x et y sont proportionnels si, et seulement si, les poins de coordonnées (x ; y) sont alignés avec l origine du repère. y 4 n

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "x et y sont proportionnels si, et seulement si, les poins de coordonnées (x ; y) sont alignés avec l origine du repère. y 4 n"

Transcription

1 CHAPITRE 11 PROPORTIONNALITE I. GENERALITES A. NOTION DE GRANDEURS PROPORTIONNELLES Deux grandeurs x et y sont proportionnelles si, lorsque l une varie, l autre varie dans les mêmes proportions : si x double, triple., alors y double, triple. Exemple : Le volume d essence achetée et le prix payé sont proportionnels. (si le volume double, le prix double. Il n y a jamais de réduction!) Contre-exemple : L âge et la taille d une personne ne sont pas proportionnels (si la taille est 1,5m à 10 ans, elle ne sera pas 3m à 20 ans) B. RECONNAITRE UNE SITUATION DE PROPORTIONNALITE A partir d un tableau : x et y sont-ils proportionnels? x y ,5 7 5 = 1, = 1,4 15,5 11 = 1,4 Les quotients sont tous égaux donc x et y sont proportionnels. x y ,5 1,4 A partir d une formule : x et y sont proportionnels si, et seulement si, x et y sont liés par une formule du type y = a x. (a est appelé coefficient de proportionnalité). Dans l exemple précédent a est égal à 1,4. On a la formule y = 1,4 x. Page 1 sur 10

2 A partir d un graphique : y 0 x x et y sont proportionnels si, et seulement si, les poins de coordonnées (x ; y) sont alignés avec l origine du repère. C. COMPLETER UN TABLEAU DE PROPORTIONNALITE Compléter le tableau de proportionnalité. x 5 7 y 4 n 1 ère méthode : On cherche le coefficient. 4 = 0,8 donc y = 0,8 x. 5 n = 0,8 7 = 5,6. x 5 7 y 4 n 0,8 2 ème méthode : par les quotients égaux. 4 5 = n 7 n 5 = 4 7 n = 4 7 = 5,6 5 (produits en croix) Page 2 sur 10

3 II. MOUVEMENT A VITESSE CONSTANTE A. RAPPEL Si la vitesse V d un mobile est constante, alors la distance parcourue D et le temps T sont proportionnels. On a alors la formule : D = V T. B. APPLICATIONS Enoncé 1 : Une voiture roule à 120 Km/h pendant 40 min. Quelle est la distance parcourue? V = 120 Km/h T = 40 min D = V T donc D = 120 Km/h 40 min D = 120 Km/h h D = Km 60 h h D = 80 Km La voiture a parcouru 80 Km. Enoncé 2 : a la vitesse de 6 Km/h combien de temps faut-il pour faire m? V = 6Km/h D = m D = V T donc m = 6 Km/h T T = m 6 Km/h 2,4 Km T = 6 Km/h T = 0,4 h T = 0,4 60 min T = 24 min Il faut 24 min. Enoncé 3 : Une voiture a parcouru 104 Km en 1 h 18 min. Quelle est sa vitesse moyenne en Km/h? D = 104 Km T = 1 h 18 min = 60 min + 18 min = 78 min = h = 1,3 h Page 3 sur 10

4 D = V T donc 104 Km = V 1,3 h 104 Km V = 1,3 h V = 80 Km/h La vitesse moyenne est 80 Km/h. C. VITESSE MOYENNE ET MOYENNE DES VITESSES Un marcheur monte un côte de 3 km à 6 km/h puis redescend à 4 km/h. Calculer sa vitesse moyenne sur l ensemble du parcours. Remarque : Attention à ce genre d exercice. Bien entendu il ne faut pas additionner les vitesses : sa vitesse moyenne n est pas 10 Km/h. Par contre elle est comprise entre 4 Km/h et 6 Km/h. La vitesse moyenne n est pas non plus égale à la moyenne des vitesses 5 Km/h : voir la solution et le commentaire. La méthode consiste à calculer la durée totale (durée de la montée + durée de la descente) puis à utiliser la formule D = V T. Durée de la montée : D = V T V = 4 Km/h et D = 3 Km. 3 Km = 4 Km/h T T = 3 Km 4 Km/h = 3 4 h = 0,75 h Durée de la descente : D = V T V = 6 Km/h et D = 3 Km. 3 Km = 6 Km/h T T = 3 Km 6 Km/h = 3 6 h = 0,5 h Vitesse moyenne sur le parcours total : D = V T T = 0,75 h + 0,5 h =1,25 h et D = 3 Km + 3 Km = 6 Km 6 Km = V 1,25 h V = 6 Km 1,25 h = 6 Km/h = 4,8 Km/h. 1,25 La vitesse moyenne est égale à 4,8 Km/h. Commentaire : Page 4 sur 10

5 Ce résultat est forcément correct puis qu il est obtenu à partir de la durée et de la distance totale du parcours. Par conséquent la vitesse moyenne est 4,8 Km/h et non 5 Km/h comme on pourrait le penser. Ce n est pas facile à voir d autant plus que les distance sur les deux parties sont les mêmes mais c est ainsi, les calculs le prouvent. III. POURCENTAGES RAPPELS A. CALCULER UNE PROPORTION, L EXPRIMER EN % Dans une classe il y a 13 filles et 9 garçons. Calculer la proportion de fille, l exprimer en %. 13 élèves sur 22 sont les filles. La proportion de fille est , La proportion de fille est environ 59 %. Celle de garçons est donc 41 % environ (100 59). B. APPLIQUER UNE PROPORTION A UN TOTAL Dans collège de 240 élèves, 35 % sont externes. Calculer le nombre d externes. 35 % de 240 = = 84. Il y a 84 externes. 100 Retenir : Calculer t% de x c est faire t 100 x. C. PROBLEME DE MELANGE Dans une classe de 20 élèves, il y a 40 % de garçons. Dans une autre classe de 30 élèves, il y a 60 % de garçons. On réunit tous les élèves. Quel est le pourcentage de garçons? Remarque : Attention à ce genre d exercice. Bien entendu il ne faut pas additionner les pourcentages : il n y a pas 100 % de garçons (40 % + 60 % =100 %). Par contre la proportion de garçon est comprise entre 40 % et 60 %. Le pourcentage de garçons dans le grand groupe n est pas non plus égal à la moyenne des pourcentages dans chaque classe (50 %) : voir la solution et le commentaire. Page 5 sur 10

