BREVET BLANC 2 - CORRECTION + BAREME Légende : Bleu=partie=12 points ; Vert=exercice ; Rouge = élément de réponse

Dimension: px
Commencer à balayer dès la page:

Download "BREVET BLANC 2 - CORRECTION + BAREME Légende : Bleu=partie=12 points ; Vert=exercice ; Rouge = élément de réponse"

Transcription

1 BREVET BLANC 2 - CORRECTION + BAREME Légende : Bleu=partie=12 points ; Vert=exercice ; Rouge = élément de réponse ACTIVITES NUMERIQUES 30 min - 12 points EXERCICE 1 (extrait de brevet, Nouvelle-Calédonie, décembre 2010) : 2 points Un commerçant propose à ses clients diverses boissons. Il a au total 100 boissons réparties comme ceci : 22 bouteilles de thé glacé, 32 bouteilles de jus d ananas, 18 bouteilles de soda et les autres bouteilles sont des bouteilles d eau. Le commerçant gère son stock grâce à un tableur. 1- Quelle formule a-t-il écrite dans la cellule D2 pour obtenir le résultat indiqué dans le tableur? La formule écrite dans la cellule D2 est «=B2-C2». 2- Pour obtenir le nombre 100 dans la cellule B6, il a été écrit : =SOMME(B2 :B5). Quelle formule est-il écrit en C6 pour obtenir 24? La formule écrite dans la cellule C6 est «=SOMME(C2:C5)». EXERCICE 2 : 6 points Un statisticien fait une étude commandée par une association de consommateurs. Cette association a noté la durée passée en attente au téléphone par 16 consommateurs pour se faire dépanner auprès de deux fournisseurs A et B d accès à Internet et veut comparer les deux prestations. Voici les durées pour ces deux opérateurs : Durée d'attente (en min) 2 3, , Effectif pour l'opérateur A Effectif pour l'opérateur B Le statisticien affirme qu'en moyenne un client attend plus longtemps pour être dépanné par l'opérateur B que par l'opérateur A. Expliquer son raisonnement. La durée moyenne d'attente pour être dépanné par l'opérateur A est : m= , , m= 110,5 16 m=6,90625 La durée moyenne d'attente pour être dépanné par l'opérateur A est : m '= , , m'= m' =7,3125 Le statisticien affirme qu'en moyenne un client attend plus longtemps pour être dépanné par l'opérateur B que par l'opérateur A car 6,90625 < 7,3125.

2 2- Le statisticien affirme qu'il y a un écart de 15 minutes entre le premier client dépanné et le dernier client dépanné, quelque soit l'opérateur. Expliquer pourquoi il a tort. Le statisticien a tort parce que l'écart entre le premier client dépanné et le dernier client dépanné, quelque soit l'opérateur, est 15-2= a- Calculer la durée médiane d'attente pour se faire dépanner par l'opérateur A et par l'opérateur B. Effectif total = 16 (pair) 16 : 2 = 8 Donc Médiane= 8e valeur+9 e valeur La durée médiane d'attente pour être dépanné par l'opérateur A est : 2 = 12 2 =6 La durée médiane d'attente pour être dépanné par l'opérateur B est : = 11 2 =5,5 3- b- Comment le statisticien va-t-il interpréter ces deux résultats? Au moins la moitié des consommateurs attend moins de 6 minutes pour être dépanné par l'opérateur A. Au moins la moitié des consommateurs attend plus de 6 minutes pour être dépanné par l'opérateur A. 0,5 point Au moins la moitié des consommateurs attend moins de 5,5 minutes pour être dépanné par l'opérateur B. Au moins la moitié des consommateurs attend plus de 5,5 minutes pour être dépanné par l'opérateur B.0,5 point EXERCICE 3 (extrait de brevet, Nouvelle-Calédonie, décembre 2010) : 4 points Heimiri et son frère Tehui souhaitent gâter leur maman pour la fête des mères. Ils disposent de 180 et profitent des soldes chez le bijoutier. 1- Dans la vitrine de la bijouterie, ils aperçoivent de superbes boucles d oreilles à 120. Calculer le prix des boucles d oreilles après une remise de 25 %. 120 ( )=120 0,75=90. Le prix des boucles d oreilles après une remise de 25 % est Dans la même bijouterie, ils aperçoivent une magnifique bague. Après une remise de 20 %, le prix de la bague est de 78,40. Quel était son prix initial? Justifier la réponse. 78,40 ( )=78,4 0,8=98 Le prix initial de la bague était En s apprêtant à sortir de la bijouterie, Heimiri est sous le charme d un pendentif en nacre. Voici ce qu indique l étiquette : Calculer le pourcentage de remise effectuée sur le prix de ce pendentif =0,75=1 0,25= Le pourcentage de remise effectuée sur le prix de ce pendentif est 25%. 4- Heimiri et son frère Tehui peuvent-ils acheter l'ensemble des trois bijoux (les boucles d'oreilles, la bague et le pendentif) pour leur maman? Justifier la réponse , = 378,40 > 180 Donc Heimiri et son frère Tehui ne peuvent pas acheter l'ensemble des trois bijoux.

3 ACTIVITES GEOMETRIQUES 30 min - 12 points EXERCICE 4 (extrait de brevet, Amérique du Nord, juin 2011) : 4 points La cathédrale de Mata Utu, à Wallis, a été construite en 1951, sans suivre de plan. Tout s est fait avec les qualités visuelles et manuelles de l'architecte et de ses ouvriers. C est pourquoi aucune donnée «numérique» ne reste de cette construction (hauteur, longueur,...). Un jour, le jeune Paulo a voulu calculer la hauteur de la cathédrale. Il fait alors une figure la représentant vue de côté (voir ci-dessous) en nommant les points O, A, B et C qui vont lui permettre de faire le calcul. Grâce à un instrument de mesure placé en O à 1,80 m du sol, il mesure l angle ĈOB qui fait 48. Ensuite, il trouve OB = 15m (on suppose que les murs de la cathédrale sont bien perpendiculaires au sol). Calculer alors la hauteur CA de la cathédrale. On donnera la valeur arrondie au dixième de mètre près. On sait que CA = CB + BA et BA = 1,80 m donc il reste à calculer CB. Dans le triangle COB rectangle en B, 0,5 point côté opposé àĉob tan ĈOB= côté adjacent àĉob tan ĈOB= CB OB tan 48 = CB 15 CB=15 tan 48 CB 16, (valeur affichée par la calculatrice) CB 16,7(valeur arrondie au dixième de mètre près) 0,5 point On en déduit CA 16,7+1,80(valeur arrondie au dixième de mètre près) CA 18,5(valeur arrondie au dixième de mètre près)

