Phénomènes de synchronisation/désynchronisation pour des modèles de. de réseaux de neurones structurés avec fragmentation

Dimension: px
Commencer à balayer dès la page:

Download "Phénomènes de synchronisation/désynchronisation pour des modèles de. de réseaux de neurones structurés avec fragmentation"

Transcription

1 Phénomènes de synchronisation/désynchronisation pour des modèles de réseaux de neurones structurés avec fragmentation IJM, Université Paris-Diderot. 23 janvier 2014

2 Plan Introduction: motivations et présentation du modèle Introduction : motivations et présentation du modèle. Etude du cas sans fragmentation Modèle taille finie

3 Introduction Les neurones sont des cellules nerveuses excitables spécialisées dans la communication intercellulaire. En particulier les neurones assurent la réception des informations, des signaux en provenance de l environnement ou de l intérieur même du corps humain, le traitement des informations, la transmission d informations à d autres neurones ou bien aux cellules musculaires.

4 Introduction: motivations et pre sentation du mode le Mode le taille finie : cas sans fragmentations Introduction Formation de ve ritables re seaux apparition de phe nome nes de synchronisation de de charges de neurones plus ou moins rythme es avec une fre quence plus ou moins grande jouent un ro le important dans les fonctions motrices, perceptives et cognitives de l e tre humain. Khashayar Pakdaman, Benoı t Perthame, Delphine Salort Phe nome nes de synchronisation/de synchronisation pour des mode les de

5 Introduction Objectif Etudier d un point de vue théorique, via un nouveau modèle proposé par K. Pakdaman, les mécanismes sous-jacents aux phénomènes de synchronisation/désynchronisation de décharges de neurones en fonction de la force des interconnexions qui lient les neurones entre eux. Plusieurs modèles d EDP classiques existent afin d étudier les phénomènes de synchronisation 1. Le modèle de Wilson-Cowan : porte sur la proportion de neurones excitateurs et inhibiteurs qui déchargent au cours du temps; font intervenir des équations de type intégro-différentielles. 2. Le modèle Integrate and Fire : dynamique décrite à travers le potentiel de membrane des neurones (Brunel, Cáceres, Carillo, Hakim, Perthame, Delarue, Inglis, Rubenthale, Tanré, Dumont...). 3. Les modèles de Kuramoto : oscillateurs couplés entre eux ( Acebron, Bonilla, Bertini, Giacomin, Lucon, Pakdaman, Pellegrin, Perez, Ritort, Spigler...) 4. Le modèle cinétique type Fokker-Planck : dynamique décrite via le potentiel d action et la conductance des neurones (Cáceres, Carrillo, Tao, Rangan, Kovačič, Cai, Perthame, S)... Modèle étudié Dynamique des neurones décrite par le temps écoulé depuis leur dernière décharge. Modèle fait apparaître des équations structurées en âge avec fragmentation.

6 Modèle choisi Hypothèses sur le réseau Tous les neurones sont excitateurs Ils ont une activité spontanée: même sans stimulation extérieure, les neurones ont une activité qui persiste Les interconnexions entre les neurones sont supposées homogènes : à chaque temps t, tous les neurones sont soumis à la même amplitude de stimulation La dynamique des neurones est décrite via le temps écoulé depuis leur dernière décharge la longueur de leur période réfractaire qui peut varier en fonction de l amplitude de stimulation qu ils reçoivent.

7 Choix du modèle: Equation structurée en âge avec fragmentation Equation structurée en âge avec fragmentation n(s, t) n(s, t) p(s, N(t))n(s, t) = K (s, u)p(u, N(t))n(u, t)du, t s 0 n(s = 0, t) = 0, + N(t) := p(s, N(t)) n(s, t)ds 0 n(s, t): densité de neurones au temps t telle que le temps écoulé depuis la dernière décharge est s. N(t) : flux de neurones qui déchargent au temps t identifié à l amplitude de stimulation globale p(s, u) permet de mesurer la proportion de neurones d âge s qui déchargent avec une amplitude de stimulation u. K (s, u): mesure positive permettant de donner la proportion de neurones ayant déchargé à l âge u et qui reviennent à l âge s. Equations avec fragmentation beaucoup étudiées: Calvez, Canizo, Caceres, Doumic, Gabriel, Laurençot, Lenuzza, Mischler, Mouthon, Perthame...

8 Equation sans terme de fragmentation Cas des faibles interconnexions Cas avec fortes interconnexions Simulations numériques avec K = δ s=0 Equation donnée par n(s, t) n(s, t) + + p(s, N(t))n(s, t) = 0, t s + n(0, t) = N(t), n 0 (s) 0 avec n 0 1 et n 0 (s) = 1; 0 + N(t) := n(s = 0, t) = p(s, N(t)) n(s, t)ds. 0 Conservation de la masse avec n(s, t) 1 Particularité Pour un choix particulier de p on peut sous certaines conditions se ramener à une équation à retard. Traiter simplement le cas des faibles interconnexions Construire explicitement des solutions périodiques dans le cas de fortes interconnexions.

9 Si Introduction: motivations et présentation du modèle Réduction à l étude d une équation à retard p(s, u) = I s σ(u), Cas des faibles interconnexions Cas avec fortes interconnexions Simulations numériques avec K = δ s=0 on peut, sous certaines conditions sur σ se ramener à une équation à retard. Proposition Supposons que alors pour tout t 0, on a Si σ m < 1, alors d (σ(n(t)) 1, dt t N(t) + N(s)ds = 1. t σ(n(t)) Il existe un unique N tq (dès que n(s, t) 1) d dt (σ(n(t)) m N = n(s)ds, σ(n) 0 < N < 1, N Lipschitz.

10 Cas des faibles interconnexions Cas avec fortes interconnexions Simulations numériques avec K = δ s=0 Théorème Soit m < 1 avec σ m tel que σ(x) σ + < 1 m N, avec N < 1 l unique état stationnaire de notre équation. Alors, on a dσ(n(t)) < 1 et, avec une dt vitesse exponentielle de convergence lim N(t) = N. t +

11 Cas des fortes interconnexions Cas des faibles interconnexions Cas avec fortes interconnexions Simulations numériques avec K = δ s=0 Approche : Chercher des candidats N(t) qui sont T -périodique. Au lieu de regarder le problème non linéaire, on regarde l équation linéaire { n(s,t) t + n(s,t) s + p ( s, N(t) ) n(s, t) = 0, t R, s 0, n(s = 0, t) = N(t). La question de l existence de solutions périodiques se réduit à trouver des conditions sur N(t) tq le problème linéaire donne une solution pour le problème non linéaire i.e. N(t) = n(s, t)ds σ(n(t)) et n(s, t)ds = 1. 0

12 Cas des faibles interconnexions Cas avec fortes interconnexions Simulations numériques avec K = δ s=0 Théorème Soit σ( ) une fonction décroissante et supposons que la fonction T -périodique N satisfait d dt σ( N(t) ) σ(n(t)) 1, 1 = N(t) + N(t s)ds. 0 Alors, la solution n(s, t) de l équation linéaire est aussi solution de l équation non linéaire On sait trouver de nombreux exemples de solutions périodiques. On ne sait pas classifier l ensemble des σ donnant des solutions périodiques

13 Exemple Introduction: motivations et présentation du modèle Cas des faibles interconnexions Cas avec fortes interconnexions Simulations numériques avec K = δ s=0 Exemple le plus simple : Pour α > 0 on définit et on choisit 0 < Nm(α) := 1 2e α 1 2α σ(x) = α ln(x) + ln(np(α)) α < Np(α) := eα 2e α 1 < 1, sur [0, Nm(α)], sur [Nm(α), Np(α)], sur [Np(α), ).

14 Simulations numériques. Cas des faibles interconnexions Cas avec fortes interconnexions Simulations numériques avec K = δ s=0

15 Simulations numériques. Cas des faibles interconnexions Cas avec fortes interconnexions Simulations numériques avec K = δ s=0

16 Simulations numériques. Cas des faibles interconnexions Cas avec fortes interconnexions Simulations numériques avec K = δ s=0

17 Simulations numériques. Cas des faibles interconnexions Cas avec fortes interconnexions Simulations numériques avec K = δ s=0

18 Simulations numériques. Cas des faibles interconnexions Cas avec fortes interconnexions Simulations numériques avec K = δ s=0

19 Equation structurée en âge Cas des réseaux faiblement interconnectés (σ petit). Cas des réseaux plus fortement interconnectés. Comparaisons lorsque K (s, u) = δ s=u/2 et K (s, u) = δ s=0 n(s, t) t n(s, t) p(s, N(t))n(s, t) = K (s, u)p(u, N(t))n(u, t)du, s 0 + n(s = 0, t) = 0, N(t) := p(s, N(t)) n(s, t)ds. 0 Hypothèses faites sur K On suppose que pour tout âge u, l ensemble des neurones qui déchargent à cet âge u reviennent tous à un âge antérieur u K (s, u)ds = 1 et K (s, u) 0 si u > s. 0 On suppose que la densité de neurones qui déchargent à l âge u et reviennent à un âge proche de u n est pas trop grand: il existe 0 θ < 1 tel que pour tout u 0, u u sk (s, u)ds θ. 0

20 Trois exemples typiques de choix de mesure K. Cas des réseaux faiblement interconnectés (σ petit). Cas des réseaux plus fortement interconnectés. Comparaisons lorsque K (s, u) = δ s=u/2 et K (s, u) = δ s=0 K (s, u) = δ s=0 : tous les neurones qui déchargent reviennent à l âge 0 quelque soit l âge où ils ont déchargé. C est le modèle le plus simple. K (s, u) = δ s=f (u) : lorsqu un neurone décharge à l âge u, il revient à un âge s fixé ne dépendant que de u et ceci quelque soit le neurone du réseau. Permet de tenir compte de la fatigue du seuil. K (s, u) non concentrée en un dirac : sur l ensemble des neurones qui déchargent à un certain âge u, tous ne reviennent pas au même âge s mais se répartissent sur toute une tranche d âge.

21 Cas des réseaux faiblement interconnectés (σ petit). Cas des réseaux plus fortement interconnectés. Comparaisons lorsque K (s, u) = δ s=u/2 et K (s, u) = δ s=0 Cas des réseaux faiblement interconnectés (σ petit). Résultat. Lorsque les interconnexions sont suffisamment faibles, les neurones tendent vers un état totalement désynchronisé. Les états totalement désynchronisés correspondent aux états stationnaires de l équation structurée en âge convergence exponentielle en norme L 1 de la solution avec poids vers l état stationnaire si σ L et la période réfractaire sont assez petites. Idée de preuve. