Convergence des suites

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Convergence des suites"

Transcription

1 Convergence des suites Cours maths Terminale S Dans ce module consacré à l étude de la convergence d une suite, on commence par redéfinir rigoureusement la notion de limite finie d une suite. Ensuite, les théorèmes de convergence monotone et le théorème des gendarmes ; Le cours se termine par la révision et la démonstration des résultats de convergence. 1/ Limite finie d une suite : définition Définition : La suite (u n) admet le réel pour limite si : Tout intervalle ]a ; b[ contenant, contient tous les termes de la suite à partir d un certain rang. On dit alors que la suite est convergente. Remarque : Une suite n admettant de limite qu en, on pourra simplifier la notation en : lim un. On a donc (un) converge vers lim un avec nombre réel fini. «fini» signifie que cette limite ne vaut ni, ni Une suite qui ne converge pas est dite divergente. 1.1 / Limite finie d une suite : propriétés Etudier la convergence d une suite, c est donc chercher sa limite et déterminer en fonction du résultat si la suite converge ou diverge. Attention! Une suite divergente ne tend pas forcément vers l infini. Exemple : un = (-1) n oscille et n a de limite ni finie, ni infinie.

2 Propriétés : 1 la limite finie d une suite lorsqu elle existe est unique. 2 une suite qui converge est bornée. Et conséquence de 2, en utilisant sa contraposée : 3 si une suite n est pas bornée alors elle diverge. Car d après 2 : si elle convergeait, elle serait bornée. Remarque : la réciproque du 2 est fausse. En effet, si nous reprenons l exemple du dessus : -1 < un < 1 ; Et pourtant la suite diverge. 2/ Théorèmes de convergence Théorèmes de convergence monotone : * Si (un) est croissante et majorée alors (un) converge. La suite «monte» mais est bloquée par «un mur» donc elle possède une limite finie. * Si (un) est décroissante et minorée alors (un) converge. La suite «descend» mais est bloquée par «un mur» donc elle possède une limite finie. Remarque : Savoir que la suite converge ne donne en rien sa limite mais permet dans certains cas d appliquer des théorèmes qui permettent de la calculer. C est la cas notamment pour une suite définie par récurrence, cas que nous étudierons dans la suite de ce module. Attention! Si (un) est croissante et majorée par exemple par 2 alors (un) converge mais ne converge pas forcément vers 2.

3 Les théorèmes suivants vont cependant nous permettre d avoir des renseignements sur la localisation de la limite : Soit (un) une suite de nombres réels convergente. Si pour tout n, ou si à partir d un certain rang : un < M alors : lim un < M Attention! Il est à noter que même si tous les termes de la suite sont strictement inférieurs à M, la limite de la suite peut, elle, être égale à M. En effet, si par exemple : alors, pour tout n non nul : un < 0 or : lim un = 0 Si pour tout n, ou si à partir d un certain rang : un > m et conséquence des deux théorèmes : alors : lim un < M Si pour tout n, ou si à partir d un certain rang : m < un < M alors : m < lim un < M Remarque: Ces résultats sont en particuliers utiles dans la recherche de la limite L d une suite définie par récurrence, et souvent nécessaires pour savoir si l on peut appliquer le théorème donnant f (L)=L. Théorème des gendarmes : * Si pour tout n : vn < un < wn et si (vn) et (wn) convergent vers alors : (un) converge vers Ce théorème est également valable si l encadrement n est vrai qu à partir d un certain rang.

4 Attention! Beaucoup d élèves commettent l erreur suivante : Contre exemple : et or: lim (-n 2 ) = Par contre, et ce qui est souvent le cas dans des exercices de BAC : Si on sait de plus que la suite est à termes positifs alors : pour tout n : 0 < un < wn et lim o = lim wn = 0 «0» symbolisant ici le terme général de la suite constante nulle. Donc d après le Théorème des gendarmes : lim un = 0 Théorème des gendarmes avec valeur absolue * Si pour tout n : et si lim vn = 0 alors : (un) converge vers Ce théorème est également valable si l encadrement n est vrai qu à partir d un certain rang. Démonstration : * Si pour tout n : Alors : - vn < un - < vn Or : lim (-vn) = lim vn = 0 Donc d après le théorème des gendarmes : lim (un - ) = 0 D où : lim un =

5 3/ Limite infinie d une suite : définition La suite (un) admet pour limite si : Tout intervalle ]a ; [ contient tous les termes de la suite à partir d un certain rang. La suite (un) admet pour limite si : Tout intervalle ] ; a[ contient tous les termes de la suite à partir d un certain rang. 4/ Théorèmes de divergence Théorèmes de divergence monotone * Si (un) est croissante et non majorée alors lim un = * Si (un) est décroissante et non minorée alors lim un= Théorèmes de comparaison * Si pour tout n : un > vn et lim vn = alors : lim un = * Si pour tout n : un < wn et lim wn = alors : lim un = Remarque : La démonstration de chacune de ces propriétés peut faire l objet d un R.O.C, c est pourquoi nous y reviendrons dans la partie exercice. 5/ Limite d une suite définie par une fonction S il existe une fonction f telle que : un = f (n) et si f admet une limite finie ou infinie en alors : On va donc gérer la recherche de la limite de (un) comme on gérerait la recherche de la limite de f en, mais en utilisant n comme variable.

6 Exemple : soit : Donc (un) converge vers 0. 6 / Limite d une suite définie par récurrence Théorème Soit une fonction f définie sur un intervalle I et soit (un) une suite vérifiant : pour tout n : I et un+1 = f (un) * Si (un) converge vers et si f est continue en alors vérifie : f( ) =. Pour trouver les valeurs possibles de, il faut donc résoudre l équation : f(x)=x Graphiquement Un point dont le couple de coordonnées est de la forme ( ; f ( )) est sur la courbe de f Et comme f ( ) =, le couple peut aussi être écrit ( ; ) donc ce point est également sur la droite d équation y = x, qui est la première bissectrice. Si (un) converge vers et si f est continue en alors est l abscisse d un des points d intersection entre la courbe de f et la première bissectrice.

