- Pyramide régulière à base carrée (type Khéops) Construis la pyramide de sommet I et de base EFGH. - Pyramides non régulières à base carrée

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "- Pyramide régulière à base carrée (type Khéops) Construis la pyramide de sommet I et de base EFGH. - Pyramides non régulières à base carrée"

Transcription

1 S PYRMIS Je te propose de construire des pyramides en te servant du cube G qui est supposé transparent. ttention, les pyramides ne sont pas transparentes : tu dois donc bien repérer les arêtes cachées. - Pyramide régulière à base carrée (type Khéops) onstruis la pyramide de sommet I et de base G - Pyramides non régulières à base carrée e sommet et de base G e sommet et de base e sommet et de base G Tétraèdre régulier Il fait partie des cinq polyèdres réguliers; c'est le plus simple des cinq. onstruis la pyramide de sommet et de base G

2 SSINR S PYRMIS Pyramide de sommet et de base Pyramide de sommet I et de base G Pyramide de sommet et de base G Pyramide de sommet et de base G

3 Pyramides à base carrée. iche à imprimer sur transparent. Les trois schémas sont à découper, à superposer et à visionner au rétroprojecteur. ette observation permet de comparer le volume d une de ces pyramides et le volume du cube

4 LS PYRMIS abord un site particulièrement bien documenté sur les pyramides : - Représentation d une pyramide Un point, appelé sommet, et un polygone, appelé base, constituent les éléments définissant une pyramide. S La base est le polygone Le sommet est S. Les triangles S, S, S, S, S, S sont les faces latérales. Le segment [S] est la hauteur de la pyramide. [S] est perpendiculaire à la base donc à toutes les droites de la base, en particulier aux droites (), (), (), (), () et (). Si la base est placée dans un plan horizontal, la hauteur [S] est une verticale. Les triangles S, S, S, S, S, S sont des triangles rectangles en ; ils définissent des plans verticaux. Un tétraèdre (pyramide à quatre faces = pyramide à base triangulaire) S - Pyramide régulière Une pyramide est dite régulière si sa base est un polygone S régulier (triangle équilatéral carré, pentagone régulier, hexagone régulier ) Pour la pyramide S ci-contre : Sa base est le carré. Son sommet est S. Le pied de sa hauteur [S] est au centre du carré de base.

5 Le tétraèdre régulier Toutes ses faces sont des triangles équilatéraux identiques ; toutes ses arêtes sont donc égales. est un tétraèdre régulier :,,, sont des triangles équilatéraux. Α Ses six arêtes sont égales : = = = = =, pied de la hauteur du tétraèdre, issue de, est le centre de gravité du triangle. - Volume de la pyramide Les fiches précédentes ont permis d avoir une idée du volume d une pyramide. S une façon générale, le volume d une pyramide est le tiers du volume du prisme droit qui a la même base et la même hauteur. V(prisme) = ire(base) hauteur ire(base) hauteur V(pyramide) = Pour la pyramide ci-contre : ire() S Volume(S) = xemple : Volume de la pyramide IG (voir la fiche «Vers les pyramides») dont la base est un carré de côté 4 cm et dont la hauteur mesure 4 cm. I aire(g) hauteur V = IJ V = V= = 1, cm 4 cm J G 4 cm

6 - Patron d une pyramide Pour réaliser le patron de la précédente pyramide régulière (IG), si sa base G est un carré de 4 cm de côté, il reste à calculer l arête I : Le triangle IJ est rectangle en J car (IJ) est perpendiculaire au plan G donc à (J). après la propriété de Pythagore : I = IJ + J (1) J est la moitié de la diagonale G du carré. Le triangle G est rectangle en ; d après la propriété de Pythagore : G = + G G = G Or : = G J = G G onc : J = = = = 8 () 4 n reportant () dans (1) : I = IJ + J = = = 4 I 4,9 cm

7 xercices 1 L PYRMI - Trace les intersections des plans et avec les faces de la pyramide. olorie les parties de ces plans, visibles à l intérieur de la pyramide (si l on suppose celle-ci transparente). Recherche la droite d intersection (I) des plans et. - ans le plan, la droite (MN) coupe la droite () en K. ans le plan, la droite (KP) coupe la droite () en Q. Représente et colorie l intersection du tétraèdre et du plan MNP. - ette pyramide a son sommet S dans la face du pavé droit supposé transparent. Sachant que est l ombre du point, trouve l ombre S du sommet S de la pyramide. Trace ensuite et colorie l ombre de la pyramide. Les rayons du soleil sont parallèles.

8 xercices L PYRMI - S est une pyramide régulière d arête 5 cm.(toutes ses arêtes ont la même longueur). Trace la hauteur [S] de cette pyramide. alcule S. alcule les angles formés par les arêtes et les diagonales de la base. alcule le volume de la pyramide. - On donne un parallélépipède rectangle (pavé droit) G. On sait que : = 4 cm ; = 7 cm ; = 5,7 cm. Trace le tétraèdre G.(On suppose le pavé transparent) alcule les longueurs des arêtes de ce tétraèdre alcule le volume du tétraèdre G.(On procédera par soustractions) Le comparer au volume du pavé

9 evoir 1 - La Pyramide de Kheops (5 siècles av.j-) est une pyramide régulière. lle a une hauteur de 18 mètres et une base carrée de 0 m de côté. a) alcule son volume. b) Si cette pyramide était constituée de blocs parallélépipédiques dont les trois dimensions sont 1 m, m, et 50 cm, quel serait le nombre de ces blocs? - S est un tétraèdre régulier dont l'arête mesure 10 cm. [S] est sa hauteur. a) Quelles sont les particularités des droites (I) et (J)? Que peux-tu dire du point pour le triangle? b) émontre que : I² = 75 et que: ² = 100. c) alcule la hauteur S (à 1/1000 cm près) puis le volume de ce tétraèdre.

10 evoir L unité de longueur est le centimètre. x désigne un nombre strictement positif. a) est un trapèze rectangle de bases [] et [] et de hauteur [] tel que : = x ; = x ; =. alcule l aire de ce trapèze en fonction de x. On rappelle que l aire d un trapèze est : somme des bases hauteur b) Une pyramide P de sommet S a pour base ce trapèze et pour hauteur S = 4x. Montre que le volume de cette pyramide est : V = 6x². alcule V si x est égal à,5. Pour quelle valeur de x, V est-il égal à 54 cm? c) Soit le milieu de [S]. On coupe la pyramide P par un plan passant par et parallèle à la base. e plan coupe la pyramide selon le quadrilatère. Quelle est l aire de? (On l exprimera en fonction de x). Quel est le volume V de la pyramide S? (L exprimer en fonction de V). alcule V si x =,5.

