Intégrales généralisées.

Dimension: px
Commencer à balayer dès la page:

Download "Intégrales généralisées."

Transcription

1 Chpire Inégrles générlisées. I. Inrodcion. e pr sie e pr sie Nos svons qe >, lim + d = +. Nos svons églemen qe > lim + d =. d = ln d = +, Nos écrirons De même, nos écrirons d = +, e nos dirons qe l'inégrle diverge. d =, e nos dirons qe l'inégrle converge. Considérons le problème de convergence sivn: d. Nos voyons, qe dns ce cs, on ne éde à fire voisinge de e ne éde à fire voisinge de. Por cel, on édier séprèmen les de inégrles d e e on fer endre vers. Il s'vère qe d, por <, d = [Arc sin ] e pr sie, comme Arc sin end vers π, on voi qe cee première inégrle es convergene. De même, on des conclsions nloges por l deième inégrle. On concl lors qe l'inégrle iniile es convergene e on écri d = π.

2 II. Déniions e eemples Déniions: Soi f ne foncion dénie sr n inervlle de l forme [, b[ vec b +. On di qe f es loclemen inégrble sr [, b[ si f es inégrble sr o inervlle fermé borné conen dns [, b[. Soi f ne foncion dénie e loclemen inégrble sr n inervlle de l forme [, b[ vec b +. On di qe l'inégrle de f sr [, b[ es convergene si l foncion F dénie sr [, b[ pr F () = f()d end vers ne limie l nie lorsqe end vers b. Cee limie es l'inégrle générlisée de f sr [, b[. On écri f()d = l. Eemples: Comme l'inégrle es convergene e on e d = e, e lim + e =, e d =. En ee, Pr conre,, <, e l divergence résle d fi qe d diverge. d = [ ln( )], lim ln( ) =. Déniion. Soi f ne foncion dénie e loclemen inégrble sr n inervlle de l forme ], b[ vec < b + e c n élémen qelconqe de ], b[. On di qe l'inégrle de f sr ], b[ es convergene si chcne des inégrles c f()d, e c f()d es convergene. On noer qe l déniion es indépendne d choi de c.

3 Mises en grde:. Il se pe qe α α f()d, por α >, ende vers ne limie nie lorsqe α + sns qe l'inégrle f()d soi convergene. considérer ne foncion impire conine. Pr eemple, + d =, >. En ee, il s de d diverge lors qe. Si f es ne foncion dénie, loclemen inégrble e bornée sr ], b[, on pe rmer direcemen qe f()d es convergene. En ee, on pe prolonger f en e en b pr n'impore qelles vlers, l'eisence de l'inégrle ser ssrée cr, en fi, l foncion es inégrble sr [, b]. Comme eemple, on porr édier l foncion sin( ), por ], ]. Clcl priqe: Lorsqe f es conine sr ], b[, si F es ne primiive de f, F () = c f()d, por < c < b, lors l'inégrle f()d es convergene si e selemen si F dme ne limie nie à droie en e ne limie nie à gche en b e on F (b ) F (+) = f()d. Remrqe: L formle de chngemen de vrible perme de rmener dns cerins cs l'éde de l convergence sr n inervlle non borné à n inervlle borné. L formle d'inégrion pr pries pe êre ssi d'ne grnde ilié por édier l convergence de cerines inégrles. Eemple : ln d es convergene. Grâce à ne inégrion pr pries e en se plçn d'bord sr n inervlle de l forme [, ] vec < <, on ln d = [ ln()] d = [ ln() ]. On voi bien qe lorsqe end vers, l'inégrle end vers ne limie nie. Pr conséqen, l'inégrle converge. Eemple : Por o n, I n = n e d es convergene e v n!. 3

4 En ee, on se plce d'bord sr n inervlle de l forme [, ] vec > sr leqel on pe éblir, grâce à ne inégrion pr pries, ne relion de récrrence enre I n e I n+ qi es I n+ = (n + )I n vec I =. L convergence de I n enrine celle de I n+. III. Crières génér de convergence: Soi f ne foncion loclemen inégrble sr ], b[ e c n élémen qelconqe de ], b[, on noe F () = c f()d. On rppelle qe l convergence de f()d éqiv à l'eisence de l limie à droie F (+) e de l limie à gche F ( ). d'bord éblir des résls vlbles por les foncions posiives. Nos llons. Cs d'ne foncion posiive loclemen inégrble: On se plce sr n inervlle de l forme [, b[, le cs d'n inervlle de le forme ], b] se rmène cs précéden vec n chngemen de vrible convenble. Soi f ne foncion loclemen inégrble e posiive sr [, b[, on noe F () = f()d. On rppelle qe l convergence de F (b ). f()d éqiv à l'eisence de l limie à gche Proposiion: Si F es mjorée lors l'inégrle es convergene. Sinon, on f()d = +. Crières de comprison: Soien f e g son de foncions posiives, loclemen inégrbles sr [, b[ vérin f() g(), [, b[, lors - Si - Si g()d converge lors f()d diverge lors f()d converge. g()d diverge. Remrqe: Il s de spposer f() g() voisinge de b. Eemple : f() = e e g() = e vérien f() g() por o [, ] vec > qelconqe. L proposiion précédene ssre l convergence de e d. Eemple : π d es divergene. sin 4

5 Por cel, on < sin < ], π ] e pr sie sr le même inervlle Comme π sin. d diverge, pr conséqen π d diverge ssi. sin. Cs d'ne foncion loclemen inégrble qelconqe: Dns ce qi si, f désigne ne foncion dénie loclemen inégrble sr l'inervlle considéré, non nécessiremen posiive. Proposiion: I = [, b[ e l'inégrle considérée es noée f()d. f()d converge si e selemen si por oe sie ( n) n convergene vers b, l sie (F ( n )) n dénie pr F ( n ) = n f()d es convergene. Démonsrion: Si l'inégrle es convergene, lors por oe sie ( n ) n convergene vers b, l sie (v n ) n dénie pr v n = n f()d end vers f()d. Inversemen, si ( n ) n e (y n ) n son de sies convergenes vers b, les sies (F ( n )) n e (F (y n )) n son nécessiremen convergenes vers l même limie.(sinon on porri consrire à prir de ( n ) n e de (y n ) n ne re sie (z n ) n convergene ssi vers b mis por lqelle (F (z n )) n seri divergene.) Crière de Cchy: Soi f ne foncion loclemen inégrble sr [, b[. f()d es convergene si e selemen si ε >, δ >,, v ;, v ]b δ, b[ ; f()d < ε. Si b = +, lors on remlcer, v ]b δ, b[ pr, v > δ. Démonsrion: Por l première implicion, on écri f()d = f()d f()d f()d + En pssn vlers bsoles e en mjorn, on obien: f()d < f()d f()d + 5 f()d f()d. f()d < ɛ.