4 EXERCICE 5 (extrait de brevet, Pondichéry, avril 2011) : 8 points Dans cet exercice, les parties A et B sont indépendantes. Un silo à grains a la forme d un cône surmonté d un cylindre de même axe. Les points A, I, O et S appartiennent à cet axe. On donne : SA = 1,60 m ; AI = 2,40 m et AB = 1,20 m. Partie A : On considère la figure 1 ci-contre. 1- On rappelle que le volume d un cône est donné par la formule : 1 3 π r² h et que 1 dm 3 = 1 litre. 1- a- Montrer que le volume du cône, arrondi au millième près, est de 2,413 m 3. Le volume du cône est : V = 1 π r² h 3 V = 1 3 π 1,20² 1,60 V 2, (valeur arrondie affichée par la calculatrice) V 2,413( valeur arrondie au millième près) 1- b- Sachant que le volume du cylindre, arrondi au millième près, est de 10,857 m 3,donner la contenance totale du silo en litres. La contenance totale du silo est : 10,857 m 3 + 2,413 m 3 = 13,27 m 3 = L. (en m 3 ) + 0,5 point (en L) 2. Actuellement, le silo à grains est rempli jusqu à une hauteur SO = 1,20 m. Le volume de grains prend ainsi la forme d un petit cône de sommet S et de hauteur [SO]. On admet que ce petit cône est une réduction du grand cône de sommet S et de hauteur [SA]. 2- a- Calculer le coefficient de réduction. Le coefficient de réduction est : SO SA = 1,20 1,60 =0, b- En déduire le volume de grains contenu dans le silo. On exprimera le résultat en m 3 et on en donnera la valeur arrondie au millième près. Le volume de grains contenu dans le silo est : V '=2,413 0,75 3 V ' =2,413 0, V ' 1, (valeur arrondie affichée par la calculatrice) V ' 1,018(valeur arrondie au millième près) 0,5 point (cube) + 0,5 (valeur) + 0,5 point (arrondi)

5 Partie B : On considère la figure 2 ci-contre. Pour réaliser des travaux, deux échelles représentées par les segments [BM] et [CN] ont été posées contre le silo. On donne : HM = 0,80 m et HN = 2 m. Les deux échelles sont-elles parallèles? Justifier la réponse. Je sais que : Les droites (HN) et (HC) sont sécantes en H. D'une part HM HN = 0,80 2 =0,4 0,5 point D'autre part HB HC = 1,60 1,60+2,40 =1,6 4 =0,4 0,5 point On constate que HM HN = HB HC. 0,5 point Les points H, M et N et les points H, B et C sont alignés dans le même ordre. 0,5 point J'applique : la réciproque du théorème de Thalès. 0,5 point J'en conclus que : les droites (MB) et (NC) sont parallèles. 0,5 point

6 PROBLEME 45 min 12 points (extrait de brevet, France Métropolitaine, juin 2010) Une entreprise doit rénover un local. Ce local a la forme d un parallélépipède rectangle. La longueur est 6,40 m, la largeur est 5,20 m, et la hauteur sous plafond est 2,80 m. Il comporte une porte de 2 m de haut sur 0,80 m de large et trois baies vitrées de 2 m de haut sur 1,60 m de large. PARTIE A: PEINTURE DES MURS ET DU PLAFOND : 4,5 points Les murs et le plafond doivent être peints. L'entreprise fait donc appel à un peintre. L étiquette suivante est collée sur les pots de la peinture monocouche choisie. 1- a- Calculer l aire du plafond. L'aire du plafond est 6,40 x 5,20 = 33,28 m². 0,5 point 1- b- Combien de litres de peinture faut-il pour peindre le plafond? Justifier la réponse. Surface à peindre (en m²) 4 33,28 Volume de peinture (en L) 1 33,28 : 4 = 8,32 Il faut 8,32 L de peinture pour peindre le plafond. 0,5 point 2- a- Prouver que la surface de mur à peindre est d environ 54 m 2. Surface du mur de devant à peindre : Surface du mur de devant = 6,40 x 2,80 = 17,92 m 2 Surface de la porte = 2 x 0,80 = 1,60 m 2 Surface du mur de devant à peindre = 17,92 1,60 = 16,32 m 2 Surface du mur du fond à peindre : Surface du mur du fond = 17,92 m 2 Surface de la baie vitrée = 2 x 1,60 = 3,20 m 2 Surface du mur du fond à peindre = 17,92 3,20 = 14,72 m 2 Surface du mur de gauche à peindre : Surface du mur de gauche = 5,20 x 2,80 = 14,56 m 2 Surface de la baie vitrée = 3,20 m 2 Surface du mur de gauche à peindre = 14,56 3,20 = 11,36 m 2 Surface du mur de droite à peindre : 11,36 m 2 On en déduit que la surface de mur à peindre est 16, , , ,36 = 53,76 m² c'est à dire environ 54 m². 2 points

7 2- b- Combien de litres de peinture faut-il pour peindre les murs? Justifier la réponse. Surface à peindre (en m²) 4 54 Volume de peinture (en L) 1 54: 4 = 13,5 Il faut 13,5 L de peinture pour peindre les murs. 0,5 point 3- De combien de pots de peinture l entreprise doit-elle disposer pour ce chantier? Justifier la réponse. Il faut 8,32 L + 13,5 L = 21,82 L de peinture pour peindre le plafond et les murs. 0,5 point L'entreprise a donc besoin de 5 pots de peinture pour ce chantier (car 4 x 5 L = 20 L < 21,82 L). 0,5 point PARTIE B : POSE D'UN DALLAGE SUR LE SOL : 2 points Le sol du local doit être entièrement recouvert. L'entreprise fait donc appel à un dalleur qui propose de recouvrir le sol du local par des dalles carrées de même dimension. Elle a le choix entre des dalles dont le côté mesure 20 cm, 30 cm, 35 cm, 40 cm ou 45 cm. Elle désire, pour des questions d'esthétique, qu'il n'y ait aucune découpe et que les dalles soient les plus grandes possibles. 1- Parmi les dimensions proposées, laquelle doit-elle choisir? Justifier la réponse. Essai des dalles dont le côté mesure 20 cm : 640 : 20=32 et 520 : 20=26 Avec les dalles dont le côté mesure 20 cm, il n'y aura pas de découpe. Essai des dalles dont le côté mesure 30 cm : 640 : 30 21,3333 Avec les dalles dont le côté mesure 30 cm, il y aura des découpes. Essai des dalles dont le côté mesure 35 cm : 640 :35 18, Avec les dalles dont le côté mesure 35 cm, il y aura des découpes. Essai des dalles dont le côté mesure 40 cm : 640 :40=16 et 520 : 40=13 Avec les dalles dont le côté mesure 40 cm, il n'y aura pas de découpe. Essai des dalles dont le côté mesure 45 cm : 640 :45 14,22222 Avec les dalles dont le côté mesure 45 cm, il y aura des découpes. Les dalles qui conviennent (c'est à dire n'occasionnent pas de découpe) sont celles dont le côté mesure 20 cm et celles dont le côté mesure 40 cm. L'entreprise veut les plus grandes possibles donc elle choisira celles dont le côté mesure 40 cm. 2- Combien va-t-elle utiliser de dalles? Justifier la réponse. Dans le sens de la longueur, elle utilise 640 :40=16 dalles. Dans le sens de la largeur, elle utilise 520 : 40=13 dalles. 0,5 point Au total, elle utilise 16 x 13 = 208 dalles. 0,5 point