11 S PYRMIS (ORRIGÉ) Je te propose de construire des pyramides en te servant du cube G qui est supposé transparent. ttention, les pyramides ne sont pas transparentes : tu dois donc bien repérer les arêtes cachées. - Pyramide régulière à base carrée (type Khéops) onstruis la pyramide de sommet I et de base G Ses faces sont des triangles isocèles Sa hauteur est la verticale passant pari. lle passe par le centre du carré de base Si tu disposes d un récipient ayant la forme du cube G et d un autre récipient ayant la forme de la pyramide IG tu peux constater qu il faut le liquide contenu dans trois pyramides pour remplir le cube Tu en conclus alors que le volume de la pyramide est le tiers du volume du cube. - Pyramides non régulières à base carrée G G G e sommet et de base G e sommet et de base e sommet et de base G Sa hauteur est [] Sa hauteur est [], en particulier Sa hauteur est [] Ses faces et G son t des perpendiculaire à [] et [] triangles rectangles isocèles. es trois pyramides sont identiques : elles ont la même hauteur (4 cm), la même base (un carré de 4 cm de côté) et les mêmes faces latérales (dont deux sont des triangles rectangles isocèles) - Tétraèdre régulier Il fait partie des cinq polyèdres réguliers; c'est le plus simple des cinq. onstruis la pyramide de sommet et de base G Ses six arêtes sont égales (diagonales des faces du cube) Ses quatre faces sont des triangles équilatéraux identiques. ette pyramide s appelle tétraèdre régulier. Les cinq polyèdres réguliers sont : ce tétraèdre, le cube (hexaèdre), l icosaèdre, l octaèdre et le dodécaèdre.

12 xercices 1 (orrigé) L PYRMI - Trace les intersections des plans et avec les faces de la pyramide. olorie les parties de ces plans, visibles à l intérieur de la pyramide (si l on suppose celle-ci transparente). Recherche la droite d intersection (I) des plans et. Ι Le point I est à l intersection des droites () et () de la base. Les plans et se coupent selon la droite (I) - ans le plan, la droite (MN) coupe la droite () en K. ans le plan, la droite (KP) coupe la droite () en Q. Représente et colorie l intersection du tétraèdre et du plan MNP. Q Le plan MNPQ est l intersection cherchée. - ette pyramide a son sommet S dans la face du pavé droit supposé transparent. Sachant que est l ombre du point, trouve l ombre S du sommet S de la pyramide. Trace ensuite et colorie l ombre de la pyramide. Les rayons du soleil sont parallèles. L ombre de l horizontale [S] est [S ] parallèle à [S] La surface grisée est donc l ombre de la pyramide S'

13 xercices (orrigé) L PYRMI - S est une pyramide régulière d arête 5 cm.(toutes ses arêtes ont la même longueur). Trace la hauteur [S] de cette pyramide. alcule S. S = + = = 150 = donc 150 = = = 1,5 4 4 S = S = 5 1,5 = 1,5 S 17,7 cm alcule les angles formés par les arêtes et les diagonales de la base. On remarque que : = S. Le triangle S est isocèle rectangle donc S = 45 e même : S = S = S = 45. alcule le volume de la pyramide. ire() S 5 17, 7 V = 687 cm - On donne un parallélépipède rectangle (pavé droit) G. On sait que : = 4 cm ; = 7 cm ; = 5,7 cm. Trace le tétraèdre G.(On suppose le pavé transparent) alcule les longueurs des arêtes de ce tétraèdre. = + = 7 + 5, 7 = 81, 49 = G 9 cm = + = 5, = 48, 49 = G 7 cm = + = = 65 = G 8 cm alcule le volume du tétraèdre G.(On procédera par soustractions) Le comparer au volume du pavé. V(G) = V(G) V() V(G) V(G) V(G) V(G) = V(G) 4 V() = 4 V(G) V(G) = = = 7 5,7 4 V(G) = = 5,cm G...

Utilisation du logiciel Cabri 3D de géométrie dans l espace (*)

Utilisation du logiciel Cabri 3D de géométrie dans l espace (*) Dans nos classes 645 Utilisation du logiciel Cabri 3D de géométrie dans l espace (*) Jean-Jacques Dahan(**) Historiquement, la géométrie dynamique plane trouve ses racines chez les grands géomètres de

Plus en détail

Si deux droites sont parallèles à une même troisième. alors les deux droites sont parallèles entre elles. alors

Si deux droites sont parallèles à une même troisième. alors les deux droites sont parallèles entre elles. alors N I) Pour démontrer que deux droites (ou segments) sont parallèles (d) // (d ) (d) // (d ) deux droites sont parallèles à une même troisième les deux droites sont parallèles entre elles (d) // (d) deux

Plus en détail

Solides et patrons. Cours

Solides et patrons. Cours Solides et patrons EXERCICE 1 : Cours 1) Représenter un cube en perspective cavalière. 2) Qu est-ce qu un polyedre? 3) Qu est-ce qu un prisme droit? Si les bases du prisme ont n côtés combien le prisme

Plus en détail

14 Proportionnalité. et géométrie. Avant de démarrer OMPÉTENCES

14 Proportionnalité. et géométrie. Avant de démarrer OMPÉTENCES 14 Proportionnalité et géométrie OMPÉTNS 1. grandir ou réduire une figure avec un facteur donné 2. grandir ou réduire une figure sans connaître le facteur 3. grandir ou réduire une figure en utilisant

Plus en détail

Activités à faire à la maison pour renforcer le concept de formes géométriques

Activités à faire à la maison pour renforcer le concept de formes géométriques pour renforcer le concept de formes géométriques Une œuvre en figures planes Crée une œuvre qui comprend toutes les figures planes décrites ci-dessous. Un cercle jaune Deux triangles isocèles rouges non

Plus en détail

Triangle : milieux et parallèles

Triangle : milieux et parallèles 10 riangle : milieux et parallèles ÉUV ans un triangle : la propriété d une droite passant par les milieux de deux de ses côtés ; la propriété d un segment d extrémités les milieux de deux de ses côtés

Plus en détail

TRIANGLE RECTANGLE. Chapitre 10. Triangle rectangle et cercle circonscrit Triangle rectangle et médiane

TRIANGLE RECTANGLE. Chapitre 10. Triangle rectangle et cercle circonscrit Triangle rectangle et médiane hapitre 10 TNGL TNGL Triangle rectangle et cercle circonscrit Triangle rectangle et médiane «git -Prop-Tram #2» de Dennis John shbaugh, 1974 TVTÉ TNGL TNGL T L NT TVTÉ 1 Dans un triangle rectangle oit

Plus en détail

AC AB. A B C x 1. x + 1. d où. Avec un calcul vu au lycée, on démontre que cette solution admet deux solutions dont une seule nous intéresse : x =

AC AB. A B C x 1. x + 1. d où. Avec un calcul vu au lycée, on démontre que cette solution admet deux solutions dont une seule nous intéresse : x = LE NOMBRE D OR Présentation et calcul du nombre d or Euclide avait trouvé un moyen de partager en deu un segment selon en «etrême et moyenne raison» Soit un segment [AB]. Le partage d Euclide consiste

Plus en détail

Envoi no. 6 : géométrie

Envoi no. 6 : géométrie Envoi no. 6 : géométrie Exercice 1. Soit un triangle rectangle isocèle en. Soit un point de l arc du cercle de centre passant par et, H son projeté orthogonal sur (). On note I le centre du cercle inscrit

Plus en détail

4G2. Triangles et parallèles

4G2. Triangles et parallèles 4G2 Triangles et parallèles ST- QU TU T SOUVINS? 1) On te donne une droite (d) et un point n'appartenant pas à cette droite. vec une équerre et une règle non graduée, sais-tu construire la parallèle à

Plus en détail

Sujet de mathématiques du brevet des collèges

Sujet de mathématiques du brevet des collèges Sujet de mathématiques du brevet des collèges PONDICHÉRY Avril 2015 Durée : 2h00 Calculatrice autorisée La qualité de la rédaction, l orthographe et la rédaction comptent pour 4 points. EXERCICE 1 Cet

Plus en détail

Activité 1 : Du rectangle au parallélogramme

Activité 1 : Du rectangle au parallélogramme ctivités ctivité 1 : u rectangle au parallélogramme a. onstruis, sur une feuille, un rectangle de 10 cm de long sur 4 cm de large. Repasse en rouge les longueurs et en vert les largeurs. alcule l'aire

Plus en détail

LYCEE MICHEL-RODANGE LUXEMBOURG PROGRAMMES DE MATHEMATIQUES POUR LE CYCLE INFERIEUR

LYCEE MICHEL-RODANGE LUXEMBOURG PROGRAMMES DE MATHEMATIQUES POUR LE CYCLE INFERIEUR LYCEE MICHEL-RODANGE LUXEMBOURG PROGRAMMES DE MATHEMATIQUES POUR LE CYCLE INFERIEUR Introduction. page 2 Classe de septième.. page 3 Classe de sixième page 7-1 - INTRODUCTION D une manière générale on

Plus en détail

GÉOMÉTRIE DANS L'ESPACE ET GeoGebra

GÉOMÉTRIE DANS L'ESPACE ET GeoGebra GÉOMÉTRIE DANS L'ESPACE ET GeoGebra INTRODUCTION ET CRÉATION DE SOLIDES La prochaine version de GeoGebra (5.0) intégrera la géométrie dans l'espace. Une version béta est téléchargeable à partir du forum

Plus en détail

Créer des figures dynamiques en 3 dimensions avec GeoGebra 5

Créer des figures dynamiques en 3 dimensions avec GeoGebra 5 Créer des figures dynamiques en 3 dimensions avec GeoGebra 5, 1/46 I. Pour débuter...3 IV. 9. Obtenir une sphère ou un cône tronqué...21 I. 1. Téléchargement...3 V. Illustration d'exercices...22 I. 2.

Plus en détail

Priorités de calcul :

Priorités de calcul : EXERCICES DE REVISION POUR LE PASSAGE EN QUATRIEME : Priorités de calcul : Exercice 1 : Calcule en détaillant : A = 4 + 5 6 + 7 B = 6 3 + 5 C = 35 5 3 D = 6 7 + 8 E = 38 6 3 + 7 Exercice : Calcule en détaillant

Plus en détail

Cours de Mr Jules v1.1 Classe de Sixième contrat 7 page 1 LES AIRES

Cours de Mr Jules v1.1 Classe de Sixième contrat 7 page 1 LES AIRES ours de Mr Jules v1.1 lasse de Sixième contrat 7 page 1 LES IRES «Les Mathématiques ne sont pas une marche prudente sur une voix bien tracée, mais un voyage dans un territoire étrange et sauvage, où les

Plus en détail

AIDE-MÉMOIRE MATHÉMATIQUE. 3 e CYCLE

AIDE-MÉMOIRE MATHÉMATIQUE. 3 e CYCLE AIDE-MÉMOIRE MATHÉMATIQUE 3 e CYCLE Chers enseignants, PRODUCTION DU SERVICE DES RESSOURCES ÉDUCATIVES C est avec plaisir et fierté AU PRÉSCOLAIRE que nous vous offrons ET AU le PRIMAIRE lexique mathématique

Plus en détail

FORMATION INTERMÉDIAIRE MAT 2031 CAHIER 4 ET CORRIGÉ

FORMATION INTERMÉDIAIRE MAT 2031 CAHIER 4 ET CORRIGÉ FORMATION INTERMÉDIAIRE MAT 031 ET CORRIGÉ TABLE DES MATIÈRES I 1.0 UNITÉS D'AIRE... 1 1.1 Donner la différence entre l'aire et la surface... 1 1. Énumérer les principales unités d'aire... 3 1.3 Convertir

Plus en détail

Triangles isométriques Triangles semblables

Triangles isométriques Triangles semblables Triangles isométriques Triangles semblables Les transformations du plan ont permis de dégager des propriétés de figures superposables. Le théorème de Thalès a permis de s initier aux notions de réduction

Plus en détail

CRPE 2011-2012 derniers réglages avant l écrit (2).

CRPE 2011-2012 derniers réglages avant l écrit (2). CRPE 2011-2012 derniers réglages avant l écrit (2). Problème 1 OAB et OAC sont deux triangles distincts, tous les deux isocèles en O et tels que AOB = AOC. D est le symétrique de B par rapport à O. Démontrer

Plus en détail

Module 8 : Périmètre et aire de figures planes

Module 8 : Périmètre et aire de figures planes RÉDUCTION DES ÉCARTS DE RENDEMENT 9 e année Module 8 : Périmètre et aire de figures planes Guide de l élève Module 8 Périmètre et aire de figures planes Évaluation diagnostique...3 Aire de parallélogrammes,

Plus en détail

PÉRIMÈTRE ET SURFACE (AIRES) D UNE FIGURE SIMPLE MATHÉMATIQUES

PÉRIMÈTRE ET SURFACE (AIRES) D UNE FIGURE SIMPLE MATHÉMATIQUES PÉRIMÈTRE ET SURFACE (AIRES) D UNE FIGURE SIMPLE MATHÉMATIQUES CAHIER D EXERCICES Les Services de la formation professionnelle et de l éducation des adultes FP9706 C0106 TABLE DES MATIÈRES 1 EXPLICATION

Plus en détail

Le contexte. Le questionnement du P.E.R. :

Le contexte. Le questionnement du P.E.R. : Le contexte Ce travail a débuté en janvier. Le P.E.R. engagé depuis fin septembre a permis de faire émerger ou de réactiver : Des raisons d être de la géométrie : Calculer des grandeurs inaccessibles et

Plus en détail

BREVET BLANC DE MAI 2012

BREVET BLANC DE MAI 2012 COLLEGE GASPARD DES MONTAGNES BREVET BLANC DE MAI 2012 Ce sujet comporte 8 pages numérotées de 1/8 à 8/8, dont une feuille annexe à remettre avec la copie. L usage de la calculatrice est autorisé. Notation

Plus en détail

Mathématiques. Géométrie

Mathématiques. Géométrie Mathématiques CE2 Nombres Calcul Géométrie Grandeurs Mesures AVANT-PROPOS Ce livret a été réalisé dans le but de rendre plus lisibles les compétences à acquérir en mathématiques au terme du CE2. Il donne

Plus en détail

Ch.G3 : Distances et tangentes

Ch.G3 : Distances et tangentes 4 e - programme 2011 mathématiques ch.g3 cahier élève Page 1 sur 14 1 DISTC D U PIT À U DRIT Ch.G3 : Distances et tangentes 1.1 Définition ex 1 DÉFIITI 1 : Soit une droite et un point n'appartenant pas

Plus en détail

Problèmes de dénombrement.

Problèmes de dénombrement. Problèmes de dénombrement. 1. On se déplace dans le tableau suivant, pour aller de la case D (départ) à la case (arrivée). Les déplacements utilisés sont exclusivement les suivants : ller d une case vers

Plus en détail

I Translation et égalité vectorielle.

I Translation et égalité vectorielle. I Translation et égalité vectorielle. TRNSLTIONS ET VETEURS a) Translation. éfinition : ire que le point N est l image du point N par la translation qui transforme en, signifie que le quadrilatère NN'

Plus en détail

5 ème Chapitre 4 Triangles

5 ème Chapitre 4 Triangles 5 ème Chapitre 4 Triangles 1) Médiatrices Définition : la médiatrice d'un segment est l'ensemble des points équidistants des extrémités du segment (cours de 6 ème ). Si M appartient à la médiatrice du

Plus en détail

CHAPITRE 4: La projection de MONGE

CHAPITRE 4: La projection de MONGE CHAPITRE 4: La projection de MONGE 1. Introduction Né en 1746 à Beaune (France), Gaspard Monge enseigne dès l'âge de 16 ans, au collège de Lon, puis à l'ecole Roale du Génie à Méières. En 1763, ses talents

Plus en détail

ÉPREUVE EXTERNE COMMUNE CE1D 2010

ÉPREUVE EXTERNE COMMUNE CE1D 2010 NOM : Prénom : Classe : MINISTÈRE DE LA COMMUNAUTÉ FRANÇAISE ÉPREUVE EXTERNE COMMUNE CE1D 2010 Mathématiques Livret 1 Pour cette première partie : la calculatrice est interdite tu auras besoin de ton

Plus en détail

c) Calculer MP. 3) Déterminer l'arrondi au degré de la mesure de Dˆ.

c) Calculer MP. 3) Déterminer l'arrondi au degré de la mesure de Dˆ. Exercice :(Amiens 1995) Les questions 2, 3 et 4 sont indépendantes. L'unité est le centimètre. 1) Construire un triangle MAI rectangle en A tel que AM = 8 et IM = 12. Indiquer brièvement les étapes de

Plus en détail

Devoir commun de seconde, mars 2006

Devoir commun de seconde, mars 2006 Devoir commun de seconde, mars 006 calculatrices autorisées On rappelle que le soin et la qualité de rédaction entrent pour une part non négligeable dans l appréciation de la copie. Eercice (7 points).

Plus en détail

Quels polygones sont formés par les milieux des côtés d un autre polygone?

Quels polygones sont formés par les milieux des côtés d un autre polygone? La recherche à l'école page 13 Quels polygones sont formés par les milieux des côtés d un autre polygone? par d es co llèg es n dré o ucet de Nanterre et Victor ugo de Noisy-le-rand enseignants : Martine

Plus en détail

Brevet des collèges Amérique du Nord 7 juin 2011

Brevet des collèges Amérique du Nord 7 juin 2011 Durée : 2 heures Brevet des collèges Amérique du Nord 7 juin 2011 Correction ACTIVITÉS NUMÉRIQUES Exercice 1 12 points Le professeur choisit trois nombres entiers relatifs consécutifs rangés dans l ordre

Plus en détail

COURS: TRIGONOMÉTRIE. 1 Relations trigonométriques CHAPITRE 4. Extrait du programme de la classe de troisième :

COURS: TRIGONOMÉTRIE. 1 Relations trigonométriques CHAPITRE 4. Extrait du programme de la classe de troisième : HPITRE 4 URS: TRIGNMÉTRIE Etrait du programme de la classe de troisième : NTENU MPÉTENES EXIGILES MMENTIRES Triangle rectangle : relations trigonométriques onnaître et utiliser dans le triangle rectangle

Plus en détail

Triangle rectangle et cercle

Triangle rectangle et cercle Objectifs : 1 Savoir reconnaître et tracer une médiane. 2 Connaître et savoir utiliser la propriété qui caractérise le triangle rectangle par son inscription dans un demi-cercle. 3 Connaître et savoir

Plus en détail

Correction du deuxième Brevet Blanc mai 2013 Lycée International Victor Hugo de Florence.

Correction du deuxième Brevet Blanc mai 2013 Lycée International Victor Hugo de Florence. Exercice 1 (4 points) d après Amérique du Sud, novembre 2010. et donc les nombres semblent égaux, mais il faut le démontrer. Je sais que si alors. Je cherche à savoir si Alors j aurai si je trouve. Conclusion

Plus en détail

TD d exercices de Géométrie dans l espace.

TD d exercices de Géométrie dans l espace. TD d exercices de Géométrie dans l espace. Exercice 1. (Brevet 2006) Pour la pyramide SABCD ci-contre : La base est le rectangle ABCD de centre O. AB = 3 cm et BD = 5cm. La hauteur [SO] mesure 6 cm. 1)

Plus en détail

L institut canadien de formation des maîtres Montessori 2004-2005 Album sensoriel

L institut canadien de formation des maîtres Montessori 2004-2005 Album sensoriel L institut canadien de formation des maîtres Montessori 2004-2005 Album sensoriel Tables des matières ACTIVITÉS SENSORIELLES de DÉVELOPPEMENT Les dimensions Les emboîtements solides La tour rose L escalier

Plus en détail

Une bien jolie curiosité

Une bien jolie curiosité Une bien jolie curiosité Roland Dassonval et Catherine Combelles Tracez un polygone régulier à n sommets inscrit dans un cercle de rayon 1, puis les cordes qui joignent un sommet donné aux n-1 autres.

Plus en détail

BREVET BLANC Corrigé 15 avril 2013

BREVET BLANC Corrigé 15 avril 2013 REVET LN orrigé 15 avril 2013 *********************** Exercice 1 : On donne ci-dessous les représentations graphiques de trois fonctions. es représentations sont nommées 1, 2, 3. L une d entre elles est

Plus en détail

CONCOURS SEPTEMBRE 2011 SUJETS

CONCOURS SEPTEMBRE 2011 SUJETS CONCOURS SEPTEMBRE 2011 SUJETS Florilège COPIRELEM Page 155 CERPE groupement 1 - septembre 2011 (corrigé page 171) GROUPEMENT 1 septembre 2011 EXERCICE 1 : Dans cet exercice, six affirmations sont proposées.

Plus en détail

MAT2027 Activités sur Geogebra

MAT2027 Activités sur Geogebra MAT2027 Activités sur Geogebra NOTE: Il n est pas interdit d utiliser du papier et un crayon!! En particulier, quand vous demandez des informations sur les différentes mesures dans une construction, il

Plus en détail

Si un quadrilatère a. Si un quadrilatère a. Si un quadrilatère a. Si un quadrilatère a. ses côtés opposés. ses côtés opposés de. deux côtés opposés

Si un quadrilatère a. Si un quadrilatère a. Si un quadrilatère a. Si un quadrilatère a. ses côtés opposés. ses côtés opposés de. deux côtés opposés P1 P2 P3 P4 a a a a ses côtés opposés ses côtés opposés de deux côtés opposés ses diagonales qui se parallèles, alors c est même longueur alors parallèles et de même coupent en leur un c est un longueur

Plus en détail

GYMNASE DU BUGNON LAUSANNE Mai 2010. EXAMEN D ADMISSION DE L ÉCOLE DE MATURITÉ 2 ème ANNÉE MATHÉMATIQUES OPTION SPÉCIFIQUE

GYMNASE DU BUGNON LAUSANNE Mai 2010. EXAMEN D ADMISSION DE L ÉCOLE DE MATURITÉ 2 ème ANNÉE MATHÉMATIQUES OPTION SPÉCIFIQUE GYMNASE DU BUGNON LAUSANNE Mai 2010 EXAMEN D ADMISSION DE L ÉCOLE DE MATURITÉ 2 ème ANNÉE MATHÉMATIQUES OPTION SPÉCIFIQUE Date : 7 mai 2010 Durée : 3 h Matériel mis à disposition par le gymnase : - Matériel

Plus en détail

PARTIE NUMERIQUE (18 points)

PARTIE NUMERIQUE (18 points) 4 ème DEVOIR COMMUN N 1 DE MATHÉMATIQUES 14/12/09 L'échange de matériel entre élèves et l'usage de la calculatrice sont interdits. Il sera tenu compte du soin et de la présentation ( 4 points ). Le barème

Plus en détail

Vecteurs Géométrie dans le plan Exercices corrigés

Vecteurs Géométrie dans le plan Exercices corrigés Vecteurs Géométrie dans le plan Exercices corrigés Sont abordés dans cette fiche : Exercice 1 : notion de vecteur, transformation de points par translation et vecteurs égaux Exercice 2 : parallélogramme

Plus en détail

NOM: GROUPE: Laboratoire L OPTIQUE

NOM: GROUPE: Laboratoire L OPTIQUE PARTIE 1: LA LUMIÈRE A DES COULEURS : NOM: GROUPE: Laboratoire L OPTIQUE Observer les différentes couleurs qui composent la lumière blanche. (OU THÉORIE): Pour votre théorie, définissez une onde électromagnétique,

Plus en détail

Lire et écrire les nombres jusqu'à 1 000 (2)

Lire et écrire les nombres jusqu'à 1 000 (2) Unité 1 et 5 Lire et écrire les nombres jusqu'à 1 000 () Connaître, savoir écrire et nommer les nombres entiers jusqu au million. 1 En utilisant une, deux ou trois étiquettes ci-contre, écris tous les

Plus en détail

BREVET BLANC de MATHEMATIQUES n 1 Janvier 2012 - durée : 2 heures

BREVET BLANC de MATHEMATIQUES n 1 Janvier 2012 - durée : 2 heures BREVET BLANC de MATHEMATIQUES n 1 Janvier 2012 - durée : 2 heures Les calculatrices sont autorisées. L orthographe, le soin et la présentation sont notés sur 4 points. Activités numériques (12 points)

Plus en détail

Thierry JOFFREDO. Mémo DNB. Première partie : calcul, fonctions. Année 2006-07

Thierry JOFFREDO. Mémo DNB. Première partie : calcul, fonctions. Année 2006-07 Thierry JFFRED ØØÔ»»ÛÛÛºÑØÓÒÙØ ºÖ Mémo DN Première partie : calcul, fonctions nnée 006-07 CLCUL SUR LES FRCTINS Fractions égales n obtient une fraction égale en multipliant (ou en divisant) numérateur

Plus en détail

Comment pourrais-tu faire pour construire un triangle ABC si tu connais seulement : la mesure de deux angles : ABC = 40 et ACB = 110 ;

Comment pourrais-tu faire pour construire un triangle ABC si tu connais seulement : la mesure de deux angles : ABC = 40 et ACB = 110 ; omment pourrais-tu faire pour construire un triangle si tu connais seulement : la mesure de deux angles : = 40 et = 110 ; le périmètre du triangle : = 15 cm? 167 ctivité 1 : u côté des triangles... 1.