6 Inversemen, si l'inégrle de f vérie le crière de Cchy, cel signie qe por oe sie ( n ) n convergen vers b, l sie (F ( n )) n es de Cchy donc convergene vers ne limie. De pls, cee limie ne dépend ps de l sie de ( n ) n choisie. Ainsi, F dme bien ne limie nie en b ce qi impliqe l convergence de l'inégrle. 3. Convergence bsole e semi convergence: Déniion: Soi f ne foncion loclemen inégrble sr n inervlle over o semi over I d'erémiés e b, on di qe l'inégrle de f sr I es bsolmen convergene si f() d converge. Le crière de comprison por les foncions posiives perme de dédire le héorème sivn: Théorème: S'il eise ne foncion ϕ elle qe f() ϕ() I e ϕ()d convergene, lors f()d es bsolmen convergene. e Eemples:. ln sin d es bsolmen convergene. En ee, ln d = ln sin d ln d, lnd qi converge d'près n eemple déjà rié.. Ede de l convergence de sin d. On se plce donc sr n inervlle de l forme [, ], vec >, e on fi ne inégrion pr pries: D're pr, Ce qi prove bien qe sin d = [ cos ] cos d cos d. cos d d [ ]. sind es convergene modlo l proposiion sivne. Proposiion Si ne inégrle converge bsolmen lors elle converge. 6

7 Démonsrion L convergence de l'inégrle en o en b résle d crière de Cchy: f() d f() d, ceci por o cople (, v) I. Pr sie, pisqe le crière de Cchy es vérié pr f, il ser vérié pr f e donc l'inégrle es convergene. Remrqe imporne L réciproqe es fsse en générl comme le monre l'eemple sivn. sin d es convergene sns êre bsolmen convergene. Nos rierons pls rd ce eemple. 4. Foncions éqivlenes: Proposiion: Soien f e g de foncions dénies, loclemen inégrbles e qi grden n même signe consn sr n inervlle I = [, b[. Si f e g son éqivlenes voisinge de b lors f()d, e g()d son de même nre. Démonsrion: On rppelle qe de foncions son éqivlenes voisinge de b s'il eise n voisinge de b de l forme ]b η, b[ e ne foncion ψ dénie sr ce voisinge els qe f() = g()( + ψ()) vec lim b ψ() =. Sr n voisinge convenble, e en spposn, pr eemple, f e g posiives, on donc g() f() 3 g(). On voi bien qe l convergence por f impliqe l convergence por g e l divergence por f impliqe l divergence por g. Eemples:. n d es de même nre qe d. D'près le résl précéden, il s de vérier qe les foncions f e g dénies pr f() = / e g() = / n son éqivlenes e grden n signe consn voisinge de (où se pose le problème de convergence.). cos d es divergene cr 7 d es divergene.

8 En ee, les foncions correspondnes son éqivlenes voisinge de +. Mise en grde: Le résl précéden n'es pls vlble por les foncions ne grdn ps n signe consn. On déjà vérié qe sin ( + sin )d diverge ln sind converge mis bien qe les foncions ssociées soien éqivlenes voisinge de +. sin ln sin d es divergene, en ee ln sin (k + )π ln((k + )π) por [kπ, (k + )π], en sommn les inégrles sr k, on obien l divergence de l'inégrle qi résle de l divergence de n k= (k + )π ln((k + )π). (Eercice) L proposiion sivne donne d'res crières qi permeen dns cerins cs de rier rpidemen le problème de convergence. Proposiion:. Soi f ne foncion loclemen inégrble sr n inervlle de l forme ], b] vec ni. On sppose q'il eise α IR el qe lim ( ) α f() eise e v k. - Si α <, lors f()d converge bsolmen. - Si α e k, f()d diverge.. Soi f ne foncion dénie e loclemen inégrble sr n inervlle de l forme [, + [. On sppose q'il eise α IR el qe lim + α f() eise e v k. - Si α > lors f()d es bsolmen convergene. - Si α e k lors f()d es divergene. Eemples: On pe édier les inégrles de Riemnn e de Berrnd à l'ide de ces crières. Por on pe rover α vec β < α < el qe d, si β <, β lim α β =, 8

9 ce qi ssre l convergence de l'inégrle lorsqe β <. Por les inégrles de Berrnd, c'es à dire de l forme d, β vec ], b[=], [ o ], b[=], [, ( ln ) γ e si on se plce dns le cs = e b =, on pe donner les vlers de β e de γ por lesqelles l'inégrle de Berrnd es convergene. Le cs = e b = + se rie de l même mnière. (Eercice.) 5. Inégrles semi convergenes. Règle d'abel. Règle d'abel: Soi f ne foncion loclemen inégrble sr n inervlle de l forme [, + [, posiive, décroissne e elle qe f() end vers lorsqe vers +. Soi g ne foncion loclemen inégrble sr [, + [. On sppose q'il eise n réel M > el qe [, + [, g()d M, lors f()g()d es convergene. Démonsrion Por monrer l convergence, on v iliser le crière de Cchy por l convergence des inégrles e l deième formle de l moyenne. On se plce sr n inervlle [, v] [, + [ e on considère f()g()d. D'près l deième formle de l moyenne, il eise n poin c [, v] el qe f()g()d = f(+) Ainsi f()g()d = f(+) c Pr sie, si ε >, lors por ssez grnd, on r c f()g()d < ε. g()d. g()d M f(+). Le crière de Cchy es vérié e donc l'inégrle es convergene. Eemples:. Nos vons déjà v qe sin d es convergene en ilisn ne inégrion pr pries. Le crière d'abel perme d'boir à l même conclsion. En ee, d'ne pr l foncion 9

10 es loclemen inégrble, posiive décroissne e end vers lorsqe + e d're pr on ébli fcilemen qe Pr pplicion de l règle d'abel, d sin d ; (c, d) IR. c sind es convergene. Remrqe: Cee inégrle n'es ps bsolmen convergene. Por voir cel, on se plce sr des inervlles de l forme I n = [nπ, (n + )π], vec n IN. Por o I n, sin sin e pr sie (n+)π (n+)π nπ sin d (n+)π sin d (n + )π nπ (n + )π. L dernière inéglié pe êre obene en disingn les cs n pir o n impir, e en inégrn selon le cs f() = sin o f() = sin. Chsles, on obien: nπ On rerove l sie hrmoniqe qi diverge. π n sin d k= (k + )π. Enn, en ilisn l relion de. Por édier l convergence de sin ( 3 )d, e n d'iliser l règle d'abel, on fi d'bord n chngemen de vrible en posn = 3 qi perme d'obenir On pose f() = 3 /3 e g() = sin. On lors l convergence de l'inégrle pr pplicion de l règle d'abel. sin d. 3/3 6. Comprison séries-inégrles. Théorème Soi f ne foncion posiive, décroissne e loclemen inégrble sr [, + [. On considère l sie o série ( n ) n dénie pr f()d e ( n ) n son de même nre. n n = f(k). k=