8 PARTIE C : COUT DU DALLAGE : 5,5 points Pour l ensemble de ses chantiers, l entreprise se fournit auprès de deux grossistes. Les tarifs proposés pour des paquets de 10 dalles sont : Grossiste A : 48 le paquet, livraison gratuite. Grossiste B : 42 le paquet, livraison 45 quel que soit le nombre de paquets. 1- Quel est le prix pour une commande de 9 paquets : 1- a- avec le grossiste A? Le prix pour une commande de 9 paquets avec le grossiste A est 9 x 48 = ,5 point 1- b- avec le grossiste B? Le prix pour une commande de 9 paquets avec le grossiste B est x 42 = ,5 point 2- Exprimer en fonction du nombre n de paquets : 2- a- le prix P A (en ) d une commande de n paquets avec le grossiste A; Le prix P A (en ) d une commande de n paquets avec le grossiste A est 48n. 0,5 point 2- b- le prix P B (en ) d une commande de n paquets avec le grossiste B. Le prix P B (en ) d une commande de n paquets avec le grossiste B est n. 0,5 point 3- a- Représenter graphiquement chacun de ces deux prix en fonction de n dans le repère donné sur la feuille annexe. 0,5 point (P A )+ (P B ) 3- b- Quel est, selon le nombre de paquets achetés, le tarif le plus avantageux? Si l'entreprise commande entre 1 et 7 paquets, le tarif du grossiste A est plus avantageux. Si l'entreprise commande au moins 8 paquets (8 paquets ou plus), le tarif du grossiste B est plus avantageux. 0,5 point + 0,5 point 3- c- Quel est le tarif le plus avantageux pour cette entreprise? Combien va payer cette entreprise avec le tarif le plus avantageux? L'entreprise doit commander 208 dalles par la question 2 de la partie B. Donc elle doit commander 21 paquets de 10 dalles (car 20 x 10 = 200 < 208). Donc le tarif le plus intéressant pour elle est le tarif du grossiste B 0,5 point avec lequel elle va payer x 21 = ,5 point

9 PROBLEME : BREVET BLANC 2 MATHEMATIQUES DOCUMENT REPONSE A COMPLETER ET A JOINDRE A LA COPIE Numéro d'anonymat:...

BREVET BLANC 2 MATHEMATIQUES

BREVET BLANC 2 MATHEMATIQUES BREVET BLANC 2 MATHEMATIQUES I- PRESENTATION DE L'EPREUVE DE MATHEMATIQUES AU BREVET 1. Durée de l'épreuve : 2 heures 2. Nature de l'épreuve : écrite 3. Objectifs de l'épreuve : Les acquis à évaluer se

Plus en détail

DIPLÔME NATIONAL DU BREVET SESSION 2010

DIPLÔME NATIONAL DU BREVET SESSION 2010 DIPLÔME NATIONAL DU BREVET SESSION 2010 MATHÉMATIQUES SÉRIE COLLÈGE DURÉE DE L ÉPREUVE : 2 h 00 Le candidat répondra sur une copie EN. Ce sujet comporte 8 pages numérotées de 1/8 à 8/8, dont deux feuilles

Plus en détail

Brevet blanc de mathématiques

Brevet blanc de mathématiques Brevet blanc de mathématiques avril 2011 L'usage de la calculatrice est autorisé. I Activités numériques 12 points II Activités géométriques 12 points III Problème 12 points Qualité de rédaction et présentation

Plus en détail

PROBLEME(12) Première partie : Peinture des murs et du plafond.

PROBLEME(12) Première partie : Peinture des murs et du plafond. PROBLEME(12) Une entreprise doit rénover un local. Ce local a la forme d'un parallélépipède rectangle. La longueur est 6,40m, la largeur est 5,20m et la hauteur est 2,80m. Il comporte une porte de 2m de

Plus en détail

BREVET BLANC 2 MATHEMATIQUES

BREVET BLANC 2 MATHEMATIQUES BREVET BLANC 2 MATHEMATIQUES DUREE DE L'EPREUVE : 2h00 Le candidat répondra sur une copie. L'usage de la calculatrice est autorisé. Ce sujet comporte 7 pages numérotées de 1/ 7 à 7/ 7. Dès que ce sujet

Plus en détail

Correction du brevet des collèges Polynésie septembre 2009

Correction du brevet des collèges Polynésie septembre 2009 Correction du brevet des collèges Polynésie septembre 2009 Durée : 2 heures ACTIVITÉS NUMÉRIQUES Exercice 1 : QCM Une seule des trois réponses proposées est correcte. Entourez-la. Aucune justification

Plus en détail

COLLÈGE LA PRÉSENTATION. BREVET BLANC Février 2014

COLLÈGE LA PRÉSENTATION. BREVET BLANC Février 2014 COLLÈGE LA PRÉSENTATION BREVET BLANC Février 2014 ÉPREUVE DE MATHÉMATIQUES Classe de 3 e Durée : 2 heures Présentation et orthographe : 4 points Les calculatrices sont autorisées, ainsi que les instruments

Plus en détail

Partie I : Activités numériques (12 points)

Partie I : Activités numériques (12 points) Correction du brevet blanc février 2011 Exercice n 1 (2 points) 8 + 1 A = 5 6 1 = 8 Partie I : Activités numériques (12 points) Calculer A en détaillant les étapes. Donner le résultat sous forme d une

Plus en détail

MATHEMATIQUES 1 partie. Activités numériques

MATHEMATIQUES 1 partie. Activités numériques NOM : Classe : Prénom : MATHEMATIQUES partie Les réponses seront justifiées. Le détail des calculs figurera sur la copie. Activités numériques Quel est le PGCD des nombres 185 et 444? 2 Un chef d orchestre

Plus en détail

BREVET BLANC n 1 Janvier 2014 Épreuve de Mathématiques Durée: 2 heures

BREVET BLANC n 1 Janvier 2014 Épreuve de Mathématiques Durée: 2 heures Numéro d'anonymat :.... BREVET BLANC n 1 Janvier 2014 Épreuve de Mathématiques Durée: 2 heures L utilisation des calculatrices est autorisée. CE SUJET SERVIRA DE CHEMISE DANS LAQUELLE LE CANDIDAT RENDRA

Plus en détail

Brevet Amérique du sud novembre 2011

Brevet Amérique du sud novembre 2011 ACTIVITÉS NUMÉRIQUES (12 POINTS) Exercice 1 Cet exercice est un exercice à choix multiples (QCM). Pour chaque question, une seule réponse est exacte. Une réponse correcte rapportera 1 point. L absence

Plus en détail

TD d exercices de Géométrie dans l espace.

TD d exercices de Géométrie dans l espace. TD d exercices de Géométrie dans l espace. Exercice 1. (Brevet 2006) Pour la pyramide SABCD ci-contre : La base est le rectangle ABCD de centre O. AB = 3 cm et BD = 5cm. La hauteur [SO] mesure 6 cm. 1)

Plus en détail

BREVET BLANC DE MAI 2012

BREVET BLANC DE MAI 2012 COLLEGE GASPARD DES MONTAGNES BREVET BLANC DE MAI 2012 Ce sujet comporte 8 pages numérotées de 1/8 à 8/8, dont une feuille annexe à remettre avec la copie. L usage de la calculatrice est autorisé. Notation

Plus en détail

BREVET BLANC N 2 EPREUVE DE MATHEMATIQUES

BREVET BLANC N 2 EPREUVE DE MATHEMATIQUES BREVET BLANC N 2 EPREUVE DE MATHEMATIQUES Durée de l épreuve : 2 heures. Ce sujet comporte 6 pages numérotées de 1 à 6. Dès qu il vous est remis, assurez-vous qu il est complet. L usage de la calculatrice

Plus en détail

Brevet des collèges Polynésie juin 2011

Brevet des collèges Polynésie juin 2011 Brevet des collèges Polynésie juin 0 Durée : heures ACTIVITÉS NUMÉRIQUES points Exercice Cet exercice est un questionnaire à choix multiples. Pour chaque question, quatre réponses sont proposées mais une

Plus en détail

Devoir-maison, à rendre le lundi 4 novembre 2013

Devoir-maison, à rendre le lundi 4 novembre 2013 Devoir-maison, à rendre le lundi 4 novembre 2013 Ce devoir-maison donnera lieu à une note sur 20 qui sera intégrée dans la moyenne du premier trimestre. Soin et orthographe : 1 point. Exercice 1. Brevet

Plus en détail

Brevet des collèges Amérique du Nord 7 juin 2011

Brevet des collèges Amérique du Nord 7 juin 2011 Durée : 2 heures Brevet des collèges Amérique du Nord 7 juin 2011 Correction ACTIVITÉS NUMÉRIQUES Exercice 1 12 points Le professeur choisit trois nombres entiers relatifs consécutifs rangés dans l ordre

Plus en détail

Brevet Blanc de Mathématiques ** Corrigé **

Brevet Blanc de Mathématiques ** Corrigé ** Brevet Blanc de Mathématiques ** Corrigé ** Collège Goscinny de Valdoie Le soin et la qualité de la rédaction comptent pour 4 points. L usage de la calculatrice est autorisé. Sujet et corrigé écrits avec

Plus en détail

Test de Mathématiques Fiche professeur 1 er partie (sans calculatrice)

Test de Mathématiques Fiche professeur 1 er partie (sans calculatrice) Test de Mathématiques Fiche professeur 1 er partie (sans calculatrice) Exercice 1 : Activité mentale Temps estimé : 4 min Dicter chaque calcul deux fois, ou l écrire au tableau et l effacer après 10 secondes.

Plus en détail

Institution Stanislas Brevet Blanc de Mathématiques Mai 2010 1

Institution Stanislas Brevet Blanc de Mathématiques Mai 2010 1 BREVET BLANC DE MATHEMATIQUES Mai 2010 La calculatrice est autorisée. Le soin et la qualité de la rédaction seront pris en compte dans la notation. N candidat : Observations Présentation et rédaction :

Plus en détail

Corrections preparation BB 2012

Corrections preparation BB 2012 Corrections preparation BB 2012 Brevet 2007 - Solution Activités numériques 1 Les explications ne sont pas demandées mais nous vous les fournissons tout de même. 1) la bonne réponse est 9x 2 + 30x + 25

Plus en détail

Collège Henri Meck lundi 4 mai 2009 Molsheim BREVET BLANC DE MATHEMATIQUES N 2. ( Extraits d'épreuves du brevet de 2007 et 2008 ) PRESENTATION 4 pts

Collège Henri Meck lundi 4 mai 2009 Molsheim BREVET BLANC DE MATHEMATIQUES N 2. ( Extraits d'épreuves du brevet de 2007 et 2008 ) PRESENTATION 4 pts Collège Henri Meck lundi 4 mai 2009 Molsheim BREVET BLANC DE MATHEMATIQUES N 2 ( Extraits d'épreuves du brevet de 2007 et 2008 ) PRESENTATION 4 pts Rappel : Présenter les parties de l'épreuve sur feuilles

Plus en détail

COLLÈGE NAZARETH. BREVET BLANC N 2-2005- MATHÉMATIQUES Durée : 2 heures.

COLLÈGE NAZARETH. BREVET BLANC N 2-2005- MATHÉMATIQUES Durée : 2 heures. 3 ème COLLÈGE NAZARETH BREVET BLANC N 2-2005- MATHÉMATIQUES Durée : 2 heures. EXERCICE 1 : ( /3) 1. Soit : A = 8 3 5 3 : 20 21. Les calculatrices sont autorisées ainsi que les instruments usuels de dessin.

Plus en détail

1. Calculer le PGCD de 1 755 et 1 053. Justifier votre réponse. 2. Ecrire la fraction 1 053

1. Calculer le PGCD de 1 755 et 1 053. Justifier votre réponse. 2. Ecrire la fraction 1 053 Exercice 1 : CTIVITÉS NUMÉRIQUES Nouvelle-Calédonie Mars 2011 Porcelaine 1. Calculer le PGCD de 1 755 et 1 053. Justifier votre réponse. 2. Ecrire la fraction 1 053 Cône sous la forme irréductible. 1 755

Plus en détail

BREVET BLANC de MATHEMATIQUES n 1 Janvier 2012 - durée : 2 heures

BREVET BLANC de MATHEMATIQUES n 1 Janvier 2012 - durée : 2 heures BREVET BLANC de MATHEMATIQUES n 1 Janvier 2012 - durée : 2 heures Les calculatrices sont autorisées. L orthographe, le soin et la présentation sont notés sur 4 points. Activités numériques (12 points)

Plus en détail

CORRECTION BREVET MATHS PONDICHERY 2014. Emma et Arthur ont acheté pour leur mariage 3 003 dragées au chocolat et 3 731 dragées aux amandes.

CORRECTION BREVET MATHS PONDICHERY 2014. Emma et Arthur ont acheté pour leur mariage 3 003 dragées au chocolat et 3 731 dragées aux amandes. CORRECTION BREVET MATHS PONDICHERY 2014 Exercice 1 Emma et Arthur ont acheté pour leur mariage 00 dragées au chocolat et 71 dragées aux amandes. 1 ) Arthur propose de répartir ces dragées de façon identique

Plus en détail

Le sujet est à rendre avec la copie.

Le sujet est à rendre avec la copie. NOM : Prénom : Classe : ACADEMIE DE BORDEAUX Collège Jean Moulin, COULOUNIEIX-CHAMIERS Durée : h DIPLOME NATIONAL DU BREET Série Collège Brevet BLANC Du janvier 01 Epreuve : MATHEMATIQUES Les calculatrices

Plus en détail

Dans cet exercice, toutes les réponses seront données sous la forme la plus simple possible.

Dans cet exercice, toutes les réponses seront données sous la forme la plus simple possible. L orthographe, le soin, la qualité et la précision de la rédaction seront pris en compte à hauteur de 4 points sur 40 dans l évaluation de la copie. L utilisation de la calculatrice est autorisée. Les

Plus en détail

Question Réponse A Réponse B Réponse C Votre choix : Quelle est la forme factorisée de ( x 1) 9? ( x 2)( x 4) n m

Question Réponse A Réponse B Réponse C Votre choix : Quelle est la forme factorisée de ( x 1) 9? ( x 2)( x 4) n m Mathématiques TROISIEMES Brevet Blanc, Mai 01 Durée h Calculatrice autorisée. Total sur 40 points dont 4 points réservés à la rédaction. Vous pouvez traiter les exercices dans le désordre. Les exercices

Plus en détail

BREVET CENTRES ETRANGERS juin 2012

BREVET CENTRES ETRANGERS juin 2012 ACTIVITES NUMERIQUES (12 POINTS) Exercice 1 1- Calculer 1 4 + 2 x 4. 1 4 + 2 x 4 = 1 4 + 2 4 = 1 + 2 4 = 4 BREVET CENTRES ETRANGERS juin 2012 2- Au goûter, Lise mange 1 du paquet de gâteaux qu elle vient

Plus en détail

Sujet de mathématiques du brevet des collèges

Sujet de mathématiques du brevet des collèges Sujet de mathématiques du brevet des collèges POLYNÉSIE Septembre 014 Durée : h00 Calculatrice autorisée Indication portant sur l ensemble du sujet. Toutes les réponses doivent être justifiées, sauf si