Plus en détail

Brevet Juin 2007 Liban Corrigé Page 1 sur 6

Brevet Juin 2007 Liban Corrigé Page 1 sur 6 Brevet Juin 007 Liban Corrigé Page 1 sur 6 Exercice 1 : 1) A = 500 (10 3 ),4 10 7 8 10 4 = 500 10 6 4 10 1 10 7 8 10 4 500 4 = 8 = 500 3 8 8 = 500 3 100 10 4 = 1500 10 0 + 4 = 1500 10 4 = 1,5 10 3 10 4

Plus en détail

Collège Henri Meck lundi 4 mai 2009 Molsheim BREVET BLANC DE MATHEMATIQUES N 2. ( Extraits d'épreuves du brevet de 2007 et 2008 ) PRESENTATION 4 pts

Collège Henri Meck lundi 4 mai 2009 Molsheim BREVET BLANC DE MATHEMATIQUES N 2. ( Extraits d'épreuves du brevet de 2007 et 2008 ) PRESENTATION 4 pts Collège Henri Meck lundi 4 mai 2009 Molsheim BREVET BLANC DE MATHEMATIQUES N 2 ( Extraits d'épreuves du brevet de 2007 et 2008 ) PRESENTATION 4 pts Rappel : Présenter les parties de l'épreuve sur feuilles

Plus en détail

Activités de généralisation pour l aire

Activités de généralisation pour l aire Activités de généralisation pour l aire L aire du rectangle et du carré But Cette activité permet de développer la formule pour calculer l aire de la surface du rectangle et celle du carré. Matériel Rectangles

Plus en détail

Pour répondre à cette question on peut faire un découpage en petites surfaces plus faciles à comparer ou à déplacer.

Pour répondre à cette question on peut faire un découpage en petites surfaces plus faciles à comparer ou à déplacer. I Aire d une surface A cause du remembrement, la commune de Thérouanne propose à M. Ducheval et à M. Leboeuf d échanger leurs parcelles de terrain qui ont les formes ci-dessous. L échange est-il équitable?

Plus en détail

La médiatrice d un segment

La médiatrice d un segment EXTRT DE CURS DE THS DE 4E 1 La médiatrice d un segment, la bissectrice d un angle La médiatrice d un segment Définition : La médiatrice d un segment est l ae de smétrie de ce segment ; c'est-à-dire que

Plus en détail

Classe de troisième. Exercices de Mathématiques

Classe de troisième. Exercices de Mathématiques lasse de troisième Exercices de Mathématiques 2 hapitre I : Révision d algèbre 1 alculer : = 21 7 + 2 4 21 = 7 2 1 5 2 = 84 17 4 27 5 2 D = 4 9 2 + 25 9 10 E = 7 12 (1 9 + 18 7 ) F = 12 7 2 5 + 8 5 2 Soit

Plus en détail

Sommaire de la séquence 10

Sommaire de la séquence 10 Sommaire de la séquence 10 Séance 1........................................................................................................ J étudie un problème concret................................................................................

Plus en détail

Solutions. Exercice 470-1 (Corol aire n 41) Démontrer que, pour tout ensemble {x, y, z} de trois nombres réels quelconques, on a :

Solutions. Exercice 470-1 (Corol aire n 41) Démontrer que, pour tout ensemble {x, y, z} de trois nombres réels quelconques, on a : 888 Pour chercher et approfondir PEP Exercice 473-4 (ichel Lafond - ijon) ans le plan, un triangle a une aire de 344 m Un point P du plan vérifie P = 5 m, P = 33 et P = 39 m alculer les côtés de Solutions

Plus en détail

EXERCICES DE REVISIONS MATHEMATIQUES CM2

EXERCICES DE REVISIONS MATHEMATIQUES CM2 EXERCICES DE REVISIONS MATHEMATIQUES CM2 NOMBRES ET CALCUL Exercices FRACTIONS Nommer les fractions simples et décimales en utilisant le vocabulaire : 3 R1 demi, tiers, quart, dixième, centième. Utiliser

Plus en détail

UNITÉS ET MESURES AIRES OU SURFACES. Dossier n 4 Juin 2005. Conçu et réalisé par : Marie-Christine LIEFOOGHE Bruno VANBAELINGHEM Annie VANDERSTRAELE

UNITÉS ET MESURES AIRES OU SURFACES. Dossier n 4 Juin 2005. Conçu et réalisé par : Marie-Christine LIEFOOGHE Bruno VANBAELINGHEM Annie VANDERSTRAELE UNITÉS ET MESURES AIRES OU SURFACES Dossier n 4 Juin 005 Tous droits réservés au réseau AGRIMÉDIA Conçu et réalisé par : Marie-Christine LIEFOOGHE Bruno VANBAELINGHEM Annie VANDERSTRAELE C. D. R. UNITÉS

Plus en détail

9 è et 10 è années 2013

9 è et 10 è années 2013 Partie A: Chaque bonne réponse vaut 3 points. Jeu-concours international KANGOUROU DES MATHÉMATIQUES 1. Le nombre n'est pas divisible par (A). (B). (C). (D). (E). 2. Les huit demi-cercles inscrits à l'intérieur

Plus en détail

RECHERCHE DE CHEMIN MINIMAL

RECHERCHE DE CHEMIN MINIMAL REHERHE DE HEIN INIL par Yvon KWLSK, Sofiane SERUTU et Jérémy VEIRN, élèves de troisième au collège dulphe DELEGRGUE de ourcelles lès Lens (Pas de alais) 2003 Enseignant : Stéphane RERT (collège DELEGRGUE

Plus en détail

Fiche descriptive - Clip vidéo anglais : Observation des formes tridimensionnelles en vue de résoudre des problèmes trigonométriques

Fiche descriptive - Clip vidéo anglais : Observation des formes tridimensionnelles en vue de résoudre des problèmes trigonométriques Fiche descriptive - Clip vidéo anglais : Observation des formes tridimensionnelles en vue de résoudre des problèmes trigonométriques Informations générales Année de production : 2009 Pays : Langue : Age

Plus en détail

Ministère de l éducation nationale CONCOURS DE RECRUTEMENT DE PROFESSEURS DES ECOLES

Ministère de l éducation nationale CONCOURS DE RECRUTEMENT DE PROFESSEURS DES ECOLES Ministère de l éducation nationale Session 2012 PE2-12-PG3 Repère à reporter sur la copie CONCOURS DE RECRUTEMENT DE PROFESSEURS DES ECOLES Mercredi 28 septembre 2011 de 9h 00 à 13h 00 Deuxième épreuve