11 Démonsrion. On n n n f()d k f()d. k= Por voir cel, il s de considérer n k= k comme l'inégrle d'ne cerine foncion en esclier, c'es à dire comme somme de srfces de recngles. L décroissnce de f donne lors l doble inéglié précédene. Ainsi, si l'inégle converge lors l sie es convergene cr croissne e mjorée. Inversemen, si l sie converge lors l'inégrle es mjorée. Pisqe f es posiive, l'inégrle converge. es Eemple e n L sie ( k= + k= k ln(k) ) n es divergene. + k ln(k) ln() d d = [ln( ln() )]+ = +. ln() Remrqe Por voir l convergence, ne condiion nécessire mis non ssne lim + f() =. En ee end vers mis d es divergene.

Fonction dont la variable est borne d intégration

Fonction dont la variable est borne d intégration [hp://mp.cpgedpydelome.fr] édié le 1 jille 14 Enoncés 1 Foncion don la variable es borne d inégraion Eercice 1 [ 1987 ] [correcion] Soi f : R R ne foncion conine. Jsifier qe les foncions g : R R sivanes

Plus en détail

LICENCE DE MATHÉMATIQUES DEUXIÈME ANNÉE. Unité d enseignement LCMA 4U11 ANALYSE 3. Françoise GEANDIER

LICENCE DE MATHÉMATIQUES DEUXIÈME ANNÉE. Unité d enseignement LCMA 4U11 ANALYSE 3. Françoise GEANDIER LICENCE DE MATHÉMATIQUES DEUXIÈME ANNÉE Unité d enseignement LCMA 4U ANALYSE 3 Frnçoise GEANDIER Université Henri Poincré Nncy I Déprtement de Mthémtiques . Tble des mtières I Séries numériques. Séries

Plus en détail

Thème : Electricité Fiche 5 : Dipôle RC et dipôle RL

Thème : Electricité Fiche 5 : Dipôle RC et dipôle RL Fiche ors Thème : Elecricié Fiche 5 : Dipôle e dipôle Plan de la fiche Définiions ègles 3 Méhodologie I - Définiions oran élecriqe : déplacemen de charges élecriqes q a mesre d débi de charges donne l

Plus en détail

Intégrales généralisées

Intégrales généralisées 3 Iégrles géérlisées Pour ce chpire, les focios cosidérées so priori défiies sur u iervlle réel I o rédui à u poi, à vleurs réelles ou complees e coiues pr morceu. L défiiio e les propriéés de l iégrle

Plus en détail

Correction de l épreuve CCP 2001 PSI Maths 2 PREMIÈRE PARTIE ) (

Correction de l épreuve CCP 2001 PSI Maths 2 PREMIÈRE PARTIE ) ( Correction de l épreuve CCP PSI Mths PREMIÈRE PARTIE I- Soit t u voisinge de, t Alors ϕt t s = ϕt ρt s ρs Pr hypothèse, l fonction ϕt ϕt est lorsque t, il en est donc de même de ρt s ρt s ρs cr ρ s est

Plus en détail

Exemples de résolutions d équations différentielles

Exemples de résolutions d équations différentielles Exemples de résoluions d équaions différenielles Table des maières 1 Définiions 1 Sans second membre 1.1 Exemple.................................................. 1 3 Avec second membre 3.1 Exemple..................................................

Plus en détail

Cours d Analyse IV Suites et Séries de fonctions

Cours d Analyse IV Suites et Séries de fonctions Université Clude Bernrd, Lyon I Licence Sciences, Technologies & Snté 43, boulevrd 11 novembre 1918 Spécilité Mthémtiques 69622 Villeurbnne cedex, Frnce L. Pujo-Menjouet pujo@mth.univ-lyon1.fr Cours d

Plus en détail

semestre 3 des Licences MISM annnée universitaire 2004-2005

semestre 3 des Licences MISM annnée universitaire 2004-2005 MATHÉMATIQUES 3 semestre 3 des Licences MISM nnnée universitire 24-25 Driss BOULARAS 2 Tble des mtières Rppels 5. Ensembles et opértions sur les ensembles.................. 5.. Prties d un ensemble.........................

Plus en détail

Limites finies en un point

Limites finies en un point 8 Limites finies en un point Pour ce chapitre, sauf précision contraire, I désigne une partie non vide de R et f une fonction définie sur I et à valeurs réelles ou complees. Là encore, les fonctions usuelles,

Plus en détail

Texte Ruine d une compagnie d assurance

Texte Ruine d une compagnie d assurance Page n 1. Texe Ruine d une compagnie d assurance Une nouvelle compagnie d assurance veu enrer sur le marché. Elle souhaie évaluer sa probabilié de faillie en foncion du capial iniial invesi. On suppose

Plus en détail

Estimation des incertitudes sur les erreurs de mesure.

Estimation des incertitudes sur les erreurs de mesure. Estmto des certtdes sr les errers de mesre. I. Itrodcto : E sceces epérmetles, l este ps de mesres ectes. Celle-c e pevet être q etchées d errers pls o mos mporttes selo le protocole chos, l qlté des strmets

Plus en détail

La spirale de Théodore bis, et la suite «somme=produit».

La spirale de Théodore bis, et la suite «somme=produit». Etde d e vrite de l spirle de Théodore, dot issce à e site dot les sommes prtielles sot égles x prodits prtiels. Mots clés : spirle de Théodore, théorème de Pythgore, site, série, polyôme. L spirle de

Plus en détail

Stabilisation des systèmes bilinéaires fractionnaires

Stabilisation des systèmes bilinéaires fractionnaires Sbilision des sysèmes bilinéires frcionnires Ibrhim N Doye,, Michel Zsdzinski, Nour-Eddine Rdhy, Mohmed Drouch Cenre de Recherche en Auomique de Nncy, UMR 739 Nncy-Universié, CNRS IUT de Longwy, 86 rue

Plus en détail

2. Quelle est la valeur de la prime de l option américaine correspondante? Utilisez pour cela la technique dite de remontée de l arbre.

