2. Loi de propagation des erreurs (cas simples)

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "2. Loi de propagation des erreurs (cas simples)"

Transcription

1 Lycée Blase-Cendrars/Physque/Labos/DC///04 Labos de physque : Mesures - Propagaton d erreurs - Mesures répéttves - Statstques. Prncpe de la mesure en physque Une mesure est toujours mprécse. La précson dépend de pluseurs facteurs. Le facteur human : Mauvase apprécaton de la valeur mesurée, erreur systématque dans la manpulaton, manque de son flagrant, sous estmaton d un effet perturbateur... L outl de mesure : Chaque outl de mesure est basé sur un phénomène physque (p. ex. le thermomètre est basé sur la dlataton des lqudes). La bonne connassance et maîtrse de ce phénomène nfluence la précson de la mesure. De même une bonne concepton de l outl permet de mnmser ou corrger les effets perturbateurs ans que d assurer une bonne reproductblté de la mesure. Le phénomène à mesurer : Certans phénomènes physques nécesstent un apparellage très complexe pour être mesurés. La complexté de la mesure (p. ex. f faut mesurer pluseurs quanttés ndépendantes pour en trer le résultat fnal) nfluence sensblement la précson. De même, dans les phénomènes rares (p. ex. certans phénomènes atomques), l est mportant de dsposer de nombreuses mesures pour obtenr une bonne statstque.. Lo de propagaton des erreurs (cas smples) Les effets des erreurs de mesure des quanttés entrant en compte dans la détermnaton d une grandeur dérvée sont en général assez dffcles à évaluer au nveau gymnasal. ous nous bornerons donc à étuder les cas smples que sont la multplcaton, la dvson, l addton et la soustracton de quanttés mesurées. otaton : L erreur (absolue) sur une quantté A s écrt!a. Le sgne! symbolse en général une pette quantté dans le langage mathématque... Addtons et soustractons de grandeurs Problème : Détermner le pérmètre d un rectangle dont les côtés valent A ±!A et B ±!B. Le pérmètre s exprme par P = A+ B. Calculons les valeurs extrêmes de P : P = P+! P = A+! A+ B+ = A+ B+ (! A+ ) max P = P"! P = A"! A+ B" = A+ B" (! A+ ) mn On en dédut mmédatement pour l erreur sur P :! P =! A+ On peut montrer faclement que ce résultat s applque auss à une soustracton (vor exercces). Par alleurs, l assocatvté de l addton permet de généralser ce résultat à un addton de pluseurs quanttés. On résume la propagaton des erreurs pour les addtons et soustractons ans : On addtonne les erreurs absolues pour des addtons ou soustractons. Mesures/Erreurs /5

2 Lycée Blase-Cendrars/Physque/Labos/DC///04.. Multplcatons et dvsons de grandeurs Problème : Détermner la surface d un rectangle dont les côtés valent A ±!A et B ±!B. La surface s exprme par S = A# B. Calculons les valeurs extrêmes de P : S = S+! S = ( A+! A) # ( B+ ) = A# B+ B#! A+ A# +! A# max S = S"! S = ( A"! A) #( B" ) = A# B" B#! A" A# +! A# mn Les quanttés!a et!b sont en général pettes par rapport à A et B. On peut donc néglger le terme! A#!!!!! On arrve à exprmer l erreur sur S :! S B! A A AB A AB B $ A B' = # + # = # + # = S # & + ) A B % A B ( En dvsant le tout par S, on exprme l erreur relatve :! S! A = + S A B On peut montrer que ce résultat s applque auss à une dvson. Par alleurs, l assocatvté de la multplcaton permet de généralser ce résultat à une multplcaton de pluseurs quanttés. On résume la propagaton des erreurs pour les multplcatons et dvsons ans : On addtonne les erreurs relatves (%) pour des multplcatons ou dvsons. 3. Mesures répéttves : Ecart-type S l on ne peut pas estmer les erreurs de manère précse, on peut utlser la méthode répéttve. Celle-c consste à mesurer pluseurs fos la même grandeur physque. On arrve ans à calculer une grandeur moyenne sur toutes les mesures (moyenne arthmétque). Ces mesures ne sont pas dentques en vertu de leurs mprécsons. Elles se répartssent autour d une valeur moyenne. S l on reporte sur un graphe le nombre de mesures stuées dans des ntervalles fxes de valeurs, on observe une sorte de forme en cloche dont le maxmum se stue vers la valeur moyenne de toutes les mesures (fg.). Cette forme de représentaton des mesures s appelle un hstogramme. Elle nous donne de préceux rensegnements sur la répartton des mesures et donc de leur qualté.. En général, cette répartton sut une dstrbuton de probablté Gaussenne (courbe mathématque contnue, en cloche). b mesures/! 70% des mesures! Mesures/Erreurs /5

3 Lycée Blase-Cendrars/Physque/Labos/DC///04 b mesures/! b mesures/! fg. fg. 3 La largeur de cette cloche est drectement lée à la précson des mesures. Plus la cloche est large, plus les mesures peuvent fluctuer (fg. ). Donc l erreur de mesure est grande. Inversement, une cloche mnce reflète une erreur de mesure pette (peu de dfférence entre les mesures, fg. 3). Mathématquement, on peut calculer l écart-type de cette sére de mesure, qu représente la dévaton des mesures autour de la moyenne. Avec une dstrbuton gaussenne, ~67% des mesures dovent être comprses dans un domane de valeurs de ± écart-type autour de la valeur moyenne (zone grsée de la fg. ). On a ans détermné l erreur de mesure moyenne. Ben entendu, plus on dspose de mesure plus cette méthode est précse. C est pourquo une telle méthode ne peut pas s applquer convenablement sur mons de 0 mesures. Sot mesures x.la moyenne arthmétque x se calcule de manère standard : x = = x L écart-type, + ou S, est défn comme la racne carrée de la varance V (vor probabltés en 3ème année). Il représente pour nous l erreur de mesure moyenne, pour chaque mesure effectuée, notée tout naturellement!x. + = V = ( " ) " x x I = d' où! x = + = V = " I = ( x " x) Remarque : le facteur - (au leu de ) découle du fat que la moyenne a été détermnée depus les données et non de manère ndépendante. Sur les machnes à calculer courantes, + correspond à la touche x+ n- et non x+ n. Sur la moyenne de toutes les mesures, l erreur est ben sûr plus fable (Mesurer pluseurs fos la même chose dmnue l ncerttude s l on fat une moyenne). L erreur moyenne se note!x. Elle découle drectement de l erreur!x par! x =! x Ans mesurer 00 fos la même longueur avec une même précson permet de calculer une longueur moyenne avec une précson 0 fos plus pette. Mesures/Erreurs 3/5

4 Lycée Blase-Cendrars/Physque/Labos/DC///04 Exemple : Mesure d une longueur mesure moyenne longueur, x [mm] On calcule V : V = 0 " ( )= 4. Cela condut à!x =.0 mm. Mas vue la précson des mesures, au meux le mm (vor les valeurs du tableau), on ne peut pas garantr les décmales de!x! L erreur de mesure moyenne sera donc de mm pour chaque mesure.!x Pusque l on a prs 0 mesures, l erreur sur la moyenne,!x, vaut donc = 0 = Ic auss l ne faut garder que le nombre de chffres sgnfcatfs approprés. Le nombre n a qu un seul chffre sgnfcatf. Donc le résultat ne peut être donné qu avec un seul chffre sgnfcatf sot!x = 0.6 mm. Donc on obtent fnalement : x = 00. ± 0.6 mm Graphquement, on peut construre l hstogramme suvant : Le graphe part de 90 et va de en jusqu à 0. Le nombre total de mesures est ben de 0 : =0 Mesures Gaussenne La courbe en pontllés représente la dstrbuton gaussenne attendue. En prncpe, c est la forme que prendrat l hstogramme s l on dsposat de très nombreuses mesures (attenton, l faut ben sûr que l hypothèse de la dstrbuton gaussenne sot juste!). L are sous le graphe de la courbe correspond à peu près à 0. Mesures/Erreurs 4/5

5 Lycée Blase-Cendrars/Physque/Labos/DC///04 4. Moyenne pondérée et erreur sur la moyenne (Source : Phlp R. Bevngton, DataReducton and error analyss for the physcal scences) Dans le cas où dspose de pluseurs mesures ndépendantes d une grandeur, on peut calculer la moyenne de ces mseures en tenant compte de la précson de chaque mesure. Plus une mesure est précse, plus elle dot nfluencer la moyenne. Il s agt en fat d une moyenne pondérée. Statstquement elle est défne comme sut : Valeurs mesurées : x avec erreurs +. Moyenne pondérée µ: µ = ( + ) x ( + ) Erreur sur la moyenne + µ : + µ = ( + ) Exemple : 3 mesures : 3. ± 0. ; 3.6 ± 0. et 4 ± /(0. ) + 3.6/(0. ) + 4/(0.5 ) 46 µ = = = /(0. ) + /(0. ) + /(0.5 ) 9 + µ = = = /(0. ) + /(0. ) + /(0.5 ) 9 Donc la moyenne vaut c 3.30 ±0.09. Remarque : La valeur est très proche de la valeur la plus précse des tros mesures ntales. L erreur fnale est plus pette que la plus pette des erreurs des mesures ndvduelles. Mesures/Erreurs 5/5

DEA de physique subatomique Corrigé de l examen d analyse statistique des données et de modélisation session de février - année 2002-2003

DEA de physique subatomique Corrigé de l examen d analyse statistique des données et de modélisation session de février - année 2002-2003 DEA d physqu subatomqu Corrgé d l xamn d analys statstqu ds donnés t d modélsaton ssson d févrr - anné 22-23 Jérôm Baudot sur 45 ponts I- Errur sur la msur d un asymétr avant-arrèr ponts I-a La formul

Plus en détail

Mesure avec une règle

Mesure avec une règle Mesure avec une règle par Matheu ROUAUD Professeur de Scences Physques en prépa, Dplômé en Physque Théorque. Lycée Alan-Fourner 8000 Bourges ecrre@ncerttudes.fr RÉSUMÉ La mesure d'une grandeur par un système

Plus en détail

Grandeur physique, chiffres significatifs

Grandeur physique, chiffres significatifs Grandeur physque, chffres sgnfcatfs I) Donner le résultat d une mesure en correspondance avec l nstrument utlsé : S avec un nstrument, ren n est ndqué sur l ncerttude absolue X d une mesure X, on consdère

Plus en détail

- Equilibre simultané IS/LM : Pour déterminer le couple d équilibre général, il convient de résoudre l équation IS = LM.

- Equilibre simultané IS/LM : Pour déterminer le couple d équilibre général, il convient de résoudre l équation IS = LM. Exercce n 1 Cet exercce propose de détermner l équlbre IS/LM sur la base d une économe dépourvue de présence étatque. Pour ce fare l convent, dans un premer temps de détermner la relaton (IS) marquant

Plus en détail

Remboursement d un emprunt par annuités constantes

Remboursement d un emprunt par annuités constantes Sére STG Journées de formaton Janver 2006 Remboursement d un emprunt par annutés constantes Le prncpe Utlsaton du tableur Un emprunteur s adresse à un prêteur pour obtenr une somme d argent (la dette)

Plus en détail

Ch 4 Séries statistiques à une dimension Définitions et représentation graphique

Ch 4 Séries statistiques à une dimension Définitions et représentation graphique Ch 4 Séres statstques à une dmenson Défntons et représentaton graphque Termnologe Ensemble étudé = populaton Eléments de cet ensemble = ndvdus ou untés Attrbut consdéré = caractère qu peut être qualtatf

Plus en détail

EXAMEN FINAL DE STATISTIQUES DESCRIPTIVES L1 AES - SESSION 1 - Correction -

EXAMEN FINAL DE STATISTIQUES DESCRIPTIVES L1 AES - SESSION 1 - Correction - EXAME FIAL DE STATISTIQUES DESCRIPTIVES L1 AES - SESSIO 1 - Correcton - Exercce 1 : 1) Consdérons une entreprse E comportant deux établssements : E1 et E2 qu emploent chacun 200 salarés. Au sen de l'établssement

Plus en détail

Corrélation et régression linéaire

Corrélation et régression linéaire Corrélaton et régresson lnéare 1. Concept de corrélaton. Analyse de régresson lnéare 3. Dfférences entre valeurs prédtes et observées d une varable 1. Concept de corrélaton L objectf est d analyser un

Plus en détail

STATISTIQUE AVEC EXCEL

STATISTIQUE AVEC EXCEL STATISTIQUE AVEC EXCEL Excel offre d nnombrables possbltés de recuellr des données statstques, de les classer, de les analyser et de les représenter graphquement. Ce sont prncpalement les tros éléments

Plus en détail

Le théorème du viriel

Le théorème du viriel Le théorème du vrel On se propose de démontrer le théorème du vrel de deux manères dfférentes. La premère fat appel à deux "trcks" qu l faut vor. Cette preuve met en avant une quantté, notée S c, qu permet

Plus en détail

Montage émetteur commun

Montage émetteur commun tour au menu ontage émetteur commun Polarsaton d un transstor. ôle de la polarsaton La polarsaton a pour rôle de placer le pont de fonctonnement du transstor dans une zone où ses caractérstques sont lnéares.

Plus en détail

Les jeunes économistes

Les jeunes économistes Chaptre1 : les ntérêts smples 1. défnton et calcul pratque : Défnton : Dans le cas de l ntérêt smple, le captal reste nvarable pendant toute la durée du prêt. L emprunteur dot verser, à la fn de chaque

Plus en détail

MÉTHODES DE SONDAGES UTILISÉES DANS LES PROGRAMMES D ÉVALUATIONS DES ÉLÈVES

MÉTHODES DE SONDAGES UTILISÉES DANS LES PROGRAMMES D ÉVALUATIONS DES ÉLÈVES MÉTHODES DE SONDAGES UTILISÉES DANS LES PROGRAMMES D ÉVALUATIONS DES ÉLÈVES Émle Garca, Maron Le Cam et Therry Rocher MENESR-DEPP, bureau de l évaluaton des élèves Cet artcle porte sur les méthodes de

Plus en détail

3- Réseau Neurologique (NN) 3-1- Réseau classique

3- Réseau Neurologique (NN) 3-1- Réseau classique OUTILS DE PREVISION DE LA VITESSE DE VENT : APPLICATION A LA CARACTERISATION ET A L OPTIMISATION DES CENTRALES EOLIENNES POUR L'INTEGRATION DANS LES RESEAUX ELECTRIQUES A MADAGASCAR. Andramahtasoa Bernard

Plus en détail

Combinaison de dires d'experts en élicitation de lois a priori. pour Listeria chez la souris. Exposé AppliBugs

Combinaison de dires d'experts en élicitation de lois a priori. pour Listeria chez la souris. Exposé AppliBugs Combnason de dres d'experts en élctaton de los a pror. Applcaton à un modèle doseréponse pour Lstera chez la sours. Exposé ApplBugs ISABELLE ALBERT 8 / / 03 INTRODUCTION Cet exposé présente une parte du

Plus en détail

TD 1. Statistiques à une variable.

TD 1. Statistiques à une variable. Danel Abécasss. Année unverstare 2010/2011 Prépa-L1 TD de bostatstques. Exercce 1. On consdère la sére suvante : TD 1. Statstques à une varable. 1. Calculer la moyenne et l écart type. 2. Calculer la médane

Plus en détail

Pour ce problème, une analyse est proposée à l adresse : http://www.ac-amiens.fr/pedagogie/maths/new/ue2007/synthese_atelier_annette_alain.

Pour ce problème, une analyse est proposée à l adresse : http://www.ac-amiens.fr/pedagogie/maths/new/ue2007/synthese_atelier_annette_alain. Pour ce problème, une analyse est proposée à l adresse : http://www.ac-amens.fr/pedagoge/maths/new/ue2007/synthese_ateler_annette_alan.pdf 1 La règle du jeu Un drecteur de casno se propose d nstaller le

Plus en détail

Chapitre 3 : Incertitudes CHAPITRE 3 INCERTITUDES. Lignes directrices 2006 du GIEC pour les inventaires nationaux de gaz à effet de serre 3.

Chapitre 3 : Incertitudes CHAPITRE 3 INCERTITUDES. Lignes directrices 2006 du GIEC pour les inventaires nationaux de gaz à effet de serre 3. Chaptre 3 : Incerttudes CHAPITRE 3 INCERTITUDES Lgnes drectrces 2006 du GIEC pour les nventares natonaux de gaz à effet de serre 3.1 Volume 1 : Orentatons générales et établssement des rapports Auteurs

Plus en détail

éléments d'analyse statistique

éléments d'analyse statistique éléments danalse statstque applcaton à lhdrologe deuxème édton D. Ther octobre 989 R 30 73 EAU 4S 89 BUREAU DE RECHERCHES GEOLOGIQUES ET MINIERES SERVICES SOL ET SOUS-SOL Département Eau B.P. 6009-45060

Plus en détail

DES EFFETS PERVERS DU MORCELLEMENT DES STOCKS

DES EFFETS PERVERS DU MORCELLEMENT DES STOCKS DES EFFETS PERVERS DU MORCELLEMENT DES STOCKS Le cabnet Enetek nous démontre les mpacts négatfs de la multplcaton des stocks qu au leu d amélorer le taux de servce en se rapprochant du clent, le dégradent

Plus en détail

Note méthodologique. Traitements hebdomadaires Quiestlemoinscher.com. Quelle méthode de collecte de prix? Qui a collecté les prix?

Note méthodologique. Traitements hebdomadaires Quiestlemoinscher.com. Quelle méthode de collecte de prix? Qui a collecté les prix? Note méthodologque Tratements hebdomadares Questlemonscher.com Quelle méthode de collecte de prx? Les éléments méthodologques ont été défns par le cabnet FaE onsel, socété d études et d analyses statstques

Plus en détail

Généralités sur les fonctions 1ES

Généralités sur les fonctions 1ES Généraltés sur les fonctons ES GENERALITES SUR LES FNCTINS I. RAPPELS a. Vocabulare Défnton Une foncton est un procédé qu permet d assocer à un nombre x appartenant à un ensemble D un nombre y n note :

Plus en détail

Comparaison de méthodes d ajustement d une distribution de Weibull à 3 paramètres sur une base de données de mesures de ténacité

Comparaison de méthodes d ajustement d une distribution de Weibull à 3 paramètres sur une base de données de mesures de ténacité Comparason de méthodes d ajustement d une dstrbuton de Webull à 3 paramètres sur une base de données de mesures de ténacté M. Marquès, N. Pérot, N. Devctor Laboratore de Condute et Fablté des Réacteurs

Plus en détail

Calculer le coût amorti d une obligation sur chaque exercice et présenter les écritures dans les comptes individuels de la société Plumeria.

Calculer le coût amorti d une obligation sur chaque exercice et présenter les écritures dans les comptes individuels de la société Plumeria. 1 CAS nédt d applcaton sur les normes IAS/IFRS Coût amort sur oblgatons à taux varable ou révsable La socété Plumera présente ses comptes annuels dans le référentel IFRS. Elle détent dans son portefeulle

Plus en détail

Editions ENI. Project 2010. Collection Référence Bureautique. Extrait

Editions ENI. Project 2010. Collection Référence Bureautique. Extrait Edtons ENI Project 2010 Collecton Référence Bureautque Extrat Défnton des tâches Défnton des tâches Project 2010 Sasr les tâches d'un projet Les tâches représentent le traval à accomplr pour attendre l'objectf

Plus en détail

Proposition d'une solution au problème d initialisation cas du K-means

Proposition d'une solution au problème d initialisation cas du K-means Proposton d'une soluton au problème d ntalsaton cas du K-means Z.Guelll et L.Zaou, Unversté des scences et de la technologe d Oran MB, Unversté Mohamed Boudaf USTO -BP 505 El Mnaouer -ORAN - Algére g.zouaou@gmal.com,

Plus en détail

Université Pierre & Marie Curie (Paris 6) Licence de Mathématiques L3 UE LM364 Intégration 1 Année 2011 12. TD4. Tribus.

Université Pierre & Marie Curie (Paris 6) Licence de Mathématiques L3 UE LM364 Intégration 1 Année 2011 12. TD4. Tribus. Unversté Perre & Mare Cure (Pars 6) Lcence de Mathématques L3 UE LM364 Intégraton 1 Année 2011 12 TD4. Trbus. Échauffements Exercce 1. Sot X un ensemble. Donner des condtons sur X pour que les classes

Plus en détail

Plan. Gestion des stocks. Les opérations de gestions des stocks. Les opérations de gestions des stocks

Plan. Gestion des stocks. Les opérations de gestions des stocks. Les opérations de gestions des stocks Plan Geston des stocks Abdellah El Fallah Ensa de Tétouan 2011 Les opératons de gestons des stocks Les coûts assocés à la geston des stocks Le rôle des stocks Modèle de la quantté économque Geston calendare

Plus en détail

ÉLÉMENTS DE THÉORIE DE L INFORMATION POUR LES COMMUNICATIONS.

ÉLÉMENTS DE THÉORIE DE L INFORMATION POUR LES COMMUNICATIONS. ÉLÉMETS DE THÉORIE DE L IFORMATIO POUR LES COMMUICATIOS. L a théore de l nformaton est une dscplne qu s appue non seulement sur les (télé-) communcatons, mas auss sur l nformatque, la statstque, la physque

Plus en détail

COMPARAISON DE MÉTHODES POUR LA CORRECTION

COMPARAISON DE MÉTHODES POUR LA CORRECTION COMPARAISON DE MÉTHODES POUR LA CORRECTION DE LA NON-RÉPONSE TOTALE : MÉTHODE DES SCORES ET SEGMENTATION Émle Dequdt, Benoît Busson 2 & Ncolas Sgler 3 Insee, Drecton régonale des Pays de la Lore, Servce

Plus en détail

Modélisation des Réseaux Ad hoc par Graphes

Modélisation des Réseaux Ad hoc par Graphes SETIT 009 5 th Internatonal Conference: Scences of Electronc, Technologes of Informaton and Telecommuncatons March -6, 009 TUNISIA Modélsaton des Réseaux Ad hoc par Graphes M hamed Abdelmadd ALLALI et

Plus en détail

SmartView d EH. Vue d ensemble des risques et des occasions. Surveillance de l assurance-crédit. www.eulerhermes.ca/fr/smartview

SmartView d EH. Vue d ensemble des risques et des occasions. Surveillance de l assurance-crédit. www.eulerhermes.ca/fr/smartview SmartVew d EH Servces en lgne Euler Hermes Vue d ensemble des rsques et des occasons Survellance de l assurance-crédt www.eulerhermes.ca/fr/smartvew Les avantages du SmartVew d EH Prenez plus de décsons

Plus en détail

Contrats prévoyance des TNS : Clarifier les règles pour sécuriser les prestations

Contrats prévoyance des TNS : Clarifier les règles pour sécuriser les prestations Contrats prévoyance des TNS : Clarfer les règles pour sécurser les prestatons Résumé de notre proposton : A - Amélorer l nformaton des souscrpteurs B Prévor plus de souplesse dans l apprécaton des revenus

Plus en détail

Chapitre 6. Economie ouverte :

Chapitre 6. Economie ouverte : 06/2/202 Chaptre 6. Econome ouverte : le modèle Mundell Flemng Elsabeth Cudevlle Le développement des échanges nternatonaux (bens et servces et flux fnancers) a rendu fortement nterdépendantes les conjonctures

Plus en détail

Information mutuelle et partition optimale du support d une mesure de probabilité

Information mutuelle et partition optimale du support d une mesure de probabilité Informaton mutuelle et partton optmale du support d une mesure de probablté Bernard Coln et Ernest Monga Département de Mathématques Unversté de Sherbrooke Sherbrooke JK-R (Québec) Canada bernard.coln@usherbrooke.ca

Plus en détail

UNIVERSITÉ PARIS OUEST NANTERRE LA DÉFENSE U.F.R. SEGMI Année universitaire 2015 2016. Statistiques Descriptives

UNIVERSITÉ PARIS OUEST NANTERRE LA DÉFENSE U.F.R. SEGMI Année universitaire 2015 2016. Statistiques Descriptives UNIVERSITÉ PARIS OUEST NANTERRE LA DÉFENSE U.F.R. SEGMI Année unverstare 215 216 L1 Économe Cours de B. Desgraupes Statstques Descrptves Séance 7: Indces synthétques Table des matères 1 Introducton 1 1.1

Plus en détail

CHAPITRE 2 LA SPECTROMETRIE RMN

CHAPITRE 2 LA SPECTROMETRIE RMN .J. Ducauze et D.N. Rutledge groparstech PITRE L SPETRMETRIE RMN «Spectrométre RMN» veut dre qu on s ntéresse aux nformatons qu apportent les spectres, c est-à-dre à un ensemble d observatons effectuées

Plus en détail

Courant alternatif. Dr F. Raemy La tension alternative et le courant alternatif ont la représentation mathématique : U t. cos (!

Courant alternatif. Dr F. Raemy La tension alternative et le courant alternatif ont la représentation mathématique : U t. cos (! Courant alternatf Dr F. Raemy La tenson alternatve et le courant alternatf ont la représentaton mathématque : U t = U 0 cos (! t + " U ) ; I ( t) = I 0 cos (! t + " I ) Une résstance dans un crcut à courant

Plus en détail

Utilisation du symbole

Utilisation du symbole HKBL / 7 symbole sgma Utlsaton du symbole Notaton : Pour parler de la somme des termes successfs d une sute, on peut ou ben utlser les pontllés ou ben utlser le symbole «sgma» majuscule noté Par exemple,

Plus en détail

Fiche n 7 : Vérification du débit et de la vitesse par la méthode de traçage

Fiche n 7 : Vérification du débit et de la vitesse par la méthode de traçage Fche n 7 : Vérfcaton du débt et de la vtesse par la méthode de traçage 1. PRINCIPE La méthode de traçage permet de calculer le débt d un écoulement ndépendamment des mesurages de hauteur et de vtesse.

Plus en détail

GENESIS - Generalized System for Imputation Simulations (Système généralisé pour simuler l imputation)

GENESIS - Generalized System for Imputation Simulations (Système généralisé pour simuler l imputation) GENESS - Generalzed System for mputaton Smulatons (Système généralsé pour smuler l mputaton) GENESS est un système qu permet d exécuter des smulatons en présence d mputaton. L utlsateur fournt un ensemble

Plus en détail

10.1 Inférence dans la régression linéaire

10.1 Inférence dans la régression linéaire 0. Inférence dans la régresson lnéare La régresson lnéare tente de modeler le rapport entre deux varables en adaptant une équaton lnéare avec des données observées. Chaque valeur de la varable ndépendante

Plus en détail

V2- Montage de chimie n 3 : Définition et mesure de ph. Titrages

V2- Montage de chimie n 3 : Définition et mesure de ph. Titrages V2- Montage de chme n 3 : Défnton et mesure de ph. Ttrages Nveau concerné : Term S oblgatore (ensegn. spé. auss mas non présenté dans cet eposé) Prérequs : noton d acde et de base au sens de Brönsted,

Plus en détail

Solution : 1. Soit y = α + βt, l équation de la droite considérée. Le problème de régression linéaire s écrit. i=1 2(α + βt i b i )t i

Solution : 1. Soit y = α + βt, l équation de la droite considérée. Le problème de régression linéaire s écrit. i=1 2(α + βt i b i )t i Exercces avec corrgé succnct du chaptre 3 (Remarque : les références ne sont pas gérées dans ce document, par contre les quelques?? qu apparassent dans ce texte sont ben défns dans la verson écran complète

Plus en détail

I. Présentation générale des méthodes d estimation des projets de type «unité industrielle»

I. Présentation générale des méthodes d estimation des projets de type «unité industrielle» Evaluaton des projets et estmaton des coûts Le budget d un projet est un élément mportant dans l étude d un projet pusque les résultats économques auront un mpact sur la réalsaton ou non et sur la concepton

Plus en détail

Algorithme approché d optimisation d un modèle de Processus Décisionnel de Markov sur Graphe

Algorithme approché d optimisation d un modèle de Processus Décisionnel de Markov sur Graphe Algorthme approché d optmsaton d un modèle de Processus Décsonnel de Markov sur Graphe Nathale Peyrard Régs Sabbadn INRA-MIA Avgnon et Toulouse E-Mal: {peyrard,sabbadn}@toulouse.nra.fr Réseau MSTGA, Avgnon,

Plus en détail

Travaux pratiques : GBF et oscilloscope

Travaux pratiques : GBF et oscilloscope Travaux pratques : et osclloscope S. Benlhajlahsen ésumé L objectf de ce TP est d apprendre à utlser, c est-à-dre à régler, deux des apparels les plus couramment utlsés : le et l osclloscope. I. Premère

Plus en détail

Cours #8 Optimisation de code

Cours #8 Optimisation de code ELE-784 Ordnateurs et programmaton système Cours #8 Optmsaton de code Bruno De Kelper Ste nternet : http://www.ele.etsmtl.ca/academque/ele784/ Cours # 8 ELE784 - Ordnateurs et programmaton système 1 Plan

Plus en détail

Le raisonnement incertain

Le raisonnement incertain 1 Plan général 2 Le rasonnement ncertan dans les systèmes experts I- Introducton aux systèmes experts II- Fondements : organsaton et fonctonnement des SE III- Le rasonnement ncertan Introducton Antone

Plus en détail

Définition des tâches

Définition des tâches Défnton des tâches Défnton des tâches Project 2010 Sasr les tâches d'un projet Les tâches représentent le traval à accomplr pour attendre l'objectf du projet. Elles représentent de ce fat, les éléments

Plus en détail

Université d El Oued Cours Circuits Electriques 3 LMD-EM

Université d El Oued Cours Circuits Electriques 3 LMD-EM ère parte : Electrocnétque Chaptre ntroducton L Electrocnétque est la parte de l Electrcté qu étude les courants électrques. - Courant électrque -- Défntons Défnton : un courant électrque est un mouvement

Plus en détail

ET INCERTITUDES DE MESURE

ET INCERTITUDES DE MESURE LGCIE - Hdrologe Urbane Mater «Géne Cvl» Cour de Tronc Commun «Epérmentaton et modélaton» CAPTEURS, ETALONNAGES ET INCERTITUDES DE MESURE Jean-Luc BERTRAND-KRAJEWSKI Edton 7 Avertement Ce note de cour

Plus en détail

Système solaire combiné Estimation des besoins énergétiques

Système solaire combiné Estimation des besoins énergétiques Revue des Energes Renouvelables ICRESD-07 Tlemcen (007) 109 114 Système solare combné Estmaton des besons énergétques R. Kharch 1, B. Benyoucef et M. Belhamel 1 1 Centre de Développement des Energes Renouvelables

Plus en détail

Sujets des projets. Informatique de Base Université Pierre et Marie Curie

Sujets des projets. Informatique de Base Université Pierre et Marie Curie 1 Sujets des projets Informatque de Base Unversté Perre et Mare Cure D Bernard, F Hecht, N Segun Master I / sesson 2004/2005 Table des matères 1 Sujet : Recherche rapde d un trangle contenant un pont dans

Plus en détail

EH SmartView. Identifiez vos risques et vos opportunités. www.eulerhermes.be. Pilotez votre assurance-crédit. Services en ligne Euler Hermes

EH SmartView. Identifiez vos risques et vos opportunités. www.eulerhermes.be. Pilotez votre assurance-crédit. Services en ligne Euler Hermes EH SmartVew Servces en lgne Euler Hermes Identfez vos rsques et vos opportuntés Plotez votre assurance-crédt www.eulerhermes.be Les avantages d EH SmartVew L expertse Euler Hermes présentée de manère clare

Plus en détail

classification non supervisée : pas de classes prédéfinies Applications typiques

classification non supervisée : pas de classes prédéfinies Applications typiques Qu est ce que le clusterng? analyse de clusterng regroupement des obets en clusters un cluster : une collecton d obets smlares au sen d un même cluster dssmlares au obets appartenant à d autres clusters

Plus en détail

Les déterminants de la détention et de l usage de la carte de débit : une analyse empirique sur données individuelles françaises

