(c) A. Desbiens, Université Laval

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "(c) A. Desbiens, Université Laval"

Transcription

1 La commande automatique des systèmes dynamiques André Desbiens Département de génie électrique et de génie informatique Université Laval janvier 28

2

3 Table des matières I Qu est-ce qu un système asservi? La description d une boucle de commande 3. Conclusion Les performances des systèmes asservis 5 2. Conclusion II Les systèmes dynamiques, continus et monovariables 7 3 La transformée de Laplace 9 3. Conclusion Les propriétés des systèmes linéaires 4. Conclusion Les systèmes du premier ordre 3 5. Conclusion Le régime permanent et la stabilité 5 6. Conclusion Les retards 7 7. Conclusion Les systèmes du second ordre 9 8. Conclusion iii

4 iv TABLE DES MATIÈRES 9 Les systèmes d ordre n 2 9. Conclusion Les diagrammes fonctionnels 23. Conclusion Les diagrammes asymptotiques de Bode 25. Conclusion III Les systèmes asservis continus et monovariables 27 2 Le raisonnement des systèmes de commande Conclusion L analyse des systèmes asservis 3 3. Les compromis lors de la conception des systèmes asservis Les fonctions de transfert d un asservissement Les compromis entre la performance et la sensibilité au bruit de mesure Le compromis entre la performance et la robustesse Le compromis entre la performances et la douceur de la commande La stablité des systèmes asservis La règle du revers Les marges de stabilité L abaque de Black Le critère de Nyquist Conclusion Les régulateurs de base 6 4. La commande PID La réponse en fréquences des régulateurs de base Le réglage des régulateurs proportionnels Le réglage par placement des pôles de H(s) Le réglage par sélection de la marge de phase Le réglage des régulateurs à avance de phase Le réglage par sélection de la fréquence ω et de la marge de phase Le réglage par sélection des marges de gain et de phase Le réglage des régulateurs avec action intégrale

5 TABLE DES MATIÈRES 4.5. Le réglage par placement des pôles Le réglage par la méthode des contours La détection et la correction d un mauvais réglage d un régulateur PI pour un procédé asymptotiquement stable Le réglage du filtre de consigne Le réglage du filtre de mesure Conclusion Au delà de la simple retroaction Le prédicteur de Smith L anticipation des perturbations mesurables La commande cascade La commande à modèle interne Conclusion Les régulateurs PID industriels 6. Conclusion IV Les systèmes asservis numériques et monovariables 3 7 La chaîne d acquisition de données 5 7. L échantillonnage d un signal continu Le représentation mathématique de l échantillonnage Le spectre d un signal échantillonné Le repliement spectral Le théorème de Nyquist-Shannon Le filtrage anti-repliement La reconstruction des données Le bloqueur d ordre zéro D autres types de bloqueurs Comparaison entre la commande numérique et la commande analogique Le choix de la période d échantillonnage et de la fréquence de coupure du filtre anti-repliement Conclusion Matlab v

6 vi TABLE DES MATIÈRES 8 Les fonctions de transfert discrètes 3 8. La transformée en z unilatérale La définition de la transformée en z unilatérale Les propriétés de la transformée en z La transformée en z inverse Le passage de la transformée de Laplace à la tranformée en z La transformée en z modifiée Les systèmes échantillonnés et hybrides La fonction de transfert d un système échantillonné Le calcul de la réponse d un système échantillonné Quelques propriétés des fonctions de transfert discrètes L interaction entre des systèmes continus et des systèmes discrets Conclusion Matlab La commande numérique La conception analogique suivie d une discrétisation La conception numérique L inversion d un modèle discret La synthèse directe La commande à modèle interne Conclusion V Les systèmes asservis multivariables 8 2 L analyse des systèmes multivariables Conclusion La commande par fonctions de transfert Conclusion La commande par retour d état Conclusion

7 TABLE DES MATIÈRES VI La modélisation et l identification des systèmes La modélisation de systèmes simples Conclusion L identification des systèmes 93 VII 24. Conclusion Le survol de quelques aspects avancés en commande automatique95 25 La commande non linéaire Conclusion Le filtrage de Kalman Conclusion La commande prédictive Conclusion Les systèmes autoréglants et la commande adatative Conclusion La réconciliation de données Conclusion La supervision des systèmes asservis Conclusion La commande à l echelle de l usine Conclusion VIII Une introduction à la technologie de la commande industrielle 2 32 L instrumentation Conclusion Les systèmes de commande informatisés Conclusion vii

8 viii TABLE DES MATIÈRES A Quelques notions de calcul matriciel 29 A. Conclusion Annexes 29 B La décomposition en fractions partielles 22 B. Conclusion Bibliographie 223 Index 225

9 Chapitre 3 L analyse des systèmes asservis Dans ce chapitre, les systèmes asservis sont analysés. La première section explique les trois principaux compromis qui sont inévitables lors du design des régulateurs. La deuxième section est consacrée à l étude de la stabilité des systèmes asservis. La dernière section conclut en faisant le lien avec les objectifs visés lorsqu un système asservi est conçu. 3. Les compromis lors de la conception des systèmes asservis 3.. Les fonctions de transfert d un asservissement La figure 3. représente de façon générale d un asservissement. Le signal y est la véritable sortie du procédé alors que y m est sa mesure. Le processus de mesure est bruité par d m. La consigne de l asservissement est r. Avant d appliquer la consigne à la boucle fermée, il est parfois préférable de la filtrer avec F (s), générant ainsi la consigne filtrée r f. Le filtre doit évidemment être stable et posséder un gain unitaire afin que r f rejoigne éventuellement r en régime statique. Le régulateur (appelé aussi contrôleur ou compensateur) est G c (s) ; il calcule la variable manipulée u à partir de l erreur ɛ entre la consigne filtrée et la mesure. Le procédé est représenté par les modèles G p (s) et G d (s) qui expliquent les effets de la variable manipulée u et de la perturbation extérieure d sur la sortie du procédé. Si G d (s) =, la perturbation d est additionnée directement à la sortie du procédé. Si G d (s) = G p (s), alors une configuration équivalente est l addition de la perturbation d directement à l entrée de G p (s). La fonction de transfert G d (s) est supposée stable. La conception de l asservissement consiste à choisir F (s) et G c (s) afin que le régulateur manipule adéquatement u (appelé aussi l action ou la commande) pour que la sortie y (appelée aussi la variable contrôlée) 3

10 32 Chapitre 3. L analyse des systèmes asservis r r f u F(s) G c (s) G p (s) + - y m Procédé + d m G d (s) Fig. 3. Représentation générale d un asservissement r d y r f u F(s) G c (s) G p (s) + - Fig. 3.2 Asservissement dans le cas où d = d m = suive la consigne r selon la dynamique désirée malgré la présence de la perturbation et du bruit de mesure. Afin de comprendre le comportement du système asservi, il faut d abord trouver l équation qui décrit son comportement. Le système étant linéaire, le principe de superposition est employé pour considérer un seul des trois signaux d entrée (r, d m et d) à la fois. Supposons donc d abord que d = d m =. Le système est alors illustré à la figure 3.2, d où : Cette relation peut être écrite comme suit : en considérant que : Y (s) = G c(s)g p (s)f (s) R(s) (3.) + G c (s)g p (s) d + Y (s) = H(s)R f (s) (3.2) H(s) = G c(s)g p (s) + G c (s)g p (s) y y (3.3)

11 3.. Les compromis lors de la conception des systèmes asservis 33 et d m + -G c (s)g p (s) Fig. 3.3 Asservissement dans le cas où r = d = d Gd (s) + - G c (s)g p (s) Fig. 3.4 Asservissement dans le cas où r = d m = y R f (s) = F (s)r(s) (3.4) La fonction de transfert de la boucle fermée H(s) exprime la relation entre la consigne véritablement appliquée à la boucle (r f ) et la sortie du procédé (y). Supposer r = d = conduit à la figure 3.3 et donc à : Y (s) = G c(s)g p (s) + G c (s)g p (s) D m(s) = H(s)D m (s) (3.5) La fonction de transfert liant le bruit à la sortie du procédé est donc la même, au signe près, que celle entre la consigne filtrée et la sortie du procédé. Si maintenant r = d m =, alors le système peut être représenté par le diagramme fonctionnel de la figure 3.4. L expression de la sortie est : Si on suppose que : et que : G d (s) Y (s) = D(s) (3.6) + G c (s)g p (s) S(s) = + G c (s)g p (s) y (3.7) D y (s) = G d (s)d(s) (3.8)

12 34 Chapitre 3. L analyse des systèmes asservis alors l équation 3.6 devient : Y (s) = S(s)D y (s) (3.9) La fonction de transfert S(s) explique la dynamique entre la perturbation qui s additionne à la sortie du procédé (d y ) et la sortie du procédé (y). Il est facile de démontrer que : S(s) = H(s) (3.) En combinant les trois résultats précédents (équations 3., 3.5 et 3.6), l expression de la sortie du procédé est obtenue : Y (s) = G c(s)g p (s)f (s) + G c (s)g p (s) R(s) + G d (s) + G c (s)g p (s) D(s) G c(s)g p (s) + G c (s)g p (s) D m(s) (3.) = H(s)R f (s) + ( H(s)) D y (s) H(s)D m (s) (3.2) Les fonctions de transfert des trois termes de cette équation ont les mêmes pôles. La stabilité de l asservissement est donc établie par l étude de l équation caractéristique +G c (s)g p (s) = (F (s) et G d (s) sont supposés stables). Selon le premier terme de l équation 3.2, la fonction de transfert de la boucle fermée H(s) représente la performance du système en poursuite de la consgine filtrée. Idéalement, l asservissement devrait reproduire d aussi près que possible la consigne filtrée. En d autres termes, la sortie du procédé devrait être similaire à la consigne filtrée. Pour y parvenir, le rapport d amplitude de H(s) doit être unitaire (ou près de l unité) à partir de la fréquence jusqu à une fréquence aussi élevée que possible. Cette zone fréquentielle correspond (approximativement) à la largeur de bande de H(s). En imaginant que la consigne filtrée est décomposée en une somme de sinusoïdes de diverses fréquences, l asservissement reproduira alors les sinusoïdes dont les fréquences sont dans la largeur de bande de H(s). Les plus hautes fréquences seront toutefois atténuées et ne contribueront que peu à la composition du signal de sortie du procédé. Plus la largeur de bande de H(s) est grande, plus la sortie y contient de hautes fréquences et par conséquent plus elle est rapide. L exemple simple d un système du premier ordre (H(s) = ) illustre le raisonnement précédent (figure 3.5). Son gain +τs unitaire assure que la sortie du procédé est égale à la consigne filtrée en régime statique. La largeur de bande du système est /τ rad/sec. Plus la largeur de bande est grande (donc plus petite est la constante de temps) et plus l asservissement est rapide. Les trois sections qui suivent illustreront cependant qu il n est pas possible d augmenter la largeur de bande de H(s) indéfiniment. Une bonne performance en poursuite de la consigne filtrée signifie un bon rejet de la perturbation extérieure, donc une bonne performance en régulation. En effet, la contribution de