6 La méthode consiste à calculer le nombre de garçons dans chaque classe et le nombre total d élèves puis à faire le rapport. 40 % de 20 = 0,4 20 = 8. Il y a 8 garçons dans la première classe. 60 % de 30 = 0,6 30 = 18. Il y a 18 garçons dans la deuxième classe = = 50. Dans le nouveau groupe, 26 élèves sur 50 sont des garçons. 52 % des élèves sont des garçons = 0,52 = 52 %. Commentaire : Ce résultat est forcément correct puis qu il est obtenu à partir des nombres exacts de garçons et d élèves. Par conséquent la bonne proportion est 52 % et non 50 % comme on pourrait le penser. En fait, la proportion serait 50 % (moyenne entre 40 % et 60 %) s il les classes étaient de même effectif. Pour mieux comprendre, prenons un exemple où les groupes sont de tailles très différentes. Groupe A : 700 élèves, 60 % de garçons. Groupe B : 10 élèves, 50 % de garçons. Il est clair que, lorsque les deux groupes sont réunis, les 10 élèves qui rejoignent les 700 du groupe A ne vont pas beaucoup la proportion de garçons qui restera proche de 60 % et dont différente du pourcentage moyen (55 %). En effet : 60 % de 700 = 0,6 700 = 720. Il y a 420 garçons dans le groupe A. 50 % de 10 = 5. Il y a 5 garçons dans le groupe B = 730 et = 425 Dans le nouveau groupe, 425élèves sur 730 sont des garçons ,582 58,2 %. 730 Prenons un dernier exemple extrême : 1 er groupe : 99 élèves, 100 % de garçons (soit 99 garçons) 2 ème groupe : 1 élève, 0% de garçons (soit0 garçons). On réunit les deux groupes : 100 élèves (99 + 1) et 99 garçons (99 + 0). 1 élève sur 100 est un garçon. Le pourcentage est donc 99 % (très loin de la moyenne 50 %). IV. POURCENTAGES AUGMENTATION ET DIMINUTION A. INTRODUCTION On considère une augmentation de 50 %. a) Un objet coûtait 30. Quel est le nouveau prix? b) Un autre objet coûte maintenant 24. Quel était l ancien prix? Page 6 sur 10

7 Augmenter de 50 % revient à rajouter la moitié du prix. a) = = 45. L objet coûte maintenant b) Attention : Pour trouver l ancien prix il ne faut surtout pas enlever de 50 % (c est à dire la moitié) de 24. En procédant ainsi, on enlèverait beaucoup trop puisque l augmentation est de la moitié du prix initial qui est inférieur à 45. En effet = = 12. Or 12 n est pas l ancien prix car 12 augmenté de 50 % est égal à 18 et non 24 ( = = 18). Pour répondre on peut poser une équation : Appelons x le prix initial : x augmenté de la moitié de x = 24 Le prix initial était 16. Vérification : = 24 x + x 2 = 24 2x 2 + x 2 = 24 3x 2 = 24 3x = 24 2 x = 48 3 x = 16 B. EXEMPLES D EXERCICES Enoncé 1: On considère une augmentation de 8 %. a) Un objet coûtait 25. Quel est le nouveau prix? b) Un autre objet coûte maintenant 16,20. Quel était l ancien prix? a) 25 augmenté de 8 % de 25 = % de 25 = ,08 25 = = 27 Le nouveau prix est 27. b) Appelons x le prix initial : x augmenté de 8% de x = 16,20 x + 0,08 x = 16,20 1 x + 0,08 x = 16,20 (1 + 0,08) x = 16,20 1,08 x = 16,20 Page 7 sur 10

8 L ancien prix était 15. Vérification : ,08 15 = 16,2. x = 16,20 1,08 x = 15 Enoncé 2: On considère une diminution de 4 %. a) Un objet coûtait 20. Quel est le nouveau prix? b) Un autre objet coûte maintenant 7,20. Quel était l ancien prix? a) 20 diminué de 4 % de 20 = 20 4% de 20 = 20 0,04 20 = 20 0,8 = 19,2 Le nouveau prix est 19,20. b) Appelons x le prix initial : x diminué de 4% de x = 7,20 x 0,08 x = 7,2 1 x 0,08 x = 7,2 (1 0,08) x = 7,2 0,92 x = 7,2 x = 7,2 0,92 x = 7,5 L ancien prix était 7,50. Vérification : 7,5 0,04 7,5 = 7,2. Enoncé 3: a) Le prix d un pantalon passe de 60 à 72. Quel est le pourcentage d augmentation? b) Le prix d un costume passe de 120 à 108. Quel est le pourcentage de diminution? a) Appelons x le pourcentage d augmentation : 60 + x 60 = 72 x 60 = x 60 = 12 x = x = 0,2 0,2 = L augmentation est de 20 %. Vérification : ,2 60 = 72 Page 8 sur 10

9 b) Appelons x le pourcentage de diminution : 120 x 120 =108 x 120 = x 120 = 12 x 120 = 12 x = x = 0,1 0,1 = La diminution est de 10 %. Vérification : 120 0,1 120 =108. C. POUR ALLER PLUS VITE α) AUGMENTATION REGLE : Augmenter de t % revient à multiplier par t Exemple : Augmenter de 5 % revient à multiplier par c'est-à-dire par 1,05. Preuve : x augmenté de 5% = x + 5% de x = 1 x + 0,05 x = (1+ 0,05) x = 1,05 x. Donc augmenter un nombre x de 5% revient à multiplier x par 1,05. Application : Les prix augmentent de 8 %. 1) Un objet valait 25. Quel est le nouveau prix? 2) Un autre objet coûte maintenant 16,20. Quel était l ancien prix? Réponses : Augmenter de 8% revient à multiplier par. Schéma : ancien prix + 8 % nouveau prix 1) 25 =... Le nouveau prix est... 2) 16,2 : =.. L ancien prix était... Remarque : Si on diminue le nouveau prix de 8 % on n obtient pas l ancien prix. 16,2 8% de 16,2 = 16,2 1,296 = 14, Pour trouver le prix avant augmentation, on divise par le coefficient correspondant à l augmentation. Page 9 sur 10

10 β) DIMINUTION REGLE : Diminuer de t % revient à multiplier par t Exemple : Diminuer de 5 % revient à multiplier par 1 c'est-à-dire par 0, Preuve : x diminué de 5% = x 5% de x = 1 x 0,05 x = (1 0,05) x = 0,95 x. Donc diminuer un nombre x de 5% revient à multiplier x par 0,95. Application : Les prix diminuent de 4 %. 1) Un objet valait 20. Quel est le nouveau prix? 2) Un autre objet coûte maintenant 720. Quel était l ancien prix? Réponses : Diminuer de 4 % revient à multiplier par.. 4 % Schéma : ancien prix.. nouveau prix 1) 20. =... Le nouveau prix est.. 2) 720 :.. =.. L ancien prix était.. Remarque : Si on augmente le nouveau prix de 4 % on n obtient pas l ancien prix % de 720 = = 148,8 750 Pour trouver le prix avant diminution, on divise par le coefficient correspondant à diminution. γ) TROUVER LE % D AUGMENTATION OU DE DIMINUTION EXEMPLE 1 : Le prix d une chemise passe de 60 à 72. Quel est le % d augmentation? Réponse : Le prix a été multiplié par. c'est-à-dire par...il a donc augmenté de.. Schéma : % EXEMPLE 2 : Le prix d un objet passe de 120 à 108. Quel est le % de la baisse? Réponse :. Le prix a été multiplié par.. c'est-à-dire par.. Il a donc baissé de.%. Schéma : 120.% 108 Page 10 sur 10

On présente souvent les grandeurs proportionnelles dans un tableau de proportionnalité.