Les déterminants de la détention et de l usage de la carte de débit : une analyse empirique sur données individuelles françaises Les détermnants de la détenton et de l usage de la carte de débt : une analyse emprque sur données ndvduelles françases Davd Boune Marc Bourreau Abel Franços Jun 2006 Département Scences Economques et

Plus en détail

Les déterminants de la détention et de l usage de la carte de débit : une analyse empirique sur données individuelles françaises

Les déterminants de la détention et de l usage de la carte de débit : une analyse empirique sur données individuelles françaises Les détermnants de la détenton et de l usage de la carte de débt : une analyse emprque sur données ndvduelles françases Davd Boune a, Marc Bourreau a,b et Abel Franços a,c a Télécom ParsTech, Département

Plus en détail

3. Méthodologie d obtention d une base de données imputées

3. Méthodologie d obtention d une base de données imputées 3 Méthodologe d obtenton d une base données mputées Jean-Marc Kouado, Jean Arnaud Kouakou, Kouamé Désré Kanga ésumé L ob c artc proposer mtre en œuvre une méthodologe complétu base données sur un échantllon

Plus en détail

Demande d insertion au registre de l état civil du Québec d un acte d état civil fait hors du Québec

Demande d insertion au registre de l état civil du Québec d un acte d état civil fait hors du Québec Demande d nserton au regstre de l état cvl du Québec d un acte d état cvl fat hors du Québec IMPORTANT Lsez les rensegnements généraux et les drectves Remplssez le formulare en caractères d mprmere, à

Plus en détail

Clavier et souris virtuels pour personnes handicapées à mobilité réduite

Clavier et souris virtuels pour personnes handicapées à mobilité réduite Claver et sours vrtuels pour personnes handcapées à moblté rédute Naoures Belhabb et Ans Rojb Unversté Pars8, THIM, EA 4004 CHART 2, rue de la Lberté 93526 Sant-Dens nawres_habb@yahoo.fr ; ans.rojb@unv-pars8.fr

Plus en détail

UNIVERSITÉ DU QUÉBEC À MONTRÉAL L ASSURANCE AUTOMOBILE AU QUÉBEC : UNE PRIME SELON LE COÛT SOCIAL MARGINAL MÉMOIRE PRÉSENTÉ COMME EXIGENCE PARTIELLE

UNIVERSITÉ DU QUÉBEC À MONTRÉAL L ASSURANCE AUTOMOBILE AU QUÉBEC : UNE PRIME SELON LE COÛT SOCIAL MARGINAL MÉMOIRE PRÉSENTÉ COMME EXIGENCE PARTIELLE UNIVERSITÉ DU QUÉBEC À MONTRÉAL L ASSURANCE AUTOMOBILE AU QUÉBEC : UNE PRIME SELON LE COÛT SOCIAL MARGINAL MÉMOIRE PRÉSENTÉ COMME EXIGENCE PARTIELLE DE LA MAÎTRISE EN ÉCONOMIQUE PAR ERIC LÉVESQUE JANVIER

Plus en détail

BTS GPN 2EME ANNEE-MATHEMATIQUES-MATHS FINANCIERES MATHEMATIQUES FINANCIERES

BTS GPN 2EME ANNEE-MATHEMATIQUES-MATHS FINANCIERES MATHEMATIQUES FINANCIERES MATHEMATIQUES FINANCIERES I. Concepts généraux. Le référentel précse : Cette parte du module M4 «Acquérr des outls mathématques de base nécessares à l'analyse de données économques» est en relaton avec

Plus en détail

L inefficience des marchés

L inefficience des marchés L neffcence des marchés Poston du problème La théore de l effcence des marchés fnancers devrat en prncpe être consdérée comme réfutée par l expérence, en rason des crses fnancères qu se sont succédées,

Plus en détail

Dans un mélange, tous les constituants ont le même statut thermodynamique.

Dans un mélange, tous les constituants ont le même statut thermodynamique. Mélanges et solutons I_ Défntons et composton. Défntons Dans un mélange, tous les consttuants ont le même statut thermodynamque. Lorsque dans un mélange solde ou lqude, un des consttuants, appelé solvant,

Plus en détail

Mémento de théorie de l information

Mémento de théorie de l information Mémento de théore de l nformaton Glles Zémor 6 octobre 204 0 Rappels de probabltés Espaces probablsés. Un espace probablsé (Ω, P ) est un ensemble Ω mun d une mesure de probablté P qu est, lorsque Ω est

Plus en détail

Distripost. Création 7 Caractéristiques du produit et options 7. Préparation de vos envois 8 Conditionnement 8

Distripost. Création 7 Caractéristiques du produit et options 7. Préparation de vos envois 8 Conditionnement 8 Dstrpost Quo, où et comment? 1 1. Qu est-ce que Dstrpost? 1 2. Quels chox s offrent à vous pour la dstrbuton de vos envos Dstrpost? 1 2.1. Tout le monde reçot-l mon envo toutes-boîtes dans la zone sélectonnée?

Plus en détail

Chapitre 2 UNE ESTIMATION DYNAMIQUE DE LA LIQUIDITÉ. La Liquidité - De la Microstructure à la Gestion du Risque de Liquidité

Chapitre 2 UNE ESTIMATION DYNAMIQUE DE LA LIQUIDITÉ. La Liquidité - De la Microstructure à la Gestion du Risque de Liquidité La Lqudté - De la Mcrostructure à la Geston du Rsque de Lqudté Chaptre 2 UNE ESTIMATION DYNAMIQUE DE LA LIQUIDITÉ Erwan Le Saout - Novembre 2000. 97 La Lqudté - De la Mcrostructure à la Geston du Rsque

Plus en détail

Mode d'emploi. Capteur de température ambiante radiofréquence avec horloge 1186..

Mode d'emploi. Capteur de température ambiante radiofréquence avec horloge 1186.. Mode d'emplo Capteur de température ambante radofréquence avec horloge 1186.. Table des matères A propos de ce mode d'emplo... 2 Comment le capteur de température ambante radofréquence fonctonne... 2 Affchage

Plus en détail

Construction de portefeuille : recherche d une cohérence entre le risque stratégique et le risque actif

Construction de portefeuille : recherche d une cohérence entre le risque stratégique et le risque actif Constructon de portefeulle : recherche d une cohérence entre le rsque stratégque et le rsque actf aper de recherche # eptembre 04 - Document réservé exclusvement aux clents professonnels au sens de la

Plus en détail

Combiner des apprenants: le boosting

Combiner des apprenants: le boosting Types d expers Combner des apprenans: le boosng A. Cornuéjols IAA (basé sur Rob Schapre s IJCAI 99 alk)! Un seul exper sur l ensemble de X! Un exper par sous-régons de X (e.g. arbres de décsons)! Pluseurs