Plus en détail

D = 5 2 4 0,5. 4 points. D = 5 2 2 D = 5 donc D est un nombre entier. 0,5

D = 5 2 4 0,5. 4 points. D = 5 2 2 D = 5 donc D est un nombre entier. 0,5 ACTIVITÉS NUMÉRIQUES (12 s) Montrer que D est un nombre entier. Ê D = 5 12 2 D = 5 2 Exercice n 1 : Toutes les étapes de calcul devront figurer sur la copie. 1. On donne A = + 1 + 2. Calculer et donner

Plus en détail

Partie 1 ( 13 points )

Partie 1 ( 13 points ) Partie 1 ( 13 points ) Exercice 1 : (3,5 points ) Lili décide de poser du parquet dans son appartement de 32 m². Elle va coller son parquet. Elle va ensuite vernir le parquet collé et passer une couche

Plus en détail

Correction du Brevet Blanc Shanghai mars 2013

Correction du Brevet Blanc Shanghai mars 2013 Correction exercice 1(4 points) Correction du Brevet Blanc Shanghai mars 2013 1. Calculer les expressions suivantes A et B et donner le résultat sous la forme d une fraction irréductible : 2. Calculer

Plus en détail

Brevet des collèges Métropole, Antilles-Guyane, Réunion. Durée : 2 heures

Brevet des collèges Métropole, Antilles-Guyane, Réunion. Durée : 2 heures Métropole, Antilles-Guyane, Réunion Durée : 2 heures Toutes les réponses doiventêtre justifiées, sauf si une indication contraire est donnée. ACTIVITÉS NUMÉRIQUES 12 points Exercice 1 Un dé cubique a 6

Plus en détail

DIPLÔME NATIONAL DU BREVET

DIPLÔME NATIONAL DU BREVET REPÈRE 13DNBPROMATMEAG3 DIPLÔME NATIONAL DU BREVET SESSION 2013 Épreuve de : MATHÉMATIQUES SÉRIE PROFESSIONNELLE Durée de l épreuve : 2 h 00 Coefficient : 2 Le candidat répond sur une copie modèle Éducation

Plus en détail

Triangle rectangle : Cercle circonscrit et médiane

Triangle rectangle : Cercle circonscrit et médiane Triangle rectangle : Cercle circonscrit et médiane I) Vocabulaire 1) Hypoténuse Définition : Dans un triangle rectangle le côté opposé à l angle droit est appelé hypoténuse. 2) Hauteurs, médianes, médiatrices

Plus en détail

MATHÉMATIQUES ET SOCLE COMMUN STAGES 2011-12

MATHÉMATIQUES ET SOCLE COMMUN STAGES 2011-12 MATHÉMATIQUES ET SOCLE COMMUN STAGES 2011-12 Atelier 2 Faire évoluer des activités «traditionnelles» Ce document comporte trois parties : 1. Activités de formation (6 pages) 2. A : généralités (1 page)

Plus en détail

Activités numériques

Activités numériques Sujet et correction Stéphane PASQUET, 25 juillet 2008 2008 Activités numériques Exercice On donne le programme de calcul suivant : Choisir un nombre. a) Multiplier ce nombre pas 3. b) Ajouter le carré

Plus en détail

Collège LANGEVIN WALLON CORRIGE du BREVET BLANC DES 25 et 26 mai 2004 SÉRIE COLLÈGE

Collège LANGEVIN WALLON CORRIGE du BREVET BLANC DES 25 et 26 mai 2004 SÉRIE COLLÈGE Collège LANGEVIN WALLON CORRIGE du BREVET BLANC DES 5 et 6 mai 004 SÉRIE COLLÈGE Durée heures MATHEMATIQUES Rédaction, présentation, orthographe (4 points) PARTIE I : ACTIVITES NUMERIQUES (1 points) Dans

Plus en détail

BREVET BLANC MATHEMATIQUES

BREVET BLANC MATHEMATIQUES BREVET BLANC MATHEMATIQUES Avril 2014 ---------- Durée de l épreuve : 2 heures ---------- Ce sujet comporte 4 pages numérotées de 1/4 à 4/4. Le sujet est à rendre avec la copie L usage de la calculatrice

Plus en détail

BREVET BLANC Corrigé 15 avril 2013

BREVET BLANC Corrigé 15 avril 2013 REVET LN orrigé 15 avril 2013 *********************** Exercice 1 : On donne ci-dessous les représentations graphiques de trois fonctions. es représentations sont nommées 1, 2, 3. L une d entre elles est

Plus en détail

Métropole La Réunion Mayotte Juin 2010 Brevet Page 1 sur 7

Métropole La Réunion Mayotte Juin 2010 Brevet Page 1 sur 7 Métropole La Réunion Mayotte Juin 2010 Brevet Page 1 sur 7 Activité numérique (sur 12 points) Exercice 1 : On considère le programme de calcul ci-dessous : choisir un nombre de départ multiplier ce nombre

Plus en détail

Diplôme National du Brevet Métropole - La Réunion - Mayotte - Session 2009

Diplôme National du Brevet Métropole - La Réunion - Mayotte - Session 2009 Diplôme National du Brevet Métropole - La Réunion - Mayotte - Session 2009 L usage de la calculatrice est autorisé, dans le cadre de la réglementation en vigueur. I - Activités numériques II - Activités

Plus en détail

DIPLÔME NATIONAL DU BREVET

DIPLÔME NATIONAL DU BREVET DIPLÔME NATIONAL DU BREVET SESSION 2011 MATHÉMATIQUES SÉRIE COLLÈGE DURÉE DE L ÉPREUVE : 2 h 00 Le candidat répondra sur une copie modèle Éducation Nationale. Ce sujet comporte 7 pages numérotées de 1/7

Plus en détail

Correction : E = Soit E = -1,6. F = 12 Soit F = -6 3 + 45. y = 11. et G = -2z + 4y G = 2 6 = 3 G = G = -2 5 + 4 11

Correction : E = Soit E = -1,6. F = 12 Soit F = -6 3 + 45. y = 11. et G = -2z + 4y G = 2 6 = 3 G = G = -2 5 + 4 11 Correction : EXERCICE : Calculer en indiquant les étapes: (-6 +9) ( ) ( ) B = -4 (-) (-8) B = - 8 (+ 6) B = - 8 6 B = - 44 EXERCICE : La visite médicale Calcul de la part des élèves rencontrés lundi et

Plus en détail

DIPLÔME NATIONAL DU BREVET SESSION 2009

DIPLÔME NATIONAL DU BREVET SESSION 2009 DIPLÔME NATIONAL DU BREVET SESSION 2009 MATHÉMATIQUES SÉRIE COLLÈGE DURÉE DE L ÉPREUVE : 2 h 00 Le candidat répondra sur une copie EN. Ce sujet comporte 6 pages numérotées de 1/6 à 6/6. Dès que ce sujet

Plus en détail

2 1,5 1 0,5 0 0,5 1 1,5 2 2,5 3 3,5 4. Exercice 3 : les faces d un dé équilibré à six faces porte chacune les lettres du mot : N O T O U S.

2 1,5 1 0,5 0 0,5 1 1,5 2 2,5 3 3,5 4. Exercice 3 : les faces d un dé équilibré à six faces porte chacune les lettres du mot : N O T O U S. Corrigé Nouvelle-Calédonie. Mars 2011. ctivités numériques. Exercice 1 : 1. Calcul du PGCD de 1 755 et 1 053 par l algorithme d Euclide : 1 755 = 1 053 1 + 702 1 053 = 702 1 + 351 702 = 351 2 + 0 Le PGCD

Plus en détail

Si le travail n est pas terminé, laisser tout de même une trace de la recherche. Elle sera prise en compte dans la notation.

Si le travail n est pas terminé, laisser tout de même une trace de la recherche. Elle sera prise en compte dans la notation. Exercice 1 : brevet centre étrangers, juin 2012 (4 points : 1+3) 1 ) Calculer 2 ) Au goûter, Lise mange du paquet de gâteaux qu elle vient d ouvrir. De retour du collège, sa sœur Agathe mange les des gâteaux

Plus en détail

BREVET BLANC de Mathématiques. Jeudi 16 mai 2013

BREVET BLANC de Mathématiques. Jeudi 16 mai 2013 BREVET BLANC de Mathématiques Jeudi 16 mai 2013 ********************************** Durée de l épreuve : 2 heures ********************************** Le sujet comporte 5 pages. Dès que ce sujet vous est

Plus en détail

Brevet Blanc n 1. Mathématiques

Brevet Blanc n 1. Mathématiques Brevet Blanc n 1 Novembre 2010 Mathématiques Durée de l'épreuve : 2h00 Le candidat répondra sur une copie L'usage de la calculatrice est autorisé, dans le cadre de la réglementation en vigueur. Activités

Plus en détail

PARTIE NUMERIQUE (18 points)

PARTIE NUMERIQUE (18 points) 4 ème DEVOIR COMMUN N 1 DE MATHÉMATIQUES 14/12/09 L'échange de matériel entre élèves et l'usage de la calculatrice sont interdits. Il sera tenu compte du soin et de la présentation ( 4 points ). Le barème

Plus en détail

Brevet des collèges Centres étrangers juin 2012

Brevet des collèges Centres étrangers juin 2012 Durée : 2 heures Brevet des collèges Centres étrangers juin 2012 L utilisation d une calculatrice est autorisée. ACTIVITÉS NUMÉRIQUES Exercice 1 12 points 1. Calculer 1 4 + 2 4. 2. Au goûter, Lise mange

Plus en détail

ACTIVITES NUMERIQUES ( 18 points )

ACTIVITES NUMERIQUES ( 18 points ) Copie numéro :.. 4 points sont attribués pour l orthographe, le soin, les notations et la rédaction. L utilisation de la calculatrice est autorisée. NE PAS OUBLIER DE RENDRE L ANNEXE AVEC LA COPIE! ACTIVITES

Plus en détail

Diplôme National du Brevet Brevet Blanc n 2

Diplôme National du Brevet Brevet Blanc n 2 Session 2011 Diplôme National du Brevet Brevet Blanc n 2 MATHÉMATIQUES Série Collège L usage de la calculatrice est autorisé Le candidat remettra sa copie au surveillant à la fin de l épreuve Nature de

Plus en détail

Collège Blanche de Castille

Collège Blanche de Castille ème A - B - C Brevet blanc 2 de MATHÉMATIQUES Date : 15/04/2014 Durée : 2h Collège Blanche de Castille Coefficient : Note sur : 40 Présentation : /4 Consignes : La présentation, l orthographe et la rédaction

Plus en détail

Devoir commun Décembre 2014 3 ème LV2

Devoir commun Décembre 2014 3 ème LV2 Devoir commun Décembre 2014 3 ème LV2 Collège OASIS Corrigé de l Epreuve de Mathématiques L usage de la calculatrice est autorisé, mais tout échange de matériel est interdit Les exercices sont indépendants

Plus en détail

DNB, Mathématiques, correction

DNB, Mathématiques, correction 50 80 50 40 0 DNB, Mathématiques, correction juin 204 2 heures Exercice 5 points. Représentation d un agrandissement de cet octogone en l inscrivant dans un cercle de rayon 3 cm. B A 30 20 0 60 30 40 50

Plus en détail

Exercice 1 : sur 2,5 points 1) Lire graphiquement les équations des droites D 1, D 2 et D 3 tracées dans le repère ci-dessous

Exercice 1 : sur 2,5 points 1) Lire graphiquement les équations des droites D 1, D 2 et D 3 tracées dans le repère ci-dessous NOM : Seconde A B C H J Mardi 19 janvier 010 Exercice 1 : sur,5 points 1) Lire graphiquement les équations des droites D 1, D et D tracées dans le repère ci-dessous ) Dans le même repère, tracer la droites

Plus en détail

Brevet des collèges Polynésie septembre 2009 Corrigé

Brevet des collèges Polynésie septembre 2009 Corrigé Brevet des collèges Polynésie septembre 2009 Corrigé ACTIVITÉS NUMÉRIQUES 12 points Exercice 1 : QCM A B C 3 5 + 3 5 2 3 est égal à : 4 12 1 5 30 L écriture scientifique de 6,51 10 7 651 10 5 6,51 10 7

Plus en détail

MON CAHIER DE VACANCES n 1. MATHEMATIQUES 3 ème 2

MON CAHIER DE VACANCES n 1. MATHEMATIQUES 3 ème 2 MON CAHIER DE VACANCES n 1 MATHEMATIQUES 3 ème 2 Ce cahier appartient à. Ce cahier est à rapporter le vendredi 6 Novembre 201, à Mme Viault. Les exercices sont à rédiger, sur ce livret, le plus sérieusement

Plus en détail

BREVET BLANC 2 CORRECTION + BAREME MATHEMATIQUES. Mathématiques à Bailleul

BREVET BLANC 2 CORRECTION + BAREME MATHEMATIQUES. Mathématiques à Bailleul BREVET BLANC 2 CORRECTION + BAREME MATHEMATIQUES DUREE DE L'EPREUVE : 2h00 Le candidat répondra sur une copie. Le candidat traitera les exercices dans l'ordre souhaité. L'usage de la calculatrice est autorisé.

Plus en détail

FORMULAIRE DE MATHEMATIQUES CLASSE DE TROISIEME

FORMULAIRE DE MATHEMATIQUES CLASSE DE TROISIEME 2012 FORMULAIRE DE MATHEMATIQUES CLASSE DE TROISIEME NOUS VOUS PRESENTONS ICI UN FORMULAIRE CONTENANT LES DEFINITIONS, PROPRIETES ET THEOREMES VUS EN COURS DE MATHEMATIQUES TOUT AU LONG DE VOTRE SCOLARITE

Plus en détail

Démonstration des propriétés géométriques du plan niveau collège

Démonstration des propriétés géométriques du plan niveau collège Démonstration des propriétés géométriques du plan niveau collège Propriété : Si un point est sur un segment et à égale distance de ses extrémités alors ce point est le milieu du segment. Si un point est

Plus en détail

BREVET BLANC de MATHEMATIQUES n 2 mars 2011 - durée : 2 heures

BREVET BLANC de MATHEMATIQUES n 2 mars 2011 - durée : 2 heures BREVET BLANC de MATHEMATIQUES n 2 mars 2011 - durée : 2 heures Les calculatrices sont autorisées. L orthographe, le soin et la présentation sont notés sur 4 points. Activités numériques (12 points) Exercice

Plus en détail

SUJET DE BREVET METROPOLE JUIN 2014

SUJET DE BREVET METROPOLE JUIN 2014 SUJET DE BREVET METROPOLE JUIN 2014 SERIE GENERALE Exercice n 1 : (5 points) Voici un octogone régulier ABCDEFGH. 1) Représenter un agrandissement de cet octogone en l inscrivant dans un cercle de rayon

Plus en détail

Brevet des collèges Polynésie septembre 2014

Brevet des collèges Polynésie septembre 2014 Brevet des collèges Polynésie septembre 2014 Durée : 2 heures Indication portant sur l ensemble du sujet. Toutes les réponses doivent être justifiées, sauf si une indication contraire est donnée. Pour

Plus en détail

Brevet des collèges, correction, Métropole, 28 juin 2011

Brevet des collèges, correction, Métropole, 28 juin 2011 Brevet des collèges, correction, Métropole, 28 juin 2011 Activités numériques 12 points Exercice 1 Un dé cubique a 6 faces peintes : une en bleu, une en rouge, une en jaune, une en vert et deux en noir.