On présente souvent les grandeurs proportionnelles dans un tableau de proportionnalité. 3 ème A Fiche D1 - a proportionnalité 1. Rappels : *Exemples de situation de proportionnalité dans la vie courante : 1 ) le prix des fruits au kilo. + on achète de fruits + c est cher. e prix est proportionnel

Plus en détail

Pour tous nombres a b c et d non nuls, le tableau ci-dessous représente une situation de proportionnalité. Dans ce cas on a :

Pour tous nombres a b c et d non nuls, le tableau ci-dessous représente une situation de proportionnalité. Dans ce cas on a : Proportionnalité I) Proportionnalité et produit en croix 1) Propriété Pour tous nombres a b c et d non nuls, le tableau ci-dessous représente une situation de proportionnalité. Dans ce cas on a : a b c

Plus en détail

PROPORTIONNALITE. Durée (en s) 0 12 24 33 36 Hauteur d'eau (en cm) 0 10 20 27,5 30

PROPORTIONNALITE. Durée (en s) 0 12 24 33 36 Hauteur d'eau (en cm) 0 10 20 27,5 30 PROPORTIONNALITE I) Définition : Définition: Dans un tableau, si les quotients d un nombre de la seconde ligne par le nombre correspondant de la première ligne sont égaux alors : On dit que les nombres

Plus en détail

PROPORTIONNALITE VITESSE MOYENNE

PROPORTIONNALITE VITESSE MOYENNE PROPORTIONNALITE VITESSE MOYENNE 1) Remplir un tableau de proportionnalité (Rappels) 3 kg de pommes coûtent 5,40. Combien coûtent 5 kg de pommes? Les grandeurs en jeu sont : la masse des pommes en kg ;

Plus en détail

- Chap 9 - Proportionnalité

- Chap 9 - Proportionnalité - Chap 9 - Proportionnalité Chap 9: Proportionnalité Exercice 1 : J ai acheté 4 kg de pommes pour 4,80. Combien coûte 1kg de pommes? Calcul : Phrase réponse:.. Compléter ce tableau. Calculs : Quantité

Plus en détail

Pourcentage d évolution

Pourcentage d évolution Pourcentage d évolution I) Proportion et pourcentage. 1) Proportion Soit E un ensemble fini et A une partie de l ensemble E. est le nombre d éléments de E et le nombre d éléments de A. La proportion ou

Plus en détail

Chapitre 1 : Évolution COURS

Chapitre 1 : Évolution COURS Chapitre 1 : Évolution COURS OBJECTIFS DU CHAPITRE Savoir déterminer le taux d évolution, le coefficient multiplicateur et l indice en base d une évolution. Connaître les liens entre ces notions et savoir

Plus en détail

Linéarité proportionnalité Discipline

Linéarité proportionnalité Discipline Cours 3a-1 Linéarité proportionnalité Discipline Sommaire 1 Fonctions affines et linéaires........................................... 2 1.1 Représentation graphique 2 1.2 Linéarité et proportionnalité

Plus en détail

Première L COMPOSITION DE MATHEMATIQUES - INFORMATIQUE. 2ème trimestre 2010. Durée de l épreuve : 1 h 30

Première L COMPOSITION DE MATHEMATIQUES - INFORMATIQUE. 2ème trimestre 2010. Durée de l épreuve : 1 h 30 Première L COMPOSITION DE MATHEMATIQUES - INFORMATIQUE 2ème trimestre 2010 Durée de l épreuve : 1 h 30 Le candidat doit traiter les 3 exercices La qualité de la rédaction, la clarté et la précision des

Plus en détail

Thème N 14: PROPORTIONNALITE (2) : ECHELLE POURCENTAGE MOUVEMENT UNIFORME -

Thème N 14: PROPORTIONNALITE (2) : ECHELLE POURCENTAGE MOUVEMENT UNIFORME - Thème N 4: PROPORTIONNALITE (2) : ECHELLE POURCENTAGE MOUVEMENT UNIFORME - DUREE 5-ème * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

Plus en détail

QCM chapitre 1 (cf. p. 24 du manuel) Pour bien commencer

QCM chapitre 1 (cf. p. 24 du manuel) Pour bien commencer QCM chapitre 1 (cf. p. 24 du manuel) Pour bien commencer Pour chaque question, il y a une ou plusieurs bonnes réponses. Exercice 1. 20 % de 120 est égal à : A 240 B 24 C 144 D 96 Réponse juste : B 20 %

Plus en détail

1) Taux d évolution en pourcentage à partir d une évolution

1) Taux d évolution en pourcentage à partir d une évolution Evolution I) Pourcentage d évolution 1) Taux d évolution en pourcentage à partir d une évolution Une grandeur évolue d une valeur initiale à une valeur finale. Le taux d évolution de cette grandeur est

Plus en détail

Chapitre 7 Proportionnalité.

Chapitre 7 Proportionnalité. Chapitre 7 Proportionnalité. Voir 5 ème, chapitres 5 et 7 ; 4 ème, chapitres 4, 5 et 12. I) Pourcentages, indices A) Augmentation (ou diminution) Eemple : Le pri d un objet est passé de à 14. Calculer

Plus en détail

4 7 nombres entiers impairs consécutifs ont pour somme 1071. Quels sont ces nombres?

4 7 nombres entiers impairs consécutifs ont pour somme 1071. Quels sont ces nombres? Problèmes et équations. Pour chacun des problèmes ci-dessous, on essaiera de donner une solution algébrique ( à l aide d une équation, d un système d équations, d une inéquation ) mais aussi, à chaque

Plus en détail

LES PROPORTIONS ET LES PARTAGES PROPORTIONNELS. Une proportion est une égalité de deux rapports (un rapport est une fraction, un quotient).

LES PROPORTIONS ET LES PARTAGES PROPORTIONNELS. Une proportion est une égalité de deux rapports (un rapport est une fraction, un quotient). CHAPITRE III LES PROPORTIONS ET LES PARTAGES PROPORTIONNELS I ] DEFINITION : Une proportion est une égalité de deux rapports (un rapport est une fraction, un quotient). Exemple : 3 = 3,6 est une proportion

Plus en détail

Items étudiés dans le CHAPITRE N5. 7 et 9 p 129 D14 Déterminer par le calcul l'antécédent d'un nombre par une fonction linéaire

Items étudiés dans le CHAPITRE N5. 7 et 9 p 129 D14 Déterminer par le calcul l'antécédent d'un nombre par une fonction linéaire CHAPITRE N5 FONCTIONS LINEAIRES NOTION DE FONCTION FONCTIONS LINEAIRES NOTION DE FONCTION FONCTIONS LINEAIRES NOTION DE FONCTION Code item D0 D2 N30[S] Items étudiés dans le CHAPITRE N5 Déterminer l'image

Plus en détail

Première partie Proportionnalité

Première partie Proportionnalité Première partie Proportionnalité 1 Calculer une distance avec une échelle............ 7 2 Calculer un pourcentage..................... 9 3 Calculer le pourcentage relatif à un caractère d un groupe constitué

Plus en détail

EXERCICE 1 Ce tableau récapitule la consommation d essence d un automobiliste effectuant un trajet :

EXERCICE 1 Ce tableau récapitule la consommation d essence d un automobiliste effectuant un trajet : EXERCICE 1 Ce tableau récapitule la consommation d essence d un automobiliste effectuant un trajet : parcourue (km) 50 80 120 150 Essence consommée (L) 4 6,4 9,6 12 a Calculer chacun des quotients suivants

Plus en détail

Ecrire sur la première ligne, les grandeurs correspondantes : 450 km 3 h 20 mn

Ecrire sur la première ligne, les grandeurs correspondantes : 450 km 3 h 20 mn Anecdote : La première automobile expressément construite pour battre des records de vitesse s'appelle la Jamais Contente. À traction électrique, elle dépassa pour la première fois, les 100 km/h en 1899.