Plus en détail

Représentations et transformations géométriques. Version évaluation formative. Livraison de cellulaire. Cahier de l adulte. Commission scolaire

Représentations et transformations géométriques. Version évaluation formative. Livraison de cellulaire. Cahier de l adulte. Commission scolaire Représentations et transformations géométriques 2102 Version évaluation formative Livraison de cellulaire Cahier de l adulte Nom de l élève Numéro de fiche Nom de l'enseignant Date de naissance Centre

Plus en détail

Maîtriser les fonctionnalités d un traitement de texte (Word OpenOffice)

Maîtriser les fonctionnalités d un traitement de texte (Word OpenOffice) Utilisation de l'ordinateur et apport des TIC en enseignement (1NP) Module 03 Maîtriser les fonctionnalités d un traitement de texte. Sens du Module De nombreux documents remis aux enfants sont réalisés

Plus en détail

Devoir commun Décembre 2014 3 ème LV2

Devoir commun Décembre 2014 3 ème LV2 Devoir commun Décembre 2014 3 ème LV2 Collège OASIS Corrigé de l Epreuve de Mathématiques L usage de la calculatrice est autorisé, mais tout échange de matériel est interdit Les exercices sont indépendants

Plus en détail

Chapitre n 8 : «Parallélogrammes particuliers»

Chapitre n 8 : «Parallélogrammes particuliers» Chapitre n 8 : «Parallélogrammes particuliers» I. Rappels (parallélogramme) Un parallélogramme est un quadrilatère qui a ses côtés opposés parallèles. Construction Propriétés des parallélogrammes Dans

Plus en détail

Par contre, lorsque P est finie, l inclusion f(p ) P implique l égalité f(p ) = P car, f

Par contre, lorsque P est finie, l inclusion f(p ) P implique l égalité f(p ) = P car, f Université Lyon 1 Algèbre générale S.P. Groupes III I. Groupe symétrique et géométrie. On se donne un ensemble E (souvent un espace euclidien ou une partie de cet espace) et une bijection f : E E (souvent

Plus en détail

TOUT CE QU IL FAUT SAVOIR POUR LE BREVET

TOUT CE QU IL FAUT SAVOIR POUR LE BREVET TOUT E QU IL FUT SVOIR POUR LE REVET NUMERIQUE / FONTIONS eci n est qu un rappel de tout ce qu il faut savoir en maths pour le brevet. I- Opérations sur les nombres et les fractions : Les priorités par

Plus en détail

Groupe seconde chance Feuille d exercices numéro 4

Groupe seconde chance Feuille d exercices numéro 4 Groupe seconde chance Feuille d exercices numéro 4 Exercice 1 Ecrire un programme de construction de la figure suivante. On utilisera seulement deux mesures : le rayon du cercle est 8 cm, la largeur d

Plus en détail

Sommaire de la séquence 10

Sommaire de la séquence 10 Sommaire de la séquence 10 Séance 1................................................................................................... 305 Je calcule la longueur d un cercle.......................................................................

Plus en détail

SKETCHUP Le dessin en 3 dimensions

SKETCHUP Le dessin en 3 dimensions La technologie au collège Pierre Matraja SKETCHUP Le dessin en 3 dimensions Objectif du cours : Découvrir le fonctionnement d'un modeleur 3D René Bordiec Année 2010/2011 1/1 Outil Sélectionner (barre d

Plus en détail

Diviser un nombre décimal par 10 ; 100 ; 1 000

Diviser un nombre décimal par 10 ; 100 ; 1 000 Diviser un nombre décimal par 10 ; 100 ; 1 000 Diviser un nombre décimal par 10 ; 100 ; 1 000. 23 1 et 2 Pauline collectionne les cartes «Tokéron» depuis plusieurs mois. Elle en possède 364 et veut les

Plus en détail

Leçons de mathématiques

Leçons de mathématiques Leçons de mathématiques Voici ton cahier de leçons de mathématiques. Tu pourras l utiliser à chaque fois que tu voudras compléter tes connaissances en mathématiques. Ce cahier regroupe des leçons de :

Plus en détail

Brevet 2002. L intégrale de septembre 2001 à juin 2002

Brevet 2002. L intégrale de septembre 2001 à juin 2002 revet 2002 L intégrale de septembre 2001 à juin 2002 Pour un accès direct cliquez sur les liens bleus ntilles-guyane septembre 2001........................ 3 Clermont-Ferrand septembre 2001......................

Plus en détail

Les grands nombres (1)

Les grands nombres (1) 4 Objectifs Réactiver les connaissances acquises les années précédentes. Manipuler des grands s dans deux directions essentielles : lire/écrire des grands s et calculer avec des grands s. Connaître la

Plus en détail

7 / LONGUEURS ET AIRES

7 / LONGUEURS ET AIRES LONGUEURS ET AIRES THÉORIE 7 / LONGUEURS ET AIRES THÉORIE I. FIGURES ET SURFACES 1. FIGURES ET SURFACES PLANES On peut se faire une idée d'un plan en regardant le plateau d'une table et en imaginant ce

Plus en détail

Algorithmes de maillages quadrangulaires / hexaédriques

Algorithmes de maillages quadrangulaires / hexaédriques Algorithmes de maillages quadrangulaires / hexaédriques Les méthodes directes partent de la géométrie 3D uniquement Méthodes structurées Méthodes semi structurées Méthodes structurées dans une direction

Plus en détail

LA FORME ET L ESPACE

LA FORME ET L ESPACE LA FORME ET L ESPACE Une rampe de course Résultat d apprentissage Description Matériel 8 e année, La forme et l espace, n 1 Développer et appliquer le théorème de Pythagore pour résoudre des problèmes.

Plus en détail

Ce document a été mis en ligne par le Canopé de l académie de Strasbourg pour la Base Nationale des Sujets d Examens de l enseignement professionnel.