13 3.. Les compromis lors de la conception des systèmes asservis 35 Rapport d'amplitude [db] Largeur de bande de H 2 (s) Largeur de bande de H (s) H (s)=/(+s) H 2 (s)=/(+.s) Fréquence [rad/s] Fig. 3.5 Rapport d amplitude de H(s) = la perturbation sur la sortie (deuxième terme de l équation 3.2) s explique par la fonction de transfert S(s) = H(s). La figure 3.6 montre des rapports d amplitude typiques pour H(s) et S(s). On constate que la largeur de bande de H(s) correspond approximativement aux fréquences contenues dans la perturbation qui seront atténuées par S(s) et donc qui n affecteront peu la sortie du procédé. Les fréquences qui sont plus élevées que la largeur de +τs bande de H(s) ne sont pas atténuées et se retrouvent à la sortie du procédé. La performance en poursuite de la consigne filtrée et la performance en régulation sont définies par H(s). À une fréquence donnée, on a : H(jω) = G(jω) + G(jω) (3.3) Cette équation permet de déduire que pour obtenir H(jω) =, il faut que G(jω). Le rapport d amplitude de G(s) doit donc être très élevé aux fréquences auxquelles de bonnes performances sont désirées. Ainsi, une erreur statique nulle s obtient si le gain statique de H(s) est unitaire (donc H(j) = et par conséquent y = r f en régime statique). Pour y parvenir, l étude à la fréquence zéro de l équation 3.3 conduit à G(j) et donc que G(s) contienne au moins un facteur /s (c est-à-dire contient au moins un intégrateur comme il fut démontré dans le cours Systèmes et commande linéaires). Évidemment, il n est pas

14 36 Chapitre 3. L analyse des systèmes asservis Rapport d'amplitude [db] H(s) S(s) Fréquence [rad/s] Fig. 3.6 Rapport d amplitude de H(s) et S(s) possible de modifier le procédé à automatiser (G p (s)) et par conséquent obtenir de grandes valeurs de G(jω) siginifie concevoir un régulateur dont G c (jω) a de grandes valeurs (à moins que le procédé ait déjà de grands rapports d amplitude à ces fréquences). Exemple 3. (Le rapport d amplitude du régulateur) Le procédé est G p (s) = +s. Le premier asservissement est lent (relativement au procédé) : H (s) = +5s. Pour obtenir cette performance, le régulateur est G c(s) =.2(+s) s. Le deuxième régulateur est G c2 (s) = 5(+s) s et il mène à une fonction de transfert de la boucle beaucoup plus rapide : H 2 (s) =. La figure 3.7 montre les réponses en fréquences des +2s régulateurs et des boucles fermées correspondantes. Augmenter le rapport d amplitude du régulateur se traduit en un système asservi plus performant. Les réponses à un échelon de consigne des systèmes (F (s) = ) sont tracées à la figure 3.7. En plus de la signification de S(s) exprimée par l équation 3.9, cette fonction de transfert correspond également au rapport entre les variations relatives de H(s) et les variations relatives de G(s) = G c (s)g p (s) : G(s) +G(s) S(s) = H(s)/H(s) G(s)/G(s) = G(s) H(s) G(s) = + G(s) (3.4)

15 3.. Les compromis lors de la conception des systèmes asservis 37 Rapport d'amplitude [db] Fréquence [rad/s] G c (s) G c2 (s) H (s) H 2 (s) Fig. 3.7 Rapport d amplitude des régulateurs et des boucles fermées Cette interprétation explique la raison pour laquelle S(s) est appelée la fonction de sensibilité du système. Le système asservi est en effet sensible si une faible variation du procédé G p (s), donc de G(s), entraîne une grande variation de H(s). Il est préférable qu un système asservi soit robuste (peu sensible), c est-à-dire que malgré que le procédé G p (s) change de comportement (avec le temps ou selon le point d opération), la performance H(s) offerte par l asservissement demeure approximativement la même. Puisque H(s) = S(s) (équation 3.), la fonction de transfert de la boucle fermée H(s) est appelée la fonction de sensibilité complémentaire Les compromis entre la performance et la sensibilité au bruit de mesure Idéalement, sur une large bande de fréquences, il serait désiré d obtenir : Y (s) = H(s)R f (s) + ( H(s)) D y (s) H(s)D m (s) (3.5) = R f (s) + D y (s) D m (s) (3.6)

16 38 Chapitre 3. L analyse des systèmes asservis Évidemment, il est impossible d obtenir l équation 3.6 à partir de l équation 3.5 puisque la dynamique liant le bruit de mesure à la sortie du procédé est la même, au signe près, que la dynamique entre la consigne filtrée et la sortie. Il existe donc un compromis entre, d une part, le rejet du bruit de mesure et, d autre part, les performances en poursuite de la consigne filtrée et en régulation. Pour que le bruit de mesure ne soit pas transmis sur la réelle variable physique contrôlée y, il faut que H(jω) soit faible aux fréquences contenues dans le bruit de mesure provoquant ainsi son atténuation. La présence de bruit de mesure limite donc la largeur de bande de H(s). Exemple 3.2 (La réponse au bruit de mesure) Le procédé est G p (s) = +s. Le premier régulateur testé est G c(s) = +s s, ce qui conduit à H (s) = +s. Cet asservissement a une performance moyenne car sa constante de temps est la même que celle du procédé. Le deuxième régulateur est G c2 (s) = (+s) s. La boucle fermée résultante est fois plus rapide que la première : H 2 (s) =. Les figures 3.8 et 3.9 montrent la réponse des deux systèmes face à un bruit de mesure d m (t) = sin(t). À la fréquence rad/s, les rapports d amplitude sont H (j) =.995 et H 2 (j) =.77. Puisque l amplitude du bruit est unitaire, les amplitudes de la sortie pour les deux systèmes sont.995 et.77. Le système avec la plus grande largeur de bande est nettement plus sensible au bruit de mesure. Ce comportement se constate également au niveau de la variable manipulée. L ajout d un filtre passe-bas pour réduire les conséquences du bruit de mesure est possible mais le concepteur doit être conscient que le filtre a un effet déstabilisateur sur l asservissement. L exemple 3.8 de la section illustre cet effet pervers. La section 4.7 discute du design des filtres de mesure Le compromis entre la performance et la robustesse Un système asservi est dit stable de façon robuste s il demeure stable malgré des variations du procédé G p (s). Le procédé réel a toujours un comportement différent du modèle utilisé pour l analyse du système asservi. L équation suivante exprime cette différence : +s G proc (s) = G p (s) + M(s)G p (s) (3.7) où G proc représente le procédé réel, G p (s) est son modèle et M(s) est l incertitude multiplicative. L incertitude M(s) est typiquement faible aux basses fréquences et grande aux hautes fréquences. En effet, lors du laboratoire du cours Systèmes et commande linéaires, vous avez constaté qu il était facile de mesurer avec précision le rapport d amplitude et la

17 3.. Les compromis lors de la conception des systèmes asservis 39 Commande Consigne et sortie r y Fig. 3.8 Réponse au bruit de mesure du système asservi H (s) Commande Consigne et sortie r y Fig. 3.9 Réponse au bruit de mesure du système asservi H 2 (s)

18 4 Chapitre 3. L analyse des systèmes asservis Rapport d'amplitude [db] H (s) H 2 (s) M(s) /M(s) Fréquence [rad/s] Fig. 3. Stabilité robuste phase du moteur aux basses fréquences mais que ces mêmes mesures aux hautes fréquences étaient très imprécises. Une condition nécessaire pour qu un système asservi soit stable malgré la présence de l incertitude M(s) est : H(jω) < M(jω) ω (3.8) Si cette condition est respectée, le système de commande est assurément stable ; si elle n est pas respectée, le système peut être instable mais ne l est toutefois pas nécessairement. La condition exprimée par l équation 3.8 signifie que la largeur de bande de H(s) ne peut pas être trop large. La figure 3. illustre ce compromis entre la performance du système de commande et sa robustesse. Le système H (s), moins performant que le système H 2 (s), est assurément stable malgré la présence de l incertitude sur le comportement du procédé. Il n y a cependant aucune certitude que le système H 2 (s) est stable. Exemple 3.3 (La robustesse des asservissements) Le modèle du procédé qui fut identifié est G p (s) = +s bien que le procédé réel soit G proc (s) =. Le premier régulateur qui est conçu à l aide du modèle est (+s)(+.3s) 3 G c (s) = +s s, d où H (s) = +s. Le deuxième régulateur calculé à partir du modèle est G c2 (s) = (+s) s et par conséquent H 2 (s) = +s. Que se passe-t-il lorsque ces deux

19 3.. Les compromis lors de la conception des systèmes asservis 4 Commande Consigne et sortie.5.5 u proc y p y proc Fig. 3. Régulateur : G c (s). Procédé : G p (s) et G proc (s) régulateurs sont testés sur le procédé réel? Les figures 3. et 3.2 montrent la réponse à l échelon des différents systèmes (F (s) = ). Les deux régulateurs fonctionnent bien lorsqu ils commandent le modèle du procédé. Toutefois, le régulateur menant à une plus grande largeur de bande avec le modèle est nettement moins robuste si le procédé diffère du modèle. Dans ce cas-ci, le système asservi devient même instable Le compromis entre la performances et la douceur de la commande À partir de la figure 3. et en n étudiant encore une fois qu un signal à la fois parmi r, d m et d, les figures 3.3, 3.4 et 3.5 sont obtenues. Grâce au principe de superposition linéraire, elles permettent d établir l équation de la commande du système asservi : U(s) = G c (s)s(s)f (s)r(s) G c (s)s(s)g d (s)d(s) G c (s)s(s)d m (s) (3.9) Puisque G c (s)s(s) = H(s), l équation peut être écrite comme suit : G p(s) U(s) = H(s) G p (s) (R f (s) D y (s) D m (s)) (3.2) u p r

20 42 Chapitre 3. L analyse des systèmes asservis Commande Consigne et sortie u p u proc r y - p y proc Fig. 3.2 Régulateur : G c2 (s). Procédé : G p (s) et G proc (s) r F(s) + - G c (s) G p (s) Fig. 3.3 Asservissement dans le cas où d = d m = d m + -G c (s) G p (s) Fig. 3.4 Asservissement dans le cas où r = d = u u