Plus en détail

Chapitre 06 : PROPORTIONNALITÉ ET FONCTIONS LINÉAIRES

Chapitre 06 : PROPORTIONNALITÉ ET FONCTIONS LINÉAIRES Chapitre 06 : PROPORTIONNALITÉ ET FONCTIONS LINÉAIRES 6 cm I) Synthèse sur la proportionnalité : 1) Définition : Grandeurs proportionnelles : Dire que deux grandeurs sont proportionnelles revient à dire

Plus en détail

Les pourcentages. A) Tout d abord, quelques notions de base à maîtriser. 1- Comment calculer le pourcentage d un nombre?

Les pourcentages. A) Tout d abord, quelques notions de base à maîtriser. 1- Comment calculer le pourcentage d un nombre? Les pourcentages Cette séance est dédiée à l étude des pourcentages. Bien comprendre cette séance s avère être un passage obligé si vous souhaitez aborder de manière sereine les séances concernant les

Plus en détail

Quelle route choisir?

Quelle route choisir? Quelle route choisir? Situation : Je n'ai plus de carburant diesel dans mon véhicule de location. Et il ne me reste que 15 pour revenir de Marina à Los Angeles. J'hésite entre les deux itinéraires proposés

Plus en détail

a et b étant deux nombres relatifs donnés, une fonction affine est une fonction qui a un nombre x associe le nombre ax + b

a et b étant deux nombres relatifs donnés, une fonction affine est une fonction qui a un nombre x associe le nombre ax + b I Définition d une fonction affine Faire l activité 1 «une nouvelle fonction» 1. définition générale a et b étant deux nombres relatifs donnés, une fonction affine est une fonction qui a un nombre x associe

Plus en détail

LA PROPORTIONNALITE Cycle 3 CM1-CM2

LA PROPORTIONNALITE Cycle 3 CM1-CM2 LA PROPORTIONNALITE Cycle 3 CM1-CM2 - Instructions officielles : Organisation et gestion de données : Construire et interpréter un tableau ou un graphique. Placer un point dont on connaît les coordonnées.

Plus en détail

Vitesse et distance d arrêt

Vitesse et distance d arrêt Vitesse et distance d arrêt Mathématiques 3e Compétences du Répertoire des connaissances et des comportements des usagers de l espace routier Connaître les risques liés aux conditions météo (freinage,

Plus en détail

Mini Dictionnaire Encyclopédique Mathématiques. Fonction affine

Mini Dictionnaire Encyclopédique Mathématiques. Fonction affine Fonction affine ) Définition et Propriété caractéristique a) Activité introductive Une agence de location de voiture propose la formule de location suivante : forfait de 50 et 0,80 le km. Quel est le prix

Plus en détail

: 01 39 87 63 33 4, rue de l'églantier : 0950025l@ac-versailles.fr 95500 Gonesse www.clg-auguste-gonesse.ac-versailles.fr

: 01 39 87 63 33 4, rue de l'églantier : 0950025l@ac-versailles.fr 95500 Gonesse www.clg-auguste-gonesse.ac-versailles.fr Brevet Blanc n 1 Attention : la page 5 est à joindre à la copie d examen. N'oubliez pas d y indiquer votre numéro de candidat. PARTIE NUMÉRIQUE (12 points) Mathématiques Année scolaire 2011 / 2012 Durée

Plus en détail

Concours de recrutement de professeur des écoles session 2014, groupement académique 2

Concours de recrutement de professeur des écoles session 2014, groupement académique 2 Concours de recrutement de professeur des écoles session 014, groupement académique Corrigé non officiel de la deuxième épreuve d admissibilité proposé par http ://primaths.fr 1 Première partie La montée

Plus en détail

Sujet de mathématiques du brevet des collèges

Sujet de mathématiques du brevet des collèges Sujet de mathématiques du brevet des collèges FRANCE, ANTILLES, GUYANE Septembre 2015 Durée : 2h00 Calculatrice autorisée La qualité de la rédaction, l orthographe et la rédaction comptent pour 4 points.

Plus en détail

7% = R140. Exemples 25% de 650 = = 162,50. 650 x. Quand on. pour cela? reçus. reçus. = candidats reçus

7% = R140. Exemples 25% de 650 = = 162,50. 650 x. Quand on. pour cela? reçus. reçus. = candidats reçus FICHE M15 : Pourcentages Un pourcentage est mathématiquement représenté par une fraction sur 100. Appliquer un pourcentage de P% à un nombre revient à le multiplier par 100. P% correspond à la fraction.

Plus en détail

Pourcentages et évolutions

Pourcentages et évolutions Pourcentages et évolutions Christophe ROSSIGNOL Année scolaire 2008/2009 Table des matières 1 Part en pourcentage 2 1.1 Ensemble de référence.......................................... 2 1.2 Addition et

Plus en détail

TOUR EN VOITURE. Le graphique ci-dessous est un relevé simplifié de la vitesse de la voiture pendant ce tour. Le tour en voiture de Karine.

TOUR EN VOITURE. Le graphique ci-dessous est un relevé simplifié de la vitesse de la voiture pendant ce tour. Le tour en voiture de Karine. TOUR EN VOITURE Karine part faire un tour en voiture. Pendant qu elle roule, un chat surgit devant sa voiture. Karine freine brutalement et évite le chat de justesse. Karine, un peu secouée, décide de

Plus en détail

VITESSE UTILISATION DES FORMULES 2. La distance est exprimée en heures, la vitesse en km/h, donc la durée est exprimée en h.

