Décomposition d un entier en produit de facteurs premiers avec TI nspire. Application au problème 1 du concours général 2012

Dimension: px
Commencer à balayer dès la page:

Download "Décomposition d un entier en produit de facteurs premiers avec TI nspire. Application au problème 1 du concours général 2012"

Transcription

1 Ecrt CAPES Mthémtques Décomoston d un enter en rodut de cteurs remers vec TI nsre. Alcton u rolème du concours générl 0. Décomoston d un nomre enter en rodut de cteurs remers.. Créton d une lste de nomres remers Le rogrmme rm ournt l lste nommée r des n remers nomres remers. Le remer enter de l lste est, us le rogrmme teste unquement les nomres mrs. Lorsqu l rencontre un nomre remer, l l joute à l lste et cec jusqu à ce que l lste r sot comosée de n nomres enters. Fculttvement, le rogrmme t cher l lste r. Pr exemle, l écrn c-contre che l lste des cnq remers, us des dx remers nomres remers. Le centème nomre remer est l enter 54, le mllème est l enter 799 et le cnq mllème est l enter Mtrce des cteurs remers d un nomre enter. On se roose d écrre une oncton nommée decom qu donne, sous orme de mtrce m, l décomoston en rodut de cteurs remers d un nomre enter x de ette tlle. Les dérents cteurs remers seront nscrts sur l remère lgne de l mtrce, et leurs exosnts sur l deuxème lgne. 3 3 Pr exemle, our l enter 4 =. 3, l oncton dot renvoyer. Pour l enter dot renvoyer et our l enter 0, =.3.7, elle On suose que le rogrmme rm été exécuté our une certne vleur de n (r exemle l enter 00). L lste r content donc les n lus etts nomres remers. L oncton decom v tester tour à tour s chcun des nomres remers de l lste r gure dns l décomoston de x. Cette oncton donner donc un résultt le à condton que x sot néreur ou égl u crré du derner élément de l lste r. Avec l lste des dx lus etts nomres remers, l oncton est utlsle our tous les enters jusqu à 9 = 84. Avec une lste des 5000 lus etts nomres remers, elle est utlsle jusqu à l enter 486 = ms le tems de clcul est nettement lus long. Audelà des lmtes de l lste r utlsée, l mtrce renvoyée r l oncton decom eut contenr un «ux nomre remer». Il udr donc dter l dmenson de l lste r à l tlle des enters que l on rojette de décomoser. 3 G. JULIA 0

2 Ecrt CAPES Mthémtques Pour chque élément r[ ] de l lste r, l oncton teste s le reste de l dvson de x r r est nul. Qund c est le cs, elle dvse x [ ] x r r [ ] et remlce x r utnt de os r[ ] que c est ossle. Le nomre de dvsons eectuées est stocé dns l vrle e. L mtrce m est ugmentée de l colonne r [ ] e. S à l n de l oucle x =, c est que l décomoston comlète été otenue. S x c est que x n est dvsle r ucun élément de l lste r, l est censé être remer. Il dot être ncororé à l mtrce m vec l exosnt. On ece vec sumt l remère colonne de 0 m (snon elle commencert r ) 0 Sur l rte guche de l écrn, on exécuté le rogrmme rm ( 0). L oncton decom décomose correctement 9 3 ou 9, ms elle échoue dns l décomoston de 3 ou de 3 37, qu sont u-delà du domne de lté rm 0. grnt r ( ) Avec une lste de nomres remers lus longue (les douze lus etts nomres remers urent d lleurs su), les décomostons correctes de 96 et de 47 sont otenues. G. JULIA 0

3 Ecrt CAPES Mthémtques. L énoncé du rolème du Concours Générl 0 : Les remers sont en hut, les exosnts sont en s Pour tout enter n, on dsose de l décomoston en cteurs remers n =... où les nomres remers dstncts,,, sont les dvseurs remers de n et les exosnts,,, sont des enters strctement osts. On ose lors ( n)... Pr exemle, s 4 =. n = 70 = 3 5, on ( n) = 4 = En osnt de lus ( ) = oncton de N* dns N*. Enn, our n rtennt à N*, on dént ( n) 0 que ( n) = n + et que our tout rtennt à N* : ( n) = ( n), on otent une r récurrence sur de çon ( ). Pr exemle : 0 ( 70) = 70 ; ( 70) = 8 ; ( 70) = ( 8) = 49 ( ) N Le ut de ce rolème est d étuder le comortement de l oncton et des sutes ( n) our n xé... Clculer ( 0)... Détermner les nomres ( 36) our 0 3. Que eut-on dre des suvnts? +.. Donner un exemle d enter n tel que our tout enter nturel on t ( n) = ( n) + ( n) ( n).. Montrer que l oncton n est n crossnte n décrossnte. et 3. Résoudre dns N* les équtons ( n) = ; ( n) = ; ( n) = Pour tous enters et 0 montrer que 4.. Sot rtennt à N*, et,,, ;,,, des enters tels que et 0 our tout. Montrer que Pour tout n rtennt à N*, montrer que ( ( n) ) n 4.4. Sot n rtennt à N*. Montrer qu l exste un enter nturel r tel que our r, on t : + ( n) = ( n) 5. Sot E l ensemle des enters n n ynt que des exosnts strctement suéreurs à dns leur décomoston en cteurs remers. 5.. Pour tout enter, montrer qu l exste des enters nturels α et β tels que = α + 3β. 5.. En dédure que s n rtent à E, lors l exste un élément m tel que ( m) = n Donner un élément m de E tel que ( m) = Que eut-on dre de l récroque du 5.? G. JULIA 0 3

4 Ecrt CAPES Mthémtques 3. Ecrture de l oncton vec TI nsre On suose désorms que le rogrmme rm été exécuté vec une vleur de n susmment grnde our dsoser d une lste d enters remers ermettnt le trtement grnt des nomres enters dsons jusqu à (Pour cel, l lste des 00 lus etts enters remers convent). L oncton exécute decom et stoce l mtrce renvoyée dns l vrle m. Pus elle m, élevés à renvoe le rodut des exosnts [ ] l ussnce m [,]. On otent ns les mges r de certns enters évoqués dns l énoncé. L étude de l mge de quelques enters ermet de vérer que n est n crossnte n décrossnte, de donner des exemles d enters conormes ux crtères de l queston. et d émettre quelques conjectures à roos de l queston 3. Les conjectures our l queston 5 sont lus oscures. Le cs 0 0 étnt hors de ortée, voc des enters dont les mges sont, resectvement, 96000, 600 et 68 G. JULIA 0 4