21 3.2. La stablité des systèmes asservis 43 d Gd (s) + -G c (s) G p (s) Fig. 3.5 Asservissement dans le cas où r = d m = Afin de faciliter la compréhension du signal de commande, il sera supposé que H(s) possède un gain unitaire (G(s) a un intégrateur). Le rapport d amplitude de la fonction de transfert H(s) G p(s) à la fréquence est alors : H(j) G p (j) = G p (j) u (3.2) Le signal de commande en régime statique dépend donc uniquement du procédé et non du régulateur. Aux hautes fréquences, le rapport d amplitude de H(s) prend de grandes valeurs si la largeur de bande de H(s) est supérieure à celle de G p (s), tel qu illustré par la figure 3.6. Par conséquent, dans le cas d un système asservi plus performant, le signal u contiendra davantage de hautes fréquences et sera par conséquent plus brusque. Il existe donc un compromis entre la douceur de l action et la performance du système de commande en poursuite de la consigne filtrée et en régulation. Exemple 3.4 (La douceur des actions) Le procédé est G p (s) = +s. Le premier régulateur est G c(s) =.2(+s) s et donc H (s) = +5s. Cet asservissement est lent car sa constante de temps est supérieure à celle du procédé. Le deuxième système de commande est rapide : H 2 (s) = +2. Il est obtenu avec G c2(s) = 5(+s) s. La figure 3.6 fut tracée avec ces systèmes. La fonction de transfert H 2(s) G laisse p(s) passer nettement plus de hautes fréquences que H (s) et par conséquent la commande du second asservissement devrait être plus brusque. La figure 3.7 qui montre la réponse à un G p(s) échelon de consigne (F (s) = ) confirme ce raisonnement. 3.2 La stablité des systèmes asservis 3.2. La règle du revers En supposant que F (s) et G d (s) sont stables, la stabilité du système asservi se réduit à celle de H(s). Elle se déduit à l aide de l équation caractéristique + G c (s)g p (s) = (voir G p(s)

22 44 Chapitre 3. L analyse des systèmes asservis Rapport d'amplitude [db] G - p (s) H (s) H 2 (s) H (s)/g p (s) H 2 (s)/g p (s) Fréquence [rad/s] Fig. 3.6 Rapport d amplitude de H(s) Consigne et sortie Commande G p(s) pour deux systèmes r.2 y y Fig. 3.7 Réponse à un échelon de consigne de deux asservissements u u 2

23 3.2. La stablité des systèmes asservis 45 r + - G(s) Fig. 3.8 Système pour l étude de la régle du revers l équation 3.2 et la phrase qui la suit). Les pôles de la boucle fermée s obtiennent en calculant les valeurs de s telles que : y G(s) = (3.22) Le point G(s) =, correspondant à G(jω) = et G(jω) = 8 o, est appelé le point critique. Ce point est déterminant dans l étude de la stabilité de H(s). Pour illustrer cette importance, le système illustré à la figure 3.8 est étudié. Il correspond à l asservissement général de la figure3. sans F (s) et G d (s) qui ne modifient en rien la stabilité de l asservissement car ils sont supposés stables. Les trois étapes suivantes permettront d établir une règle simple pour déduire la stabilité de H(s) à partir de la réponse en fréquences de G(s) :. Avec l interrupteur ouvert (système en boucle ouverte), appliquer la consigne r(t) = sin(ω u t). La fréquence ω u est appelée la fréquence ultime. Elle correspond à la fréquence à laquelle la phase de G(s) vaut 8 o, donc G(jω u ) = 8 o. 2. Attendre le régime permanent. L erreur est alors : et la sortie est par conséquent : ɛ(t) = sin(ω u t) = sin(ω u t) (3.23) y(t) = G(jω u ) sin(ω u t π) (3.24) 3. Simultanément, mettre la consigne à zéro et fermer l interrupteur. L erreur est alors : ɛ(t) = r(t) y(t) = G(jω u ) sin(ω u t π) = G(jω u ) sin(ω u t) (3.25) Il est donc possible de tirer les conclusions suivantes sur la stabilité de H(s) : Si G(jω u ) =, alors l erreur au moment de la fermeture de l interrupteur est : ɛ(t) = sin(ω u t) (3.26)

24 46 Chapitre 3. L analyse des systèmes asservis L erreur demeure ce qu elle était avant la fermeture de l interrupteur. Il en va donc de même avec la sortie du procédé. Le système produit des oscillations entretenues (à amplitude constante). Le système est à la limite de la stabilité. Si G(jω u ) <, alors l amplitude de l erreur est inférieure à au moment de la fermeture de l interrupteur. Puisqu à la fréquence ultime le rapport d amplitude de G(s) est inférieure à l unité, la sortie du procédé aura une amplitude inférieure à celle de son entrée (qui est le signal d erreur). Via la rétroaction, l amplitude de l entrée (ou de l erreur) est celle de la sortie. En passant par G(s), l amplitude du signal est à nouveau atténué par G(s) et ainsi de suite. L amplitude de l erreur, et donc de la sortie, tendront vers zéro. Le système est stable. Il ne s emballe pas malgré la condition initiale lors de la fermeture de l interrupteur. Si G(jω u ) >, alors l amplitude de l erreur est supérieure à au moment de la fermeture de l interrupteur. Puisqu à la fréquence ω u le rapport d amplitude de G(s) est plus grand que l unité, la sortie du procédé aura une amplitude supérieure à celle de son entrée. Un raisonnement similaire au point précédent permet de déduire que l amplitude de l erreur et par conséquent celle de la sortie s amplifieront. Le système est instable. Exemple 3.5 (Simulation temporelle illustrant la règle du revers) La figure3.9 montre la simulation des trois étapes précédentes du système illustré par la α figure 3.8 avec G(s) =. Le rapport d amplitude et la phase de G(s) sont (+s)(+5s) 2 respectivement G(jω u ) = α et G(jω u ) = 8 à la fréquence utltime ω u =.2825 rad/s. La mise à zéro de la consigne et la fermeture de l interrupteur surviennent à t = 5 secondes. Si α >, le rapport d amplitude de G(s) est supérieur à l unité et par conséquent H(s) est instable. Si α <, la boucle est stable. Si α =, le système asservi est à la limite de la stabilité et la sortie est une oscillation entretenue. Dans le cas α =, la fonction de transfert de la boucle est : H(s) = G(s) + G(s) = s s 2 + 8s s s s s s s + (3.27) Les pôles de H(s) sont : -., -.2, -.2, -.5, ±.28285j. Ces pôles expliquent la réponse homogène du système asservi (voir les notes du cours Systèmes et commande linéaires). Les quatre premiers pôles conduisent à des exponentielles amorties et n influencent donc pas la réponse en régime permanent. Les pôles ±.28285j expliquent l oscillation entretenue à une fréquence rad/s qu on retrouve à la sortie, peu importe le signal d entrée. À cette fréquence, le rapport d amplitude et la phase de G(s) sont - et 8 o, faisant ainsi un lien avec le point critique.

25 3.2. La stablité des systèmes asservis 47 Sortie α= α=.2 α= Fig. 3.9 Simulation des trois étapes pour trois gains de G(s) différents Les déductions entre le rapport d amplitude de G(s) à la fréquence ultime et la stabilité de H(s) permettent d énoncer la règle du revers. À la fréquence ultime ω u, c est-à-dire la fréquence à laquelle G(jω u ) = 8 o : si G(jω u ) =, alors H(s) est à la limite de la stabilité ; si G(jω u ) <, alors H(s) est stable ; si G(jω u ) >, alors H(s) est instable. Pour appliquer cette régle, G(s) doit être stable et ne doit posséder une phase de 8 o qu à une seule fréquence. Exemple 3.6 (Règle du revers sur les diagrammes de Bode, Black et Nyquist) α La fonction de transfert de la boucle ouverte est G(s) =. Les figures 3.2, (+s)(+5s) et 3.22 illustrent la réponse en fréquences de G(s) pour α =, α = 4 et α =.25 (le symbole "o" sur les lieux de Black et Nyquist indique les très basses fréquences). Le point critique - est indiqué par un point sur les trois figures. On constante qu à la fréquence ultime le rapport d amplitude de G(s) quand α = vaut. Le système en boucle fermée correspondant est donc à la limite de la stabilité. Pour α = 4, le rapport d amplitude de G(s) à la fréquence ultime vaut 4 = 2.4 db et par conséquent la boucle fermée correspondante est instable. Dans ce cas, le gain statique de G(s) doit donc être diminué d un facteur 4 pour ramener H(s) à la limite de la stabilité. Si α =.25, l asservissement est stable car le

26 48 Chapitre 3. L analyse des systèmes asservis Rapport d'amplitude [db] Phase [ o ] 5 α= α=4 α= Fréquence [rad/s] Fréquence [rad/s] Fig. 3.2 Étude de la stabilité de H(s) à partir du diagramme de Bode de G(s) rapport d amplitude de G(s) à la fréquence ultime vaut.25 = 2.4 db. Avant que H(s) ne devienne instable, il faudrait donc augmenter le gain statique de G(s) d un facteur 4. À partir des figures 3.2 et 3.22 qui montrent les lieux de Black et Nyquist de G(s), la règle du revers peut s énoncer comme suit : H(s) est stable si on laisse à notre gauche le point critique - en parcourant le lieu de Nyquist de G(s) dans le sens des fréquences croissantes ou si on laisse à notre droite le point critique - ( G(jω u ) = et G(jω u ) = 8 o ) en parcourant le lieu de Black dans le sens des fréquences croissantes Les marges de stabilité La section précédente a démontré qu on peut déduire la stabilité de H(s) à partir de la réponse en fréquences de G(s). Ainsi, par exemple, H(s) est stable si en parcourant le lieu de Black de G(s) dans le sens des fréquences croissantes on laisse à notre droite le point critique -. L objectif consiste maintenant à mesurer l éloignement du lieu de réponse en fréquences de G(s) par rapport au point critique -, quantifiant ainsi la stabilité du système. La figure 3.23 montre le lieu de Black du système utilisé à l exemple 3.6 en considérant 2.25 α =.25 : G(s) =. Le point critique - apparaît aussi sur la figure. La marge (+s)(+5s) 2 de gain M g est la distance verticale entre le lieu de Black et le point critique. La marge

27 3.2. La stablité des systèmes asservis 49 Rapport d'amplitude [db] α= α=4 α= Phase [ o ] Fig. 3.2 Étude de la stabilité de H(s) à partir du lieu de Black de G(s) Imaginaire Imaginaire - -2 α= α=4 α= Réel α= α=4 α= Réel Fig Étude de la stabilité de H(s) à partir du lieu de Nyquist (complet et zoom) de G(s)

28 5 Chapitre 3. L analyse des systèmes asservis Rapport d'amplitude [db] M g M p Phase [ o ] Fig Marges de stabilité sur le lieu de Black de gain est donc l augmentation du rapport d amplitude de G(s) à la fréquence ultime qui ferait en sorte que H(s) devienne à la limite de la stabilité. Par conséquent, la marge de gain est définie ainsi : ou, de façon équivalente : M g db = 2 log M g = 2 log G(jω u ) (3.28) M g = G(jω u ) Si M g db > ou M g > comme c est le cas sur la figure 3.23, alors H(s) est stable. (3.29) La marge de phase M p est la distance horizontale entre le lieu de Black et le point critique (figure 3.23). La marge de phase est donc la diminution de la phase de G(s) à la fréquence ω (fréquence à laquelle le rapport d amplitude de G(s) vaut db) qui ferait en sorte que H(s) devienne à la limite de la stabilité. La marge de phase (en radians) se calcule comme suit : M p = π + G(jω ) (3.3) Si la marge de phase est positive, comme c est le cas sur la figure 3.23, alors H(s) est stable. Une marge de phase positive signifie nécessairement que la marge de gain est également po-

29 3.2. La stablité des systèmes asservis 5 sitive. Rapport d'amplitude [db] Phase [ o ] Fréquence [rad/s] Fréquence [rad/s] Fig Marges de stabilité sur le diagramme de Bode La figure 3.24 montre le diagramme de Bode du système précédent. Les marges de gain et de phase (positives) sont indiquées. La même information apparaît sur le lieu de Nyquist de la figure Des marges de stabilité raisonnables assurent une certaine robustesse au système de commande. Même si le procédé est différent du modèle utilisé pour faire la conception du régulateur (donc G(s) réel n est pas celui qu on pense), l asservissement devrait malgré tout être stable si les marges de gain et de phase sont suffisantes. Des marges de stabilité assez grandes assurent donc la stabilité de la boucle fermée malgré des inévitables erreurs d identification de G p (s). En pratique, la marge de gain devrait être environ entre 6 et db et la marge de phase d au moins 5 o. Exemple 3.7 (Effet déstabilisant d un retard) Suite à des tests d identification, le modèle du procédé est G p (s) = 2 s+. Deux régulateurs sont conçus : G c (s) = +s s et G c2 (s) = 4(+s) s. Les fonctions de transfert des boucles fermées correspondantes sont H (s) = +5s et H 2(s) = Le rapport d amplitude du second régulateur est plus élevé augmentant ainsi la largeur de bande de l asservissement. Que se passe-t-il si on teste maintenant ces deux régulateurs sur le procédé véritable dont M p M g

30 52 Chapitre 3. L analyse des systèmes asservis Imaginaire M p G(jω ) M g =/ G(jω ) Réel Fig Marges de stabilité sur le lieu de Nyquist la fonction de transfert est G proc (s) = 2e 2s? Les deux graphes de gauche de la figure 3.26 s+ sont le diagramme de Bode de G c (s)g p (s) et G c (s)g proc (s). Les deux graphes de droite montrent la réponse en fréquences de G c2 (s)g p (s) et G c2 (s)g proc (s). On constate que si on ne se base que sur le modèle du procédé, augmenter le gain du régulateur ne modifie en rien la stabilité de l asservissement. En effet, la marge de phase est toujours 9 o. La conclusion est cependant fort différente si on analyse les boucles fermées avec le procédé plutôt que le modèle. Dans le cas de l asservissement plus lent (graphes de gauche), l asservissement demeure stable malgré la présence du retard qui vient diminuer la marge de phase à cause de sa phase négative. L utilisation du second régulateur avec le procédé conduit à un système instable (graphes de droite). Les réponses à un échelon de consigne avec F (s) = sont tracées à la figure À partir de cet exemple on conclut qu un retard, de par son apport d une phase négative à G(s), a un effet déstabilisant. Cet exemple illustre également le compromis qui existe entre la performance et la robustesse. Exemple 3.8 (Effet déstabilisant d un filtre de mesure) L identification du procédé à permis d établir le modèle G p (s) = 2e s s+. Le régulateur qui est conçu est G c (s) = 2(+s). Le bruit de mesure est d m = 2 sin(3t). Un filtre de mesure peut s être ajouté pour réduire l effet du bruit de mesure sur les variables manipulée et contrôlée, tel

31 3.2. La stablité des systèmes asservis 53 Rapport d'amplitude [db] Phase [ o ] Avec le régulateur G c (s) Fréquence [rad/s] Avec G p (s) Avec G proc (s) Fréquence [rad/s] Rapport d'amplitude [db] Phase [ o ] Fréquence [rad/s] Avec le régulateur G c2 (s) Avec G p (s) Avec G proc (s) Fréquence [rad/s] Fig Effet déstabilisant d un retard (réponse en fréquences) Commande Consigne et sortie.5.5 Avec le régulateur G c (s) u: G p (s) u: G proc (s) r y: G p (s) y: G proc (s) 2 3 Commande Consigne et sortie 5 Avec le régulateur G c2 (s) Fig Effet déstabilisant d un retard (réponse temporelle)

32 54 Chapitre 3. L analyse des systèmes asservis r r f u F(s) G c (s) G p (s) + - F m (s) Fig Asservissement avec un filtre de mesure qu illustré à la figure Une représentation équivalente est le diagramme fonctionnel de la figure On constate que la stabilité de la boucle fermée s établit à partir de la réponse en fréquences de G c (s)g p (s)f m (s). Le filtre de mesure est passe-bas et à gain unitaire. Celui utilisé pour l exemple numérique est F m (s) =. La figure 3.3 compare les réponses (+s) 2 en fréquences de G(s) avec ou sans le filtre de mesure. La réponse en fréquences de F (s) est également tracée. Typiquement, l ajout du filtre ne modifie que très peu la fréquence ω car la largeur de bande du filtre est supérieure à cette fréquence (on désire que le filtre n élimine que de relativement hautes fréquences). Toutefois, la phase du filtre à ω est négative et non négligeable et elle vient donc réduire d autant la marge de phase. La figure 3.3 montre la réponse à un échelon de consigne en présence du bruit de mesure. Sans le filtre, le bruit influence fortement l action et la sortie du procédé. L ajout du filtre réduit ces influences mais rend le système plus près de l instabilité comme le démontre le dépassement important de la sortie par rapport à la consigne. Cet exemple illustre deux points à considérer lors de l utilisation d un filtre de mesure : L ajout d un filtre a un effet déstabilisateur sur la boucle fermée. Selon la figure 3.29, il est évident que le régulateur agit sur G p (s)f m (s) (et non G p (s)) et par conséquent c est sur cette fonction de transfert que doit se baser le réglage de G c. Ainsi, dans l exemple présenté ici, le régulateur ne devrait pas être le même si on utilise le filtre de mesure. Un nouveau réglage allongerait un peu le temps de réponse de la boucle fermée mais établirait à nouveau de bonnes marges de stabilité. Il est recommandé de concevoir un nouveau filtre si la fréquence de coupure de F m (s) est mois de dix fois celle de G p (s), donc si G p (s)f m (s) diffère significativement de G p (s). Les détails de la conception d un filtre de mesure sont présentés à la section 4.7. y m + d m y

33 3.2. La stablité des systèmes asservis 55 r F(s) F m (s) r f + - G c (s) G p (s)f m (s) Fig Représentation équivalente d un asservissement avec un filtre de mesure Rapport d'amplitude [db] Phase [ o ] Fréquence [rad/s] -9-8 u y m + d m y G c (s)g P (s) G c (s)g p (s)f m (s) F m (s) Fréquence [rad/s] Fig. 3.3 Effet déstabilisant d un filtre de mesure (réponse en fréquences)

34 56 Chapitre 3. L analyse des systèmes asservis Commande Consigne et sortie 5 u: sans filtre u: avec filtre r -.5 y: sans filtre y: avec filtre Fig. 3.3 Effet déstabilisant d un filtre de mesure (réponse temporelle) L abaque de Black La fonction de transfert de la boucle fermée est, selon l équation 3.3 : H(s) = G(s) + G(s) Si on s intéresse à la réponse en fréquences, alors : (3.3) H(jω) = G(jω) + G(jω) (3.32) H(jω) = G(jω) (3.33) + G(jω) Par conséquent si la réponse en fréquences de G(s) est connue, on peut déduire celle de H(s). L abaque de Black (figure 3.32) est une représentation graphique, sur un diagramme de Black, des relations 3.32 et C est un diagramme de Black conventionnel sur lequel on trace la réponse en fréquences de G(s). L abscisse et l ordonnée représentent respectivement la phase et le rapport d amplitude de G(s). D autres coordonnées, dessinées en arrière-plan, permettent de déduire pour n importe quelle fréquence du lieu réponse en fréquences de G(s) le rapport d amplitude et la phase de H(s) correspondantes. Les coordonnées du rapport

35 3.2. La stablité des systèmes asservis 57 d amplitude de H(s) sont les lignes formées de tirets et les coordonnées de la phase de H(s) sont les lignes pointillées. Aux hautes fréquences le rapport d amplitude de G(s) tend habituellement vers zéro. En effet la presque totalité des procédés (G p (s)) se comportent comme des filtres passe-bas et les régulateurs G c (s) ont un rapport d amplitude aux hautes fréquences qui est constant ou qui décroît (sinon la fonction de transfert du régulateur serait impropre). Par conséquent, aux hautes fréquences G(jω), d où H(jω) G(jω). Ce comporte s observe sur l abaque de Black : pour des faibles valeurs du rapport d amplitude de G(s), donc au bas de l abaque, les rapports d amplitude et les phases de H(s) sont similaires à ceux de G(s). Exemple 3.9 (Relation entre G(jω) et H(jω)) Le système de la boucle ouverte est G(s) = s+. À la fréquence ω =.856 rad/s, le rapport d amplitude et la phase sont respectivement G(jω ) = = db et G(jω ) = o =.766 rad. Selon les équations 3.32 et 3.33, le rapport d amplitude et la phase de H(s) à la fréquence ω sont : H(jω) = 4.584e.766j e.766j =.893 = db (3.34) H(jω) = 4.584e.766j e.766j =.745 rad = o (3.35) Une façon équivalente d obtenir le même résultat est d utiliser l équation 3.3 pour calculer la fonction de transfert de la boucle H(s) =.95 et donc : +.95s H(jω) =.95 + j =.893 = db (3.36) H(jω) =.95 + j =.745 rad = o (3.37) Finalement, l abaque de Black peut être utilisé pour déterminer directement le rapport d amplitude et la phase de H(s). La lecture de la figure 3.32 indique en effet que pour G(jω) = db et G(jω) = o, on a H(jω) = db et H(jω) = o. Exemple 3. (Utilisation de l abaque de Black).5 La figure 3.33 est l abaque de Black de G(s) = s(2s+)(.5s+). La fonction de transfert ayant un intégrateur, aux basses fréquences on trouve un rapport d amplitude tendant vers l infini et une phase de 9 o. Cet intégrateur dans G(s) assure que le gain statique de H(s) est unitaire. Par conséquent, le rapport d amplitude de H(s) aux basses fréquences est db, comme on peut lire sur l abaque. Le rapport d amplitude de H(s) passe de db aux basses

36 58 Chapitre 3. L analyse des systèmes asservis Rapport d amplitude de G(s) [db] o 5 o -2 o - o 3 db 6 db -8 o db.5 db -5 o.25 db -5 o -2 o db - o -2 o -3 o -5 o -9 o - db -3 db -6 db -2 db -2 db Phase de G(s) [ o ] Phase de H(s) Rapport d amplitude de H(s) Fig Abaque de Black

37 3.3. Conclusion 59 Rapport d'amplitude [db] ω =.2 6 db ω =.4 db 3 db.5 db.25 db Phase [ o ] db Fig Abaque de Black pour G(s) =.5 - db -3 db -6 db -2 db -2 db (2s+)(.5s+) fréquences à un maximum de 6 db à la fréquence.4 rad/s pour ensuite continuellement diminuer (dont une valeur de -2 db à.2 rad/s). Le système H(s) possède donc une résonance. La fréquence de résonance de H(s) est.4 rad/s car c est à cette fréquence que son rapport d amplitude est le plus grand. La fréquence de résonance correspond au point du lieu de réponse en fréquences qui est tangent à l ellipse (coordonnées du rapport d amplitude de H(s)) la plus concentrique, donc de valeur la plus élevée Le critère de Nyquist À venir. 3.3 Conclusion Asservir un procédé consiste à en faire notre esclave. L asservissement doit être conçu pour que le procédé se comporte selon des spécifications choisies. Plus particulièrement, il est désiré que l asservissement :. réduise l erreur suite à des changements de consigne, 2. réduise l erreur face à des perturbations extérieures,

38 6 Chapitre 3. L analyse des systèmes asservis 3. réduise l erreur en présence de bruit de mesure, 4. possède un court temps de réponse, 5. produise des actions qui ne sont pas trop brusques, 6. soit stable et le demeure malgré des inévitables incertitudes sur le comportement du procédé. Selon les deux sections précédentes, ces objectifs sont contradictoires. Il faut d abord se rappeler que pour H(jω) à une fréquence donnée, il faut G(jω). La zone fréquentielle sur laquelle le rapport d amplitude de H(s) est près de l unité est sa largeur de bande. Les contradictions peuvent s exprimer en fonction de la largeur de bande de H(s) et donc du rapport d amplitude de G(s) : Pour que l erreur à une fréquence donnée tende vers zéro suite à des changements de consignes (poursuite) et face à des perturbations extérieures (régulation), il faut que H(jω). Si H(s) possède une grande largeur de bande, alors il existe une grande zone fréquentielle à laquelle l erreur en poursuite et en régulation est faible. Pour que le bruit de mesure n affecte que peu la sortie du procédé, il faut que H(jω) et donc G(jω) soient faibles aux fréquences typiquement assez élevées contenues dans le bruit. Pour éviter les effets néfastes du bruit de mesure, il faut alors que H(s) ne possède pas une grande largeur de bande. Pour que H(s) soit rapide, il faut que la largeur de bande de H(s) soit grande et donc que G(jω) soit élevé sur cette zone fréquentielle. Pour que les actions ne soient pas brusques, la largeur de bande de H(s) doit être limitée. Pour que l asservissement soit stable même en absence d erreurs de modélisation, les marges de gain et de phase doivent être positives, et par conséquent G(jω) ne peut être trop grand aux hautes fréquences. La stabilité impose une limite à la largeur de bande de H(s). Pour que le système de commande demeure stable malgré les incertitudes reliées à l identification du modèle du procédé, la largeur de bande de H(s) ne peut être trop grande.

39 Chapitre 4 Les régulateurs de base Ce chapitre présente les régulateurs de rétroaction les plus employés ainsi que quelques techniques efficaces pour les régler. 4. La commande PID Le régulateur utilisé dans plus de 9% des asservissements est du type proportionnelintégrale-dérivée (PID) []. L histoire de ces régulateurs remonte au début du vingtième siècle [2, 3]. Les applications du PID sont extrêmement nombreuses et variées. Ce compensateur est utilisé en commande des procédés industriels et des moteurs, dans le monde de l aéronautique et de l automobile, en robotique, dans plusieurs appareils courants (lecteurs CD, etc.), etc. Il est donc inévitable de bien étudier le régulateur PID. La fonction de transfert d un régulateur PID est : G c (s) = U(s) ɛ(s) = K p + K i s + K ds (4.) où K p, K i et K d sont les gains de proportionnalité, d intégration et de dérivation. On constate que la variable manipulée est la somme pondérée de l erreur (P), de l intégration de l erreur (I) et de la dérivée de l erreur (D). Une interprétation du PID est qu il agit selon les erreur présente, passée et future. En effet, la partie proportionnelle de la commande se base sur l erreur présente. L intégrale de l erreur cumule les erreurs passées. La dérivée de l erreur (donc sa pente) prédit en quelque sorte vers où se dirige l erreur dans le futur. 6

40 62 Chapitre 4. Les régulateurs de base La fonction de transfert du PID peut être écrite comme suit : G c (s) = K ps + K i + K d s 2 s (4.2) On constate que la fonction de transfert est impropre à cause de la dérivée qui y est présente. Pour concevoir un PID réel, un filtre passe-bas doit donc être ajouté : G c (s) = K ps + K i + K d s 2 s( + T f s) Si on effectue les changements de variables suivants : (4.3) K p = Kc(T i+t d ) T i (4.4) K i = Kc T i (4.5) K d = K c T d (4.6) alors la fonction de transfert 4.3 devient : G c (s) = K ( c( + T i s)( + T d s) Kc (T i + T d ) = + K ) c T i s( + T f s) T i s + K ct d s + T f s T i (4.7) Il s agit en fait d un régulateur proportionnel-intégrale-dérivée avec filtre (PIDF). Les paramètres T i, T d et T f ne sont pas négatifs. Les cas particuliers de ce régulateur sont : Le régulateur proportionnel (P) : G c (s) = K c (4.8) La variable manipulée est donc simplement proportionnelle au signal d erreur. Le régulateur avance de phase ou proportionnel-dérivée avec filtre (PDF) : G c (s) = K c( + T d s) = (K c + K c T d s) + T f s + T f s (4.9) La commande est la somme filtrée passe-bas d une proportion de l erreur et de la dérivée de l erreur. Le régulateur proportionnel-intégrale (PI) : G c (s) = K c( + T i s) = K c + K c T i s T i s (4.) La variable manipulée s obtient en additionnant une proportion de l erreur et l intégration de l erreur. Il s agit du régulateur le plus populaire. Il possède une action intégrale assurant

Automatique Linéaire 1 Travaux Dirigés 1A ISMIN

Automatique Linéaire 1 Travaux Dirigés 1A ISMIN Automatique Linéaire 1 Travaux Dirigés Travaux dirigés, Automatique linéaire 1 J.M. Dutertre 2014 TD 1 Introduction, modélisation, outils. Exercice 1.1 : Calcul de la réponse d un 2 nd ordre à une rampe

Plus en détail

Notions d asservissements et de Régulations

Notions d asservissements et de Régulations I. Introduction I. Notions d asservissements et de Régulations Le professeur de Génie Electrique doit faire passer des notions de régulation à travers ses enseignements. Les notions principales qu'il a

Plus en détail

I Stabilité, Commandabilité et Observabilité 11. 1 Introduction 13 1.1 Un exemple emprunté à la robotique... 13 1.2 Le plan... 18 1.3 Problème...

I Stabilité, Commandabilité et Observabilité 11. 1 Introduction 13 1.1 Un exemple emprunté à la robotique... 13 1.2 Le plan... 18 1.3 Problème... TABLE DES MATIÈRES 5 Table des matières I Stabilité, Commandabilité et Observabilité 11 1 Introduction 13 1.1 Un exemple emprunté à la robotique................... 13 1.2 Le plan...................................

Plus en détail

Analyse des diagrammes de Bode d'un filtre passe-bande:

Analyse des diagrammes de Bode d'un filtre passe-bande: TD N 3: Filtrage, fonction de transfert et diagrammes de Bode. M1107 : Initiation à la mesure du signal Le but de ce TD est de vous permettre d'appréhender les notions indispensables à la compréhension

Plus en détail

Analyse et Commande des systèmes linéaires

Analyse et Commande des systèmes linéaires Analyse et Commande des systèmes linéaires Frédéric Gouaisbaut LAAS-CNRS Tel : 05 61 33 63 07 email : fgouaisb@laas.fr webpage: www.laas.fr/ fgouaisb September 24, 2009 Présentation du Cours Volume Horaire:

Plus en détail

Automatique Linéaire 1 1A ISMIN

Automatique Linéaire 1 1A ISMIN Automatique linéaire 1 J.M. Dutertre 2014 Sommaire. I. Introduction, définitions, position du problème. p. 3 I.1. Introduction. p. 3 I.2. Définitions. p. 5 I.3. Position du problème. p. 6 II. Modélisation

Plus en détail

Asservissement des systèmes linéaires à temps continu. Cours et Exercices

Asservissement des systèmes linéaires à temps continu. Cours et Exercices Asservissement des systèmes linéaires à temps continu Cours et Exercices Formation d Ingénieurs en Partenariat ère année École Nationale Supérieure de Physique de Strasbourg Université de Strasbourg Edouard

Plus en détail

SYSTEMES LINEAIRES DU PREMIER ORDRE

SYSTEMES LINEAIRES DU PREMIER ORDRE SYSTEMES LINEIRES DU PREMIER ORDRE 1. DEFINITION e(t) SYSTEME s(t) Un système est dit linéaire invariant du premier ordre si la réponse s(t) est liée à l excitation e(t) par une équation différentielle

Plus en détail

Intérêt du découpage en sous-bandes pour l analyse spectrale

Intérêt du découpage en sous-bandes pour l analyse spectrale Intérêt du découpage en sous-bandes pour l analyse spectrale David BONACCI Institut National Polytechnique de Toulouse (INP) École Nationale Supérieure d Électrotechnique, d Électronique, d Informatique,

Plus en détail

PRECISION - REJET DE PERTURBATIONS T.D. G.E.I.I.

PRECISION - REJET DE PERTURBATIONS T.D. G.E.I.I. PRECISION - REJET DE PERTURBATIONS T.D. G.E.I.I.. Donner les erreurs en position, en vitesse et en accélération d un système de transfert F BO = N(p) D(p) (transfert en boucle ouverte) bouclé par retour

Plus en détail

AUTOMATIQUE Glossaire

AUTOMATIQUE Glossaire AUTOMATIQUE Glossaire J.J. Orteu 22 septembre 2005 Table des matières 1 Français Anglais 2 2 Anglais Français 5 1 1 Français Anglais Action dérivée Action intégrale Action proportionnelle Actionneur Amorti

Plus en détail

Filtres passe-bas. On utilise les filtres passe-bas pour réduire l amplitude des composantes de fréquences supérieures à la celle de la coupure.

Filtres passe-bas. On utilise les filtres passe-bas pour réduire l amplitude des composantes de fréquences supérieures à la celle de la coupure. Filtres passe-bas Ce court document expose les principes des filtres passe-bas, leurs caractéristiques en fréquence et leurs principales topologies. Les éléments de contenu sont : Définition du filtre

Plus en détail

Fiche technique expérimentale 5. Notions sur l acquisition numérique

Fiche technique expérimentale 5. Notions sur l acquisition numérique Fiche technique expérimentale 5 Notions sur l acquisition numérique D.Malka MPSI 2014-2015 Lycée Saint-Exupéry Ce bref guide traite de quelques éléments important sur l acquisition numérique des signaux

Plus en détail

INTRODUCTION A L ELECTRONIQUE NUMERIQUE ECHANTILLONNAGE ET QUANTIFICATION I. ARCHITECTURE DE L ELECRONIQUE NUMERIQUE

INTRODUCTION A L ELECTRONIQUE NUMERIQUE ECHANTILLONNAGE ET QUANTIFICATION I. ARCHITECTURE DE L ELECRONIQUE NUMERIQUE INTRODUCTION A L ELECTRONIQUE NUMERIQUE ECHANTILLONNAGE ET QUANTIFICATION I. ARCHITECTURE DE L ELECRONIQUE NUMERIQUE Le schéma synoptique ci-dessous décrit les différentes étapes du traitement numérique

Plus en détail

Commande H prédictive pour l asservissement par vision d un stabilisateur cardiaque actif

Commande H prédictive pour l asservissement par vision d un stabilisateur cardiaque actif Commande H prédictive pour l asservissement par vision d un stabilisateur cardiaque actif W. Bachta, E. Laroche, P. Renaud, J. Gangloff LSIIT, CNRS, Université de Strasbourg, INSA de Strasbourg, France

Plus en détail

Série 7 : circuits en R.S.F.

Série 7 : circuits en R.S.F. Série 7 : circuits en R.S.F. 1 Documents du chapitre Action d un circuit du 1er ordre sur un échelon de tension et sur une entrée sinusoïdale : Déphasage de grandeurs sinusoïdales et représentation de

Plus en détail

= K 1+ jω ω 1 1+ jω ω 2 ω 2 = R 1 + R 2 = 6880 rad /s. avec : K =

= K 1+ jω ω 1 1+ jω ω 2 ω 2 = R 1 + R 2 = 6880 rad /s. avec : K = Exercice : réponse harmonique de circuits passifs d'ordre Déterminer la fonction de transfert H(j) U 2 /U et tracer les asymptotes des diagrammes de Bode des circuits ci-dessous.! 60 nf 0 kω 50 nf U U

Plus en détail

Premier ordre Expression de la fonction de transfert : H(p) = K

Premier ordre Expression de la fonction de transfert : H(p) = K Premier ordre Expression de la fonction de transfert : H(p) = K + τ.p. K.e τ K.e /τ τ 86% 95% 63% 5% τ τ 3τ 4τ 5τ Temps Caractéristiques remarquables de la réponse à un échelon e(t) = e.u(t). La valeur

Plus en détail

Projet de Traitement du Signal Segmentation d images SAR

Projet de Traitement du Signal Segmentation d images SAR Projet de Traitement du Signal Segmentation d images SAR Introduction En analyse d images, la segmentation est une étape essentielle, préliminaire à des traitements de haut niveau tels que la classification,

Plus en détail

Instrumentation électronique

Instrumentation électronique Instrumentation électronique Le cours d électrocinétique donne lieu à de nombreuses études expérimentales : tracé de caractéristiques statique et dynamique de dipôles, étude des régimes transitoire et

Plus en détail

Quelques points de traitement du signal

Quelques points de traitement du signal Quelques points de traitement du signal Introduction: de la mesure au traitement Source(s) BRUIT BRUIT Système d acquisition Amplitude (Pa) Temps (s) Amplitude (Pa) Mesure Opérations mathématiques appliquées

Plus en détail

Chapitre 1 Régime transitoire dans les systèmes physiques

Chapitre 1 Régime transitoire dans les systèmes physiques Chapitre 1 Régime transitoire dans les systèmes physiques Savoir-faire théoriques (T) : Écrire l équation différentielle associée à un système physique ; Faire apparaître la constante de temps ; Tracer

Plus en détail

Cours de Systèmes Asservis

Cours de Systèmes Asservis Cours de Systèmes Asservis J.Baillou, J.P.Chemla, B. Gasnier, M.Lethiecq Polytech Tours 2 Chapitre 1 Introduction 1.1 Définition de l automatique Automatique : Qui fonctionne tout seul ou sans intervention

Plus en détail

ÉTUDE D UN ASSERVISSEMENT DE NIVEAU

ÉTUDE D UN ASSERVISSEMENT DE NIVEAU Session 2013 BREVET de TECHNICIEN SUPÉRIEUR CONTRÔLE INDUSTRIEL ET RÉGULATION AUTOMATIQUE E3 Sciences Physiques U-32 PHYSIQUE APPLIQUÉE Durée : 2 heures Coefficient : 2,5 Matériel autorisé : - Toutes les

Plus en détail

Analyse des Systèmes Asservis

Analyse des Systèmes Asservis Analyse des Systèmes Asservis Après quelques rappels, nous verrons comment évaluer deux des caractéristiques principales d'un système asservi : Stabilité et Précision. Si ces caractéristiques ne sont pas

Plus en détail

Systèmes de transmission

Systèmes de transmission Systèmes de transmission Conception d une transmission série FABRE Maxime 2012 Introduction La transmission de données désigne le transport de quelque sorte d'information que ce soit, d'un endroit à un

Plus en détail

Erreur statique. Chapitre 6. 6.1 Définition

Erreur statique. Chapitre 6. 6.1 Définition Chapitre 6 Erreur statique On considère ici le troisième paramètre de design, soit l erreur statique. L erreur statique est la différence entre l entrée et la sortie d un système lorsque t pour une entrée

Plus en détail

BREVET DE TECHNICIEN SUPÉRIEUR ÉLECTRONIQUE SESSION 2002. E p r e u v e : P H Y S I Q U E A P P L I Q U É E

BREVET DE TECHNICIEN SUPÉRIEUR ÉLECTRONIQUE SESSION 2002. E p r e u v e : P H Y S I Q U E A P P L I Q U É E BREVET DE TECHNICIEN SUPÉRIEUR ÉLECTRONIQUE SESSION 2002 Calculatrice à fonctionnement autonome autorisée (circulaire 99-186 du 16.11.99) E p r e u v e : P H Y S I Q U E P P L I Q U É E Durée : 4 heures

Plus en détail

MOdulateur-DEModulateur (MODEM) FSK

MOdulateur-DEModulateur (MODEM) FSK MOdulateur-DEModulateur (MODEM) FSK La FSK (Frequency Shift Keying pour Saut discret de Fréquences) correspond tout simplement à une modulation de fréquence dont le modulant (information) est un signal

Plus en détail

ANALYSE MULTI CAPTEUR DE SIGNAUX TRANSITOIRES ISSUS DES SYSTEMES ELECTRIQUES

ANALYSE MULTI CAPTEUR DE SIGNAUX TRANSITOIRES ISSUS DES SYSTEMES ELECTRIQUES ANALYSE MULTI CAPTEUR DE SIGNAUX TRANSITOIRES ISSUS DES SYSTEMES ELECTRIQUES Bertrand GOTTIN Directeurs de thèse: Cornel IOANA et Jocelyn CHANUSSOT 03 Septembre 2010 Problématique liée aux Transitoires

Plus en détail

Exercices d électronique

Exercices d électronique Exercices d électronique PSI* - Philippe Ribière Année Scolaire 2015-2016 Ph. Ribière PSI* 2015/2016 2 Chapitre 1 Réseau en régime permanent. 1.1 Transformation Thévenin Norton Donner le modèle de Thévenin

Plus en détail

Rapport de projet de fin d étude

Rapport de projet de fin d étude Rapport de projet de fin d étude Réalisé Par : Encadré Par : -Soumya sekhsokh Mohammed RABI -Kawtar oukili Année Universitaire 2010/2011 ETUDE D UNE BOUCLE DE REGULATION DE NIVEAU : - IMPLEMENTATION DU

Plus en détail

Oscilloscope - MPSI 1 Lycée Chaptal - 2012. Oscilloscope Élec.1. La fiche sur l appareillage électrique.

Oscilloscope - MPSI 1 Lycée Chaptal - 2012. Oscilloscope Élec.1. La fiche sur l appareillage électrique. Oscilloscope - MPSI 1 Lycée Chaptal - 2012 Oscilloscope Élec.1 TP de Physique Objectifs du TP Document utile Découvrir l oscilloscope ; Comprendre les modes d affichage et les principes de synchronisation

Plus en détail

ENSE3 - API/CSPI et Master Automatique - 2008/2009

ENSE3 - API/CSPI et Master Automatique - 2008/2009 ENSE3 - API/CSPI et Master Automatique - 28/29 DS Commande robuste - - 19 janvier 29 Nom Prénom Signature ATTENTION: Mettre votre nom et répondre directement sur les feuilles de l énoncé. Justifiez vos

Plus en détail

Microscopie à Force Atomique

Microscopie à Force Atomique M1 SCIENCES DE LA MATIERE - ENS LYON ANNEE SCOLAIRE 2009-2010 Microscopie à Force Atomique Compte-rendu de Physique Expérimentale Réalisé au Laboratoire de Physique de l ENS Lyon sous la supervision de

Plus en détail

T.P. n 11. polytech-instrumentation.fr 0,15 TTC /min à partir d un poste fixe

T.P. n 11. polytech-instrumentation.fr 0,15 TTC /min à partir d un poste fixe T.P. n 11 polytech-instrumentation.fr 0 825 563 563 0,15 TTC /min à partir d un poste fixe Utilisation de l oscilloscope à mémoire numérique I. Introduction Avec un oscilloscope numérique, le signal étudié

Plus en détail

Caractéristiques des ondes

Caractéristiques des ondes Caractéristiques des ondes Chapitre Activités 1 Ondes progressives à une dimension (p 38) A Analyse qualitative d une onde b Fin de la Début de la 1 L onde est progressive puisque la perturbation se déplace

Plus en détail

TP filtres électriques

TP filtres électriques P filtres électriques Objectif : Étudier les caractéristiques de gain et de phase de quelques filtres classiques 1 Introduction oute cette partie est informative : la non compréhension de certains paragraphes

Plus en détail

TP Modulation Démodulation BPSK

TP Modulation Démodulation BPSK I- INTRODUCTION : TP Modulation Démodulation BPSK La modulation BPSK est une modulation de phase (Phase Shift Keying = saut discret de phase) par signal numérique binaire (Binary). La phase d une porteuse

Plus en détail

Ajustage des Paramètres d un Régulateur PID

Ajustage des Paramètres d un Régulateur PID DEPARTEMENT D ELECTRICITE ET INFORMATIQUE Note d application Ajustage des Paramètres d un Régulateur PID Prof. F. Mudry A i nstitut d' i utomatisation ndustrielle LABORATOIRE D AUTOMATIQUE Ajustage des

Plus en détail

Représentation et analyse des systèmes linéaires. 1 Compléments sur l analyse fréquentielle des systèmes

Représentation et analyse des systèmes linéaires. 1 Compléments sur l analyse fréquentielle des systèmes ISAE-N6K/Première année Représentation et analyse des systèmes linéaires Petite classe No 6 Compléments sur l analyse fréquentielle des systèmes bouclés. Stabilité relative et marges de stabilité Dans

Plus en détail

Identification et réglage assisté par ordinateur d un processus thermique

Identification et réglage assisté par ordinateur d un processus thermique I- But de la manipulation : Identification et réglage assisté par ordinateur d un processus thermique Le but est de procéder à la modélisation et à l identification paramétrique d un procédé considéré

Plus en détail

Automatique des systèmes linéaires continus

Automatique des systèmes linéaires continus MINISTERE DE L ENSEIGNEMENT SUPERIEUR ET DE LA RECHERCHE SCIENTIFIQUE UNIVERSITE DES SCIENCES ET DE LA TECHNOLOGIE D ORAN-M B- FACULTE DE GENIE ELECTRIQUE DEPARTEMENT D AUTOMATIQUE Polycopié de : Automatique

Plus en détail

ÉVALUATION FORMATIVE. On considère le circuit électrique RC représenté ci-dessous où R et C sont des constantes strictement positives.

ÉVALUATION FORMATIVE. On considère le circuit électrique RC représenté ci-dessous où R et C sont des constantes strictement positives. L G L G Prof. Éric J.M.DELHEZ ANALYSE MATHÉMATIQUE ÉALUATION FORMATIE Novembre 211 Ce test vous est proposé pour vous permettre de faire le point sur votre compréhension du cours d Analyse Mathématique.

Plus en détail

Automatique (AU3): Précision. Département GEII, IUT de Brest contact: vincent.choqueuse@univ-brest.fr

Automatique (AU3): Précision. Département GEII, IUT de Brest contact: vincent.choqueuse@univ-brest.fr Automatique (AU3): Précision des systèmes bouclés Département GEII, IUT de Brest contact: vincent.choqueuse@univ-brest.fr Plan de la présentation Introduction 2 Écart statique Définition Expression Entrée

Plus en détail

SYSTÈMES ASSERVIS CORRECTION

SYSTÈMES ASSERVIS CORRECTION SYSTÈMES ASSERVIS CORRECTION //07 SYSTÈMES ASSERVIS CORRECTION ) Introduction... 3.) Les différents systèmes de commande... 3.2) Performances des systèmes asservis... 4.3) Fonction de transfert en boucle

Plus en détail

Filtrage - Intégration - Redressement - Lissage

Filtrage - Intégration - Redressement - Lissage PCSI - Stanislas - Electrocinétique - TP N 3 - Filtrage - Intégration - Redressement - Lissage Filtrage - Intégration - Redressement - Lissage Prenez en note tout élément pouvant figurer dans un compte-rendu

Plus en détail

BTS Mécanique et Automatismes Industriels. Équations différentielles d ordre 2

BTS Mécanique et Automatismes Industriels. Équations différentielles d ordre 2 BTS Mécanique et Automatismes Industriels Équations différentielles d ordre, Année scolaire 005 006 . Définition Notation Dans tout ce paragraphe, y désigne une fonction de la variable réelle x. On suppose

Plus en détail

Transmission d informations sur le réseau électrique

Transmission d informations sur le réseau électrique Transmission d informations sur le réseau électrique Introduction Remarques Toutes les questions en italique devront être préparées par écrit avant la séance du TP. Les préparations seront ramassées en

Plus en détail

Traitement du Signal

Traitement du Signal Traitement du Signal James L. Crowley Deuxième Année ENSIMAG première Bimestre 2001/2002 Séance 4 : 12 octobre 2001 Bruits d'echantillonage et de Quantification Formule du Jour :... 1 La Transformée de

Plus en détail

Chapitre 2 Les ondes progressives périodiques

Chapitre 2 Les ondes progressives périodiques DERNIÈRE IMPRESSION LE er août 203 à 7:04 Chapitre 2 Les ondes progressives périodiques Table des matières Onde périodique 2 2 Les ondes sinusoïdales 3 3 Les ondes acoustiques 4 3. Les sons audibles.............................

Plus en détail

Amélioration de la commande P&O par une détection synchrone du courant de batterie

Amélioration de la commande P&O par une détection synchrone du courant de batterie Revue des Energies Renouvelables ICESD 11 Adrar (2011) 113-121 Amélioration de la commande P&O par une détection synchrone du courant de batterie R. Merahi * et R. Chenni Département d Electrotechnique,

Plus en détail

Exemple d acquisition automatique de mesures sur une maquette de contrôle actif de vibrations

Exemple d acquisition automatique de mesures sur une maquette de contrôle actif de vibrations Exemple d acquisition automatique de mesures sur une maquette de contrôle actif de vibrations Valérie Pommier-Budinger Bernard Mouton - Francois Vincent ISAE Institut Supérieur de l Aéronautique et de

Plus en détail

Athénée Royal de Pepinster. Electrotechnique. La diode à jonction

Athénée Royal de Pepinster. Electrotechnique. La diode à jonction La diode à jonction I Introduction La diode est le semi-conducteur de base. Son fonctionnement est assimilable à celui d un interrupteur qui ne laisse passer le courant que dans un seul sens. C est la

Plus en détail

XIII. ANALYSE DES FONCTIONS DE TRANSFERT EN REGIME HARMONIQUE LE DIAGRAMMME DE BODE

XIII. ANALYSE DES FONCTIONS DE TRANSFERT EN REGIME HARMONIQUE LE DIAGRAMMME DE BODE XIII. ANALYSE DES FONCTIONS DE TRANSFERT EN REGIME HARMONIQUE LE DIAGRAMMME DE BODE A. ANALYSE D'UNE FONCTION DE TRANSFERT Forme canonique ; Exemple ; Limites ; Fréquence de Coupure ; Bande Passante ;

Plus en détail

Traitement du Signal Vu par Un Mesures Physiques

Traitement du Signal Vu par Un Mesures Physiques Traitement du Signal Vu par Un Mesures Physiques Cette technique reste compliquée par les mathématiques qu il l accompagne. J ai découvert la première fois le TdS au travail (CEA) avec un ingénieur qui

Plus en détail

Commande robuste et extensions Pierre Apkarian. Travail Sous-Marin 15-16 Janv. 2014

Commande robuste et extensions Pierre Apkarian. Travail Sous-Marin 15-16 Janv. 2014 Commande robuste et extensions Pierre Apkarian Travail Sous-Marin 15-16 Janv. 2014 Sommaire Introduction Techniques fondamentales de commande robuste Extensions Travail Sous-Marin 15-16 Janv. 2014 - -

Plus en détail

Analyse de gigue avec l oscilloscope R&S RTO

Analyse de gigue avec l oscilloscope R&S RTO Analyse de gigue avec l oscilloscope R&S RTO La gigue peut nuire considérablement au bon fonctionnement des systèmes numériques et doit donc être soumise à des analyses et caractérisations détaillées.

Plus en détail

Relevé d électrocardiogramme

Relevé d électrocardiogramme Relevé d électrocardiogramme La contraction du muscle cardiaque est commandée par un signal électrique qui prend naissance dans l oreillette droite et se propage aux ventricules le long de ners appelés

Plus en détail

TD1 Signaux, énergie et puissance, signaux aléatoires

TD1 Signaux, énergie et puissance, signaux aléatoires TD1 Signaux, énergie et puissance, signaux aléatoires I ) Ecrire l'expression analytique des signaux représentés sur les figures suivantes à l'aide de signaux particuliers. Dans le cas du signal y(t) trouver

Plus en détail

Commande auto-adaptative par auto-séquencement, avec application à un avion instable

Commande auto-adaptative par auto-séquencement, avec application à un avion instable Commande auto-adaptative par auto-séquencement, avec application à un avion instable Patrice ANTOINETTE 1 2 Gilles FERRERES 1 1 ONERA-DCSD, Toulouse 2 ISAE, Toulouse GT MOSAR, 4 juin 2009 Plan Introduction

Plus en détail

LES LENTILLES MINCES

LES LENTILLES MINCES LES LENTILLES MINCES I. GÉNÉRALITÉS Une lentille est un milieu transparent, homogène et isotrope limité par deux dioptres sphériques ou un dioptre sphérique et un dioptre plan. n distingue deux types de

Plus en détail

SINE QUA NON. Découverte et Prise en main du logiciel Utilisation de bases

SINE QUA NON. Découverte et Prise en main du logiciel Utilisation de bases SINE QUA NON Découverte et Prise en main du logiciel Utilisation de bases Sine qua non est un logiciel «traceur de courbes planes» mais il possède aussi bien d autres fonctionnalités que nous verrons tout

Plus en détail

SEO 200. Banc d étude du positionnement angulaire d une éolienne face au vent DESCRIPTIF APPLICATIONS PEDAGOGIQUES

SEO 200. Banc d étude du positionnement angulaire d une éolienne face au vent DESCRIPTIF APPLICATIONS PEDAGOGIQUES Banc d étude du positionnement angulaire d une éolienne face au vent DESCRIPTIF Le banc SEO 200 permet d étudier et de paramétrer les boucles d asservissement de vitesse et position d une nacelle d éolienne

Plus en détail

Exercices Alternatifs. Une fonction continue mais dérivable nulle part

Exercices Alternatifs. Une fonction continue mais dérivable nulle part Eercices Alternatifs Une fonction continue mais dérivable nulle part c 22 Frédéric Le Rou (copleft LDL : Licence pour Documents Libres). Sources et figures: applications-continues-non-derivables/. Version

Plus en détail

Exercices Alternatifs. Une fonction continue mais dérivable nulle part

Exercices Alternatifs. Une fonction continue mais dérivable nulle part Eercices Alternatifs Une fonction continue mais dérivable nulle part c 22 Frédéric Le Rou (copyleft LDL : Licence pour Documents Libres). Sources et figures: applications-continues-non-derivables/. Version

Plus en détail

Les sondes d oscilloscopes

Les sondes d oscilloscopes Le onde d ocillocope /6 I Decription Il exite troi grande catégorie de onde: - Le onde paive (, L, C, atténuatrice ou non, avec de rapport d atténuation de,, ou (Sonde X, X, X, X. - 2 Le onde active, qui

Plus en détail

LABO 5-6 - 7 PROJET : IMPLEMENTATION D UN MODEM ADSL SOUS MATLAB

LABO 5-6 - 7 PROJET : IMPLEMENTATION D UN MODEM ADSL SOUS MATLAB LABO 5-6 - 7 PROJET : IMPLEMENTATION D UN MODEM ADSL SOUS MATLAB 5.1 Introduction Au cours de séances précédentes, nous avons appris à utiliser un certain nombre d'outils fondamentaux en traitement du

Plus en détail

8563A. SPECTRUM ANALYZER 9 khz - 26.5 GHz ANALYSEUR DE SPECTRE

8563A. SPECTRUM ANALYZER 9 khz - 26.5 GHz ANALYSEUR DE SPECTRE 8563A SPECTRUM ANALYZER 9 khz - 26.5 GHz ANALYSEUR DE SPECTRE Agenda Vue d ensemble: Qu est ce que l analyse spectrale? Que fait-on comme mesures? Theorie de l Operation: Le hardware de l analyseur de

Plus en détail

Expérience 3 Formats de signalisation binaire

Expérience 3 Formats de signalisation binaire Expérience 3 Formats de signalisation binaire Introduction Procédures Effectuez les commandes suivantes: >> xhost nat >> rlogin nat >> setenv DISPLAY machine:0 >> setenv MATLABPATH /gel/usr/telecom/comm_tbx

Plus en détail

Comparabilité d enregistrements réalisés avec les systèmes de mesure d HEAD acoustics

Comparabilité d enregistrements réalisés avec les systèmes de mesure d HEAD acoustics Comparabilité d enregistrements réalisés avec les systèmes de mesure d HEAD acoustics 1. Comparabilité de mesures réalisées avec différentes têtes artificielles HMS III Les mesures réalisées à l aide de

Plus en détail

TS 35 Numériser. Activité introductive - Exercice et démarche expérimentale en fin d activité Notions et contenus du programme de Terminale S

TS 35 Numériser. Activité introductive - Exercice et démarche expérimentale en fin d activité Notions et contenus du programme de Terminale S FICHE Fiche à destination des enseignants TS 35 Numériser Type d'activité Activité introductive - Exercice et démarche expérimentale en fin d activité Notions et contenus du programme de Terminale S Compétences

Plus en détail

SIMULATION EN ELECTRONIQUE

SIMULATION EN ELECTRONIQUE 1 sur 8 SIMULATION EN ELECTRONIQUE PLAN: OBJECTIF - PUBLIC - MATERIEL - LOGICIEL - METHODE - AVANTAGES - DIFFICULTES - AUTEUR DU DOCUMENT INTRODUCTION MANIPULATION 1 : Prise en main A) Montage inverseur

Plus en détail

1. L ADN et l information génétique. l ADN l information génétique est contenue dans l ADN. traduction. comment fait-on une protéine?