7 Démonstration du théorème Cette démonstration est la démonstration à connaître sur les suites. Elle fait régulièrement l objet d un R.O.C au BAC. Si (un) converge vers alors tout intervalle ] a ; b [ contenant contient tous les termes de la suite à partir d un certain rang. Soit un intervalle ouvert quelconque ] a ; b [ contenant dans cet intervalle. et n0 le rang à partir duquel les termes de (un) sont Si on nomme (vn) la suite définie par : vn = un+1 Tous les termes de vn sont dans l intervalle à partir du rang : n0-1 Donc : lim vn = Soit : lim un+1 = De plus : Donc, par composition de limites : Or : f est continue en donc : d'où : Et : un+1 = f (un) Donc par unicité de la limite d une suite : lim un+1 = un+1 = lim f (un) Conclusion : = f ( )

8 7/ Limite d une suite géométrique * Si (un) est géométrique de premier terme u0 et de raison q alors : un = u0 x q n D où : lim un = u0 x lim q n Il est donc important de connaître les valeurs possibles de lim q n * Si q > 1 Quel que soit a > 0 ( aussi grand que l on veut ), il existe un rang n0 tel que : pour tout n > n0 : q n = a Donc tout intervalle ] a ; [ contient tous les termes de la suite à partir d un certain rang. D où : lim q n = et (un) diverge * Si q = 1, alors pour tout n : q n = 1 et (un) converge vers u0 * Si 0 < q < 1 Comme : est décroissante sur ] 0 ; [ Posons : On a alors : D où : lim q n = 0 Et donc (un) converge vers 0 * Si q = 0, alors pour tout n : q n = 0 D où : lim q n = 0 Et (un) converge vers 0.

9 * Si -1 < q < 0 Car Donc : lim q n = 0 D où (un) converge vers 0. * Si q = -1, un = -1 ou un = +1 selon la valeur de n, donc (q n ) et (un) divergent. * Si q < -1, (q n ) n est pas bornée donc : (q n ) diverge et (un) également. Limite d une suite géométrique : si un = u0 x q n lim un = u0 x lim q n donc : en résumé en conséquence si q < -1 (q n ) oscille et diverge (un) oscille et diverge. si -1 < q < 1 (q n ) converge vers 0 (un) converge vers 0. si q = 1 (q n ) converge vers 1 (un) converge vers u0 si q > 1 lim (q n ) = (q n ) diverge (un) diverge selon le signe de u0 8/ Propriétés algébriques des limites Les suites étant un cas particulier de fonctions ; Toutes les propriétés algébriques valables pour les limites de fonctions sont valables pour les limites de suites.

Généralités sur les suites : Ce module revient sur le programme de première : les différents types de suites,

Généralités sur les suites : Ce module revient sur le programme de première : les différents types de suites, Généralités sur les suites Cours maths Terminale S Généralités sur les suites : Ce module revient sur le programme de première : les différents types de suites, la monotonie, la convergence des suites,

Plus en détail

Chapitre I : LES SUITES

Chapitre I : LES SUITES Chapitre I : LES SUITES I- Généralités sur les suites 1) Définition et notations Définition 1 : 1) Définir une suite par une formule explicite, c est donner une relation entre le terme et l entier, pour

Plus en détail

Interprétation graphique ] [ + tous les termes de la suite à partir d un certain rang appartiennent à cet intervalle ]a;b[ b) Limite infinie

Interprétation graphique ] [ + tous les termes de la suite à partir d un certain rang appartiennent à cet intervalle ]a;b[ b) Limite infinie SUITES NUMERIQUES 2 ème partie I- Limite d une suite a) Limite finie Définition Soit (U n ) une suite de nombres réels. On dit que la suite (U n ) admet pour limite, si tout intervalle ]a ;b[ contenant

Plus en détail

TERMINALE S Chapitre 1 : Les suites

TERMINALE S Chapitre 1 : Les suites Généralités 1. Mode de génération ( ) ( ) La La ( ) définie par ( ) définie par 2. Monotonie REMARQUE5 Si une suite ( ) est définie de maniére explicite telle que ( ) suivent celles de f =f(n) pour tout

Plus en détail

TS Rappels sur les suites Cours. Une suite est une fonction définie sur l ensemble des entiers naturels ou sur privé des premiers entiers 0, 1, 2,, m

TS Rappels sur les suites Cours. Une suite est une fonction définie sur l ensemble des entiers naturels ou sur privé des premiers entiers 0, 1, 2,, m 1 TS Rappels sur les suites Cours I. Définitions Une suite est une fonction définie sur l ensemble des entiers naturels ou sur privé des premiers entiers 0, 1, 2,, m L image u(n) de l entier n est notée

Plus en détail

TS Limites de suites Cours. Exemples : Ex 3 page 45 ; suite (2n²)+algo dépassement. I. Définitions 1. Limite infinie. 2. Limite finie.