5 Ecrt CAPES Mthémtques et c des enters dont les mges sont des ussnces de, de 3 ou de 5. Un ett rogrmme nommé erod ermet d cher les mges successves d un enter n + jusqu à trouver tel que ( n) = ( n) conormément à ce que dt l queston 4.4. Comme on ouvt s en douter, 600 est un exemle d enter nvrnt r. G. JULIA 0 5

STI2D - 1N5 - FONCTION DERIVEE ET APPLICATIONS COURS (1/5)

STI2D - 1N5 - FONCTION DERIVEE ET APPLICATIONS COURS (1/5) www.mthsenlgne.com STI2D - 1N5 - FNCTIN DERIVEE ET APPLICATINS CURS (1/5) PRGRAMMES CAPACITES ATTENDUES CMMENTAIRES Dérvton Nomre dérvé d une foncton en un pont. Le nomre dérvé est défn comme lmte du f(

Plus en détail

Racines carrées d un nombre complexe

Racines carrées d un nombre complexe Rcnes crrées d un nombre complexe I Exemple Détermnons les rcnes crrées de 3 Les rcnes sont et 4 ' x x ou x On lors : (mpossble cr x ) ou x 4 On cherche les nombres complexes z tels que z 3 (E) On se grde

Plus en détail

Classe [ 0 ; 30 [ [ 30 ; 60 [ [ 60 ; 90 [ [ 90 ; 120 [ [ 120 ; 150 [ [ 150 ; 180 [ [ 180 ; 210 [ Effectif

Classe [ 0 ; 30 [ [ 30 ; 60 [ [ 60 ; 90 [ [ 90 ; 120 [ [ 120 ; 150 [ [ 150 ; 180 [ [ 180 ; 210 [ Effectif S Sttstques Dns ce chtre, nous étuderons des séres sttstques numérques (ou vrbles quntttves). Ces vrbles sont dtes dscrètes s les vleurs rses sont solées (nombres d élèves dns une clsse, nombre de notes

Plus en détail

Racines carrées, cubiques et n èmes

Racines carrées, cubiques et n èmes Rcines crrées, cuiues et n èmes. Petite histoire des rcines crrées : Deuis l vènement des clcultrices, les rcines crrées ont erdu eucou de leur restige. Les rcines crrées sont des nomres dont on n s l

Plus en détail

Théorie des Langages Formels Chapitre 4 : Automates complets déterministes

Théorie des Langages Formels Chapitre 4 : Automates complets déterministes 1/2 Théorie des Lngges Formels Chpitre 4 : Automtes complets déterministes Florence Levé Florence.Leve@u-picrdie.fr Année 2015-2016 2/2 Introduction 4 5 6 7 8 9 10 11 12 Recherche de :, /2 Automte déterministe

Plus en détail

Fractions. 1 Propriété des quotients égaux 1. 2 Addition, soustraction de deux fractions 3. 3 Produit de deux fractions 5

Fractions. 1 Propriété des quotients égaux 1. 2 Addition, soustraction de deux fractions 3. 3 Produit de deux fractions 5 Tle des mtières Frctions 1 Propriété des quotients égux 1 Addition, soustrction de deux frctions Produit de deux frctions Comprison de deux frctions Produit en croix 10 6 Quotient de deux frctions. Inverse

Plus en détail

Sujet de Bac 2011 Maths S Obligatoire & Spécialité Polynésie

Sujet de Bac 2011 Maths S Obligatoire & Spécialité Polynésie Sujet de Bc 20 Mths S Oligtoire & Spécilité Polynésie Exercice : 5 points Commun à tous les cndidts. Pour chcune des propositions suivntes, indiquer si elle est vrie ou fusse et donner une démonstrtion

Plus en détail

Comparons, à la machine, 13 3 et 10 puis 20 6 et 14.

Comparons, à la machine, 13 3 et 10 puis 20 6 et 14. CHAPITRE 6 RACINES CARREES (PARTIE 2 SUR 2) I. LES RACINES CARREES ET LES QUATRE OPERATIONS Essyons de répondre ux questions suivntes : + est-il égl à +? est-il égl à? est-il égl à? est-il égl à? A. RACINES

Plus en détail

La proposition «Si n Æalors n et n» est vraie. Par contre, la réciproque «Si n et n alors n Æ» est fausse. (Il suffit de choisir n= 1)

La proposition «Si n Æalors n et n» est vraie. Par contre, la réciproque «Si n et n alors n Æ» est fausse. (Il suffit de choisir n= 1) 0 septemre 016 ENSEMBLES DE NOMBRES nde 3 I ENSEMBLES DE NOMBRES 1 NOMBRES ENTIERS NATURELS Æ DÉFINITION L ensemle des entiers nturels, noté Æ = {0;1;;3;;...}. C est l ensemle des nomres positifs qui permettent

Plus en détail

Chapitre 1 Le Second Degré

Chapitre 1 Le Second Degré Cours de Mthémtiques Première STID Chpitre 1 : Le second degré Chpitre 1 Le Second Degré A) Résolution de l'éqution du second degré 1) Définitions On ppelle polynôme de second degré l expression x² x c

Plus en détail

Les équations dans l ensemble des nombres complexes Le degré 1 et le degré 2

Les équations dans l ensemble des nombres complexes Le degré 1 et le degré 2 Les équtions dns l ensemle des nomres complexes Le degré et le degré Eqution du premier degré 3 Eqution du second degré : Résolution de l éqution A 4 Exemples de résolutions d équtions simples (rédction

Plus en détail

Chapitre 1 Équations et Inéquations du 2nd degré

Chapitre 1 Équations et Inéquations du 2nd degré Cours de Mthémtiques Première S Chpitre 1 : équtions et inéqutions du second degré Chpitre 1 Équtions et Inéqutions du nd degré A) Les Polynômes 1) Définitions On ppelle monôme une expression de l forme

Plus en détail

Chapitre 6- Schéma fonctionnel et graphe de fluence

Chapitre 6- Schéma fonctionnel et graphe de fluence Chptre 6 : chém fonctonnel et grphe de fluence Chptre 6 chém fonctonnel et grphe de fluence 6.. chém fonctonnel 6... Défnton Un schém fonctonnel est une représentton smplfée d un processus ms en œuvre.