Plus en détail

Solides et patrons. Cours

Solides et patrons. Cours Solides et patrons EXERCICE 1 : Cours 1) Représenter un cube en perspective cavalière. 2) Qu est-ce qu un polyedre? 3) Qu est-ce qu un prisme droit? Si les bases du prisme ont n côtés combien le prisme

Plus en détail

Activités numériques [13 Points]

Activités numériques [13 Points] N du candidat L emploi de la calculatrice est autorisé. Le soin, la qualité de la présentation entrent pour 2 points dans l appréciation des copies. Les résultats seront soulignés. La correction est disponible

Plus en détail

Brevet des collèges, correction 27 juin 2013 Métropole La Réunion Antilles-Guyane

Brevet des collèges, correction 27 juin 2013 Métropole La Réunion Antilles-Guyane Brevet des collèges, correction 27 juin 201 Métropole La Réunion Antilles-Guyane Exercice 1 4 points Avec un logiciel : on a construit un carré ABD, de côté 4 cm. on a placé un point M mobile sur [AB]

Plus en détail

Solides et volumes Page 255

Solides et volumes Page 255 Classe de sixième C HAPITRE 12 S OLIDES ET VOLUMES 1.OBSERVATION; DESCRIPTION 256 2. REPRESENTATION EN PERSPECTIVE 258 3. PATRON DU PAVE DROIT 260 4. AIRE D'UN SOLIDE 264 5. UNITES DE VOLUME 266 6. CALCUL

Plus en détail

Sujet de mathématiques du brevet des collèges

Sujet de mathématiques du brevet des collèges Sujet de mathématiques du brevet des collèges POLYNÉSIE Septembre 2015 Durée : 2h00 Calculatrice autorisée La qualité de la rédaction, l orthographe et la rédaction comptent pour 4 points. Exercice 1 6

Plus en détail

BREVET BLANC de MATHEMATIQUES n 2 Mars 2012 - durée : 2 heures

BREVET BLANC de MATHEMATIQUES n 2 Mars 2012 - durée : 2 heures BREVET BLANC de MATHEMATIQUES n 2 Mars 2012 - durée : 2 heures Les calculatrices sont autorisées. L orthographe, le soin et la présentation sont notés sur 4 points. Activités numériques (12 points) Exercice

Plus en détail

Durée de L épreuve : 2 heures. Barème : Exercice n 4 : 1 ) 1 point 2 ) 2 points 3 ) 1 point

Durée de L épreuve : 2 heures. Barème : Exercice n 4 : 1 ) 1 point 2 ) 2 points 3 ) 1 point 03 Mai 2013 Collège Oasis Durée de L épreuve : 2 heures. apple Le sujet comporte 4 pages et est présenté en livret ; apple La calculatrice est autorisée ; apple 4 points sont attribués à la qualité de

Plus en détail

BREVET BLANC CORRIGE

BREVET BLANC CORRIGE ACTIVITES NUMERIQUES (12 POINTS) Exercice 1 (2 points) On a relevé le nombre de médailles gagnées par les sportifs calédoniens lors des Jeux du Pacifique. Voici les résultats regroupés à l aide d un tableur

Plus en détail

BREVET BLANC *** MATHEMATIQUES *** Année 2015

BREVET BLANC *** MATHEMATIQUES *** Année 2015 BREVET BLANC *** MATHEMATIQUES *** Année 2015 L orthographe, le soin, la qualité, la clarté et la précision des raisonnements seront pris en compte à hauteur de 4 points sur 40 dans l appréciation de la

Plus en détail

Epreuve de mathématiques Durée de l épreuve : 2H00 Coefficient : 2

Epreuve de mathématiques Durée de l épreuve : 2H00 Coefficient : 2 Cette épreuve comporte trois parties : A AGRAFER A LA COPIE D EXAMEN Epreuve de mathématiques Durée de l épreuve : 2H00 Coefficient : 2 Diplôme nationale du Brevet Session 1999 Série technologique Partie

Plus en détail

CORRECTION DU BREVET BLANC N 1 DE JANVIER 2010 7 21 = 7 21 = 1 3 18. Exercice n 2 : 4(3x 2) + 2(5 x) = 8 soit donc : 12 x 8 + 10 2x = 8

CORRECTION DU BREVET BLANC N 1 DE JANVIER 2010 7 21 = 7 21 = 1 3 18. Exercice n 2 : 4(3x 2) + 2(5 x) = 8 soit donc : 12 x 8 + 10 2x = 8 CORRECTION DU BREVET BLANC N 1 DE JANVIER 2010 ACTIVITES NUMERIQUES (12 points) Exercice n 1 : A = 5 21 + 3 7 1 3 = 5 21 + 9 21 7 21 = 7 21 = 1 3 ; B = 2 3 + 2 7 C = - 5 12 3 2 = - 5 12 14 9 = 2 3 + 2

Plus en détail

Problème : Session 2008 (fonctions affines) Partie I : Partie II :

Problème : Session 2008 (fonctions affines) Partie I : Partie II : Problème : Session 2008 (fonctions affines) Dans ce problème, on étudie deux méthodes permettant de déterminer si le poids d'une personne est adapté à sa taille. Partie I : Dans le graphique ci-dessous

Plus en détail

BREVET BLANC 2 SESSION DU 5 MAI 2009

BREVET BLANC 2 SESSION DU 5 MAI 2009 BREVET BLANC 2 SESSION DU 5 MAI 2009 MATHÉMATIQUES SÉRIE COLLÈGE DURÉE DE L'ÉPREUVE : 2 h 00 Le candidat répondra sur une copie différente pour chaque partie. Ce sujet comporte 5 pages, numérotées de 1

Plus en détail

POLYNESIE Juin 2010 Brevet Page 1 sur 6

POLYNESIE Juin 2010 Brevet Page 1 sur 6 POLYNESIE Juin 2010 Brevet Page 1 sur 6 Exercice 1 : Activités numériques (12 points) 1. Déterminer le PGCD de 120 et 144 par la méthode de votre choix. Faire apparaître les calculs intermédiaires. 2.