VITESSE UTILISATION DES FORMULES 2. La distance est exprimée en heures, la vitesse en km/h, donc la durée est exprimée en h. THEME : VITESSE UTILISATION DES FORMULES 2 Exercice 4 : La vitesse moyenne d'un cycliste est de 30 km.h -1 sur un parcours aller de 60 km. Au retour, la vitesse moyenne de ce même cycliste est de 20 km.h

Plus en détail

Leçon N 1 : Taux d évolution et indices

Leçon N 1 : Taux d évolution et indices Leçon N : Taux d évolution et indices En premier un peu de calcul : Si nous cherchons t [0 ;+ [ tel que x 2 = 0,25, nous trouvons une solution unique x = 0, 25 = 0,5. Nous allons utiliser cette année une

Plus en détail

Compétence 1. Compléter un tableau de nombres représentant une relation de proportionnalité

Compétence 1. Compléter un tableau de nombres représentant une relation de proportionnalité Compétence Compléter un tableau de nombres représentant une relation de proportionnalité! Tous les tableaux ci-dessous sont des tableaux représentant une situation de proportionnalité. Utiliser le principe

Plus en détail

Les fonction affines

Les fonction affines Les fonction affines EXERCICE 1 : Voir le cours EXERCICE 2 : Optimisation 1) Traduire, pour une semaine de location, chaque formule par une écriture de la forme (où x désigne le nombre de kilomètres parcourus

Plus en détail

Sommaire de la séquence 9

Sommaire de la séquence 9 Sommaire de la séquence 9 Séance 1........................................................................................................ Je redécouvre la proportionnalité...........................................................................

Plus en détail

Les droites dans un repère

Les droites dans un repère R.Oppé Chapitre Bac Pro Les droites dans un repère Les apprentissages : Comment construire une droite? Comment trouver l équation d une droite? Les outils et leurs modes d emploi : ( à consulter chaque

Plus en détail

LE PROCESSUS ( la machine) la fonction f. ( On lit : «fonction f qui à x associe f (x)» )

LE PROCESSUS ( la machine) la fonction f. ( On lit : «fonction f qui à x associe f (x)» ) SYNTHESE ( THEME ) FONCTIONS () : NOTIONS de FONCTIONS FONCTION LINEAIRE () : REPRESENTATIONS GRAPHIQUES * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

Plus en détail

Fonctions linéaires et affines. 1 Fonctions linéaires. 1.1 Vocabulaire. 1.2 Représentation graphique. 3eme

Fonctions linéaires et affines. 1 Fonctions linéaires. 1.1 Vocabulaire. 1.2 Représentation graphique. 3eme Fonctions linéaires et affines 3eme 1 Fonctions linéaires 1.1 Vocabulaire Définition 1 Soit a un nombre quelconque «fixe». Une fonction linéaire associe à un nombre x quelconque le nombre a x. a s appelle

Plus en détail

Première ES IE1 pourcentages 2014-2015 S1

Première ES IE1 pourcentages 2014-2015 S1 1 Première ES IE1 pourcentages 2014-2015 S1 Exercice 1 : (4 points) En 2009, le nombre des immatriculations des voitures neuves en France, a été le suivant : Renault 506 000 Peugeot 378 000 Citroën 340

Plus en détail

Ch.D1 : Proportionnalité

Ch.D1 : Proportionnalité 4 e A - programme 2011 mathématiques ch.d1 cahier élève Page 1 sur 12 Ch.D1 : Proportionnalité Activité 1 page 108 Représentations graphiques et tableaux Les tableaux et graphiques suivants concernent

Plus en détail

Sujet de mathématiques du brevet des collèges

Sujet de mathématiques du brevet des collèges Sujet de mathématiques du brevet des collèges MÉTROPOLE - ANTILLES - GUYANE Septembre 2014 Durée : 2h00 Calculatrice autorisée Exercice 1 Cédric s entraîne pour l épreuve de vélo d un triathlon. La courbe

Plus en détail

Vitesse et distance d arrêt

Vitesse et distance d arrêt Vitesse et distance d arrêt Ce que l élève doit retenir La distance d arrêt d un véhicule est la somme de la distance parcourue pendant le temps de réaction du conducteur et de la distance de freinage.

Plus en détail

PLAN DE SEQUENCE La proportionnalité au CM2

PLAN DE SEQUENCE La proportionnalité au CM2 PLAN DE SEQUENCE La proportionnalité au CM2 Introduction pour l enseignant Cette séquence sur la proportionnalité au CM2 s articule avec un travail préparatoire en CM1 permettant d introduire la notion

Plus en détail

PROPORTIONNALITE. 1) Un capital de 9500 est placé sur un compte rémunéré à 3% par an. Quel sera le nouveau capital après un an? après 2 ans?

PROPORTIONNALITE. 1) Un capital de 9500 est placé sur un compte rémunéré à 3% par an. Quel sera le nouveau capital après un an? après 2 ans? PROPORTIONNALITE 1 I. Quatrième proportionnelle Méthode: Le robinet d un lavabo fuit. Il s écoule 2,5 litres toutes les heures. 1) Au bout de combien de temps se sera-t-il écoulé 1,5 litres? 2) Quel volume

Plus en détail

LYCEE MICHEL-RODANGE LUXEMBOURG PROGRAMMES DE MATHEMATIQUES POUR LE CYCLE INFERIEUR

LYCEE MICHEL-RODANGE LUXEMBOURG PROGRAMMES DE MATHEMATIQUES POUR LE CYCLE INFERIEUR LYCEE MICHEL-RODANGE LUXEMBOURG PROGRAMMES DE MATHEMATIQUES POUR LE CYCLE INFERIEUR Introduction. page 2 Classe de septième.. page 3 Classe de sixième page 7-1 - INTRODUCTION D une manière générale on

Plus en détail

Classe de 3ème. Effectif partiel n Effectif total N

Classe de 3ème. Effectif partiel n Effectif total N Classe de 3ème Chapitre 2 Statistiques. 1. Quelques rappels. Une série statistique est composée de valeurs. Le nombre de fois où une valeur est répétée s'appelle l'effectif partiel de cette valeur. La

Plus en détail

Complément d information concernant la fiche de concordance

Complément d information concernant la fiche de concordance Sommaire SAMEDI 0 DÉCEMBRE 20 Vous trouverez dans ce dossier les documents correspondants à ce que nous allons travailler aujourd hui : La fiche de concordance pour le DAEU ; Page 2 Un rappel de cours

Plus en détail

Epreuve de mathématiques Durée de l épreuve : 2H00 Coefficient : 2

Epreuve de mathématiques Durée de l épreuve : 2H00 Coefficient : 2 Cette épreuve comporte trois parties : A AGRAFER A LA COPIE D EXAMEN Epreuve de mathématiques Durée de l épreuve : 2H00 Coefficient : 2 Diplôme nationale du Brevet Session 1999 Série technologique Partie

Plus en détail

Mesures et durée - Correction

Mesures et durée - Correction Mesures et durée - Correction EXERCICE 1 : Connaissances 1. Convertir les durées suivantes en secondes : a) deux tiers d heure. 2 3 600 = 2400 secondes 3 b) 1,2 heure. 1, 2 3 600 = 4320 secondes 2. Convertir

Plus en détail

Livret 5 PROPORTIONNALITE

Livret 5 PROPORTIONNALITE Livret 5 PROPORTIONNALITE EVALUATION DIAGNOSTIQUE PROPORTIONNALITE DP1 : utiliser une échelle, trouver un coefficient de proportionnalité DP2 : vérifier la proportionnalité, trouver le coefficient de proportionnalité

Plus en détail

Les tableaux de proportionnalité

Les tableaux de proportionnalité Les tableaux de proportionnalité I) On sait que 1 yaourt à la vanille coûte 0,5. Compléter le tableau suivant : Nombre de yaourts 1 2 3 4 6 Prix à payer en 4 5,5 Si on achète deux fois plus de yaourts,

Plus en détail

CORRECTION BREVET MATHS PONDICHERY 2014. Emma et Arthur ont acheté pour leur mariage 3 003 dragées au chocolat et 3 731 dragées aux amandes.