Plus en détail

Racines carrées. Objectifs du chapitre. Énigme du chapitre.

Racines carrées. Objectifs du chapitre. Énigme du chapitre. Rcines crrées C H A P I T R E 5 Énigme du chitre. On remrque que : 13 + 7 + 7 + 3 + 3 + 3 + 1 = 2 1 = 3 1 = 4 Ojectifs du chitre. Svoir que, si désigne un nomre ositif, est le nomre ositif dont le crré

Plus en détail

Chapitre I : Fonctions, expressions algébriques et problèmes

Chapitre I : Fonctions, expressions algébriques et problèmes Chpitre I : Fonctions, expressions lgériques et prolèmes I Les ensemles de nomres : Déinition 1 : 0 ;1; 2;3;4 ;...;15;16;... est l ensemle des nomres entiers nturels.... ; -16; -15;...; -4; -3; -2; -1;

Plus en détail

APPLICATIONS DU CALCUL INTEGRAL

APPLICATIONS DU CALCUL INTEGRAL APPLICATINS DU CALCUL INTEGRAL Exemple d troducto. Clculer l re de l surfce comprse etre l prole d équto y = x et l xe (J) Premère démrche : peut écrre : f yf(x) x J y x y x ou y g(x) x I L re A recherchée

Plus en détail

[Scilab] Les matrices. [Scilab] Les matrices S. ANDRES. Lycée des Eaux Claires S. ANDRES, Lycée des Eaux Claires 1/34

[Scilab] Les matrices. [Scilab] Les matrices S. ANDRES. Lycée des Eaux Claires S. ANDRES, Lycée des Eaux Claires 1/34 [Scilb] Les mtrices S. ANDRES Lycée des Eux Clires 2015-2016 S. ANDRES, Lycée des Eux Clires 1/34 Dns ce cours 1) Mtrices : générlités 2) Mtrices prticulières 3) Extrction 4) Opértions sur les mtrices

Plus en détail

ENSEMBLES DE NOMBRES

ENSEMBLES DE NOMBRES Chpitre 01 Ensemles de nomres I- Les différents ensemles de nomres ENSEMBLES DE NOMBRES 1. Les entiers nturels Les entiers nturels sont les nomres 0 ; 1 ; ; ;... On note N l ensemle des entiers nturels,

Plus en détail

+ + = + (Identité 1) x ax x

+ + = + (Identité 1) x ax x 1. Définition LA COMPLÉTION DU CARRÉ L complétion du crré est un procédé lgébrique qui consiste à trnsformer un polynôme de second degré écrit dns l forme stndrd dns l forme cnonique + b + c, où 0, ( h)

Plus en détail

1 Puissances d'une matrice

1 Puissances d'une matrice 1 Puissnces d'une mtrice Dénitions 1 On ppelle digonle ou digonle principle d'une mtrice les éléments i,i de l mtrice ynt un indice de ligne égl à l'indice de colonne 2 On ppelle mtrice digonle une mtrice

Plus en détail

QUELQUES NOTES SUR LES MATRICES. Une matrice est un tableau (à deux dimensions) de nombres (les éléments) ordonnés. Elle est notée [A].

QUELQUES NOTES SUR LES MATRICES. Une matrice est un tableau (à deux dimensions) de nombres (les éléments) ordonnés. Elle est notée [A]. QUELQUES NOTES SUR LES MATRICES Définition Une mtrice est un tbleu (à deux dimensions) de nombres (les éléments) ordonnés. Elle est notée [A]. Elément d'une mtrice Pr convention, on note ij l'élément situé

Plus en détail

UNIVERSITE DE BOURGOGNE MM5: Analyse Numérique Elémentaire FichedeTDno2

UNIVERSITE DE BOURGOGNE MM5: Analyse Numérique Elémentaire FichedeTDno2 1 UNIVERSITE DE BOURGOGNE MM5: Analyse Numérque Elémentare FchedeTDno2 1 Que peut-on dre d une méthode tératve dont la matrce a un rayon spectral nul? 2 Etuder les méthodes de Jacob et Gauss-Sedel pour

Plus en détail

Cours de Mathématiques Seconde. Ordre et valeur absolue

Cours de Mathématiques Seconde. Ordre et valeur absolue Cours de Mthémtiques Seconde Frédéric Demoulin 1 Dernière révision : 16 vril 2007 Document diffusé vi le site www.cmths.net de Gilles Costntini 2 1 frederic.demoulin (chez) voil.fr 2 gilles.costntini (chez)

Plus en détail

1 ère S Exercices sur les dérivées des fonctions de référence

1 ère S Exercices sur les dérivées des fonctions de référence ère S Eercces sur les dérvées des onctons de réérence ans chaque cas, donner la dérvée de la oncton. n se contentera d écrre '.... ) est la oncton déne sur par 0. ) est la oncton déne sur par 6.. ) est

Plus en détail

Racines carrées. 1. Généralités : 2. Propriétés. 3. Exercices de bases corrigés. 4. Exercices non corrigés. 5. Approfondissement.

Racines carrées. 1. Généralités : 2. Propriétés. 3. Exercices de bases corrigés. 4. Exercices non corrigés. 5. Approfondissement. Rcines crrées. 1. Générlités : ) Déinition : b) Nottion. c) Exemples.. Propriétés. ) Produits de rcines crrées. b) Quotient de rcines crrées. c) Lien vec les puissnces. d) Modiiction d écritures vec des

Plus en détail

Synthèse de cours PanaMaths Variables aléatoires à densité

Synthèse de cours PanaMaths Variables aléatoires à densité Synthèse de cours PnMths Vriles létoires à densité Vrile létoire à densité Vrile létoire réelle continue Soit X une vrile létoire réelle. On dit que «X est une vrile létoire réelle continue» si elle prend

Plus en détail

LOI UNIFORME SUR [a ; b]

LOI UNIFORME SUR [a ; b] LOI UNIFORME SUR [ ; ] Eemple Dns une ville, un voygeur sit que sur une ligne d utous donnée, il psse un utous toutes les heures Ce voygeur ignore les horires et rrive à un rrêt de cette ligne Comien de

Plus en détail

Corrigé devoir 1. Définition Un entier a Z est dit un résidu quadratique modulo n si l image a Z/nZ y est un carré.

Corrigé devoir 1. Définition Un entier a Z est dit un résidu quadratique modulo n si l image a Z/nZ y est un carré. Université Pierre et Mrie Curie MASTER 1 Unités MO1 MU11 Année 004-005 Les eercices étoilés * s dressent u seuls étudints inscrits à l unité MO1 Corrigé devoir 1 L loi de récirocité udrtiue Définition

Plus en détail

! Remarque : La racine carrée d un nombre négatif n existe pas.

! Remarque : La racine carrée d un nombre négatif n existe pas. 3 ème Chpitre A 3 RACINE CARREE D UN NOMBRE POSITIF 1 I) Définition et conditions d existence de l rcine crrée d un nombre. 1) Définition. Il existe deux nombres tel que si on les multiplie pr eux même

Plus en détail

Exercice 1. Université Paris 7-Denis Diderot Examen du 21 mai 2012 L2 Automates finis AF4. a 1. 2 b. Voici le déterminisé : a 3. a 1.

Exercice 1. Université Paris 7-Denis Diderot Examen du 21 mai 2012 L2 Automates finis AF4. a 1. 2 b. Voici le déterminisé : a 3. a 1. Université Pris 7-Denis Diderot Exmen du 21 mi 2012 L2 Automtes finis AF4 Corrigé Exercice 1 1 3 On considère l utomte fini : 2 4 Question 1 : Déterminiser cet utomte. 1 1, 3 1, 3, 4 Voici le déterminisé

Plus en détail

1) Proportion («rapport d une partie au tout»)

1) Proportion («rapport d une partie au tout») 1) Proporton («rapport d une parte au tout») La proporton (ou réquence) d une sous populaton dans une populaton (dte de réérence) est le nombre : où n est l eect de et n celu de. Proprété : 0 p 1 p = n

Plus en détail

NOMBRES PREMIERS Fractions irréductibles

NOMBRES PREMIERS Fractions irréductibles THM NOMRS PRMIRS rctions irréductibles * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * l fin du thème, tu dois svoir : ffectuer des opértions sur

Plus en détail

Chapitre 6 : Fonctions Logarithme Népérien

Chapitre 6 : Fonctions Logarithme Népérien Lycée Pul Sbtier, Cstelnudry Clsse de T`le STG Chpitre 6 : Fonctions Logrithme Népérien D. Zncnro et C. Aupérin 008-009 Téléchrger c est tuer l industrie, tuons les tous Thurston Moore Dernière modifiction

Plus en détail

1 ère S Exercices sur les limites (3)

1 ère S Exercices sur les limites (3) ère S Exercces sur les lmtes () n donne c-dessous la courbe représentatve d une oncton déne sur l ntervalle ]0 ; + [ Dre s : - l axe des ordonnées semble asymptote à la courbe ; - la drote semble asymptote

Plus en détail

LIMITES ET CONTINUITÉ

LIMITES ET CONTINUITÉ LIMITES ET CONTINUITÉ Cours Terminle S Limite d une onction à l inini ) Limite inie en l inini Déinition : Soit une onction déinie sur un intervlle de l orme ] A ; + [ On dit que l onction dmet pour limite

Plus en détail

SYSTEMES ASSERVIS LINEAIRES

SYSTEMES ASSERVIS LINEAIRES I. Systèmes lnéares, contnus et nvarants. Défnton d un système lnéare Un système dynamque est Lnéare s la relaton entre les grandeurs hysques d entrée et de sorte est un système d équatons dfférentelles

Plus en détail

ÉQUATIONS DIFFÉRENTIELLES DU PREMIER ORDRE (COURS)

ÉQUATIONS DIFFÉRENTIELLES DU PREMIER ORDRE (COURS) Équtions différentielles du ÉQUATIONS DIFFÉRENTIELLES DU PREMIER ORDRE (COURS) TI-Nspire CAS 1. Objectifs Découvrir les équtions différentielles du premier ordre. Résoudre à l min et à l ide de l clcultrice

Plus en détail

Racines carrées 20 = 4,

Racines carrées 20 = 4, Clsse de 3ème 08/11/010 Chpitre Rcines crrées I. Activité n 1. ABCD est un crré de coté c et d ire. (1 ) Choisir des vleurs de c puis clculer. ( ) Choisir des vleurs de puis clculer c. c = 3 cm c = cm

Plus en détail

Calculs de base (Rappels)

Calculs de base (Rappels) Chpitre I Clculs de bse (Rppels) I.1 Diviseurs et multiples I.1.1 Définitions On : 12=3 4. On dit que 3 et 4 sont des diviseurs de 12, ou que 12 est un multiple de 3 et de 4. DÉFINITION I.1.1 Soit et b

Plus en détail

LIMITES DE SUITES ET DE FONCTIONS I..

LIMITES DE SUITES ET DE FONCTIONS I.. TS-cours-chp2-1 - LIMITES DE SUITES ET DE FONCTIONS I.. Limite d une suite 1 / tend vers l infini Définition ( rppel ) Dire que l suite tend vers + signifie que, pour tout nombre A, l intervlle [A ; +

Plus en détail

La continuité. I Introduction 1. II Notion de continuité 1 1 Définitions Graphique Exemples et contre exemple... 2

La continuité. I Introduction 1. II Notion de continuité 1 1 Définitions Graphique Exemples et contre exemple... 2 L continuité Tle des mtières I Introduction 1 II Notion de continuité 1 1 Définitions.................................................. 1 Grphique.................................................. 1 3

Plus en détail

Choix de portefeuille

Choix de portefeuille Introducton Cho de porteeulle Lcence 3ème nnée MIA Année 8-9 Comment gérer un ptrmone? Fut-l plcer son éprgne en ctons, oblgtons, sur un CODVI?... Cho de porteeulle montre comment un ndvdu dot llouer s