Plus en détail

10ème Congrès Français d'acoustique Lyon, 12-16 Avril 2010

10ème Congrès Français d'acoustique Lyon, 12-16 Avril 2010 10ème Congrès ranças d'acoustque Lyon, 1-16 Avrl 010 Imagere acoustque en soufflere SA Arnaud Ménoret 1, Nathale Gorllot, Jean-Luc Adam 3 1 Sgnal Développement, 1 Bld Chassegne, 86000 Poters, a.menoret@sgnal-developpement.com

Plus en détail

L indice suisse des prix de la construction Octobre 2010=100

L indice suisse des prix de la construction Octobre 2010=100 Département fédéral de l ntéreur DFI Offce fédéral de la statstque OFS Actualtés OFS 5 Prx Neuchâtel, jullet 211 L ndce susse des prx de la constructon Octobre 21=1 Aperçu méthodologque Rensegnements:

Plus en détail

Interprétation cristalline de l isomorphisme de Deligne-Illusie (cas des courbes)

Interprétation cristalline de l isomorphisme de Deligne-Illusie (cas des courbes) Interprétaton crstallne de l somorphsme de Delgne-Illuse (cas des courbes) C. Huyghe et N. Wach 6 avrl 23 Abstract In 987, Delgne and Illuse proved the degeneraton of the spectral sequence de Hodge vers

Plus en détail

LE RÉGIME DE RETRAITE DU PERSONNEL CANADIEN DE LA CANADA-VIE (le «régime») INFORMATION IMPORTANTE CONCERNANT LE RECOURS COLLECTIF

LE RÉGIME DE RETRAITE DU PERSONNEL CANADIEN DE LA CANADA-VIE (le «régime») INFORMATION IMPORTANTE CONCERNANT LE RECOURS COLLECTIF 1 LE RÉGIME DE RETRAITE DU PERSONNEL CANADIEN DE LA CANADA-VIE (le «régme») INFORMATION IMPORTANTE CONCERNANT LE RECOURS COLLECTIF AVIS AUX RETRAITÉS ET AUX PARTICIPANTS AVEC DROITS ACQUIS DIFFÉRÉS Expédteurs

Plus en détail

1 Introduction. 2 Définitions des sources de tension et de courant : Cours. Date : A2 Analyser le système Conversion statique de l énergie. 2 h.

1 Introduction. 2 Définitions des sources de tension et de courant : Cours. Date : A2 Analyser le système Conversion statique de l énergie. 2 h. A2 Analyser le système Converson statque de l énerge Date : Nom : Cours 2 h 1 Introducton Un ConVertsseur Statque d énerge (CVS) est un montage utlsant des nterrupteurs à semconducteurs permettant par

Plus en détail

LA RENOVATION DE L INDICE HARMONISE DES PRIX A LA CONSOMMATION DANS LA ZONE UEMOA

LA RENOVATION DE L INDICE HARMONISE DES PRIX A LA CONSOMMATION DANS LA ZONE UEMOA Observatore Economque et Statstque d Afrque Subsaharenne LA RENOVATION DE L INDICE HARMONISE DES PRIX A LA CONSOMMATION DANS LA ZONE UEMOA Une contrbuton à la réunon commune CEE/BIT sur les ndces des prx

Plus en détail

Introduction aux statistiques spatiales et aux systèmes d'information géographique en santé environnement

Introduction aux statistiques spatiales et aux systèmes d'information géographique en santé environnement Santé envronnement Introducton aux statstques spatales et aux systèmes d'nformaton géographque en santé envronnement applcaton aux études écologques Sommare Abrévatons 2 Résumé 3 1. Introducton 4 1.1 Études

Plus en détail

Exercices d Électrocinétique

Exercices d Électrocinétique ercces d Électrocnétque Intensté et densté de courant -1.1 Vtesse des porteurs de charges : On dssout une masse m = 20g de chlorure de sodum NaCl dans un bac électrolytque de longueur l = 20cm et de secton

Plus en détail

IDEI Report # 18. Transport. December 2010. Elasticités de la demande de transport ferroviaire: définitions et mesures

IDEI Report # 18. Transport. December 2010. Elasticités de la demande de transport ferroviaire: définitions et mesures IDEI Report # 18 Transport December 2010 Elastctés de la demande de transport ferrovare: défntons et mesures Elastctés de la demande de transport ferrovare : Défntons et mesures Marc Ivald Toulouse School

Plus en détail

Résumé : I- Introduction :

Résumé : I- Introduction : Applcaton de l analyse de frontère stochastque à l estmaton de l effcence technque des entreprses algérennes: effet de la forme de proprété Résumé : Nabl, Al BELOUARD Doctorant à l École Natonale Supéreure

Plus en détail

ESTIMATION DES TITRES VIRAUX : UNE PROGRAMMATION PRATIQUE ET FIABLE SUR CALCULATRICE DE POCHE, ET ACCESSIBLE PAR l INTERNET

ESTIMATION DES TITRES VIRAUX : UNE PROGRAMMATION PRATIQUE ET FIABLE SUR CALCULATRICE DE POCHE, ET ACCESSIBLE PAR l INTERNET ESTIMATIO DES TITRES VIRAUX : UE PROGRAMMATIO PRATIQUE ET FIABLE SUR CALCULATRICE DE POCHE, ET ACCESSIBLE PAR l ITERET Jocelyne Husson van Vlet et Ph. Roussel Insttut de la Santé Publque, Brussels, Belgum,

Plus en détail

Assurance maladie et aléa de moralité ex-ante : L incidence de l hétérogénéité de la perte sanitaire

Assurance maladie et aléa de moralité ex-ante : L incidence de l hétérogénéité de la perte sanitaire Assurance malade et aléa de moralté ex-ante : L ncdence de l hétérogénété de la perte santare Davd Alary 1 et Franck Ben 2 Cet artcle examne l ncdence de l hétérogénété de la perte santare sur les contrats

Plus en détail

CHAPITRE 14 : RAISONNEMENT DES SYSTÈMES DE COMMANDE

CHAPITRE 14 : RAISONNEMENT DES SYSTÈMES DE COMMANDE HAITRE 4 : RAISONNEMENT DES SYSTÈMES DE OMMANDE RAISONNEMENT DES SYSTÈMES DE OMMANDE... 2 INTRODUTION... 22 RAELS... 22 alcul de la valeur ntale de la répone à un échelon... 22 alcul du gan tatque... 22

Plus en détail

L environnement Windows 10 sur tablette

L environnement Windows 10 sur tablette L envronnement Wndows 10 sur tablette L envronnement Wndows 10 sur tablette Wndows 10 - Prse en man de votre ordnateur ou votre tablette Actver/désactver le mode Tablette Contnuum est une nouvelle fonctonnalté