CORRECTION BREVET MATHS PONDICHERY 2014. Emma et Arthur ont acheté pour leur mariage 3 003 dragées au chocolat et 3 731 dragées aux amandes. CORRECTION BREVET MATHS PONDICHERY 2014 Exercice 1 Emma et Arthur ont acheté pour leur mariage 00 dragées au chocolat et 71 dragées aux amandes. 1 ) Arthur propose de répartir ces dragées de façon identique

Plus en détail

4. Proportions et pourcentages

4. Proportions et pourcentages - 1 - Proportions et pourcentages 4. Proportions et pourcentages 4.1 Grandeurs directement proportionnelles Exemple : Un ouvrier gagne 152 Fr. pour 8 heures de travail. Pour doubler, tripler, son salaire,

Plus en détail

BREVET BLANC DE MAI 2012

BREVET BLANC DE MAI 2012 COLLEGE GASPARD DES MONTAGNES BREVET BLANC DE MAI 2012 Ce sujet comporte 8 pages numérotées de 1/8 à 8/8, dont une feuille annexe à remettre avec la copie. L usage de la calculatrice est autorisé. Notation

Plus en détail

3. Les Nombres Rationnels

3. Les Nombres Rationnels - - Les Nombres Rationnels. Les Nombres Rationnels. Les fractions Définition : Une fraction est une expression de la forme avec a et b des nombres entiers. a b Une fraction est aussi appelée nombre rationnel.

Plus en détail

Taux d évolution moyen.

Taux d évolution moyen. Chapitre 1 Indice Taux d'évolution moyen Terminale STMG Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Indice simple en base 100. Passer de l indice au taux d évolution, et réciproquement.

Plus en détail

x x² = y x -3-2 -1-0,5 0 0,5 1 2 3 y CHAPITRE 12 I. INTRODUCTION

x x² = y x -3-2 -1-0,5 0 0,5 1 2 3 y CHAPITRE 12 I. INTRODUCTION CHAPITRE 2 FONCTIONS I. INTRODUCTION Une fonction est «une machine à transformer des nombres». Par eemple, la fonction «carré» désigne la «machine» qui transforme les nombres en leurs carrés. Ainsi elle

Plus en détail

Ce document regroupe les 6 devoirs à la maison proposés dans la progression.

Ce document regroupe les 6 devoirs à la maison proposés dans la progression. Ce document regroupe les 6 devoirs à la maison proposés dans la progression. Le document a été paginé de façon à ce que chaque devoir corresponde à une page pour en faciliter l impression. Page 2... Devoir

Plus en détail

Exercice 1: (3 points) 1. On considère le système suivant :

Exercice 1: (3 points) 1. On considère le système suivant : Type BREVET Epreuve : MATHEMATIQUES Session : 8 Avril 0 Durée : h pages : ACADEMIE DE MARRAKECH La qualité, la clarté et la précision des raisonnements seront prises en compte dans l appréciation des copies.

Plus en détail

SEANCE 1. Séquence 9 SEQUENCE 9 ORDRE. JE REVISE LES ACQUIS DE LA 5 e 1) a < b < c b < a < c c < a < b c < b < a 4,819 4,82 4,821 4,83 3) = >

SEANCE 1. Séquence 9 SEQUENCE 9 ORDRE. JE REVISE LES ACQUIS DE LA 5 e 1) a < b < c b < a < c c < a < b c < b < a 4,819 4,82 4,821 4,83 3) = > Séquence 9 SEQUENCE 9 ORDRE Ce que tu devais faire JE REVISE LES ACQUIS DE LA 5 e a < b < c b < a < c c < a < b c < b < a 4,819 4,82 4,821 4,83 3 < 14 3 14 3 14 = > 2 10 2 10 2 10 4) 5) 4 3 1 999 1 997

Plus en détail

Activités numériques

Activités numériques Sujet et correction Stéphane PASQUET, 25 juillet 2008 2008 Activités numériques Exercice On donne le programme de calcul suivant : Choisir un nombre. a) Multiplier ce nombre pas 3. b) Ajouter le carré

Plus en détail

Comment mesure-t-on la masse des planètes?

Comment mesure-t-on la masse des planètes? Comment mesure-t-on la masse des planètes? Evidemment, les planètes ne sont pas mises sur une balance. Ce sont les mathématiques et les lois physiques qui nous permettent de connaître leur masse. Encore

Plus en détail

Chapitre 5 : Proportionnalité

Chapitre 5 : Proportionnalité Classe de 4 ème Chapitre 5 : Proportionnalité Le programme extrait du Bulletin officiel spécial n 6 du 28 août 2008 Capacités : Proportionnalité. Utilisation de la proportionnalité. Quatrième proportionnelle.

Plus en détail

FICHE M15 : Pourcentages

FICHE M15 : Pourcentages FICHE M15 : ourcentages Un pourcentage est mathématiquement représenté par une fraction sur. Appliquer un pourcentage de % à un nombre revient à le multiplier par. % correspond à la fraction. 7 13,6 7%

Plus en détail

TD d exercices statistiques et pourcentages.

TD d exercices statistiques et pourcentages. TD d exercices statistiques et pourcentages. Exercice 1 : Diagramme circulaire On donne la répartition du nombre d abonnés au téléphone mobile en France en 2006. Opérateurs Bouygue télécom SFR Orange Autres

Plus en détail

1 ) NOMBRES D PROPORTIONNALITE

1 ) NOMBRES D PROPORTIONNALITE PROPORTIONNALITE Je sais identifier une situation de proportionnalité Je sais résoudre un problème de proportionnalité Exercice 1 : Parmi les situations suivantes, lesquelles sont des situations de proportionnalité?

Plus en détail

Concours de recrutement de professeur des écoles session 2014, groupement académique 3

Concours de recrutement de professeur des écoles session 2014, groupement académique 3 Concours de recrutement de professeur des écoles session 2014, groupement académique 3 1 Corrigé non officiel de la deuxième épreuve d admissibilité proposé par http ://primaths.fr Première partie AOptimisationduvolumed

Plus en détail

Introduction aux épreuves de logique des concours ACCÈS et SESAME

Introduction aux épreuves de logique des concours ACCÈS et SESAME Introduction aux épreuves de logique des concours ACCÈS et SESAME «La chance aide parfois, le travail toujours» Vous vous apprêtez à vous lancer dans cette course contre la montre qu est l admission en

Plus en détail

3 - Vous pouvez aussi vous entraîner avec les fiches soutien C.M.2 numéro 18, 19, 20 et 44.