Ce document a été mis en ligne par le Canopé de l académie de Strasbourg pour la Base Nationale des Sujets d Examens de l enseignement professionnel. Ce document a été mis en ligne par le Canopé de l académie de Strasbourg pour la Base Nationale des Sujets d Examens de l enseignement professionnel. Ce fichier numérique ne peut être reproduit, représenté,

Plus en détail

bleu cyan vert rouge magenta violet jaune orange

bleu cyan vert rouge magenta violet jaune orange 99 Les liens chromatiques simples 1 secondaire Soit: Utilisez une des deux teintes soit en rabattue, soit en rompue et l autre pure. bleu cyan vert rouge magenta violet jaune orange Soit: Utilisez l une

Plus en détail

Au japon, les SANGAKU étaient des figures géométriques gravées sur des tablettes de bois, figures suggérant des propriétés

Au japon, les SANGAKU étaient des figures géométriques gravées sur des tablettes de bois, figures suggérant des propriétés Juin 2015 : MathC2+ Les SANGAKU : des maths et des dessins IREM Grenoble : M. Althuser, Cité Scolaire Jean Prévost, Villard de Lans C. Kazantsev, B. Lacolle, Université Joseph Fourier et pour la visite

Plus en détail

Maths cycle 3 NUMÉRATION... 3. Les nombres entiers...5 Écrire les nombres entiers...6 Lire les nombres entiers...7 Comparer les nombres entiers 2...

Maths cycle 3 NUMÉRATION... 3. Les nombres entiers...5 Écrire les nombres entiers...6 Lire les nombres entiers...7 Comparer les nombres entiers 2... Maths cycle NUMÉRATION... NU. NU. NU. NU. NU. NU. NU. NU. NU. NU. NU. Les nombres entiers... Écrire les nombres entiers... Lire les nombres entiers... Comparer les nombres entiers... Comparer les nombres

Plus en détail

Mini Dictionnaire Encyclopédique Mathématiques. Fonction affine

Mini Dictionnaire Encyclopédique Mathématiques. Fonction affine Fonction affine ) Définition et Propriété caractéristique a) Activité introductive Une agence de location de voiture propose la formule de location suivante : forfait de 50 et 0,80 le km. Quel est le prix

Plus en détail

CATHEDRAL WINDOW. Réalisation d une corbeille de 12 cm x 12 cm x 6 cm

CATHEDRAL WINDOW. Réalisation d une corbeille de 12 cm x 12 cm x 6 cm CATHEDRAL WINDOW Réalisation d une corbeille de 12 cm x 12 cm x 6 cm Important : la copie de ces pages est libre de droit pour tout usage privé. En cas d'utilisation à des fins commerciales vous devez

Plus en détail

Cours de tracés de Charpente, Le TRAIT

Cours de tracés de Charpente, Le TRAIT Page 1/5 Cours de tracés de Charpente, Le TRAIT Recherches de vraies grandeurs, angles de coupes, surfaces. Les Méthodes : Le tracé et les calculs Chaque chapitre ou fichier comportent une explication

Plus en détail

GÉOMÉTRIQUES REPRÉSENTATIONS ET TRANSFORMATIONS MAT-2102-3. Activité notée 2. Date de remise :... Nom :...

GÉOMÉTRIQUES REPRÉSENTATIONS ET TRANSFORMATIONS MAT-2102-3. Activité notée 2. Date de remise :... Nom :... REPRÉSENTATIONS ET TRANSFORMATIONS GÉOMÉTRIQUES MAT-2102-3 Activité notée 2 Date de remise :... Identification de l'élève Nom :... Adresse :...... Tél :... Courriel :... Note :... /100 Juillet 2012 Code

Plus en détail

Correction : E = Soit E = -1,6. F = 12 Soit F = -6 3 + 45. y = 11. et G = -2z + 4y G = 2 6 = 3 G = G = -2 5 + 4 11

Correction : E = Soit E = -1,6. F = 12 Soit F = -6 3 + 45. y = 11. et G = -2z + 4y G = 2 6 = 3 G = G = -2 5 + 4 11 Correction : EXERCICE : Calculer en indiquant les étapes: (-6 +9) ( ) ( ) B = -4 (-) (-8) B = - 8 (+ 6) B = - 8 6 B = - 44 EXERCICE : La visite médicale Calcul de la part des élèves rencontrés lundi et

Plus en détail

Les droites (d 1 ) et (d 2 ) sont sécantes en A Le point A est le point d intersection des 2 droites

Les droites (d 1 ) et (d 2 ) sont sécantes en A Le point A est le point d intersection des 2 droites I Droites perpendiculaires Lorsque deux droites se coupent, on dit qu elles sont sécantes Les droites (d 1 ) et (d 2 ) sont sécantes en A Le point A est le point d intersection des 2 droites Lorsque deux

Plus en détail

Math 5 Dallage Tâche d évaluation

Math 5 Dallage Tâche d évaluation Math 5 Dallage Tâche d évaluation Résultat d apprentissage spécifique La forme et l espace (les transformations) FE 21 Reconnaître des mosaïques de figures régulières et irrégulières de l environnement.

Plus en détail

Chapitre 2 : Vecteurs

Chapitre 2 : Vecteurs 1 Chapitre 2 : Vecteurs Nous allons définir ce qu'est un vecteur grâce à une figure (le parallélogramme), mais au préalable nous allons aussi définir une nouvelle transformation (la translation). Nous

Plus en détail

Paris et New-York sont-ils les sommets d'un carré?

Paris et New-York sont-ils les sommets d'un carré? page 95 Paris et New-York sont-ils les sommets d'un carré? par othi Mok (3 ), Michel Vongsavanh (3 ), Eric hin (3 ), iek-hor Lim ( ), Eric kbaraly ( ), élèves et anciens élèves du ollège Victor Hugo (2

Plus en détail

Animation Maths au Cycle 3 le 24 octobre 2012, Chaumont

Animation Maths au Cycle 3 le 24 octobre 2012, Chaumont Animation Maths au Cycle 3 le 24 octobre 2012, Chaumont Frédéric Castel, Professeur à l'université de Reims, IUFM de Chaumont Avec l'appui précieux des travaux didactiques de Christelle Urbany, Jean-Claude

Plus en détail

CORRECTIONS. Consignes pour le déroulement de l épreuve d une durée de 2 heures

CORRECTIONS. Consignes pour le déroulement de l épreuve d une durée de 2 heures Consignes pour le déroulement de l épreuve d une durée de 2 heures * Calculatrice autorisée pour les deux parties mais en précisant les étapes des calculs. A] Nombres et Calculs : Exercice n 1 : Compléter

Plus en détail

point On obtient ainsi le ou les points d inter- entre deux objets».

point On obtient ainsi le ou les points d inter- entre deux objets». Déplacer un objet Cliquer sur le bouton «Déplacer». On peut ainsi rendre la figure dynamique. Attraper l objet à déplacer avec la souris. Ici, on veut déplacer le point A du triangle point ABC. A du triangle

Plus en détail