Plus en détail

RÉPONSES À UN ÉCHELON. Sortie u(t) réponse. t(s)

RÉPONSES À UN ÉCHELON. Sortie u(t) réponse. t(s) BTS S ÉPONSS À UN ÉHON. éponse à n échelon d n système d premer ordre xemple : almentaton d n condensater de capacté par ne sorce de tenson e(t) à travers résstance a tenson varable e(t) est n échelon

Plus en détail

Documents de travail. «La taxe Tobin : une synthèse des travaux basés sur la théorie des jeux et l économétrie» Auteurs

Documents de travail. «La taxe Tobin : une synthèse des travaux basés sur la théorie des jeux et l économétrie» Auteurs Documents de traval «La taxe Tobn : une synthèse des travaux basés sur la théore des jeux et l économétre» Auteurs Francs Bsmans, Olver Damette Document de Traval n 2012-09 Jullet 2012 Faculté des scences

Plus en détail

SIMULATION D UN JET TURBULENT POUR LE REFROIDISSEMENT DES AUBES DE TURBINE

SIMULATION D UN JET TURBULENT POUR LE REFROIDISSEMENT DES AUBES DE TURBINE 10 ème Sémnare Internatonal sur la Physque Energétque 10 th Internatonal Meetng on Energetcal Physcs SIMULAION D UN JE URBULEN POUR LE REFROIDISSEMEN DES AUBES DE URBINE Bounegta Bachr 1, Abdelarm Maamar

Plus en détail

Oscillations électriques libres

Oscillations électriques libres Oscllatons électrues lbres A Oscllatons lbres amortes 1/ Etude expérmentale a Expérence et observatons Après avor chargé le condensateur (poston 1) On bascule l nterrupteur sur la poston, on obtent l oscllogramme

Plus en détail

GEA I Mathématiques nancières Poly. de révision. Lionel Darondeau

GEA I Mathématiques nancières Poly. de révision. Lionel Darondeau GEA I Mathématques nancères Poly de révson Lonel Darondeau Intérêts smples et composés Voc la lste des exercces à révser, corrgés en cours : Exercce 2 Exercce 3 Exercce 5 Exercce 6 Exercce 7 Exercce 8

Plus en détail

Dynamique du point matériel

Dynamique du point matériel Chaptre III Dynaqe d pont atérel I Généraltés La cnéatqe a por objet l étde des oveents des corps en foncton d teps, sans tenr copte des cases q les provoqent La dynaqe est la scence q étde (o déterne)

Plus en détail

une garde d Enfant a votre domicile

une garde d Enfant a votre domicile GUIDE A DESTINATION DES PARENTS Ce gude pratque a été réalsé par la CDAJE du Nord (Commsson Départementale de l Accuel des Jeunes Enfants). A retrouver sur www.cdaje59.fr PAO - CAF DU NORD 06/2012 EmploYEr

Plus en détail

Corrections adiabatiques et nonadiabatiques dans les systèmes diatomiques par calculs ab-initio

Corrections adiabatiques et nonadiabatiques dans les systèmes diatomiques par calculs ab-initio Correctons adabatques et nonadabatques dans les systèmes datomques par calculs ab-nto Compte rendu du traval réalsé dans le cadre d un stage de quatre mos au sen du Groupe de Spectroscope Moléculare et

Plus en détail

Les prix quotidiens de clôture des échanges de quotas EUA et de crédits CER sont fournis par ICE Futures Europe

Les prix quotidiens de clôture des échanges de quotas EUA et de crédits CER sont fournis par ICE Futures Europe Méthodologe CDC Clmat Recherche puble chaque mos, en collaboraton avec Clmpact Metnext, Tendances Carbone, le bulletn mensuel d nformaton sur le marché européen du carbone (EU ETS). L obectf de cette publcaton

Plus en détail

Économétrie. Annexes : exercices et corrigés. 5 e édition. William Greene New York University

Économétrie. Annexes : exercices et corrigés. 5 e édition. William Greene New York University Économétre 5 e édton Annexes : exercces et corrgés Wllam Greene New York Unversty Édton françase drgée par Dder Schlacther, IEP Pars, unversté Pars II Traducton : Stéphane Monjon, unversté Pars I Panthéon-Sorbonne

Plus en détail

hal-00409942, version 1-14 Aug 2009

hal-00409942, version 1-14 Aug 2009 Manuscrt auteur, publé dans "MOSIM' 008, Pars : France (008)" 7 e Conférence Francophone de MOdélsaton et SIMulaton - MOSIM 08 - du mars au avrl 008 - Pars - France «Modélsaton, Optmsaton et Smulaton des

Plus en détail

Electricité II : Régimes sinusoïdaux et transitoires AC and transient circuit analysis Fascicule d'exercices de Travaux Dirigés

Electricité II : Régimes sinusoïdaux et transitoires AC and transient circuit analysis Fascicule d'exercices de Travaux Dirigés Electrcté II : égmes snusoïdaux et transtores and transent crcut analyss Fasccule d'exercces de Travaux Drgés 5 cours / Séances de TD / 5 séances de TP égmes snusoïdaux Nombre de séances de TD prévues

Plus en détail

Thermodynamique statistique Master Chimie Université d Aix-Marseille. Bogdan Kuchta

Thermodynamique statistique Master Chimie Université d Aix-Marseille. Bogdan Kuchta hermodynamque statstque Master Chme Unversté d Ax-Marselle Bogdan Kuchta Plan: Rappel: thermodynamque phénoménologque (dscuter l entrope, l évoluton de gaz parfat,) Premer prncpe Deuxème prncpe (transformaton

Plus en détail

Paquets. Paquets nationaux 1. Paquets internationaux 11

Paquets. Paquets nationaux 1. Paquets internationaux 11 Paquets Paquets natonaux 1 Paquets nternatonaux 11 Paquets natonaux Servces & optons 1 Créaton 3 1. Dmensons, pods & épasseurs 3 2. Présentaton des paquets 4 2.1. Face avant du paquet 4 2.2. Comment obtenr

Plus en détail

II - Notions de probabilité. 19/10/2007 PHYS-F-301 G. Wilquet 1

II - Notions de probabilité. 19/10/2007 PHYS-F-301 G. Wilquet 1 II - Notos de probablté 9/0/007 PHYS-F-30 G. Wlquet Ue varable aléatore est ue varable dot la valeur e peut être prédte avec certtude mas dot la probablté d occurrece d ue valeur (varable dscrète) ou d

Plus en détail