3 - Vous pouvez aussi vous entraîner avec les fiches soutien C.M.2 numéro 18, 19, 20 et 44. 7.4.1 utiliser quelques fractions simples 1/2, 1/3 et 1/4. Pré requis : 5.4.1 Conseils : La fraction 1/2 se lit "un demi" ou "la moitié" et peut aussi s'écrire ainsi : 1 2 La fraction 1/3 se lit "un tiers"

Plus en détail

CUEEP Département Mathématiques E 802 : Pourcentages en série ou en parallèle p1/5

CUEEP Département Mathématiques E 802 : Pourcentages en série ou en parallèle p1/5 Pourcentages en série ou en parallèle Série de problèmes de pourcentage à plusieurs étapes : Repérer s il s agit de pourcentages en série ou de pourcentages en parallèle. Est-ce que les 100% sont toujours

Plus en détail

Savoirs de base. S initier Se perfectionner Maîtriser. Corrigés des tests de positionnement

Savoirs de base. S initier Se perfectionner Maîtriser. Corrigés des tests de positionnement Savoirs de base S initier Se perfectionner Maîtriser Corrigés des tests de positionnement Mathématiques x Dans la collection «Savoirs de base», les cours «S initier» et «Se perfectionner» proposent de

Plus en détail

Tous droits de traduction, de reproduction et d adaptation réservés pour tous pays.

Tous droits de traduction, de reproduction et d adaptation réservés pour tous pays. Maquette de couverture : Graphir Maquette intérieure : Frédéric Jély Mise en page : CMB Graphic Dessins techniques : Gilles Poing Hachette Livre 008, 43, quai de Grenelle, 790 Paris Cedex ISBN : 978--0-8-

Plus en détail

Ce cahier existe aussi en numérique avec les liens direct vers les cours nécessaires en fin de page lien : cahier numérique

Ce cahier existe aussi en numérique avec les liens direct vers les cours nécessaires en fin de page lien : cahier numérique Ce cahier existe aussi en numérique avec les liens direct vers les cours nécessaires en fin de page lien : cahier numérique Correction Deuxième partie du cahier-de-vacances Demande Si vous trouvez un lien

Plus en détail

1S DS 4 Durée :?mn. 2. La courbe ci-dessous est la représentation graphique de la fonction g, définie sur I = [ 1; 3].

1S DS 4 Durée :?mn. 2. La courbe ci-dessous est la représentation graphique de la fonction g, définie sur I = [ 1; 3]. 1S DS 4 Durée :?mn Exercice 1 ( 5 points ) Les trois questions sont indépendantes. 1. Soit f la fonction définie par f(x) = 3 x. a) Donner son ensemble de définition. Il faut 3 x 0 3 x donc D f =] ; 3]

Plus en détail

Brevet des collèges Polynésie juin 2011

Brevet des collèges Polynésie juin 2011 Brevet des collèges Polynésie juin 0 Durée : heures ACTIVITÉS NUMÉRIQUES points Exercice Cet exercice est un questionnaire à choix multiples. Pour chaque question, quatre réponses sont proposées mais une

Plus en détail

LES TRACES ECRITES ORGANISATION ET GESTION DE DONNEES. CYCLE 3 ET CYCLE D'ADAPTATION (6 ème )

LES TRACES ECRITES ORGANISATION ET GESTION DE DONNEES. CYCLE 3 ET CYCLE D'ADAPTATION (6 ème ) LES TRACES ECRITES ORGANISATION ET GESTION DE DONNEES CYCLE 3 ET CYCLE D'ADAPTATION (6 ème ) IA 58 - Groupe départemental science Traces écrites «Organisation et gestion de données» cycle 3 et cycle d

Plus en détail

Le prix d un ticket de bus (un aller ou un retour) à tarif réduit est 0,75. Nombres de tickets 10 20 30 40 Prix Points A B C D

Le prix d un ticket de bus (un aller ou un retour) à tarif réduit est 0,75. Nombres de tickets 10 20 30 40 Prix Points A B C D EXERCICES SUR LES FONCTIONS LINÉAIRES Exercice 1 Le prix d un ticket de bus (un aller ou un retour) à tarif réduit est 0,75. 1) Compléter le tableau ci-dessous : Nombres de tickets 10 20 30 40 Prix Points

Plus en détail

t 100. = 8 ; le pourcentage de réduction est : 8 % 1 t Le pourcentage d'évolution (appelé aussi taux d'évolution) est le nombre :

t 100. = 8 ; le pourcentage de réduction est : 8 % 1 t Le pourcentage d'évolution (appelé aussi taux d'évolution) est le nombre : Terminale STSS 2 012 2 013 Pourcentages Synthèse 1) Définition : Calculer t % d'un nombre, c'est multiplier ce nombre par t 100. 2) Exemples de calcul : a) Calcul d un pourcentage : Un article coûtant

Plus en détail

COLLÈGE NAZARETH. BREVET BLANC N 2-2005- MATHÉMATIQUES Durée : 2 heures.

COLLÈGE NAZARETH. BREVET BLANC N 2-2005- MATHÉMATIQUES Durée : 2 heures. 3 ème COLLÈGE NAZARETH BREVET BLANC N 2-2005- MATHÉMATIQUES Durée : 2 heures. EXERCICE 1 : ( /3) 1. Soit : A = 8 3 5 3 : 20 21. Les calculatrices sont autorisées ainsi que les instruments usuels de dessin.

Plus en détail

USAIN BOLT. Table des matières. Tâche complexe produite par l académie de Clermont-Ferrand. Juin 2012. Fiche professeur... 2. Fiche élève 1...

USAIN BOLT. Table des matières. Tâche complexe produite par l académie de Clermont-Ferrand. Juin 2012. Fiche professeur... 2. Fiche élève 1... USAIN BOLT Table des matières Fiche professeur... 2 Fiche élève 1... 5 Fiche élève 2... 6 Narration de séances et productions d élèves... 7 1 Fiche professeur USAIN BOLT Niveaux et objectifs pédagogiques

Plus en détail

Calculer la moyenne, arrondie au dixième, des buts marqués par match par l'équipe lors de cette saison.

Calculer la moyenne, arrondie au dixième, des buts marqués par match par l'équipe lors de cette saison. Énoncés Exercice 1 Le tableau ci-contre indique des grandeurs physiques et démographiques des territoires constituant la Mélanésie. 1. Rédiger une phrase commençant par «Il y a» et contenant le nombre

Plus en détail

Éléments de solution. Concours René Merckhoffer

Éléments de solution. Concours René Merckhoffer Éléments de solution Concours René Merckhoffer Exercice Course poursuite Une course à pied d un type nouveau a été créée récemment. Les coureurs partent tous en même temps et n'ont pas de ligne d'arrivée

Plus en détail

JMlesMathsFaciles.fr.nf. MA BOITE A OUTILS MATHS-COLLEGE NUMERIQUE. TABLES DE MULTIPLICATION COMPLEMENT.