TS Limites de suites Cours. Exemples : Ex 3 page 45 ; suite (2n²)+algo dépassement. I. Définitions 1. Limite infinie. 2. Limite finie. TS Limites de suites Cours I. Définitions 1. Limite infinie Définition Dire qu une suite (u n ) a pour limite + signifie que tout intervalle ouvert de la forme [A ; + [ contient tous les termes de la suite

Plus en détail

Suites Réelles. Aptitudes à développer :

Suites Réelles. Aptitudes à développer : Suites Réelles Aptitudes à développer : Suites * Reconnaître qu un réel est un majorant ou un minorant d une suite du programme. * Etudier les variations d une suite du programme. * Représenter graphiquement

Plus en détail

UNIVERSITÉ DE CERGY Année U.F.R. Économie & Gestion Licence d Économie et Mathématiques MATH104 : Mathématiques

UNIVERSITÉ DE CERGY Année U.F.R. Économie & Gestion Licence d Économie et Mathématiques MATH104 : Mathématiques 1 UNIVERSITÉ DE CERGY Année 2012-2013 U.F.R. Économie & Gestion Licence d Économie et Mathématiques MATH104 : Mathématiques Chapitre V : Suites numériques 1 Un peu de topologie de R On a vu dans le chapitre

Plus en détail

Les suites - Partie II : Les limites

Les suites - Partie II : Les limites Terminale S Les suites - Partie II : Les limites 1.0 OLIVIER LECLUSE Juillet 2013 Table des matières 3 Limites et comparaison I - Limites et comparaison 5 A. Théorème d'encadrement dit "des gendarmes"...5

Plus en détail

(exercice : calculer u 2 puis u 5 )

(exercice : calculer u 2 puis u 5 ) Suites Prérequis : Division euclidienne Soient a et b deux entiers avec b 0. Il existe un unique couple (q, r) Z N tel que a = q b + r et 0 r < b. q s appelle le quotient de la division enclidienne de

Plus en détail

LIMITES DE SUITES ET DE FONCTIONS

LIMITES DE SUITES ET DE FONCTIONS LIMITES DE SUITES ET DE FONCTIONS I. Définitions des ites en l infini. - Limite infinie. a) Limite de suites. Définition : On dit que la suite (U n ) tend vers + lorsque pour tout réel A, l intervalle

Plus en détail

Chapitre I : Raisonnement par récurrence et comportement des suites. Extrait du programme :

Chapitre I : Raisonnement par récurrence et comportement des suites. Extrait du programme : Chapitre I : Raisonnement par récurrence et comportement des suites Extrait du programme : 1 I Rappels sur les suites Il existe deux façons de définir une suite : 1 Formule explicite Il existe une fonction

Plus en détail

Terminale S Suites numériques

Terminale S Suites numériques Terminale S Suites numériques Raisonnement par récurrence. Introduction En Mathématiques, un certain nombre de propriétés dépendent d un entier naturel n. Par exemple, la n(n + ) somme des entiers naturels

Plus en détail

Convergence de suites. Suites récurrentes

Convergence de suites. Suites récurrentes Convergence de suites Les suites dont on donne ci-dessous le terme général sont-elles convergentes? cos n + 3n a) ln n + 2n g) sin n n b) 4n 2 + 5n + 6 2n c) en n h) 2 n ( 1) n n 2 d) sin n e n e) n 1

Plus en détail

Résumé du cours sur les suites.

Résumé du cours sur les suites. Résumé du cours sur les suites. 1 Suites numériques réelles et principe de récurrence 1.1 Les deux façons de définir une suite numérique réelle Définition. On note n 0 un entier naturel (en général n 0

Plus en détail

Limites à l infini d une fonction

Limites à l infini d une fonction 9 Limites à l infini d une fonction On garde les notations du chapitre précédent en supposant ici que a = ou a = + est adhérent à l ensemble I, ce qui signifie que : ou : m R, ], m[ I M R, ]M, + [ I ce

Plus en détail

CHAPITRE 2 SUITES NUMÉRIQUES

CHAPITRE 2 SUITES NUMÉRIQUES CHAPITRE 2 SUITES NUMÉRIQUES Définition 2.0. Une suite réelle est une application u : N R qui à tout n de N associe un élément u n de R, appelé terme général de la suite. On notera donc la suite (u n ),

Plus en détail

N K, n 0 < n 1 < n 2 <

N K, n 0 < n 1 < n 2 < Chapitre 1 Suites réelles et complexes Dans ce chapitre, K désigne le corps R des nombres réels, ou le corps C des nombres complexes. Pour x K, nous noterons x le module de x (égal à la valeur absolue

Plus en détail

Suites - Récurrence 10X. 2 quiselit:sommedes 2 pouriallantde1à10vaut:

Suites - Récurrence 10X. 2 quiselit:sommedes 2 pouriallantde1à10vaut: Suites - Récurrence 1. Définitions - Rappels 1.1.Modes de définition d une suite La suite 0 =0 1 = =4 3 =6 peut être définiededeuxmanières: Définition explicite : ½ = Définition récurrente : 0 =0 +1 =

Plus en détail

Limites de suites. Révisions

Limites de suites. Révisions Limites de suites Révisions Soit ( ) une suite définie pour tout n N par = n 2 + n Exprimer en fonction de n : a b + c + 2 La suite ( ) est-elle arithmétique? 3 Quel est le sens de variation de ( )? 2

Plus en détail

Suites réelles. I Rappels de vocabulaire. II Suites remarquables. Définition 5

Suites réelles. I Rappels de vocabulaire. II Suites remarquables. Définition 5 I Rappels de vocabulaire Suites réelles Définition 1 Une suite réelle u est une application de I R où I est une partie de N. Au lieu de noter u(n), pour les suites on note u n l image de n par l application

Plus en détail

Convergence des suites monotones

Convergence des suites monotones Convergence des suites monotones Suites majorée, minorée, bornée Définition Une suite (u # ) est majorée par un nombre réel M si pour tout n N, u # M Une suite (u # ) est minorée par un nombre réel m si

Plus en détail

Recueil d annales en Mathématiques. Terminale S Enseignement obligatoire. Suites numériques

Recueil d annales en Mathématiques. Terminale S Enseignement obligatoire. Suites numériques Recueil d annales en Mathématiques Terminale S Enseignement obligatoire Frédéric Demoulin Dernière révision : 9 avril 008 Document diffusé via le site wwwbacamathsnet de Gilles Costantini fredericdemoulin

Plus en détail

RAISONNEMENT PAR RECURRENCE

RAISONNEMENT PAR RECURRENCE Exemple: RAISONNEMENT PAR RECURRENCE Montrons par récurrence que pour tout n N *, P (n) : i=n i = 1 + + 3 +...+ ( n -1) + n = n n1 n n1 Initialisation : pour n = 1 i =1 et = 111 =1 donc P(1) est vraie.