1. L ADN et l information génétique. l ADN l information génétique est contenue dans l ADN. traduction. comment fait-on une protéine? 1. L ADN et l information génétique l ADN l information génétique est contenue dans l ADN (ADN) (ARN) 1 2 A G T C U comment fait-on une protéine? traduction l information génétique est organisée par triplets

Plus en détail

Exemples d application

Exemples d application Exemples d application Pour que vous puissiez tester les méthodes décrites ci-dessous, commencez par copier sur votre disque dur les exemples de bruits contenus dans le dossier Soundsamples qui se trouve

Plus en détail

Réseau SCEREN. Ce document a été numérisé par le CRDP de Bordeaux pour la. Base Nationale des Sujets d Examens de l enseignement professionnel.

Réseau SCEREN. Ce document a été numérisé par le CRDP de Bordeaux pour la. Base Nationale des Sujets d Examens de l enseignement professionnel. Ce document a été numérisé par le CRDP de Bordeaux pour la Base Nationale des Sujets d Examens de l enseignement professionnel. Campagne 2013 Ce fichier numérique ne peut être reproduit, représenté, adapté

Plus en détail

Réseaux Multimédia 2002 Damien Magoni

Réseaux Multimédia 2002 Damien Magoni Réseaux Multimédia 2002 Damien Magoni Toutes les illustrations 2001 Pearson Education Limited Fred Halsall Contenu Représentation des informations multimédia Numérisation Structure d un encodeur Structure

Plus en détail

Chapitre 2 Le problème de l unicité des solutions

Chapitre 2 Le problème de l unicité des solutions Université Joseph Fourier UE MAT 127 Mathématiques année 2011-2012 Chapitre 2 Le problème de l unicité des solutions Ce que nous verrons dans ce chapitre : un exemple d équation différentielle y = f(y)

Plus en détail

Activité 1 : échantillonnage

Activité 1 : échantillonnage Activité échantillonnage, intervalle de fluctuation, prise de décision (à partir d un même thème) Les trois activités qui suivent s inspirent du document «ressources pour la classe de première générale

Plus en détail

F411 - Courbes Paramétrées, Polaires

F411 - Courbes Paramétrées, Polaires 1/43 Courbes Paramétrées Courbes polaires Longueur d un arc, Courbure F411 - Courbes Paramétrées, Polaires Michel Fournié michel.fournie@iut-tlse3.fr http://www.math.univ-toulouse.fr/ fournie/ Année 2012/2013

Plus en détail

Module : systèmes asservis linéaires

Module : systèmes asservis linéaires BS2EL - Physique appliquée Module : systèmes asservis linéaires Diaporamas : les asservissements Résumé de cours 1- Structure d un système asservi 2- Transmittances en boucle ouverte et ermée 3- Stabilité

Plus en détail

TP 7 : oscillateur de torsion

TP 7 : oscillateur de torsion TP 7 : oscillateur de torsion Objectif : étude des oscillations libres et forcées d un pendule de torsion 1 Principe général 1.1 Définition Un pendule de torsion est constitué par un fil large (métallique)

Plus en détail

6. Ondes électromagnétiques et rayons lumineux

6. Ondes électromagnétiques et rayons lumineux 6. Ondes électromagnétiques et rayons lumineux Ce chapitre contient des rappels d optique géométrique et vise à faire le lien entre les notions d ondes étudiées au début du cours et l optique géométrique.

Plus en détail

Mémoire de Juin 2010. PID versus PFC

Mémoire de Juin 2010. PID versus PFC Mémoire de Juin 21 PID versus PFC Joëlle.Mallet. IRA Jacques.Richalet. Guy Lavielle. Consultants Philippe.D.Perrichon - Sylvain.Girault. Sanofi-Aventis. Vitry sur Seine Introduction : L automatique industrielle

Plus en détail

Développement de lois et de structures de réglages destinées à la téléopération avec retour d effort

Développement de lois et de structures de réglages destinées à la téléopération avec retour d effort Développement de lois et de structures de réglages destinées à la téléopération avec retour d effort Thomas Delwiche, Laurent Catoire et Michel Kinnaert Faculté des Sciences Appliquées Service d Automatique

Plus en détail

Livre de l information LabChart formation, Paris, le 1 Juillet et 2 Juillet 2014

Livre de l information LabChart formation, Paris, le 1 Juillet et 2 Juillet 2014 Nous vous remercions de l intérêt que vous portez à notre formation logicielle LabChart. La prochaine formation se tiendra à Paris le 1er et 2 Juillet. Ci-dessous, vous trouverez plus d informations sur:

Plus en détail

Echantillonnage MP* 14/15

Echantillonnage MP* 14/15 Echantillonnage MP* 14/15 1. Principe de l oscilloscope numérique L oscilloscope numérique est principalement constitué d un amplificateur analogique (sur chaque voie), d un convertisseur analogique-numérique

Plus en détail

Module : filtrage analogique

Module : filtrage analogique BSEL - Physique appliquée Module : filtrage analogique Diaporama : aucun ésumé de cours - Les différents types de filtres - Transmittance en z d un filtre numérique 3- Algorithme de calcul de y n 4- Stabilité

Plus en détail

TP 6 initiation à l utilisation d un oscilloscope numérique

TP 6 initiation à l utilisation d un oscilloscope numérique TP 6 initiation à l utilisation d un oscilloscope numérique Objectifs : - Le but de cette manipulation est de connaître les fonctionnalités d un oscilloscope numérique Tektronix TDS (210 ou 1001B) bicourbe,

Plus en détail

Travaux pratiques de Génie Informatique TP 2 & 3. séances, mais vous pouvez en faire plus. Essayer d aller le plus loin possible.

Travaux pratiques de Génie Informatique TP 2 & 3. séances, mais vous pouvez en faire plus. Essayer d aller le plus loin possible. 1 BUT DE LA SÉANCE. TRAVAUX PRATIQUES DE GÉNIE INFORMATIQUE Ces deuxième et troisième séances ont pour but de vous faire avancer dans la programmation sous Matlab. Vous y découvrez les fonctions, les sous-programmes

Plus en détail

Clemenceau. Présentation de l AOP. Lycée. PCSI 1 - Physique. Lycée Clemenceau. PCSI 1 (O.Granier)

Clemenceau. Présentation de l AOP. Lycée. PCSI 1 - Physique. Lycée Clemenceau. PCSI 1 (O.Granier) Lycée Clemenceau PCSI 1 (O.Granier) Présentation de l AOP Liens vers : TP-Cours AOP n 1 TP-Cours AOP n 2 TP-Cours AOP n 3 I Présentation et propriétés de l AOP : 1 Description de l AOP : Aspects historiques

Plus en détail

TP 0: Initiation à l utilisation d un oscilloscope numérique

TP 0: Initiation à l utilisation d un oscilloscope numérique FOUGERAY P. ANNE J.F. TP 0: Initiation à l utilisation d un oscilloscope numérique Objectifs : - Le but de cette manipulation est de connaître les fonctionnalités d un oscilloscope numérique bi courbe,

Plus en détail

Sujet proposé par Yves M. LEROY. Cet examen se compose d un exercice et de deux problèmes. Ces trois parties sont indépendantes.

Sujet proposé par Yves M. LEROY. Cet examen se compose d un exercice et de deux problèmes. Ces trois parties sont indépendantes. Promotion X 004 COURS D ANALYSE DES STRUCTURES MÉCANIQUES PAR LA MÉTHODE DES ELEMENTS FINIS (MEC 568) contrôle non classant (7 mars 007, heures) Documents autorisés : polycopié ; documents et notes de

Plus en détail

RÉALISATION D'UN ANALYSEUR ----------------------------

RÉALISATION D'UN ANALYSEUR ---------------------------- RÉALISATION D'UN ANALYSEUR DE SPECTRE Par Alain ARBOUET Lycée René Cassin - 64100 Bayonne arbouet.alain@wanadoo.fr ---------------------------- RÉSUMÉ Le programme 1995 de physique de PCSI recommande la

Plus en détail

Numération Les nombres inférieurs à 59

Numération Les nombres inférieurs à 59 Numération Les nombres inférieurs à 59 Programmes de 2008 Connaître (savoir écrire et nommer) les nombres entiers naturels inférieurs à 1 000. Repérer et placer ces nombres sur une droite graduée, les

Plus en détail

Vision industrielle et télédétection - Détection d ellipses. Guillaume Martinez 17 décembre 2007

Vision industrielle et télédétection - Détection d ellipses. Guillaume Martinez 17 décembre 2007 Vision industrielle et télédétection - Détection d ellipses Guillaume Martinez 17 décembre 2007 1 Table des matières 1 Le projet 3 1.1 Objectif................................ 3 1.2 Les choix techniques.........................

Plus en détail

Concours EPITA 2009 Epreuve de Sciences Industrielles pour l ingénieur La suspension anti-plongée de la motocyclette BMW K1200S

Concours EPITA 2009 Epreuve de Sciences Industrielles pour l ingénieur La suspension anti-plongée de la motocyclette BMW K1200S Concours EPIT 2009 Epreuve de Sciences Industrielles pour l ingénieur La suspension anti-plongée de la motocyclette MW K1200S Durée : 2h. Calculatrices autorisées. Présentation du problème Le problème

Plus en détail

Questions pratiques 4: Transformer la variable dépendante

Questions pratiques 4: Transformer la variable dépendante Questions pratiques 4: Transformer la variable dépendante Jean-François Bickel Statistique II SPO8 Transformer une variable consiste en une opération arithmétique qui vise à construire une nouvelle variable

Plus en détail

Automatique fréquentielle avancée

Automatique fréquentielle avancée Automatique fréquentielle avancée Gérard Scorletti, Vincent Fromion To cite this version: Gérard Scorletti, Vincent Fromion. Automatique fréquentielle avancée. DEA. Ecole Centrale de Lyon, 29, pp.26.

Plus en détail