JMlesMathsFaciles.fr.nf. MA BOITE A OUTILS MATHS-COLLEGE NUMERIQUE. TABLES DE MULTIPLICATION COMPLEMENT. MA BOITE A OUTILS MATHS-COLLEGE NUMERIQUE. TABLES DE MULTIPLICATION COMPLEMENT. MA BOITE A OUTILS MATHS-COLLEGE NUMERIQUE - NOMBRES 1. NOMBRES ENTIERS, DECIMAUX, COMPARAISON Ex : 1345, 789 est un nombre

Plus en détail

Correction TEST T7 PROPORTIONNALITE ; THALES

Correction TEST T7 PROPORTIONNALITE ; THALES Correction TEST T7 PROPORTIONNLITE ; THLES Compte rendu : Pourcentages (n 1 et 3) : Il s agissait là de situation d évolution tableaux d évolution! Méthode non sue ou non appliquée, oubli de la formule,

Plus en détail

Chapitre 4. Travail et puissance. 4.1 Travail d une force. 4.1.1 Définition

Chapitre 4. Travail et puissance. 4.1 Travail d une force. 4.1.1 Définition Chapitre 4 Travail et puissance 4.1 Travail d une force 4.1.1 Définition En physique, le travail est une notion liée aux forces et aux déplacements de leurs points d application. Considérons une force

Plus en détail

DIPLÔME NATIONAL DU BREVET. Séries Technologique et professionnelle MATHÉMATIQUES À L'ATTENTION DES CANDIDATS :

DIPLÔME NATIONAL DU BREVET. Séries Technologique et professionnelle MATHÉMATIQUES À L'ATTENTION DES CANDIDATS : Session 2009 DIPLÔME NATIONAL DU BREVET Séries Technologique et professionnelle MATHÉMATIQUES À L'ATTENTION DES CANDIDATS : 1. L'usage des calculatrices est autorisé, toutefois, il est strictement interdit

Plus en détail

Suite géométrique et résolution graphique d une inéquation

Suite géométrique et résolution graphique d une inéquation - - 1 - - - - 1 - -24/12/2010J - - 1 - - Suite géométrique et résolution graphique d une inéquation ENONCE : Une entreprise achète un véhicule neuf au prix de V 0 = 20 000. Elle considère que le véhicule

Plus en détail

SÉRIE PROPORTIONNALITÉ : CHAPITRE D1

SÉRIE PROPORTIONNALITÉ : CHAPITRE D1 ÉRIE 1 : RECONNAÎTRER ECONNAÎTRE ET UTILISER DES SITUATIONS DE PROPORTIONNALITÉ 1 Explique pourquoi les tableaux suivants ne sont pas des tableaux de proportionnalité. a. 10 15 30 15 25 50 b. 8 15 20 40

Plus en détail

Temps Distance Vitesse

Temps Distance Vitesse Temps Distance Vitesse Jean-Noël Gers Février 2005 CUEEP Département Mathématiques p1/27 Ce dossier contient un certain nombre de problèmes classiques sur la rencontre de mobiles évoluant à vitesse constante.

Plus en détail

3Proportions. et pourcentages. Les questions abordées dans ce chapitre CHAPITRE

3Proportions. et pourcentages. Les questions abordées dans ce chapitre CHAPITRE CHAPITRE Proportions et pourcentages La presse nous apporte régulièrement des informations chiffrées, comportant souvent des pourcentages, des graphiques, des tableaux etc. Il est important que le lecteur

Plus en détail

Savoirs de base. S initier Se perfectionner Maîtriser. Tests de positionnement autocorrectifs

Savoirs de base. S initier Se perfectionner Maîtriser. Tests de positionnement autocorrectifs Savoirs de base S initier Se perfectionner Maîtriser Tests de positionnement autocorrectifs Mathématiques x Dans la collection «Savoirs de base», les cours «S initier» et «Se perfectionner» proposent de

Plus en détail

Exercice 1 Métropole juin 2014 5 points

Exercice 1 Métropole juin 2014 5 points Le sujet comporte 6 pages. Seule l annexe est à rendre avec la copie. BAC BLANC MATHÉMATIQUES TERMINALE STMG Durée de l épreuve : 3 heures Les calculs doivent être détaillés. Les calculatrices sont autorisées,

Plus en détail

Sujet de mathématiques du brevet des collèges

Sujet de mathématiques du brevet des collèges Sujet de mathématiques du brevet des collèges POLYNÉSIE Septembre 2015 Durée : 2h00 Calculatrice autorisée La qualité de la rédaction, l orthographe et la rédaction comptent pour 4 points. Exercice 1 6

Plus en détail

Une voiture parcourt en 2 heures, 140 km ; en 3 heures, 210 km et en 5 heures, 350 km.

Une voiture parcourt en 2 heures, 140 km ; en 3 heures, 210 km et en 5 heures, 350 km. Calcul es Vitesses Tout objet en mouvement ( voiture, train, piéton, avion, tortue, bille, ) est appelé un mobile. Nous irons qu un mobile a un mouvement uniforme ( ou est animé un mouvement uniforme )

Plus en détail

Proportionnalité. Organisation et gestion de données. Problèmes

Proportionnalité. Organisation et gestion de données. Problèmes Proportionnalité et Organisation et gestion de données Problèmes Montreuil Mercredi 23 janvier 2013 Proportionnalité Consigne: Pour chacun des exercices qui suivent, le proposeriez-vous à chercher à vos

Plus en détail

Petit lexique de calcul à l usage des élèves de sixième et de cinquième par M. PARCABE, professeur au collège Alain FOURNIER de BORDEAUX, mars 2007

Petit lexique de calcul à l usage des élèves de sixième et de cinquième par M. PARCABE, professeur au collège Alain FOURNIER de BORDEAUX, mars 2007 Petit lexique de calcul à l usage des élèves de sixième et de cinquième par M. PARCABE, professeur au collège Alain FOURNIER de BORDEAUX, mars 2007 page 1 / 10 abscisse addition additionner ajouter appliquer

Plus en détail

Brevet Blanc de Mathématiques ** Corrigé **

Brevet Blanc de Mathématiques ** Corrigé ** Brevet Blanc de Mathématiques ** Corrigé ** Collège Goscinny de Valdoie Le soin et la qualité de la rédaction comptent pour 4 points. L usage de la calculatrice est autorisé. Sujet et corrigé écrits avec

Plus en détail

f(p)= p f(p)= 85 6 k est une fonction linéaire telle que k(4) = 3. Est-il possible que k( 8) = 5? Justifie. 4 ( 2) = 8. Or 3 ( 2) 5.

f(p)= p f(p)= 85 6 k est une fonction linéaire telle que k(4) = 3. Est-il possible que k( 8) = 5? Justifie. 4 ( 2) = 8. Or 3 ( 2) 5. ÉRIE : GÉNÉRALITÉSG ÉNÉRALITÉS SUR LES FONCTIONS LINÉAIRES Complète le tableau en indiquant les fonctions linéaires et leur coefficient. f : k : 7 g : h : j : Fonction linéaire Coefficient l :, m : ( n

Plus en détail