Plus en détail

Chapitre 3. Suites récurrentes

Chapitre 3. Suites récurrentes Chapitre 3 Suites récurrentes 3.1 Suites numériques Définition 3.1 On appelle suite de terme général u n et on note (u n ) n 0 ou plus simplement u la liste ordonnée des nombres u 0, u 1, u 2, u 3,....

Plus en détail

SUITE. Il existe deux grands moyens de dénir une suite : 2. Représentation graphique,variation, suite majorée, minorée

SUITE. Il existe deux grands moyens de dénir une suite : 2. Représentation graphique,variation, suite majorée, minorée SUITE I ) Rappels et dénition 1. N est l'ensemble des entiers naturels : 0,1,2... Une suite numérique est une fonction de N (ou une partie de N) dans R u : N R n u n Exemple : suite de Fibonnacci : 1,

Plus en détail

Chapitre 12 : Étude locale des fonctions : limites

Chapitre 12 : Étude locale des fonctions : limites Chapitre 12 : Étude locale des fonctions : limites Dans tout ce chapitre, I désigne un intervalle de R, x 0 R, f est une fonction définie sur son domaine de définition D f à valeurs réelles. C f désigne

Plus en détail

Cours de terminale S Suites numériques

Cours de terminale S Suites numériques 0 - - de terminale S Suites s LPO de Chirongui 20 mai 2016 1 - Introduction- Introduction Principe de récurrence Exemple En Mathématiques, un certain nombre de propriétés dépendent d un entier naturel

Plus en détail

Les suites numériques

Les suites numériques Les suites numériques chapitre 4 I Premier regard Définition : suite numérique Une suite numérique est une liste de nombres réels, numérotés généralement par des indices, entiers naturels consécutifs 0,

Plus en détail

Progression terminale S

Progression terminale S Progression terminale S Chapitre 1 : Suites (3 semaines) I. Rappels sur les suites A. Mode de génération d une suite B. Représentations graphiques C. Suites arithmétiques et géométriques II. III. IV. Raisonnement

Plus en détail

LEÇON N 54 : Suites divergentes. Cas des suites admettant une limite infinie : comparaison, opérations algébriques, composition par une application.

LEÇON N 54 : Suites divergentes. Cas des suites admettant une limite infinie : comparaison, opérations algébriques, composition par une application. LEÇON N 54 : Suites divergentes. Cas des suites admettant une limite infinie : comparaison, opérations algébriques, composition par une application. Pré-requis : Suites : définition, bornées, convergentes,

Plus en détail

Exercices du chapitre 3 avec corrigé succinct

Exercices du chapitre 3 avec corrigé succinct Exercices du chapitre 3 avec corrigé succinct Exercice III.1 Ch3-Exercice1 Soient α et u 0 deux réels donnés. Soit alors (u n ) une suite géométrique définie par u n = αu n 1. Donner le terme général de

Plus en détail

Suites de nombres réels, première année de premier cycle universitaire

Suites de nombres réels, première année de premier cycle universitaire Suites de nombres réels, première année de premier cycle universitaire F.Gaudon 10 août 2005 Table des matières 1 Définitions 2 2 Opérations sur les suites convergentes ou divergentes 3 3 Suites extraites

Plus en détail

CHAPITRE 1 : Raisonnement par récurrence, suites et fonctions

CHAPITRE 1 : Raisonnement par récurrence, suites et fonctions CHAPITRE 1 : Raisonnement par récurrence, suites et fonctions 1 Les suites numériques (rappel de première)... 4 1.1 Généralités... 4 1.2 Plusieurs méthodes pour générer une suite... 4 2 Exemples d algorithmes

Plus en détail

Chapitre 02 : Séries numériques

Chapitre 02 : Séries numériques Chapitre 02 : Séries numériques Introduction : La théorie des séries à pour but de donner si possible un sens à la somme d une infinité de nombres. Supposons que l on dispose d un gâteau et d un couteau

Plus en détail

SUITES : LIMITES. IV.1 Croissance/convergence et majoration... 7 IV.2 Théorème de la convergence monotone... 8 IV.3 Suites monotones non bornées...

SUITES : LIMITES. IV.1 Croissance/convergence et majoration... 7 IV.2 Théorème de la convergence monotone... 8 IV.3 Suites monotones non bornées... SUITES : LIMITES I. Limite d'une suite... 2 I.1 Limite finie (convergence) et divergence... 2 I.2 Limite infinie... 4 I.3 Alors c'est quoi la divergence?... 4 II. Opérations sur les limites... 5 II.1 Limite

Plus en détail

Soit I une partie non vide de IN. On appelle suite réelle définie sur I, toute application U de I dans IR.

Soit I une partie non vide de IN. On appelle suite réelle définie sur I, toute application U de I dans IR. I Notion de suite réelle ) Définition : Soit I une partie non vide de IN. On appelle suite réelle définie sur I, toute application U de I dans IR. Le réel U(n) est noté U n il est appelé terme général

Plus en détail

Limites de suites et de fonctions

Limites de suites et de fonctions TS - Chap2 1 Limites de suites et de fonctions 1 Limite d une suite u est une suite notée aussi (u n ) ; u n est son terme général ou terme d indice n. 1.1 Limite finie Soit l un nombre réel. Dire que

Plus en détail

Fonctions - Dérivabilité Cours maths Terminale S

Fonctions - Dérivabilité Cours maths Terminale S Fonctions - Dérivabilité Cours maths Terminale S Dans ce module, retour sur la notion de nombre dérivé vue en première. La classe de terminale s attardant plus longuement sur le problème de la dérivabilité

Plus en détail

Giuseppe Peano ( )

Giuseppe Peano ( ) Giuseppe Peano (1858-1932) Mathématicien et philosophe italien, il est l'un des premiers à avoir compris l'importance de fonder les mathématiques sur quelques axiomes précis, et d'en déduire ensuite théorèmes...