Plus en détail

a x b a < x < b a x < b ] a ; b [ ] a ; b] a < x b ex : ] 1 ; 3 ] L intervalle [a ; b] est fermé [a ; b] [ [ [a ; b [ INTERVALLES.

a x b a < x < b a x < b ] a ; b [ ] a ; b] a < x b ex : ] 1 ; 3 ] L intervalle [a ; b] est fermé [a ; b] [ [ [a ; b [ INTERVALLES. INTERVALLES. INEQUATIONS I ) INTERVALLES DE R ) Intervlles ornés, fermés ou ouverts. On trouve 4 types d intervlles ornés. et sont deux réels tels que < Définition [ ; ] ex : [1 ; 3] x ] ; [ < x < Représenttion

Plus en détail

Calcul différentiel et intégral 2 (M-1.1)

Calcul différentiel et intégral 2 (M-1.1) Clcul différentiel et intégrl (M-.) Cdre : dns l suite on considère une fonction numérique f définie sur un intervlle I et un réel I I. Dérivée d'une fonction Définition du nomre dérivé : l fonction f

Plus en détail

Préparation à l agrégation de Mathématiques 2009 ENS Cachan Ker Lann Epreuve de modélisation, option C : algèbre et calcul formel.

Préparation à l agrégation de Mathématiques 2009 ENS Cachan Ker Lann Epreuve de modélisation, option C : algèbre et calcul formel. Préprtion à l grégtion de Mthémtiques 2009 ENS Cchn Ker Lnn Epreuve de modélistion, option C : lgèbre et clcul formel richrd.leroy@univ-rennes1.fr http://perso.univ-rennes1.fr/richrd.leroy/ Grphe n Chomp

Plus en détail

Terminale ES. Lois de probabilité à densité

Terminale ES. Lois de probabilité à densité Terminle ES Loi à densité sur un intervlle On considère une expérience létoire et un univers ssocié muni d une proilité. I Vrile létoire continue Définition Une vrile létoire continue X est une fonction

Plus en détail

Intégration. Intégrale d une fonction. II - Interprétation graphique : calcul d aire. 1) Aire d une fonction positive. T ale STI

Intégration. Intégrale d une fonction. II - Interprétation graphique : calcul d aire. 1) Aire d une fonction positive. T ale STI Intégrtion T le STI I - Intégrle d une fonction Définition Soit F une primitive de l fonction f sur [; ], lors, on note Exemple : Clcul de Clcul de 4 (3x ) dx = = [F(x)] = F() F() xdx : Une primitive de

Plus en détail

Correction (ou réponses rapides) de la feuille TD 5 : probabilités continues

Correction (ou réponses rapides) de la feuille TD 5 : probabilités continues Université de Nice-Sophi Antipolis -L2 MASS - Probbilités Correction (ou réponses rpides) de l feuille TD 5 : probbilités continues Attention, l correction peut contenir des erreurs de clcul. Ecrivez-moi

Plus en détail

Les Mathématiques : du collège au lycée. Rentrée 2014 Au. LYCEE Pierre Corneille

Les Mathématiques : du collège au lycée. Rentrée 2014 Au. LYCEE Pierre Corneille Les Mthémtiques : du collège u lycée Rentrée 2014 Au LYCEE Pierre Corneille 1 Clculer Développer Fctoriser Résoudre pour réussir u lycée. Nom de l élève :. 2 LIVRET DE REVISION 3 e / 2 nde - INTRODUCTION

Plus en détail

FACTORISATION DE POLYNÔMES SUR DES CORPS FINIS

FACTORISATION DE POLYNÔMES SUR DES CORPS FINIS FACTORISATION DE POLYNÔMES SUR DES CORPS FINIS 1. Introducton La factorsaton est l un des ponts où l analoge entre nombres enters et polynômes se rompt. Par exemple, en caractérstque nulle, on peut trouver

Plus en détail

Janvier 09 - Examen de Calcul de Probabilités Ex 1 Ex 2 Ex 3 Ex 4 - Page 1/8

Janvier 09 - Examen de Calcul de Probabilités Ex 1 Ex 2 Ex 3 Ex 4 - Page 1/8 Jnvier 9 - Exmen de Clcul de Proilités Ex 1 Ex 2 Ex 3 Ex 4 - Pge 1/8 Exercice 1 Enoncé. Trois chuves sont en file indienne. Le 2ème voit le 1er et le 3ème voit les 2 utres. Dns un sc, connu des trois chuves,

Plus en détail

Entiers Relatifs -5, -3-15

Entiers Relatifs -5, -3-15 Entiers Nturels 1, 2, 3, 4.. Entiers Reltifs -5, -3 - Nomres Décimux -0. 1 5 Nomres Rtionnels 2 3 Nomres Réels RAPPEL : Un nomre premier est un entier nturel qui dmet exctement 2 diviseurs distincts entiers

Plus en détail

NOMBRES COMPLEXES. L addition et la multiplication de 2 entiers naturels donnent un entier naturel.

NOMBRES COMPLEXES. L addition et la multiplication de 2 entiers naturels donnent un entier naturel. NOMRES OMPLEXES RPPELS SUR LES ENSEMLES DE NOMRES Ensemble N : ensemble des enters naturels. L addton et la multplcaton de enters naturels donnent un enter naturel. La soustracton et la dvson de enters

Plus en détail

Université Hassan II Faculté des Sciences Juridiques, Économiques et Sociales de Mohammedia

Université Hassan II Faculté des Sciences Juridiques, Économiques et Sociales de Mohammedia Unversté Hassan II Faculté des Scences Jurdques, Économques et Socales de Mohammeda Année Unverstare 2009/200 MATHEMATIQUES II Professeurs: T. BENKARAACHE & M.REDOUABY Chatre I Les Sutes numérques Les

Plus en détail

La logique combinatoire est une technique dédiée à la représentation de diverses

La logique combinatoire est une technique dédiée à la représentation de diverses Chpitre I Logique comintoire 1 L logique comintoire est une technique dédiée à l représenttion de diverses fonctions. Elle permet de synthétiser des systèmes comportnt des étts finis. Les circuits logiques

Plus en détail

EPREUVE SPECIFIQUE FILIERE MP MATHEMATIQUES 2. Durée : 4 heures. Les calculatrices sont interdites. * * *

EPREUVE SPECIFIQUE FILIERE MP MATHEMATIQUES 2. Durée : 4 heures. Les calculatrices sont interdites. * * * SESSION 005 EPREUVE SPECIFIQUE FILIERE MP MATHEMATIQUES Durée : 4 heures Les calculatrces sot terdtes * * * NB : Le caddat attachera la lus grade mortace à la clarté, à la récso et à la cocso de la rédacto

Plus en détail

Sciences Industrielles Précision des systèmes asservis Papanicola Robert Lycée Jacques Amyot

Sciences Industrielles Précision des systèmes asservis Papanicola Robert Lycée Jacques Amyot Scence Indutrelle Précon de ytème erv Pncol Robert Lycée Jcque Amyot I - PRECISION DES SYSTEMES ASSERVIS A. Poton du roblème 1. Préentton On vu que le rôle d un ytème erv et de fre uvre à l orte (t) une

Plus en détail

DÉNOMBREMENT LOIS DE PROBABILITÉ

DÉNOMBREMENT LOIS DE PROBABILITÉ DÉNOMBREMENT LOIS DE PROBABILITÉ A Dénombrement I Utilistion de digrmmes, de tbleux, d rbres Exemples : 1. Un centre de loisirs ccueille 100 enfnts. Deux sports sont proposés : le footbll et le tennis.

Plus en détail

Travail préparatoire Sixième

Travail préparatoire Sixième Trvil préprtoire Sixième Initier ux pyrmides et fire du clcul mentl Complète l pyrmide ci-dessous en respectnt l règle : «Dns chque cse, il y l somme des deux cses situées en dessous» : + 2,5 2 2,5 3,2

Plus en détail

Chapitre 3 Analyse statistique de données Première S

Chapitre 3 Analyse statistique de données Première S Chatre Analyse statstque de données Premère S Le vocabulare relatf au statstques La statstque est la scence qu consste à réunr des données chffrées, à les analyser, à les crtquer Une étude statstque se

Plus en détail

2 = avec a et b entiers. 2 = b c est-à-dire. a pourrait être simplifiée par 2, elle ne serait donc pas une

2 = avec a et b entiers. 2 = b c est-à-dire. a pourrait être simplifiée par 2, elle ne serait donc pas une Chp n : Arithmétique I ] Le point sur les nomres Les nomres entiers reltifs :. ; ; ; ; ; ; ; ; Les nomres entiers positifs sont ussi ppelés les nomres entiers nturels. Les nomres décimux : nomres qui peuvent

Plus en détail

= K M est le plus petit langage (pour l inclusion ensembliste) solution de l équation ensembliste d inconnue X :

= K M est le plus petit langage (pour l inclusion ensembliste) solution de l équation ensembliste d inconnue X : MP fo-correction devoir surveillé n o 3, smedi 06 février 016 1/5 1 utour du lemme d rden Q1. On considère K et M deux lngges. Le lngge L défi pr L def = K M est le plus petit lngge (pour l clusion ensemliste)

Plus en détail

Fractions rationnelles

Fractions rationnelles Bblothèque d exercces Énoncés L Feulle n 8 Fractons ratonnelles Exercce Décomposer + 4 Décomposer + + + Décomposer + + + 4 Décomposer 4 + + 5 Décomposer 4 6 Décomposer 5 + 4 + 7 Décomposer 5 + 4 + ( )

Plus en détail

Z - Les nombres Entiers rappels, révisions et compléments

Z - Les nombres Entiers rappels, révisions et compléments éléments de cours à découper et à coller dns le chier. Les exercices sont soit dns le document, soit dns ton livre d exercices Actimthàl infini2. Les ciseux t invitent à couper l feuille à cet endroit

Plus en détail

Chapitre 5. Intégration. 5.1 Intégration des fonctions en escaliers

Chapitre 5. Intégration. 5.1 Intégration des fonctions en escaliers Chpitre 5 Intégrtion Nous llons construire l intégrle pr un procédé de pssge à l limite. D bord on définit l intégrle des fonctions en escliers, ensuite on psse à l limite pour intégrer des fonctions plus

Plus en détail

1 2 i. ; z10 = 1 + i + i 2 + i 3 + i 4 + i 5 + i 6.

1 2 i. ; z10 = 1 + i + i 2 + i 3 + i 4 + i 5 + i 6. EXERCICES TERMINALE S LES NOMBRES COMPLEXES PREMIERS EXERCICES: 1 Calculs dans : Ecrre les nombres complexes suvant sous la forme a + b où a et b sont des réels : 1 = ; = ; = ( + )( + ) ; = 6 = 1 1+ ;

Plus en détail

Méthode des résidus pondérés

Méthode des résidus pondérés Produt propre d un opérateur Méthode des résdus pondérés Ecrture d un opérateur u avec Ω les coordonnées spatales x, y, z p dans Ω Pour un opérateur lnéare u u u u avec α, β des nombres quelconques Pour

Plus en détail

LA LOGIQUE COMBINATOIRE

LA LOGIQUE COMBINATOIRE LA LOGIQUE OMBINATOIRE ompétences ssociées A2 : Anlyser et interpréter une informtion numérique DEFINITION De nomreux dispositifs électroniques, électromécnique, (mécnique, électrique, pneumtique, etc...)

Plus en détail

Analyse ascendante. Analyseur ascendant. Exemple. Exemple de reconnaissance. Exemple. Analyse ascendante : défis. Exemple de reconnaissance

Analyse ascendante. Analyseur ascendant. Exemple. Exemple de reconnaissance. Exemple. Analyse ascendante : défis. Exemple de reconnaissance Bureu 203 - etension M3 mirelle.neut t lifl.fr 2012-2013 2/93 nlyseur scendnt Eemple Effectue des lectures et des réductions ; construit un rre en ordre postfie ; en prtnt du mot à reconnître ; construction

Plus en détail

( ) ( ) ( ) ( ) ( ) Terminales S Exercices sur les nombres complexes Page 1 sur 6. Exercice 1 :

( ) ( ) ( ) ( ) ( ) Terminales S Exercices sur les nombres complexes Page 1 sur 6. Exercice 1 : Termnales S Exercces sur les nombres complexes Page sur 6 Exercce : ) Calculer, et 05 06 07 ) En dédure, et ) Détermner les enters n pour lesquels n est a) un réel, b) est un magnare pur, c) égal à Exercce

Plus en détail

REPERAGE DANS LE PLAN

REPERAGE DANS LE PLAN REPERGE DNS LE PLN I. Repère du plan 1. Repère et coordonnées Tros ponts dstncts deux à deux, I et J du plan forment un repère, que l on peut noter (, I, J). L orgne et les untés I et J permettent de graduer

Plus en détail

Quotient de Fermat, recherches d Andrew Granville et relation avec le Grand Théorème

Quotient de Fermat, recherches d Andrew Granville et relation avec le Grand Théorème Quotent de Fermat, recherches d Andrew Granvlle et relaton avec le Grand Théorème Bernard RONK 30 août 205 Table des matères Quotent de Fermat 2. Relatons lées au quotent de Fermat.............. 2.2 Quelques

Plus en détail

Corrigé du baccalauréat S Pondichéry 21 avril 2010

Corrigé du baccalauréat S Pondichéry 21 avril 2010 Corrigé du bcclurét S Pondichéry 2 vril 2 EXERCICE Commun à tous les cndidts Prtie A : Restitution orgnisée de connissnces 6 points f et g sont deux fonctions continues sur un intervlle [ ; b] donc g f

Plus en détail

Considérons la situation suivante où un bloc est appuyé contre un ressort comprimé:

Considérons la situation suivante où un bloc est appuyé contre un ressort comprimé: 7. Traval eectué par une orce varable Consdérons la stuaton suvante où un bloc est appuyé contre un sort comprmé: Que va-t-l se passer s nous lassons partr le bloc?? L énerge cnétque du bloc va augmenter

Plus en détail

7 Etude d une bobine. 7.1 Modèle théorique Bobine simple

7 Etude d une bobine. 7.1 Modèle théorique Bobine simple 7 Etude d une oine Responsle : J.Roussel Ojectif Le ut de ce TP est d estimer les vleurs de l self inductnce L et de l résistnce interne r d une oine à l ide d un modèle simple puis de confronter le modèle

Plus en détail

(respectivement M n,1 ( )) l espace vectoriel réel

(respectivement M n,1 ( )) l espace vectoriel réel Les calculatrces sot autorsées **** NB : Le caddat attachera la lus grade mortace à la clarté, à la récso et à la cocso de la rédacto S u caddat est ameé à reérer ce qu eut lu sembler être ue erreur d'éocé,

Plus en détail

Théorie des Langages Formels Chapitre 5 : Automates minimaux

Théorie des Langages Formels Chapitre 5 : Automates minimaux 1/29 Théorie des Lngges Formels Chpitre 5 : Automtes minimux Florence Levé Florence.Leve@u-picrdie.fr Année 2014-2015 2/29 Introduction Les lgorithmes vus précédemment peuvent mener à des utomtes reltivement

Plus en détail

EXERCICES AVEC SOLUTIONS (STATIQUE)

EXERCICES AVEC SOLUTIONS (STATIQUE) EXEIES VE SLUINS (SIQUE) Eercce 1 : Détermner les tensons des câbles dns les fgures suvntes : 4 7 4N 1 Soluton : Fgure 1 : u pont nous vons : + + L projecton sur les es donne : cos 4 + cos sn 4 + sn 6Kg

Plus en détail

Exercices sur le calcul algébrique. Petits problèmes

Exercices sur le calcul algébrique. Petits problèmes Exercices sur le clcul lgébrique Les exercices ou questions précédés d un stérisque pourront être trités vec profit à l ide d un logiciel de clcul formel, tel que Xcs, qui ser vu en Trvux Prtiques, ou

Plus en détail

5 Coloriage des arêtes

5 Coloriage des arêtes 5 Colorige des rêtes Dns cette prtie, tous les grphes seront supposés simples. Dénition 5.1 Soit G = (V, E) un grphe sns oucles. Soit Σ un ensemle ni. On ppelle colorige des rêtes une ppliction c : E Σ.

Plus en détail

Ch.4èFONCTIONS DE RÉFÉRENCE

Ch.4èFONCTIONS DE RÉFÉRENCE LFA / première S COURS - mthémtiques Mme MAINGUY Ch.4èFONCTIONS DE RÉFÉRENCE ere S Dns tout le chpitre, le pln est muni d'un repère orthonorml ( O ; i! ;! j ) I. Rppels de Seconde Soit f une fonction définie

Plus en détail

Contrôle du lundi 19 novembre 2012 (45 minutes) 1 ère S1

Contrôle du lundi 19 novembre 2012 (45 minutes) 1 ère S1 1 ère S1 Contrôle du lund 19 novembre 01 (45 mnutes) Compléter le tableau c-dessous donnant la dstrbuton de fréquences pour cet échantllon (calculs au broullon, fréquences sous forme décmale) : Prénom

Plus en détail

Corrigé transformateurs triphasés Cours et exercices

Corrigé transformateurs triphasés Cours et exercices Exercice I Répondre ux questions suivntes Corrigé trnsformteurs triphsés Cours et exercices. L puissnce ctive nominle est indiquée sur l plque signlétique d un trnsformteur : vri ou fux? C'est fux, c'est

Plus en détail

Rappels sur le calcul Littéral

Rappels sur le calcul Littéral Première prtie Rppels sur le clcul Littérl I Clculer vec les frctions, les puissnces, les rdicux I.1 les frctions I.1.1 générlités Bon, il est temps que je rppelle quelques règles de bse concernnt le clcul

Plus en détail

CHAPITRE 3. Opérations dans R. ab a+ b R La somme de deux nombres réels est encore un nombre réel. On dit que l'addition est interne dans R.

CHAPITRE 3. Opérations dans R. ab a+ b R La somme de deux nombres réels est encore un nombre réel. On dit que l'addition est interne dans R. CHAPITRE 3 Opértions dns R. Propriétés de l'ddition dns R ( I,+ ) (, R) + R L somme de deux nomres réels est encore un nomre réel. On dit que l'ddition est interne dns R. Exemple. 3 R, π R 3+ π R. ( C,+

Plus en détail

Activité 1 : Produit d'un nombre négatif par un nombre positif

Activité 1 : Produit d'un nombre négatif par un nombre positif Activité : Produit d'un nombre négtif pr un nombre positif On considère l'expression B ( ) + ( ) + ( ) + ( ).. Quelle est l vleur de B? On v revenir sur le sens de l multipliction : + + est l somme de

Plus en détail

Calcul matriciel et applications

Calcul matriciel et applications Clcul mtriciel et lictios I Défiitio d ue mtrice, somme de mtrices et roduit r u réel 1 Défiitio d ue mtrice Ue mtrice A de dimesios coloes Pour 1 i m et 1 j lige et de l j-ième coloe m, vec m et deux

Plus en détail

1 ère S Le plan muni d un repère

1 ère S Le plan muni d un repère 1 ère S Le plan mun d un repère Ce chaptre fat sute à celu des vecteurs du plan bectf : consolder et compléter les bases de géométre analtque dans le plan de seconde (repérage des ponts dans le plan) I

Plus en détail

NOMBRES ENTIERS ET RATIONNELS / ARITHMETIQUE THEME 10 : Exercice n 1: 1. Exercice n 2:. + c b. Exercice n 3 : = A

NOMBRES ENTIERS ET RATIONNELS / ARITHMETIQUE THEME 10 : Exercice n 1: 1. Exercice n 2:. + c b. Exercice n 3 : = A THEME 0 : NOMRES ENTIERS ET RTIONNELS / RITHMETIQUE Exercice n :.. Exercice n :. ) ( c b ) ( bc c b b c ) ( c b Exercice n : 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 D D D D D D D 0 0 0 0 0 0 0 E E E E E E E TIVITE

Plus en détail

Résumé de cours : Terminale ES. Table des matières. Maths-Terminale ES. Mr Mamouni : source disponible sur: Samedi 08 Avril 2006.

Résumé de cours : Terminale ES. Table des matières. Maths-Terminale ES. Mr Mamouni : source disponible sur: Samedi 08 Avril 2006. Résumé de cours : Terminle ES. Mths-Terminle ES. Mr Mmouni : myismil@ltern.org source disponile sur: c http://www.chez.com/myismil Smedi 08 Avril 2006. Tle des mtières Eqution du second degré. 2. Ses solutions

Plus en détail

Théorèmes d échange de limites

Théorèmes d échange de limites Théorèmes d échange de limites ) Convergence uniforme et limites Théorème de continuité our les suites de fonctions. Pour E et F deux esaces vectoriels normés, on considère une suite d alications f n :

Plus en détail

Lycée Faidherbe, Lille MP1 Cours d informatique 2013 2014. Automates

Lycée Faidherbe, Lille MP1 Cours d informatique 2013 2014. Automates Lycée Fidhere, Lille MP Cours d informtique 203 204 Automtes I Déterministes........................... 2 Définitions 2 Exemple 2 Action des mots 3 Lngge reconnu 3 II Incomplets.............................

Plus en détail

UE MAT234. Notes de cours sur l algèbre linéaire

UE MAT234. Notes de cours sur l algèbre linéaire UE MAT234 Notes de cours sur l algèbre lnéare Matrces - Systèmes lnéares - Détermnants - Dagonalsaton Dans tout ce document, K désgne ndfféremment le corps des nombres réels IR, ou celu des nombres complexes

Plus en détail

Analyse numérique : Intégration numérique

Analyse numérique : Intégration numérique Anlyse numérique : Intégrtion numérique Pgor 1A Chpitre 4 8 février 11 mrs 2013 Anlyse numérique (Pgor 1A) Intégrtion numérique 8/02-11/03/2013 1 / 67 Pln 1 Introduction 2 Intégrtion pr méthode de Monte-Crlo

Plus en détail

NOMBRE EN ECRITURE FRACTIONNAIRE

NOMBRE EN ECRITURE FRACTIONNAIRE Activité 1 : Que représente l prtie coloriée en leu pr rpport à l ensemle de l figure? Activité : Mohmed, Ryn et Mrion ont colorié l même surfce d'un rectngle qu'ils ont ensuite découpée de mnières différentes.

Plus en détail

Chapitre 0 : Mise au point sur les nombres et le calcul

Chapitre 0 : Mise au point sur les nombres et le calcul Lycée Jules Fil, Crcssonne Clsse de 2 nde Chpitre 0 : Mise u point sur les nombres et le clcul D. Zncnro C. Aupérin 2009-2010 Téléchrger c est tuer l industrie, tuons les tous Thurston Moore Dernière modifiction

Plus en détail

UV Traitement du signal. Cours n 3 : Synthèse des filtres numériques

UV Traitement du signal. Cours n 3 : Synthèse des filtres numériques UV Tritement du signl Cours n 3 : Synthèse des filtres numériques Filtre IF pr l méthode de l fenêtre ou rélistion recursive Filtre II pr une trnsformée ilinéire élistion du filtrge numérique Introduction

Plus en détail

CHAPITRE 4 DÉTERMINANTS ET INVERSION DE MATRICES

CHAPITRE 4 DÉTERMINANTS ET INVERSION DE MATRICES HAPITRE DÉTERMINANTS ET INVERSION DE MATRIES Introduction Dns l lgèbre mtricielle, les déterminnts occupent une plce d importnce tnt en théorie qu en prtique est que l vleur numérique du déterminnt d une

Plus en détail

Fractions et calculs. Objectifs du chapitre. Énigme du chapitre.

Fractions et calculs. Objectifs du chapitre. Énigme du chapitre. C H A P I T R E Frctions et clculs 2 Énigme du chpitre. Fleur et Florie décident d pporter un pnier rempli de fruits à mémé Hugette. Le pnier contient un tiers de mirbelles, un qurt de prune et des cerises.

Plus en détail

5. Intégration complexe

5. Intégration complexe 49 5. Intégrtion complexe 1. Intégrles définies d une fonction complexe d une vrible réelle Les intégrles sont extrêmement importntes dns l étude des fonctions d une vrible complexe. Nous étblirons l équivlence

Plus en détail