Plus en détail

MATHEMATIQUES BREVET BLANC. Vendredi 3 Avril 2015

MATHEMATIQUES BREVET BLANC. Vendredi 3 Avril 2015 MATHEMATIQUES BREVET BLANC Vendredi 3 Avril 2015 Exercice 1 : ( 2,5 points) Un sac contient 5 boules noires numérotées de 1 à 5 et 3 boules blanches numérotées de 1 à 3. Chacune de ces boules a la même

Plus en détail

DIPLOME NATIONAL DU BREVET BREVET BLANC N 2 EPREUVE DE MATHEMATIQUES

DIPLOME NATIONAL DU BREVET BREVET BLANC N 2 EPREUVE DE MATHEMATIQUES DIPLOME NATIONAL DU BREVET BREVET BLANC N 2 EPREUVE DE MATHEMATIQUES L usage de la calculatrice est autorisé. Durée : 2 heures. Le barème tient compte de la qualité de la rédaction et de la présentation

Plus en détail

PARTIE 1 : ACTIVITÉS NUMÉRIQUES (12 points)

PARTIE 1 : ACTIVITÉS NUMÉRIQUES (12 points) COLLÈGE LA PRÉSENTATION BREVET BLANC Février 2010 ÉPREUVE DE MATHÉMATIQUES classe de 3 e Durée : 2 heures Présentation et orthographe : points Les calculatrices sont autorisées, ainsi que les instruments

Plus en détail

CORRECTION DU SUJET DE MATHÉMATIQUES

CORRECTION DU SUJET DE MATHÉMATIQUES (AVRIL 014) Collège François Mitterrand Créon CORRECTION DU SUJET DE MATHÉMATIQUES EXERCICE 1 ( POINTS) SOIN, PRÉSENTATION ET QUALITÉ DE LA RÉDACTION : 4 POINTS 1. Donner l'écriture décimale du nombre.

Plus en détail

Ce document regroupe les 6 devoirs à la maison proposés dans la progression.

Ce document regroupe les 6 devoirs à la maison proposés dans la progression. Ce document regroupe les 6 devoirs à la maison proposés dans la progression. Le document a été paginé de façon à ce que chaque devoir corresponde à une page pour en faciliter l impression. Page 2... Devoir

Plus en détail

Brevet Juin 2007 Métropole Réunion Corrige Page 1 sur 7

Brevet Juin 2007 Métropole Réunion Corrige Page 1 sur 7 Brevet Juin 2007 Métropole Réunion Corrige Page 1 sur 7 Exercice 1 : ACTIVITES NUMERIQUES (12 points) 1. (3x + 5)² = (3x) 2 + 2 3x 5 + 5 2 = 9x² + 30x + 25 2. 4(4 + 1) = 20 (4 + 1)(4 2) = 10 (4 + 1)² =

Plus en détail

Calcul de longueurs :

Calcul de longueurs : Calcul de longueurs : Exercice : (Japon 96) C est un triangle rectangle en A. On donne 5 cm et A B ˆC 5. 1) Construire la figure en vraie grandeur. 2) Déterminer la longueur, arrondie au dixième de centimètre.

Plus en détail

Diplôme National du Brevet. Brevet Blanc JUIN 2015. Mathématiques RENDRE LA FEUILLE ANNEXE AVEC LA COPIE EXAMEN : DNB

Diplôme National du Brevet. Brevet Blanc JUIN 2015. Mathématiques RENDRE LA FEUILLE ANNEXE AVEC LA COPIE EXAMEN : DNB Diplôme National du Brevet Brevet Blanc JUIN 2015 Mathématiques La clarté, la précision, le soin dans la rédaction et la présentation rentrent pour une large part dans l appréciation de la copie : pourront

Plus en détail

I-ACTIVITÉS NUMÉRIQUES (12 points)

I-ACTIVITÉS NUMÉRIQUES (12 points) BREVET BLANC 1_DECEMBRE 2011 I-ACTIVITÉS NUMÉRIQUES (12 points) Exercice 1 : (4 pts) Soit les expressions 1) Calculer A et B en détaillant les étapes du calcul et écrire le résultat sous la forme d'une

Plus en détail

I) Activités numériques

I) Activités numériques revet 99 : ordeau I) ctivités numériques ercice : alculer les valeurs eactes des nombres suivants (on donnera les résultats sous forme fractionnaire irréductible) 8 Écrire les nombres suivants sous la

Plus en détail

COLLÈGE LA PRÉSENTATION BREVET BLANC N 2 MAI 2014. Épreuve de : MATHÉMATIQUES SÉRIE GÉNÉRALE. Durée de l'épreuve : 2 heures Coefficient : 3

COLLÈGE LA PRÉSENTATION BREVET BLANC N 2 MAI 2014. Épreuve de : MATHÉMATIQUES SÉRIE GÉNÉRALE. Durée de l'épreuve : 2 heures Coefficient : 3 COLLÈGE LA PRÉSENTATION BREVET BLANC N 2 MAI 2014 Épreuve de : MATHÉMATIQUES SÉRIE GÉNÉRALE Durée de l'épreuve : 2 heures Coefficient : 3 Le candidat répond sur une copie apportée par ses soins. Ce sujet

Plus en détail

c) Calculer MP. 3) Déterminer l'arrondi au degré de la mesure de Dˆ.

c) Calculer MP. 3) Déterminer l'arrondi au degré de la mesure de Dˆ. Exercice :(Amiens 1995) Les questions 2, 3 et 4 sont indépendantes. L'unité est le centimètre. 1) Construire un triangle MAI rectangle en A tel que AM = 8 et IM = 12. Indiquer brièvement les étapes de

Plus en détail

Corrigé non officiel de la partie mathématique du CRPE, session 2011 (Rouen)

Corrigé non officiel de la partie mathématique du CRPE, session 2011 (Rouen) Corrigé non officiel de la partie mathématique du CRPE, session 2011 (Rouen) Problème 1 Partie A On peut remarquer que la définition de Da est très ambigüe : l expression «le moment ou le conducteur voit

Plus en détail

Le théorème de Thalès et sa réciproque

Le théorème de Thalès et sa réciproque Le théorème de Thalès et sa réciproque I) Agrandissement et Réduction d une figure 1) Définition : Lorsque toutes les longueurs d une figure F sont multipliées par un même nombre k on obtient une autre

Plus en détail

Ce document a été numérisé par le CRDP de Lille pour la Base Nationale des Sujets d Examens de l enseignement professionnel

Ce document a été numérisé par le CRDP de Lille pour la Base Nationale des Sujets d Examens de l enseignement professionnel Ce document a été numérisé par le CRDP de Lille pour la Base Nationale des Sujets d Examens de l enseignement professionnel Ce fichier numérique ne peut être reproduit, représenté, adapté ou traduit sans

Plus en détail

Brevet des collèges Polynésie juin 2010

Brevet des collèges Polynésie juin 2010 Brevet des collèges Polynésie juin 2010 Durée : 2 heures CTIVITÉS NUMÉRIQUES Exercice 1 1. Déterminer le PGCD de 120 et 144 par la méthode de votre choix. Faire apparaître les calculs intermédiaires. 2.

Plus en détail

Correction du deuxième Brevet Blanc mai 2013 Lycée International Victor Hugo de Florence.

Correction du deuxième Brevet Blanc mai 2013 Lycée International Victor Hugo de Florence. Exercice 1 (4 points) d après Amérique du Sud, novembre 2010. et donc les nombres semblent égaux, mais il faut le démontrer. Je sais que si alors. Je cherche à savoir si Alors j aurai si je trouve. Conclusion

Plus en détail

Sujet de mathématiques du brevet des collèges

Sujet de mathématiques du brevet des collèges Sujet de mathématiques du brevet des collèges PONDICHÉRY Avril 2015 Durée : 2h00 Calculatrice autorisée La qualité de la rédaction, l orthographe et la rédaction comptent pour 4 points. EXERCICE 1 Cet

Plus en détail