Plus en détail

LEÇON N 53 : Suites convergentes. Opérations algébriques, composition par une application continue. Limites et relation d ordre.

LEÇON N 53 : Suites convergentes. Opérations algébriques, composition par une application continue. Limites et relation d ordre. LEÇON N 53 : Suites convergentes. Opérations algébriques, composition par une application continue. Limites et relation d ordre. Pré-requis : Corps R construit : opérations, ordre total, axiome de la borne

Plus en détail

Chapitre 2 : Suites numériques

Chapitre 2 : Suites numériques Universités Paris 6 et Paris 7 M1 MEEF Analyse (UE 3) 013-014 Chapitre : Suites numériques Dans tout ce qui suit on considère des suites (u n ) n N à valeurs réelles, c est à dire des applications de N

Plus en détail

Raisonnement par récurrence 2

Raisonnement par récurrence 2 1 sur 9 25/10/2015 09:38 Raisonnement par récurrence 2 DATE DE CRÉATION DE L'ARTICLE :16 NOVEMBRE 2010 DATE DE RÉDACTION ANTÉRIEURE : N.C. LANGUE DE L'ARTICLE (français) Cet article est une traduction

Plus en détail

Limite d une suite - Terminale S Exercices corrigés en vidéo avec le cours sur jaicompris.com. v n. lim. lim

Limite d une suite - Terminale S Exercices corrigés en vidéo avec le cours sur jaicompris.com. v n. lim. lim Limite d une suite - Terminale S Exercices corrigés en vidéo avec le cours sur jaicompriscom Reconnaitre les formes indéterminées Dans chaque cas, on donne la ite de u n et v n Déterminer si possible,

Plus en détail

LEÇON N 46 : Suites de nombres réels définies par une relation de récurrence.

LEÇON N 46 : Suites de nombres réels définies par une relation de récurrence. LEÇON N 46 : Suites de nombres réels définies par une relation de récurrence. Pré-requis : Suites numériques : monotonie, convergence, divergence ; Théorème des valeurs intermédiaires ; R est complet :

Plus en détail

Suites. Chapitre 2. 1 Généralités sur les suites. Sommaire. 1.1 Définition d une suite. 1.2 Suites arithmétiques et suites géométriques

Suites. Chapitre 2. 1 Généralités sur les suites. Sommaire. 1.1 Définition d une suite. 1.2 Suites arithmétiques et suites géométriques Chapitre 2 Suites Sommaire 1 Généralités sur les suites....................................... 1.1 Définition d une suite...................................... 1.2 Suites arithmétiques et suites géométriques..........................

Plus en détail

Suites numériques. Z, auctore. 4 octobre u n+1 = u n + r. (1) u n = u 0 + n r (2) u 0 + u 1 + u u n = (n + 1) u 0 + u n 2

Suites numériques. Z, auctore. 4 octobre u n+1 = u n + r. (1) u n = u 0 + n r (2) u 0 + u 1 + u u n = (n + 1) u 0 + u n 2 Suites numériques Z, auctore 4 octobre 005 1 Suites arithmétiques Définition. Une suite de nombres (u n ) n N est arithmétique lorsqu il existe un nombre r tel que pour tout entier n on ait Ce nombre r

Plus en détail

Etude de limites de suites définies par

Etude de limites de suites définies par Etude de limites de suites définies par récurrence u n+1 = f(u n ) I) Généralités 1) Définition Une suite définie par récurrence est une suite définie par son premier terme et par une relation de récurrence,

Plus en détail

Chapitre 8. Suites numériques. 8.1 Généralités sur les suites numériques. 8.2 Comparaison de suites Définition et notation

Chapitre 8. Suites numériques. 8.1 Généralités sur les suites numériques. 8.2 Comparaison de suites Définition et notation Chapitre 8 Suites numériques La notion de suite numérique a été déjà introduite en classe de Première. On rappelle ici la définition d une suite numérique et complète les connaissances déjà acquises. On

Plus en détail

Limite de suites. I Introduction 1. II Définitions 1 1 Limite finie Limite infinie III Limites usuelles 2

Limite de suites. I Introduction 1. II Définitions 1 1 Limite finie Limite infinie III Limites usuelles 2 Limite de suites Table des matières I Introduction II s Limite finie............................................ 2 Limite infinie.......................................... III Limites usuelles 2 IV Opérations

Plus en détail

Mathématiques 11ème Sciences Production de Mathematikos Votre Ticket pour l Excellence en Maths. Exemple. Exemple

Mathématiques 11ème Sciences Production de Mathematikos Votre Ticket pour l Excellence en Maths. Exemple. Exemple Classe : 11 ème Sciences CHAPITRE 5 SUITES NUMÉRIQUES Domaine : Sciences, Mathématiques et Technologies Compétences : Résoudre une situation problème Composantes : Diagnostiquer la situation problème,

Plus en détail

ETUDE des SUITES RECURRENTES. 1 Intervalle stable par f - Existence et encadrement des termes de (u n ) n N

ETUDE des SUITES RECURRENTES. 1 Intervalle stable par f - Existence et encadrement des termes de (u n ) n N Lycée Dominique Villars ECE COURS ETUDE des SUITES RECURRENTES On appelle suite récurrente toute suite (u n ) n N telle qu il existe une fonction réelle f : I R telle que : n N, u n+ = f(u n ) On va voir

Plus en détail

). 1. Montrer que pour tout n 1 on a u n > Démontrer que pour tout n 1 on a u n+1 2 = 1 (u n 2) 2

). 1. Montrer que pour tout n 1 on a u n > Démontrer que pour tout n 1 on a u n+1 2 = 1 (u n 2) 2 TS Suites récurrentes Exercices Exercice. Soit u la suite définie par u 0 = 3 et pour tout entier n, + = 4un +.. Démontrer que pour tout entier n, >.. On définit la suite v pour n N par v n = un. Montrer

Plus en détail

SUITES RÉELLES CHAPITRE 3. 1 Compléments sur les réels. 1.1 Rappels. Définition 3.1. Soient x et y deux réels. On note. x si x 0. x sinon.

SUITES RÉELLES CHAPITRE 3. 1 Compléments sur les réels. 1.1 Rappels. Définition 3.1. Soient x et y deux réels. On note. x si x 0. x sinon. CHAPITRE 3 SUITES RÉELLES 1 Compléments sur les réels 1.1 Rappels 1.1.a Définition 3.1 Valeur absolue Soient x et y deux réels. On note x max(x, y) = y si x y sinon x et min(x, y) = y si x y sinon On étend

Plus en détail

Cours de mathématiques (Terminale S)

Cours de mathématiques (Terminale S) Terminale Scientifique (S) : Cours de mathématiques (Terminale S) I. Chapitre 01 : Les suites 1. Etude globale d une suite A. Les suites majorées, minorées, bornées La suite ( ) est majorée si et seulement

Plus en détail

SUITES DE NOMBRE REELS

SUITES DE NOMBRE REELS SUITES DE NOMBRE REELS Version 1 Dr Euloge KOUAME UVCI 2017 Aout 2017 Table des matières Objectifs 5 I - I. Généralités 7 A. I-1. Définition d'une suite...7 B. II-2. Suite majorée, minorée, bornée...7

Plus en détail

Suites récurrentes du type u n+1 = f(u n )

Suites récurrentes du type u n+1 = f(u n ) Suites récurrentes du type u n+ = f(u n ) Exemple : Soit la suite définie par la relation de récurrence : n N u n+ = u n u 2 n. En posant f la fonction définie sur R par x x x 2, on obtient que pour tout

Plus en détail

Suites. 1 Suite géométrique. Chapitre I. 1.1 Définition. 1.2 Propriétés

Suites. 1 Suite géométrique. Chapitre I. 1.1 Définition. 1.2 Propriétés Chapitre I Suites Exercices 8, 9, 0, 3, 4, 6, 3, 3, 34 page 34 pour revoir les notions de première sur les suites (récurrence, sens de variation...) Suite géométrique. Définition Définition Une suite u

Plus en détail

Exercices type bac sur les suites.

Exercices type bac sur les suites. Exercices type bac sur les suites Corrigés NB : On ne donne dans ce document que des indices, la preuve complète reste à faire Exercice D après sujet du baccalauréat Centres étrangers, juin 003 On définit,

Plus en détail

valeurs dans un espace normé de dimension finie

valeurs dans un espace normé de dimension finie Séries numériques, ou séries à valeurs dans un espace normé de dimension finie Définitions. Dans ce chapitre K représente indifférement le corps des réels R, ou le corps des complexes C. Le symbole E représente

Plus en détail

Cours d Analyse I : les réels et les fonctions

Cours d Analyse I : les réels et les fonctions Introduction à R Suites numériques Cours d Analyse I : les réels et les fonctions Université Lyon 1 Institut Camille Jordan CNRS UMR 5208 FRANCE Automne 2014 - Licence L1 Introduction à R Suites numériques

Plus en détail

Suites de nombres réels

Suites de nombres réels Suites de nombres réels I Généralités 1.1 propriété vraie à partir d un certain rang Définition 1.1 On dit qu une propriété P (n) est vraie à partir d un certain rang N N si et seulement s il existe un

Plus en détail

Chapitre 6 Comportement asymptotique et limites de fonctions Limites de suites

Chapitre 6 Comportement asymptotique et limites de fonctions Limites de suites Chapitre 6 Comportement asymptotique et ites de fonctions Limites de suites 1. Limite d une fonction en ou en. 1.1 Limite infinie d une fonction en ou en Cadre : Soit I=]a ; [, où a est un réel fixé (NB

Plus en détail

RAISONNEMENT PAR RECURRENCE

RAISONNEMENT PAR RECURRENCE Exemple: Montrons par récurrence que pour tout n Initialisation : pour n = 1 RAISONNEMENT PAR RECURRENCE i=1 i =1 et i=1 N i=n *, P (n) : i = 1 + + 3 +...+ ( n -1) + n = n n 1 i=1 n n 1 Hérédité : supposons

Plus en détail

LEÇON N 56 : 56.1 Monotonie de la suite

LEÇON N 56 : 56.1 Monotonie de la suite LEÇON N 56 : Étude de suites de nombres réels définies par une relation de récurrence u n+1 = f(u n ) et une condition initiale. L exposé pourra être illustré par un ou des exemples faisant appel à l utilisation

Plus en détail

Principe d une démonstration par récurrence :

Principe d une démonstration par récurrence : Chapitre Suites 1 Démonstration par récurrence Exemples introductif : Imaginons que des ouvriers construisant un immeuble aient toutes les instructions nécessaires pour construire un étage d immeuble sur

Plus en détail

Suites. 1.1 Définition Variations Représentation graphique d une suite Suite arithmétiques et géométriques...

Suites. 1.1 Définition Variations Représentation graphique d une suite Suite arithmétiques et géométriques... Lycée Paul Doumer 3-4 TS- Cours Suites Contents Généralités. Définition........................................ Variations........................................3 Représentation graphique d une suite.........................4

Plus en détail

Cours de Terminale ES / Suites. E. Dostal

Cours de Terminale ES / Suites. E. Dostal Cours de Terminale ES / Suites E. Dostal Aout 2017 Table des matières 1 Suites 2 1.1 Notion de Suites......................................... 2 1.2 Suites arithmétiques.......................................

Plus en détail

SUITES NUMÉRIQUES. 1 Généralités. 1.1 Définition. Laurent Garcin MPSI Lycée Jean-Baptiste Corot. Définition 1.1

SUITES NUMÉRIQUES. 1 Généralités. 1.1 Définition. Laurent Garcin MPSI Lycée Jean-Baptiste Corot. Définition 1.1 SUITES NUMÉRIQUES 1 Généralités 1.1 Définition Définition 1.1 On appelle suite réelle toute famille d éléments de R indexée sur N ou, de manière équivalente, toute application de N dans R. L ensemble des

Plus en détail

Chapitre 2 : Limites de suites

Chapitre 2 : Limites de suites Chapitre 2 : Limites de suites I Suite convergeant un réel l Définition Soient (u n ) une suite numérique et l un nombre réel. On dit que (u n ) admet pour limite l (ou converge vers l) lorsque tout intervalle

Plus en détail

Université MONTPELLIER 3 UFR 4. Notes de Cours. Mathématiques M1 MRHDS Laurent Piccinini. version du 5 octobre 2011.

Université MONTPELLIER 3 UFR 4. Notes de Cours. Mathématiques M1 MRHDS Laurent Piccinini. version du 5 octobre 2011. Université MONTPELLIER 3 UFR 4 Notes de Cours Mathématiques M1 MRHDS 2011-2012 Laurent Piccinini version du 5 octobre 2011. M1 MRHDS 1 Table des matières I Les suites numériques 2 I.1 Généralités..............................................

Plus en détail

Suites et récurrence

Suites et récurrence Suites et récurrence 1 Suites arithmétiques et géométriques 1.1 Définitions * On dit que la suite (u n ) est arithmétique s il existe un réel r appelé raison tel que, pour tout n dans N, on ait : u n+1

Plus en détail

1. Soit l un nombre réel. On dit que f tend vers l en + si f est aussi proche que l on veut de l dès que x est suffisamment

1. Soit l un nombre réel. On dit que f tend vers l en + si f est aussi proche que l on veut de l dès que x est suffisamment Limites s Soit f une fonction définie sur un intervalle I et 0 un point de I ou une etrémité de I.. Limite réelle en un point Soit l un nombre réel. On dit que f admet l pour limite en 0 si f() est aussi

Plus en détail

Chapitre 1 : Correction des Travaux dirigés

Chapitre 1 : Correction des Travaux dirigés U.P.S. I.U.T. A, Département d Informatique Année 009-00 Chapitre : Correction des Travaux dirigés. Soit v n n i0 qi la somme des n premiers termes d une suite géométrique de raison q, et de premier terme.

Plus en détail

Suites numériques. Exemples élémentaires de suites

Suites numériques. Exemples élémentaires de suites MTA - ch5 Page 1/12 Suites numériques Notion de suite : Une suite numérique est une application de N (ou parfois de N ) à valeurs dans R ou dans C. La suite u : N C est notée de plusieurs façons : n u(n)

Plus en détail

Les Suites ( En première S )

Les Suites ( En première S ) 2010 2011 Les Suites ( En première S ) Dernière mise à jour : Jeudi 31 Mars 2011 Vincent OBATON, Enseignant au lycée Stendhal de Grenoble (Année 2010-2011) 1 2010 2011 J aimais et j aime encore les mathématiques

Plus en détail

SUITES ET RÉCURRENCE

SUITES ET RÉCURRENCE SUITES ET RÉCURRENCE En première : une suite ( ) est une fonction particulière : son ensemble de définition est constitué d'entiers, on peut donc parler (contrairement aux fonctions en général) de l'image

Plus en détail

Terminale SSI 1 Chapitre 3 : Suites numériques 1. L image d un entier naturel n par une suite u n est en général pas noté «u(n)» mais plutôt :

Terminale SSI 1 Chapitre 3 : Suites numériques 1. L image d un entier naturel n par une suite u n est en général pas noté «u(n)» mais plutôt : Terminale SSI 1 Chapitre 3 : Suites numériques 1 1 Introduction 1.1 s On rappelle que IN est On appelle suite numérique une fonction définie sur L image d un entier naturel n par une suite u n est en général

Plus en détail

Exercice 5 Démontrer que pour tout entier naturel n, le nombre 3n² + 3n + 6 est un multiple de 6.

Exercice 5 Démontrer que pour tout entier naturel n, le nombre 3n² + 3n + 6 est un multiple de 6. Exercice 1 : Dire en justifiant si les suites (u n ) définies ci-dessous sont arithmétiques, géométriques ou ni l'un ni l'autre. Dans le cas où elles sont arithmétiques ou géométriques, préciser le premier

Plus en détail

Suites numériques. Table des matières

Suites numériques. Table des matières 1 Suites numériques Table des matières 1 Suite numérique 1.1 Définition................................. 1. Définir une suite.............................. 1..1 De façon explicite.........................

Plus en détail

UFR Mathématiques Année CAPES. Suites numériques

UFR Mathématiques Année CAPES. Suites numériques Université de Rennes 1 Ronan Quarez UFR Mathématiques Année 2008-2009 CAPES 1 Critère de Cauchy 1.1 QCM Suites numériques a) Toute suite de Cauchy, d entiers relatifs, converge dans Z? b) Toute suite de

Plus en détail

Limites de fonctions

Limites de fonctions DERNIÈRE IMPRESSIN LE 9 octobre 204 à 9:32 Limites de fonctions Table des matières Limite finie ou infinie à l infini 2. Limite finie à l infini........................... 2.2 Limite infinie à l infini..........................

Plus en détail

3 Limites de suites. Manuel Repères p.12.

3 Limites de suites. Manuel Repères p.12. 3 Limites de suites Manuel Repères p.12. Objectifs : Comprendre les notions de suites divergentes, convergentes Savoir déterminer un rang à partir duquel les termes d une suite dépassent un certain seuil

Plus en détail

Une condition nécessaire de convergence Considérons une série de terme général. Supposons cette série convergente. Soit sa somme.

Une condition nécessaire de convergence Considérons une série de terme général. Supposons cette série convergente. Soit sa somme. Séries numériques I) Définitions - Notions essentielles.) Séries numériques Définition Soit une suite numérique. On appelle série de terme général la suite dont les termes successifs sont : ₀ ₀ ₁ ₀ ₁ ₂

Plus en détail

Cours d analyse - Résumé sur les suites 2015/2016

Cours d analyse - Résumé sur les suites 2015/2016 Cours d analyse - Résumé sur les suites 2015/2016 CPUS I. Les suites numériques I.1. Premières définitions. Définition. Une suite réelle est une fonction dont l ensemble de départ est une partie de N du

Plus en détail

LIMITES DE FONCTIONS

LIMITES DE FONCTIONS T ale S LIMITES DE FONCTIONS Analyse - Chapitre 6 Table des matières I Limite d une fonction à l infini 2 I Limite finie à l infini........................................ 2 I a..........................................

Plus en détail

Fonction exponentielle

Fonction exponentielle Fonction exponentielle 1 Fonction exponentielle Définition et variation Théorème Définition Il existe une unique fonction définie et dérivable sur telle que et Cette fonction est appelée fonction exponentielle

Plus en détail

Chapitre 3. Continuité, dérivation et limite d une fonction

Chapitre 3. Continuité, dérivation et limite d une fonction Chapitre 3. Continuité, dérivation et limite d une fonction I. Continuité Définition : Continuité d une fonction Dire que f est continue en a signifie que f a une limite finie en a ; cette limite est alors

Plus en détail

Cours de mathématiques 2A S2

Cours de mathématiques 2A S2 Cours de mathématiques 2A S2 2010 2011 Cours de mathématiques du 2nd semestre de 2ème année Esstin. Professeur : Valein Julie. Amélie Caissial Quentin Grandemange Si vous trouvez des erreurs dans ce cours,

Plus en détail

TD 3: Suites réelles

TD 3: Suites réelles Université Pierre et Marie Curie Année 2011/2012 LM115 TD 3: Suites réelles MIME Convergence des suites : Par définition, une suite (u n ) converge vers un réel l si : Pour tout ɛ réel strictement positif,

Plus en détail

1 Notions de logique mathématique.

1 Notions de logique mathématique. Université de Provence 2012 2013 Introduction à l Analyse Chapitre 3 - Logique et Suites. 1 Notions de logique mathématique. 1.1 Assertions, propositions logiques, tables de vérité. On rappelle la notion

Plus en détail

Cours 5: Une introduction aux suites numériques

Cours 5: Une introduction aux suites numériques Cours 5: Une introduction aux suites numériques Laboratoire de Mathématiques de Toulouse Université Paul Sabatier-IUT GEA Ponsan Module complémentaire de maths, année 2012-2013 1 Généralités sur les suites

Plus en détail

Limites de suites et de fonctions

Limites de suites et de fonctions Limites de suites et de fonctions Le chapitre précédent traitait des suites numériques. On avait, en particulier, dit qu elles avaient des variations tout comme les fonctions. Il est rare de devoir calculer

Plus en détail

SUITES - RECURRENCE - SOMMES

SUITES - RECURRENCE - SOMMES SUITES - RECURRENCE - SOMMES Chapitre 1 I Généralités sur les suites Définition I.1 Une suite réelle est une fonction d une partie A de N dans R. u : A R n u(n) := u n l intervalle de définition peut donc

Plus en détail

Chapitre 1 : Les suites

Chapitre 1 : Les suites Chapitre : Les suites I. Exercices supplémentaires Partie A : Récurrence Exercice La suite est définie par et +2+ pour tout entier naturel. Démontrer par récurrence que pour tout. La suite est définie

Plus en détail

Limite, continuité, théorème des valeurs intermédiaires, dérivabilité, théorèmes de Rolle et des accroissements finis

Limite, continuité, théorème des valeurs intermédiaires, dérivabilité, théorèmes de Rolle et des accroissements finis Limite, continuité, théorème des valeurs intermédiaires, dérivabilité, théorèmes de Rolle et des accroissements finis I Limites Continuités Exercice 1 : Soit ] [ la fonction définie par : Déterminer les

Plus en détail

DST n 4 - Corrigé. Centre étranger Juin 2007 (6 point) Le but de l'exercice est de démontrer que l'équation :, admet une unique solution dans

DST n 4 - Corrigé. Centre étranger Juin 2007 (6 point) Le but de l'exercice est de démontrer que l'équation :, admet une unique solution dans DST n 4 - Corrigé Centre étranger Juin 2007 (6 point) Le but de l'exercice est de démontrer que l'équation :, admet une unique solution dans l'ensemble des nombres réels, et de construire une suite qui

Plus en détail

Fiche de cours 2 - Suites de réels.

Fiche de cours 2 - Suites de réels. Licence de Sciences et Technologies EM1 - Analyse Fiche de cours - Suites de réels. Généralités sur les suites. Définition : Une suite est une fonction u : N R, définie à partir dun certain rang au moins.

Plus en détail

Notes de cours : Chapitre II : Limites. 1 Limite d une fonction en + ou. 1.1 Limite infinie en l infini

Notes de cours : Chapitre II : Limites. 1 Limite d une fonction en + ou. 1.1 Limite infinie en l infini 1 UNIVERSITÉ DE CERGY Année 2013-2014 U.F.R. Économie & Gestion Licence d Économie Finance et Gestion L1-S1 : MATH101 : Pratique des Fonctions numériques Notes de cours : Chapitre II : Limites Notations

Plus en détail

Généralisation de la notion d intégrale

Généralisation de la notion d intégrale Généralisation de la notion d intégrale I) Intégration d une fonction discontinue.) Fonction définie par morceaux On considère une fonction continue sur un intervalle, sauf en un nombre fini de points

Plus en détail