traitement du Signal et des Images TELECOM ParisTech 7 Décembre 2012 M. Cagnazzo Quantification Scalaire et Prédictive 1/64 Plan Introduction

Plus en détail

Chapitre 2 : Méthode de Monte-Carlo avec tirages indépendants, pour le calcul approché d une intégrale.

Chapitre 2 : Méthode de Monte-Carlo avec tirages indépendants, pour le calcul approché d une intégrale. Aix Marseille Université. Algorithmes Stochastiques. M MIS. Fabienne Castell... Chapitre : Méthode de Monte-Carlo avec tirages indépendants, pour le calcul approché d une intégrale. Le but de ce chapitre

Plus en détail

Un algorithme ICM basé sur la compacité pour la segmentation des images satellites à très haute résolution

Un algorithme ICM basé sur la compacité pour la segmentation des images satellites à très haute résolution Un algorithme ICM basé sur la compacité pour la segmentation des images satellites à très haute résolution Jérémie Sublime, Younès Bennani, Antoine Cornuéjols AgroParisTech, INRA UMR MIA 518 16 rue Claude

Plus en détail

Modèles neuronaux pour la modélisation statistique de la langue

Modèles neuronaux pour la modélisation statistique de la langue Modèles neuronaux pour la modélisation statistique de la langue Introduction Les modèles de langage ont pour but de caractériser et d évaluer la qualité des énoncés en langue naturelle. Leur rôle est fondamentale

Plus en détail

Formellement, un processus aléatoire est une succession de variables aléatoires (X n ) n 0

Formellement, un processus aléatoire est une succession de variables aléatoires (X n ) n 0 Chapitre 1 Modélisation markovienne 11 Introduction Un processus aléatoire est un phénomène dont une partie de l évolution temporelle est aléatoire On rencontre ces processus dans divers domaines de la

Plus en détail

Analyse d images. L analyse d images regroupe plusieurs disciplines que l on classe en deux catégories :

Analyse d images. L analyse d images regroupe plusieurs disciplines que l on classe en deux catégories : Analyse d images La vision nous permet de percevoir et d interpreter le monde qui nous entoure. La vision artificielle a pour but de reproduire certaines fonctionnalités de la vision humaine au travers

Plus en détail

Module Mixmod pour OpenTURNS

Module Mixmod pour OpenTURNS Module Mixmod pour OpenTURNS Régis LEBRUN EADS Innovation Works 23 septembre 2013 EADS IW 2013 (EADS Innovation Work) 23 septembre 2013 1 / 21 Outline Plan 1 OpenTURNS et propagation d incertitudes 2 Mixmod

Plus en détail

Prix d options européennes

Prix d options européennes Page n 1. Prix d options européennes Une société française tient sa comptabilité en euros et signe un contrat avec une entreprise américaine qu elle devra payer en dollars à la livraison. Entre aujourd

Plus en détail

Modèlisation statistique d un championnat de football. Extension au tournoi de fighting

Modèlisation statistique d un championnat de football. Extension au tournoi de fighting Modèlisation statistique d un championnat de football. Extension au tournoi de fighting Eric Parent, Edouard Kolf le 20 décembre 2012, AppliBUGS, Paris Contents 1 Exemple du championnat de football 2 3

Plus en détail

SCIENCES DE L INGÉNIEUR

SCIENCES DE L INGÉNIEUR N o d ordre: THÈSE présentée à L UNIVERSITÉ DE NICE SOPHIA ANTIPOLIS pour obtenir le titre de DOCTEUR EN SCIENCES Spécialité SCIENCES DE L INGÉNIEUR par Zoltan KATO Sujet de la thèse: Modélisations markoviennes

Plus en détail

SPLEX Statistiques pour la classification et fouille de données en

SPLEX Statistiques pour la classification et fouille de données en SPLEX Statistiques pour la classification et fouille de données en génomique Classification Linéaire Binaire CLB Pierre-Henri WUILLEMIN DEcision, Système Intelligent et Recherche opérationnelle LIP6 pierre-henri.wuillemin@lip6.fr

Plus en détail

Probabilités 5. Simulation de variables aléatoires

Probabilités 5. Simulation de variables aléatoires Probabilités 5. Simulation de variables aléatoires Céline Lacaux École des Mines de Nancy IECL 27 avril 2015 1 / 25 Plan 1 Méthodes de Monte-Carlo 2 3 4 2 / 25 Estimation d intégrales Fiabilité d un système

Plus en détail

Simulations de Monte-Carlo pour un modèle de dynamique forestière

Simulations de Monte-Carlo pour un modèle de dynamique forestière Journées MAS de la SMAI - 29 août 2008 - Rennes Simulations de Monte-Carlo pour un modèle de dynamique forestière F. Campillo, N. Desassis, V. Rossi ARC MICR - Projet MERE - INRIA Plan Contexte et objectifs

Plus en détail

Modèles stochastiques et applications à la finance

Modèles stochastiques et applications à la finance 1 Université Pierre et Marie Curie Master M1 de Mathématiques, 2010-2011 Modèles stochastiques et applications à la finance Partiel 25 Février 2011, Durée 2 heures Exercice 1 (3 points) On considère une

Plus en détail

Les données manquantes en statistique

Les données manquantes en statistique Les données manquantes en statistique N. MEYER Laboratoire de Biostatistique -Faculté de Médecine Dép. Santé Publique CHU - STRASBOURG Séminaire de Statistique - 7 novembre 2006 Les données manquantes

Plus en détail

Analyse de données longitudinales continues avec applications

Analyse de données longitudinales continues avec applications Université de Liège Département de Mathématique 29 Octobre 2002 Analyse de données longitudinales continues avec applications David MAGIS 1 Programme 1. Introduction 2. Exemples 3. Méthodes simples 4.

Plus en détail

Prise en compte de la stochasticité dans les modèles : optimisation robuste

Prise en compte de la stochasticité dans les modèles : optimisation robuste Prise en compte de la stochasticité dans les modèles : optimisation robuste Rodolphe Le Riche (CNRS & EMSE) & Victor Picheny (INRA) La Rochelle, 5/11/2014 Plan Introduction 1 Introduction 2 Formulations

Plus en détail

Analyse MCMC de certains modèles de diffusion avec application au marché européen du carbone

Analyse MCMC de certains modèles de diffusion avec application au marché européen du carbone Analyse MCMC de certains modèles de diffusion avec application au marché européen du carbone Jean-François Bégin Département de Mathématiques et Statistiques Université de Montréal Montréal, Canada Août

Plus en détail

Modélisation et simulation d événements rares. Josselin Garnier (Université Paris Diderot)

Modélisation et simulation d événements rares. Josselin Garnier (Université Paris Diderot) Modélisation et simulation d événements rares Josselin Garnier (Université Paris Diderot) 2 Traitement des incertitudes En anglais : uncertainty quantification. Problème général : Comment modéliser les

Plus en détail

Statistique en grande dimension pour la génomique Projets 2014-2015 L. Jacob, F. Picard, N. Pustelnik, V. Viallon

Statistique en grande dimension pour la génomique Projets 2014-2015 L. Jacob, F. Picard, N. Pustelnik, V. Viallon Statistique en grande dimension pour la génomique Projets 2014-2015 L. Jacob, F. Picard, N. Pustelnik, V. Viallon Table des matières 1 Graph Kernels for Molecular Structure-Activity Relationship Analysis

Plus en détail

Théorie de l estimation et de la décision statistique

Théorie de l estimation et de la décision statistique Théorie de l estimation et de la décision statistique Paul Honeine en collaboration avec Régis Lengellé Université de technologie de Troyes 2013-2014 Quelques références Decision and estimation theory

Plus en détail

Probabilités III Introduction à l évaluation d options

Probabilités III Introduction à l évaluation d options Probabilités III Introduction à l évaluation d options Jacques Printems Promotion 2012 2013 1 Modèle à temps discret 2 Introduction aux modèles en temps continu Limite du modèle binomial lorsque N + Un

Plus en détail

TRAITEMENT DES DONNÉES MANQUANTES DANS LES DONNÉES DE PANEL : CAS DES VARIABLES DÉPENDANTES DICHOTOMIQUES

TRAITEMENT DES DONNÉES MANQUANTES DANS LES DONNÉES DE PANEL : CAS DES VARIABLES DÉPENDANTES DICHOTOMIQUES Mohamed Adel BARHOUMI TRAITEMENT DES DONNÉES MANQUANTES DANS LES DONNÉES DE PANEL : CAS DES VARIABLES DÉPENDANTES DICHOTOMIQUES Mémoire présenté à la Faculté des études supérieures de l Université Laval

Plus en détail

Apprentissage du filtre de Kalman couple avec application à la poursuite de l iris

Apprentissage du filtre de Kalman couple avec application à la poursuite de l iris Apprentissage du filtre de Kalman couple avec application à la poursuite de l iris Valérian Némesin, Stéphane Derrode, Institut Fresnel (UMR 7249) Ecole Centrale Marseille, Vidéo de l oeil 2 Sommaire 1.

Plus en détail

L analyse d images regroupe plusieurs disciplines que l on classe en deux catégories :

L analyse d images regroupe plusieurs disciplines que l on classe en deux catégories : La vision nous permet de percevoir et d interpreter le monde qui nous entoure. La vision artificielle a pour but de reproduire certaines fonctionnalités de la vision humaine au travers de l analyse d images.

Plus en détail

Modélisation d un code numérique par un processus gaussien, application au calcul d une courbe de probabilité de dépasser un seuil

Modélisation d un code numérique par un processus gaussien, application au calcul d une courbe de probabilité de dépasser un seuil Modélisation d un code numérique par un processus gaussien, application au calcul d une courbe de probabilité de dépasser un seuil Séverine Demeyer, Frédéric Jenson, Nicolas Dominguez CEA, LIST, F-91191

Plus en détail

SEMESTRE S1. Intitulé et descriptif des U.E. Coef Crédits Discipline A : Mathématiques Mathématiques Outils mathématiques Discipline B :

SEMESTRE S1. Intitulé et descriptif des U.E. Coef Crédits Discipline A : Mathématiques Mathématiques Outils mathématiques Discipline B : SEMESTRE S Intitulé et descriptif des U.E. Coef Crédits Discipline A : Mathématiques Mathématiques Discipline B : 0 0 Biologie Biologie Chimie Chimie Géologie Géologie Informatique Informatique Physique

Plus en détail

Jeffrey S. Rosenthal

Jeffrey S. Rosenthal Les marches aléatoires et les algorithmes MCMC Jeffrey S. Rosenthal University of Toronto jeff@math.toronto.edu http ://probability.ca/jeff/ (CRM, Montréal, Jan 12, 2007) Un processus stochastique Qu est-ce

Plus en détail

Simulation de variables aléatoires

Simulation de variables aléatoires Simulation de variables aléatoires S. Robin INA PG, Biométrie Décembre 1997 Table des matières 1 Introduction Variables aléatoires discrètes 3.1 Pile ou face................................... 3. Loi de

Plus en détail

NON-LINEARITE ET RESEAUX NEURONAUX

NON-LINEARITE ET RESEAUX NEURONAUX NON-LINEARITE ET RESEAUX NEURONAUX Vêlayoudom MARIMOUTOU Laboratoire d Analyse et de Recherche Economiques Université de Bordeaux IV Avenue. Leon Duguit, 33608 PESSAC, France tel. 05 56 84 85 77 e-mail

Plus en détail

Apprentissage de structure dans les réseaux bayésiens pour

Apprentissage de structure dans les réseaux bayésiens pour Apprentissage de structure dans les réseaux bayésiens pour la détection d événements vidéo Siwar Baghdadi 1, Claire-Hélène Demarty 1, Guillaume Gravier 2, et Patrick Gros 3 1 Thomson R&D France, 1 av Belle

Plus en détail

Un modèle markovien de transition agraire

Un modèle markovien de transition agraire Un modèle markovien de transition agraire Fabien Campillo 1 Angelo Raherinirina 1 Rivo Rakotozafy 2 1 Projet MERE INRIA/INRA Montpellier France Fabien.Campillo@inria.fr 2 Université de Fianarantsoa Madagascar

Plus en détail

Texte Agrégation limitée par diffusion interne

Texte Agrégation limitée par diffusion interne Page n 1. Texte Agrégation limitée par diffusion interne 1 Le phénomène observé Un fût de déchets radioactifs est enterré secrètement dans le Cantal. Au bout de quelques années, il devient poreux et laisse

Plus en détail

ALEATOIRE - Les enjeux du cours de Probabilités en première année de l Ecole Polytechnique

ALEATOIRE - Les enjeux du cours de Probabilités en première année de l Ecole Polytechnique ALEATOIRE - Les enjeux du cours de Probabilités en première année de l Ecole Polytechnique Télécom ParisTech, 09 mai 2012 http://www.mathematiquesappliquees.polytechnique.edu/ accueil/programmes/cycle-polytechnicien/annee-1/

Plus en détail

Contents. 1 Introduction Objectifs des systèmes bonus-malus Système bonus-malus à classes Système bonus-malus : Principes

Contents. 1 Introduction Objectifs des systèmes bonus-malus Système bonus-malus à classes Système bonus-malus : Principes Université Claude Bernard Lyon 1 Institut de Science Financière et d Assurances Système Bonus-Malus Introduction & Applications SCILAB Julien Tomas Institut de Science Financière et d Assurances Laboratoire

Plus en détail

4.2 Unités d enseignement du M1

4.2 Unités d enseignement du M1 88 CHAPITRE 4. DESCRIPTION DES UNITÉS D ENSEIGNEMENT 4.2 Unités d enseignement du M1 Tous les cours sont de 6 ECTS. Modélisation, optimisation et complexité des algorithmes (code RCP106) Objectif : Présenter

Plus en détail

Provisionnement face au risque de défaut des emprunteurs

Provisionnement face au risque de défaut des emprunteurs Provisionnement face au risque de défaut des emprunteurs Geoffrey Nichil et Pierre Vallois Institut Elie Cartan de Lorraine. 6-11 Avril 2014 1/12 Geoffrey Nichil et Pierre Vallois Provisionnement face

Plus en détail

Apprentissage Automatique

Apprentissage Automatique Apprentissage Automatique Introduction-I jean-francois.bonastre@univ-avignon.fr www.lia.univ-avignon.fr Définition? (Wikipedia) L'apprentissage automatique (machine-learning en anglais) est un des champs

Plus en détail

SOMMAIRES D OUVRAGES PARUS

SOMMAIRES D OUVRAGES PARUS SOMMAIRES D OUVRAGES PARUS TITRE : MÉTHODES ACTUARIELLES DE L'ASSURANCE VIE (cours et exercices corrigés) AUTEUR : Christian HESS ÉDITEUR : ÉCONOMICA, PARIS DATE DE PARUTION : NOVEMBRE 2000 357 pages prix

Plus en détail

Groupe. Chapter 1. Félix Abecassis (CSI) Christopher Chedeau (CSI) Gauthier Lemoine (SCIA) Julien Marquegnies (CSI)

Groupe. Chapter 1. Félix Abecassis (CSI) Christopher Chedeau (CSI) Gauthier Lemoine (SCIA) Julien Marquegnies (CSI) Chapter 1 Groupe Félix Abecassis (CSI) Christopher Chedeau (CSI) Gauthier Lemoine (SCIA) Julien Marquegnies (CSI) Nous avons choisi d implémenter le projet avec le langage Javascript. L avantage offert

Plus en détail

De la Séparation de Sources à l Analyse en Composantes Indépendantes. Christian JUTTEN, PIERRE COMON

De la Séparation de Sources à l Analyse en Composantes Indépendantes. Christian JUTTEN, PIERRE COMON De la Séparation de Sources à l Analyse en Composantes Indépendantes Christian JUTTEN, PIERRE COMON version 1.2, janvier 2005 Approche bayésienne en séparation de sources Avant de détailler l utilisation

Plus en détail

Travaux Dirigés de Probabilités - Statistiques, TD 4. Lois limites ; estimation.

Travaux Dirigés de Probabilités - Statistiques, TD 4. Lois limites ; estimation. Travaux Dirigés de Probabilités - Statistiques, TD 4 Lois limites ; estimation. Exercice 1. Trois machines, A, B, C fournissent respectivement 50%, 30%, 20% de la production d une usine. Les pourcentages

Plus en détail

Détection automatique de fissures dans des images de chaussée par modélisation markovienne. Hanan Salam

Détection automatique de fissures dans des images de chaussée par modélisation markovienne. Hanan Salam Détection automatique de fissures dans des images de chaussée par modélisation markovienne Hanan Salam Résumé : Ce travail présente une méthode de détection automatique de fissures dans des images de chaussées

Plus en détail

Modélisation prédictive et incertitudes. P. Pernot. Laboratoire de Chimie Physique, CNRS/U-PSUD, Orsay

Modélisation prédictive et incertitudes. P. Pernot. Laboratoire de Chimie Physique, CNRS/U-PSUD, Orsay Modélisation prédictive et incertitudes P. Pernot Laboratoire de Chimie Physique, CNRS/U-PSUD, Orsay Plan 1 Incertitudes des modèles empiriques 2 Identification et caractérisation des paramètres incertains

Plus en détail

Objectifs. Calcul scientifique. Champ d applications. Pourquoi la simulation numérique?

Objectifs. Calcul scientifique. Champ d applications. Pourquoi la simulation numérique? Objectifs Calcul scientifique Alexandre Ern ern@cermics.enpc.fr (CERMICS, Ecole des Ponts ParisTech) Le Calcul scientifique permet par la simulation numérique de prédire, optimiser, contrôler... le comportement

Plus en détail

PROJET DE SPÉCIALITÉ DU MASTER DE MATHÉMATIQUES. MODÉLISATION MATHÉMATIQUE & ANALYSE STATISTIQUE

PROJET DE SPÉCIALITÉ DU MASTER DE MATHÉMATIQUES. MODÉLISATION MATHÉMATIQUE & ANALYSE STATISTIQUE PROJET DE SPÉCIALITÉ DU MASTER DE MATHÉMATIQUES. MODÉLISATION MATHÉMATIQUE & ANALYSE STATISTIQUE Porteurs du projet Marc Arnaudon, professeur des universités, responsable des relations avec les entreprises.

Plus en détail

de calibration Master 2: Calibration de modèles: présentation et simulation d

de calibration Master 2: Calibration de modèles: présentation et simulation d Master 2: Calibration de modèles: présentation et simulation de quelques problèmes de calibration Plan de la présentation 1. Présentation de quelques modèles à calibrer 1a. Reconstruction d une courbe

Plus en détail

Filtre de Kalman d ensemble et filtres particulaires pour le modèle de Lorenz

Filtre de Kalman d ensemble et filtres particulaires pour le modèle de Lorenz Filtre de Kalman d ensemble et filtres particulaires pour le modèle de Lorenz Vu Duc Tran*, Valérie Monbet*, François LeGland** * Laboratoire de Statistiques Appliquées, Université de Bretagne Sud ** Irisa,

Plus en détail

Sur l apprentissage de Réseaux Bayésiens à partir de bases d exemples incomplètes et application à la classification

Sur l apprentissage de Réseaux Bayésiens à partir de bases d exemples incomplètes et application à la classification Sur l apprentissage de Réseaux Bayésiens à partir de bases d exemples incomplètes et application à la classification et Philippe LERAY, Laboratoire LITIS, Rouen. Rencontres Inter-Associations La classification

Plus en détail

Le Modèle de Black-Scholes. DeriveXperts. 27 octobre 2010

Le Modèle de Black-Scholes. DeriveXperts. 27 octobre 2010 27 octobre 2010 Outline 1 Définitions Le modèle de diffusion de Black-Scholes Portefeuille auto-finançant Objectif de BS 2 Portefeuille auto-finançant et formule de Black-Scholes Formulation mathématique

Plus en détail

chargement d amplitude variable à partir de mesures Application à l approche fiabiliste de la tolérance aux dommages Modélisation stochastique d un d

chargement d amplitude variable à partir de mesures Application à l approche fiabiliste de la tolérance aux dommages Modélisation stochastique d un d Laboratoire de Mécanique et Ingénieriesnieries EA 3867 - FR TIMS / CNRS 2856 ER MPS Modélisation stochastique d un d chargement d amplitude variable à partir de mesures Application à l approche fiabiliste

Plus en détail

Baccalauréat S Nouvelle-Calédonie 17 novembre 2014

Baccalauréat S Nouvelle-Calédonie 17 novembre 2014 Durée : 4 heures Baccalauréat S Nouvelle-Calédonie 17 novembre 2014 A. P. M. E. P. EXERCICE 1 Commun à tous les candidats Les trois parties A, B et C sont indépendantes Une fabrique de desserts glacés

Plus en détail

INTRODUCTION : EDP ET FINANCE.

INTRODUCTION : EDP ET FINANCE. INTRODUCTION : EDP ET FINANCE. Alexandre Popier Université du Maine, Le Mans A. Popier (Le Mans) EDP et finance. 1 / 16 PLAN DU COURS 1 MODÈLE ET ÉQUATION DE BLACK SCHOLES 2 QUELQUES EXTENSIONS A. Popier

Plus en détail

Classification markovienne automatique d'images aériennes de haute résolution

Classification markovienne automatique d'images aériennes de haute résolution Classification markovienne automatique d'images aériennes de haute résolution Xavier Marsault* Matthieu Aubry** Jean Fortin*** Lamiae Azizi**** * Laboratoire MAP-ARIA, ENSAL de Lyon UMR MAP 694 du CNRS

Plus en détail

Chapitre 3. Mesures stationnaires. et théorèmes de convergence

Chapitre 3. Mesures stationnaires. et théorèmes de convergence Chapitre 3 Mesures stationnaires et théorèmes de convergence Christiane Cocozza-Thivent, Université de Marne-la-Vallée p.1 I. Mesures stationnaires Christiane Cocozza-Thivent, Université de Marne-la-Vallée

Plus en détail

TP N 57. Déploiement et renouvellement d une constellation de satellites

TP N 57. Déploiement et renouvellement d une constellation de satellites TP N 57 Déploiement et renouvellement d une constellation de satellites L objet de ce TP est d optimiser la stratégie de déploiement et de renouvellement d une constellation de satellites ainsi que les

Plus en détail

Cours brique ISAT Filtrage et extraction de caractéristiques sur les images RSO Florence Tupin Année 2005-2006

Cours brique ISAT Filtrage et extraction de caractéristiques sur les images RSO Florence Tupin Année 2005-2006 Cours brique ISAT Filtrage et extraction de caractéristiques sur les images RSO Florence Tupin Année 2005-2006 1 Plan Filtrage des images radar Rappels sur les statistiques Maximisation a posteriori Minimisation

Plus en détail

Modélisation du comportement habituel de la personne en smarthome

Modélisation du comportement habituel de la personne en smarthome Modélisation du comportement habituel de la personne en smarthome Arnaud Paris, Selma Arbaoui, Nathalie Cislo, Adnen El-Amraoui, Nacim Ramdani Université d Orléans, INSA-CVL, Laboratoire PRISME 26 mai

Plus en détail

Caroline PONZONI CARVALHO CHANEL le vendredi 12 avril 2013

Caroline PONZONI CARVALHO CHANEL le vendredi 12 avril 2013 Institut Supérieur de l Aéronautique et de l Espace(ISAE) Caroline PONZONI CARVALHO CHANEL le vendredi 12 avril 2013 Planification de perception et de mission en environnement incertain: Application à

Plus en détail

Modélisation des codes de calcul dans. le cadre des processus gaussiens

Modélisation des codes de calcul dans. le cadre des processus gaussiens Modélisation des codes de calcul dans le cadre des processus gaussiens Amandine Marrel Laboratoire de Modélisation des Transferts dans l Environnement CEA Cadarache Introduction (1) Fiabilité et calcul

Plus en détail

ANALYSE BAYESIENNE : QU EST-IL POSSIBLE DE FAIRE AVEC SAS?

ANALYSE BAYESIENNE : QU EST-IL POSSIBLE DE FAIRE AVEC SAS? ANALYSE BAYESIENNE : QU EST-IL POSSIBLE DE FAIRE AVEC SAS? L analyse bayésienne est une partie de la statistique moderne non paramétrique permettant d utiliser les probabilités conditionnelles et ainsi

Plus en détail

Machines à sous (compléments)

Machines à sous (compléments) CHAPITRE 28 Machines à sous (compléments) Résumé. Ce qui suit complète le chapitre 22. On explique ici brièvement comment rre non-asymptotiques les résultats de convergence qui reposaient sur la loi des

Plus en détail