2. Quelle est la valeur de la prime de l option américaine correspondante? Utilisez pour cela la technique dite de remontée de l arbre. 1 Examen. 1.1 Prime d une opion sur un fuure On considère une opion à 85 jours sur un fuure de nominal 18 francs, e don le prix d exercice es 175 francs. Le aux d inérê (coninu) du marché monéaire es 6%

Plus en détail

Synthèse de cours (Terminale S) Calcul intégral

Synthèse de cours (Terminale S) Calcul intégral Synthèse de cours (Terminle S) Clcul intégrl Intégrle d une onction continue positive sur un intervlle [;] Dns cette première prtie, on considère une onction continue positive sur un intervlle [ ; ] (

Plus en détail

La rentabilité des investissements

La rentabilité des investissements La renabilié des invesissemens Inroducion Difficulé d évaluer des invesissemens TI : problème de l idenificaion des bénéfices, des coûs (absence de saisiques empiriques) problème des bénéfices Inangibles

Plus en détail

FONCTIONS EXPONENTIELLES - FONCTIONS LOGARITHMES. lim e x = 0 et. x y

FONCTIONS EXPONENTIELLES - FONCTIONS LOGARITHMES. lim e x = 0 et. x y FONCTIONS EPONENTIELLES - FONCTIONS LOGARITHMES. D la foncion ponnill (d bas ) à la foncion logarihm népérin.. Théorèm La foncion ponnill (d bas ) s conin, sricmn croissan sr : = = + + Coninié La foncion

Plus en détail

Liens entre fonction de transfert et représentations d'état d'un système (formes canoniques de la représentation d'état)

Liens entre fonction de transfert et représentations d'état d'un système (formes canoniques de la représentation d'état) oqe V oqe Cor e ere foco de rfer e repréeo dé d èe fore coqe de l repréeo dé SI Coe oqe! Irodco! e ere le dfféree decrpo d èe! Pge odèle dé " foco de rfer # C d èe oovrle # C d èe lvrle! Pge foco de rfer

Plus en détail

Développements limités. Notion de développement limité

Développements limités. Notion de développement limité MT12 - ch2 Page 1/8 Développements limités Dans tout ce chapitre, I désigne un intervalle de R non vide et non réduit à un point. I Notion de développement limité Dans tout ce paragraphe, a désigne un

Plus en détail

ANALYSE : FONCTIONS D UNE VARIABLE RÉELLE

ANALYSE : FONCTIONS D UNE VARIABLE RÉELLE Jen-Pierre Dedieu, Jen-Pierre Rymond ANALYSE : FONCTIONS D UNE VARIABLE RÉELLE Institut de Mthémtiques Université Pul Sbtier 31062 Toulouse cedex 09 jen-pierre.dedieu@mth.univ-toulouse.fr jen-pierre.rymond@mth.univ-toulouse.fr

Plus en détail

Chapitre 1 : Fonctions analytiques - introduction

Chapitre 1 : Fonctions analytiques - introduction 2e semestre 2/ UE 4 U : Abrégé de cours Anlyse 3: fonctions nlytiques Les notes suivntes, disponibles à l dresse http://www.iecn.u-nncy.fr/ bertrm/, contiennent les définitions et les résultts principux

Plus en détail

Université Paris-Dauphine DUMI2E. UFR Mathématiques de la décision. Notes de cours. Analyse 2. Filippo SANTAMBROGIO

Université Paris-Dauphine DUMI2E. UFR Mathématiques de la décision. Notes de cours. Analyse 2. Filippo SANTAMBROGIO Université Pris-Duphine DUMI2E UFR Mthémtiques de l décision Notes de cours Anlyse 2 Filippo SANTAMBROGIO Année 2008 2 Tble des mtières 1 Optimistion de fonctions continues et dérivbles 5 1.1 Continuité........................................

Plus en détail

aux différences est appelé équation aux différences d ordre n en forme normale.

aux différences est appelé équation aux différences d ordre n en forme normale. MODÉLISATION ET SIMULATION EQUATIONS AUX DIFFÉRENCES (I/II) 1. Rappels théoriques : résolution d équations aux différences 1.1. Équations aux différences. Définition. Soit x k = x(k) X l état scalaire

Plus en détail

Tout ce qu il faut savoir en math

Tout ce qu il faut savoir en math Tout ce qu il fut svoir en mth 1 Pourcentge Prendre un pourcentge t % d un quntité : t Clculer le pourcentge d une quntité pr rpport à une quntité b : Le coefficient multiplicteur CM pour une ugmenttion

Plus en détail

Théorème de Poincaré - Formule de Green-Riemann

Théorème de Poincaré - Formule de Green-Riemann Chpitre 11 Théorème de Poincré - Formule de Green-Riemnn Ce chpitre s inscrit dns l continuité du précédent. On vu à l proposition 1.16 que les formes différentielles sont bien plus grébles à mnipuler

Plus en détail

Licence M.A.S.S. Cours d Analyse S4

Licence M.A.S.S. Cours d Analyse S4 Université Pris I, Pnthéon - Sorbonne Licence MASS Cours d Anlyse S4 Jen-Mrc Brdet (Université Pris 1, SAMM) UFR 27 et Equipe SAMM (Sttistique, Anlyse et Modélistion Multidisiplinire) Université Pnthéon-Sorbonne,

Plus en détail

CARACTERISTIQUES STATIQUES D'UN SYSTEME

CARACTERISTIQUES STATIQUES D'UN SYSTEME CARACTERISTIQUES STATIQUES D'UN SYSTEE 1 SYSTEE STABLE, SYSTEE INSTABLE 1.1 Exemple 1: Soi un sysème composé d une cuve pour laquelle l écoulemen (perurbaion) es naurel au ravers d une vanne d ouverure

Plus en détail

TRANSLATION ET VECTEURS

TRANSLATION ET VECTEURS TRNSLTION ET VETEURS 1 sr 17 ctivité conseillée ctivités de grope La Translation (Partie1) http//www.maths-et-tiqes.fr/telech/trans_gr1.pdf La Translation (Partie2) http//www.maths-et-tiqes.fr/telech/trans_gr2.pdf

Plus en détail

CCP PSI - 2010 Mathématiques 1 : un corrigé

CCP PSI - 2010 Mathématiques 1 : un corrigé CCP PSI - 00 Mathématiques : un corrigé Première partie. Définition d une structure euclidienne sur R n [X]... B est clairement symétrique et linéaire par rapport à sa seconde variable. De plus B(P, P

Plus en détail

Chp. 4. Minimisation d une fonction d une variable

Chp. 4. Minimisation d une fonction d une variable Chp. 4. Minimisation d une fonction d une variable Avertissement! Dans tout ce chapître, I désigne un intervalle de IR. 4.1 Fonctions convexes d une variable Définition 9 Une fonction ϕ, partout définie

Plus en détail

Chapitre 2 Le problème de l unicité des solutions

Chapitre 2 Le problème de l unicité des solutions Université Joseph Fourier UE MAT 127 Mthémtiques nnée 2009-2010 Chpitre 2 Le prolème de l unicité des solutions 1 Le prolème et quelques réponses : 1.1 Un exemple Montrer que l éqution différentielle :

Plus en détail

TD/TP : Taux d un emprunt (méthode de Newton)

TD/TP : Taux d un emprunt (méthode de Newton) TD/TP : Taux d un emprun (méhode de Newon) 1 On s inéresse à des calculs relaifs à des remboursemens d empruns 1. On noera C 0 la somme emprunée, M la somme remboursée chaque mois (mensualié), le aux mensuel

Plus en détail

Les circuits électriques en régime transitoire

Les circuits électriques en régime transitoire Les circuis élecriques en régime ransioire 1 Inroducion 1.1 Définiions 1.1.1 égime saionnaire Un régime saionnaire es caracérisé par des grandeurs indépendanes du emps. Un circui en couran coninu es donc

Plus en détail

Le présentoir virtuel. Paul FABING

Le présentoir virtuel. Paul FABING L préir virl Pl FABING L x L'ffi ri ' viié q pr fibl prpri ri éjr A i 80% r ifri ppr xi à l'ffi ri C ppr v b hz l prir ri 50% Frçi éqipé rph L û xi à ir vi l 3G pr l érgr prhibiif rriir è r ri i ff L'

Plus en détail

Continuité en un point

Continuité en un point DOCUMENT 4 Continuité en un point En général, D f désigne l ensemble de définition de la fonction f et on supposera toujours que cet ensemble est inclus dans R. Toutes les fonctions considérées sont à

Plus en détail

Capes 2002 - Première épreuve

Capes 2002 - Première épreuve Cette correction a été rédigée par Frédéric Bayart. Si vous avez des remarques à faire, ou pour signaler des erreurs, n hésitez pas à écrire à : mathweb@free.fr Mots-clés : équation fonctionnelle, série

Plus en détail

COURS D ANALYSE. Licence d Informatique, première. Laurent Michel

COURS D ANALYSE. Licence d Informatique, première. Laurent Michel COURS D ANALYSE Licence d Informtique, première nnée Lurent Michel Printemps 2010 2 Tble des mtières 1 Éléments de logique 5 1.1 Fbriquer des énoncés........................ 5 1.1.1 Enoncés élémentires.....................

Plus en détail

Chapitre IV Les oscillations couplées «Les oscillations libres d un système à plusieurs degrés de liberté»

Chapitre IV Les oscillations couplées «Les oscillations libres d un système à plusieurs degrés de liberté» Chre IV, cours de vbrons, ondes _Phs, Pr. Bds Bennecer MD 8-9 Chre IV es oscllons coulées «es oscllons lbres d un ssèe à luseurs degrés de lberé» Dns ce chre, nous llons coencer r éuder les oscllons lbres

Plus en détail

Modèles de dimensionnement et de planification dans un centre d appels

Modèles de dimensionnement et de planification dans un centre d appels Modèles de dimensionnemen e de plnificion dns un cenre d ppels Rbie Ni-Abdllh To cie his version: Rbie Ni-Abdllh. Modèles de dimensionnemen e de plnificion dns un cenre d ppels. Engineering Sciences. Ecole

Plus en détail

INTRODUCTION. 1 k 2. k=1

INTRODUCTION. 1 k 2. k=1 Capes externe de mathématiques : session 7 Première composition INTRODUCTION L objet du problème est l étude de la suite (s n n définie par : n, s n = Dans une première partie, nous nous attacherons à

Plus en détail

Guide. Solution simplifiée. Solution simplifiée, c est. Votre guide pour la mise en place rapide et facile de régimes de garanties collectives

Guide. Solution simplifiée. Solution simplifiée, c est. Votre guide pour la mise en place rapide et facile de régimes de garanties collectives Solion simplifiée, c es facile rapide flexible Solion simplifiée Gide Vore gide por la mise en place rapide e facile de régimes de garanies collecives La vie es pls radiese sos le soleil. Table des maières

Plus en détail

LASTO Appuis élastomère

LASTO Appuis élastomère LASTO Appuis élsomère LASTO BLOCK F Appuis de déformion non-rmés Swizerlnd www.mgeb.ch Chmps d pplicion e specs imporns Chmps d pplicion LASTO BLOCK F es un ppui de déformion non-rmé en élsomère qui es

Plus en détail

PRÉSENTATION DU CONTRAT

PRÉSENTATION DU CONTRAT PRÉSENTATION DU CONTRAT 2 L ASSURANCE VIE UN FANTASTIQUE OUTIL DE GESTION PATRIMONIALE Le fait qe l assrance vie soit, depis plsiers décennies, le placement préféré des Français n est certes pas le frit

Plus en détail

ANNEXES. André de Palma et Cédric Fontan. Thema Transport & Réseaux. Le 26 octobre 2000

ANNEXES. André de Palma et Cédric Fontan. Thema Transport & Réseaux. Le 26 octobre 2000 Enquêe MADDIF : Mulimoif Adpée à l Dynmique des comporemens de Déplcemen en Ile-de-Frnce ANNEXES André de Plm e Cédric Fonn Them Trnspor & Réseux Le 26 ocobre 2000 Lere de commnde N 99MT20 DRAST Minisère

Plus en détail

BAREME DEPANNAGE ! SPECIAL SYNDIC DE COPROPRIETES !!! !!!!! DEPANNAGE TRAVAUX RENOV & CONSEIL HABITAT & COMMERCE INTERVENTION PARIS & BANLIEUE

BAREME DEPANNAGE ! SPECIAL SYNDIC DE COPROPRIETES !!! !!!!! DEPANNAGE TRAVAUX RENOV & CONSEIL HABITAT & COMMERCE INTERVENTION PARIS & BANLIEUE SPECIAL SYNDIC DE COPROPRIETES BAREME DEPANNAGE TRAVAUX RENOV & CONSEIL VOTRE ARTISAN DE PROXIMITE 205 HABITAT & COMMERCE INTERVENTION PARIS & BANLIEUE DEPANNAGE ELECTRICITE PLOMBERIE ELECTRICITE TYPE

Plus en détail

Module 2 : Déterminant d une matrice

Module 2 : Déterminant d une matrice L Mth Stt Module les déterminnts M Module : Déterminnt d une mtrice Unité : Déterminnt d une mtrice x Soit une mtrice lignes et colonnes (,) c b d Pr définition, son déterminnt est le nombre réel noté

Plus en détail

Montages à plusieurs transistors

Montages à plusieurs transistors etor a men! ontages à plsiers transistors mplificaters à plsiers étages Dans de nombrex amplificaters, on cerce à obtenir n grand gain, ne impédance d entrée élevée (afin de ne pas pertrber la sorce d

Plus en détail

Comparaison de fonctions Développements limités. Chapitre 10

Comparaison de fonctions Développements limités. Chapitre 10 PCSI - 4/5 www.ericreynaud.fr Chapitre Points importants 3 Questions de cours 6 Eercices corrigés Plan du cours 4 Eercices types 7 Devoir maison 5 Eercices Chap Et s il ne fallait retenir que si points?

Plus en détail

LBC 341x/0 - Enceintes

LBC 341x/0 - Enceintes Systèmes de commnications LBC 41x/ - Enceintes LBC 41x/ - Enceintes www.boschsecrity.fr Reprodction vocale et msicale hate fidélité Plage de fréqences étende Entrées 8 ohms et 1 V réglables Enceinte compacte

Plus en détail

Cours d Analyse I et II

Cours d Analyse I et II ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE Cours d Analyse I et II Sections Microtechnique & Science et génie des matériaux Dr. Philippe Chabloz avril 23 Table des matières Sur les nombres. Les nombres

Plus en détail

I. Polynômes de Tchebychev

I. Polynômes de Tchebychev Première épreuve CCP filière MP I. Polynômes de Tchebychev ( ) 1.a) Tout réel θ vérifie cos(nθ) = Re ((cos θ + i sin θ) n ) = Re Cn k (cos θ) n k i k (sin θ) k Or i k est réel quand k est pair et imaginaire

Plus en détail

Chapitre VI Contraintes holonomiques

Chapitre VI Contraintes holonomiques 55 Chpitre VI Contrintes holonomiques Les contrintes isopérimétriques vues u chpitre précéent ne sont qu un eemple prticulier e contrintes sur les fonctions y e notre espce e fonctions missibles. Dns ce

Plus en détail

Sciences Industrielles Précision des systèmes asservis Papanicola Robert Lycée Jacques Amyot

Sciences Industrielles Précision des systèmes asservis Papanicola Robert Lycée Jacques Amyot Scence Indutrelle Précon de ytème erv Pncol Robert Lycée Jcque Amyot I - PRECISION DES SYSTEMES ASSERVIS A. Poton du roblème 1. Préentton On vu que le rôle d un ytème erv et de fre uvre à l orte (t) une

Plus en détail

Chapitre 11 : L inductance

Chapitre 11 : L inductance Chpitre : inductnce Exercices E. On donne A πr 4π 4 metn N 8 spires/m. () Selon l exemple., µ n A 4π 7 (8) 4π 4 (,5) 5 µh (b) À prtir de l éqution.4, on trouve ξ ξ 4 3 5 6 6,3 A/s E. On donne A πr,5π 4

Plus en détail

Exo7. Limites de fonctions. 1 Théorie. 2 Calculs

Exo7. Limites de fonctions. 1 Théorie. 2 Calculs Eo7 Limites de fonctions Théorie Eercice Montrer que toute fonction périodique et non constante n admet pas de ite en + Montrer que toute fonction croissante et majorée admet une ite finie en + Indication

Plus en détail

Algorithmes sur les mots (séquences)

Algorithmes sur les mots (séquences) Introduction Algorithmes sur les mots (séquences) Algorithmes sur les mots (textes, séquences, chines de crctères) Nomreuses pplictions : ses de données iliogrphiques ioinformtique (séquences de iomolécules)

Plus en détail

Le mode de fonctionnement des régimes en annuités. Secrétariat général du Conseil d orientation des retraites

Le mode de fonctionnement des régimes en annuités. Secrétariat général du Conseil d orientation des retraites CONSEIL D ORIENTATION DES RETRAITES Séance plénière du 28 janvier 2009 9 h 30 «Les différens modes d acquisiion des drois à la reraie en répariion : descripion e analyse comparaive des echniques uilisées»

Plus en détail

Caractéristiques des signaux électriques

Caractéristiques des signaux électriques Sie Inerne : www.gecif.ne Discipline : Génie Elecrique Caracérisiques des signaux élecriques Sommaire I Définiion d un signal analogique page 1 II Caracérisiques d un signal analogique page 2 II 1 Forme

Plus en détail

Fonctions Analytiques

Fonctions Analytiques 5 Chapitre Fonctions Analytiques. Le plan complexe.. Rappels Soit z C, alors!(x,y) IR 2 tel que z = x + iy. On définit le module de z comme z = x 2 + y 2. On peut aussi repérer z par des coordonnées polaires,

Plus en détail

Image d un intervalle par une fonction continue

Image d un intervalle par une fonction continue DOCUMENT 27 Image d un intervalle par une fonction continue La continuité d une fonction en un point est une propriété locale : une fonction est continue en un point x 0 si et seulement si sa restriction

Plus en détail

Leçon 01 Exercices d'entraînement

Leçon 01 Exercices d'entraînement Leçon 01 Exercices d'entraînement Exercice 1 Etudier la convergence des suites ci-dessous définies par leur terme général: 1)u n = 2n3-5n + 1 n 2 + 3 2)u n = 2n2-7n - 5 -n 5-1 4)u n = lnn2 n+1 5)u n =

Plus en détail

Souad EL Bernoussi. Groupe d Analyse Numérique et Optimisation Rabat http ://www.fsr.ac.ma/ano/

Souad EL Bernoussi. Groupe d Analyse Numérique et Optimisation Rabat http ://www.fsr.ac.ma/ano/ Recherche opérationnelle Les démonstrations et les exemples seront traités en cours Souad EL Bernoussi Groupe d Analyse Numérique et Optimisation Rabat http ://www.fsr.ac.ma/ano/ Table des matières 1 Programmation

Plus en détail

Chapitre 2 L investissement. . Les principales caractéristiques de l investissement

Chapitre 2 L investissement. . Les principales caractéristiques de l investissement Chapire 2 L invesissemen. Les principales caracérisiques de l invesissemen.. Définiion de l invesissemen Définiion générale : ensemble des B&S acheés par les agens économiques au cours d une période donnée

Plus en détail

Chapitre 6. Fonction réelle d une variable réelle

Chapitre 6. Fonction réelle d une variable réelle Chapitre 6 Fonction réelle d une variable réelle 6. Généralités et plan d étude Une application de I dans R est une correspondance entre les éléments de I et ceu de R telle que tout élément de I admette

Plus en détail

MINISTÈRE DE L'ÉCOLOGIE, DE L'ÉNERGIE DU DÉVELOPPEMENT DURABLE ET DE L'AMÉNAGEMENT DU TERRITOIRE

MINISTÈRE DE L'ÉCOLOGIE, DE L'ÉNERGIE DU DÉVELOPPEMENT DURABLE ET DE L'AMÉNAGEMENT DU TERRITOIRE MINISTÈRE DE L'ÉCOLOGIE, DE L'ÉNERGIE DU DÉVELOPPEMENT DURABLE ET DE L'AMÉNAGEMENT DU TERRITOIRE MINISTÈRE DE L'INTÉRIEUR, DE L'OUTRE-MER ET DES COLLECTIVITÉS TERRITORIALES Connaître Rédire Aménager Informer

Plus en détail

Influence du milieu d étude sur l activité (suite) Inhibition et activation

Influence du milieu d étude sur l activité (suite) Inhibition et activation Influence du milieu d étude sur l ctivité (suite) Inhibition et ctivtion Influence de l tempérture Influence du ph 1 Influence de l tempérture Si on chuffe une préprtion enzymtique, l ctivité ugmente jusqu

Plus en détail

Même si les conditions de travail sont variées suivant les bassins de navigation et les entreprises, force est

Même si les conditions de travail sont variées suivant les bassins de navigation et les entreprises, force est N 32 / Décembre 2011 EUROPE & INTERNATIONAL Informaions CNBA Ediorial Miex faire respecer nos drois Même si les condiions de ravail son variées sivan les bassins de navigaion e les enreprises, force es

Plus en détail

Chapitre III : Fonctions réelles à une variable réelle. Notion de Limite (ses variantes) et Théorèmes d'analyse

Chapitre III : Fonctions réelles à une variable réelle. Notion de Limite (ses variantes) et Théorèmes d'analyse Université Mohammed V - Agdal Faculté des Sciences Département de Mathématiques et Informatique Avenue Ibn Batouta, B.P. 1014 Rabat, Maroc Filière DEUG : Sciences Mathématiques et Informatique (SMI) et

Plus en détail

Optimisation Discrète

Optimisation Discrète Prof F Eisenbrand EPFL - DISOPT Optimisation Discrète Adrian Bock Semestre de printemps 2011 Série 7 7 avril 2011 Exercice 1 i Considérer le programme linéaire max{c T x : Ax b} avec c R n, A R m n et

Plus en détail

Système isolateur de ligne de haut-parleurs

Système isolateur de ligne de haut-parleurs Systèmes de commnications Système isolater de ligne de hat-parlers Système isolater de ligne de hat-parlers www.boschsecrity.fr Fornit des bocles de hat-parler redondantes por les systèmes de sonorisation

Plus en détail

MATHEMATIQUES FINANCIERES

MATHEMATIQUES FINANCIERES MATHEMATIQUES FINANCIERES LES ANNUITES INTRODUCTION : Exemple 1 : Une personne veu acquérir une maison pour 60000000 DH, pour cela, elle place annuellemen au CIH une de 5000000 DH. Bu : Consiuer un capial

Plus en détail

Fonctions holomorphes

Fonctions holomorphes Université Joseph Fourier, Grenoble Maths en Ligne Fonctions holomorphes Christine Laurent-Thiébaut Ceci est le second volet de l étude des fonctions d une variable complexe, faisant suite au chapitre

Plus en détail

Oscillations forcées en régime sinusoïdal.

Oscillations forcées en régime sinusoïdal. Conrôle des prérequis : Oscillaions forcées en régime sinusoïdal. - a- Rappeler l expression de la période en foncion de la pulsaion b- Donner l expression de la période propre d un circui RLC série -

Plus en détail

Sur certaines séries entières particulières

Sur certaines séries entières particulières ACTA ARITHMETICA XCII. 2) Sur certaines séries entières particulières par Hubert Delange Orsay). Introduction. Dans un exposé à la Conférence Internationale de Théorie des Nombres organisée à Zakopane

Plus en détail

Continuité et dérivabilité d une fonction

Continuité et dérivabilité d une fonction DERNIÈRE IMPRESSIN LE 7 novembre 014 à 10:3 Continuité et dérivabilité d une fonction Table des matières 1 Continuité d une fonction 1.1 Limite finie en un point.......................... 1. Continuité

Plus en détail

LITE-FLOOR. Dalles de sol et marches d escalier. Information technique

LITE-FLOOR. Dalles de sol et marches d escalier. Information technique LITE-FLOOR Dlles de sol et mrches d esclier Informtion technique Recommndtions pour le clcul et l pose de LITE-FLOOR Générlités Cette rochure reprend les règles de se à respecter pour grntir l rélistion

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours.

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours. Eo7 Fonctions de plusieurs variables Eercices de Jean-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-francefr * très facile ** facile *** difficulté moenne **** difficile ***** très difficile I

Plus en détail

Planche n o 22. Fonctions de plusieurs variables. Corrigé

Planche n o 22. Fonctions de plusieurs variables. Corrigé Planche n o Fonctions de plusieurs variables Corrigé n o : f est définie sur R \ {, } Pour, f, = Quand tend vers, le couple, tend vers le couple, et f, tend vers Donc, si f a une limite réelle en, cette

Plus en détail

CHAPITRE 13. EXERCICES 13.2 1.a) 20,32 ± 0,055 b) 97,75 ± 0,4535 c) 1953,125 ± 23,4375. 2.±0,36π cm 3

CHAPITRE 13. EXERCICES 13.2 1.a) 20,32 ± 0,055 b) 97,75 ± 0,4535 c) 1953,125 ± 23,4375. 2.±0,36π cm 3 Chapire Eercices de snhèse 6 CHAPITRE EXERCICES..a), ±,55 b) 97,75 ±,455 c) 95,5 ±,475.±,6π cm.a) 44,, erreur absolue de,5 e erreur relaive de, % b) 5,56, erreur absolue de,5 e erreur relaive de,9 % 4.a)

Plus en détail

n N = u N u N+1 1 u pour u 1. f ( uv 1) v N+1 v N v 1 1 2 t

n N = u N u N+1 1 u pour u 1. f ( uv 1) v N+1 v N v 1 1 2 t 3.La méthode de Dirichlet 99 11 Le théorème de Dirichlet 3.La méthode de Dirichlet Lorsque Dirichlet, au début des années 180, découvre les travaux de Fourier, il cherche à les justifier par des méthodes

Plus en détail

Intégrale et primitives

Intégrale et primitives Chpitre 5 Intégrle et primitives 5. Ojetif On herhe dns e hpitre à onstruire l opérteur réiproue de l opérteur de dérivtion. Les deux uestions suivntes sont lors nturelles. Question : Soit f une pplition

Plus en détail

Finance 1 Université d Evry Val d Essonne. Séance 2. Philippe PRIAULET

Finance 1 Université d Evry Val d Essonne. Séance 2. Philippe PRIAULET Finance 1 Universié d Evry Val d Essonne éance 2 Philippe PRIAULET Plan du cours Les opions Définiion e Caracérisiques Terminologie, convenion e coaion Les différens payoffs Le levier implicie Exemple

Plus en détail

Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre

Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre IUFM du Limousin 2009-10 PLC1 Mathématiques S. Vinatier Rappels de cours Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre 1 Fonctions de plusieurs variables

Plus en détail

Développements limités usuels en 0

Développements limités usuels en 0 Développements limités usuels en 0 e x sh x ch x sin x cos x = + x! + x! + + xn n! + O ( x n+) = x + x3 3! + + xn+ (n + )! + O ( x n+3) = + x! + x4 4! + + xn (n)! + O ( x n+) = x x3 3! + + ( )n xn+ (n

Plus en détail

Simulation d essais d extinction et de roulis forcé à l aide d un code de calcul Navier-Stokes à surface libre instationnaire

Simulation d essais d extinction et de roulis forcé à l aide d un code de calcul Navier-Stokes à surface libre instationnaire 1 èmes JOURNÉES DE L HYDRODYNAIQUE Nnes 7 8 e 9 mrs 5 Smlon d esss d exncon e de rols forcé à l de d n code de clcl Nver-Soes à srfce lbre nsonnre E. Jcqn P.E. Gllerm Q. Derbnne L. Bode Bssn d'esss des

Plus en détail

Mesure d angles et trigonométrie

Mesure d angles et trigonométrie Thierry Ciblac Mesure d angles et trigonométrie Mesure de l angle de deux axes (ou de deux demi-droites) de même origine. - Mesures en degrés : Divisons un cercle en 360 parties égales définissant ainsi

Plus en détail

MTH 2301 Méthodes statistiques en ingénierie. MTH 2301 Méthodes statistiques en ingénierie

MTH 2301 Méthodes statistiques en ingénierie. MTH 2301 Méthodes statistiques en ingénierie VARIABLES ALÉATOIRES déo oco de réro vrble léore dscrèe moyee - vrce - écr ye esérce mhémque vrble léore coue oco d ue vrble léore : rsormo combso lére de vrbles léores Déo E : eérece léore S : esce échllol

Plus en détail

Théorèmes du Point Fixe et Applications aux Equations Diérentielles

Théorèmes du Point Fixe et Applications aux Equations Diérentielles Université de Nice-Sophia Antipolis Mémoire de Master 1 de Mathématiques Année 2006-2007 Théorèmes du Point Fixe et Applications aux Equations Diérentielles Auteurs : Clémence MINAZZO - Kelsey RIDER Responsable

Plus en détail

Compression Compression par dictionnaires

Compression Compression par dictionnaires Compression Compression par dictionnaires E. Jeandel Emmanuel.Jeandel at lif.univ-mrs.fr E. Jeandel, Lif CompressionCompression par dictionnaires 1/25 Compression par dictionnaire Principe : Avoir une

Plus en détail

3 Approximation de solutions d équations

3 Approximation de solutions d équations 3 Approximation de solutions d équations Une équation scalaire a la forme générale f(x) =0où f est une fonction de IR dans IR. Un système de n équations à n inconnues peut aussi se mettre sous une telle

Plus en détail

Dynamique du point matériel

Dynamique du point matériel Chaptre III Dynaqe d pont atérel I Généraltés La cnéatqe a por objet l étde des oveents des corps en foncton d teps, sans tenr copte des cases q les provoqent La dynaqe est la scence q étde (o déterne)

Plus en détail

Enregistreur numérique Divar

Enregistreur numérique Divar Vidéo Enregistrer nmériqe Divar Enregistrer nmériqe Divar www.boschsecrity.fr Versions 6, 9 et 16 voies Technologie en option Enregistrement, lectre et archivage simltanés Contrôle des caméras AtoDome

Plus en détail

Recueil d'exercices de logique séquentielle

Recueil d'exercices de logique séquentielle Recueil d'exercices de logique séquenielle Les bascules: / : Bascule JK Bascule D. Expliquez commen on peu modifier une bascule JK pour obenir une bascule D. 2/ Eude d un circui D Q Q Sorie A l aide d

Plus en détail

Chapitre 7 : Intégration sur un intervalle quelconque

Chapitre 7 : Intégration sur un intervalle quelconque Universités Paris 6 et Paris 7 M1 MEEF Analyse (UE 3) 2013-2014 Chapitre 7 : Intégration sur un intervalle quelconque 1 Fonctions intégrables Définition 1 Soit I R un intervalle et soit f : I R + une fonction

Plus en détail

Université Paris-Dauphine DUMI2E 1ère année, 2009-2010. Applications

Université Paris-Dauphine DUMI2E 1ère année, 2009-2010. Applications Université Paris-Dauphine DUMI2E 1ère année, 2009-2010 Applications 1 Introduction Une fonction f (plus précisément, une fonction réelle d une variable réelle) est une règle qui associe à tout réel x au

Plus en détail

DINION IP 7000 HD. Vidéo DINION IP 7000 HD. www.boschsecurity.fr. Capteur CMOS jour/nuit 1/2,7" avec balayage progressif

DINION IP 7000 HD. Vidéo DINION IP 7000 HD. www.boschsecurity.fr. Capteur CMOS jour/nuit 1/2,7 avec balayage progressif Vidéo DINION IP 7000 HD DINION IP 7000 HD www.boschsecrity.fr Capter CMOS jor/nit 1/2,7" avec balayage progressif Hate résoltion 1080p, format HD La rédction intelligente d brit permet de diminer de 30

Plus en détail

VRM Video Recording Manager

VRM Video Recording Manager Vidéo VRM Video Recording Manager VRM Video Recording Manager www.boschsecrity.fr Stockage réparti et éqilibrage de la configrable Basclement sr n enregistrer de secors iscsi en cas de défaillance, por

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable Eo7 Fonctions de plusieurs variables Eercices de Jean-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-francefr * très facile ** facile *** difficulté moenne **** difficile ***** très difficile I

Plus en détail

Développements limités, équivalents et calculs de limites

Développements limités, équivalents et calculs de limites Développements ités, équivalents et calculs de ites Eercice. Déterminer le développement ité en 0 à l ordre n des fonctions suivantes :. f() e (+) 3 n. g() sin() +ln(+) n 3 3. h() e sh() n 4. i() sin(

Plus en détail

LES ESCALIERS. Du niveau du rez-de-chaussée à celui de l'étage ou à celui du sous-sol.

LES ESCALIERS. Du niveau du rez-de-chaussée à celui de l'étage ou à celui du sous-sol. LES ESCALIERS I. DÉF I NIT I O N Un escalier est un ouvrage constitué d'une suite de marches et de paliers permettant de passer à pied d'un niveau à un autre. Ses caractéristiques dimensionnelles sont

Plus en détail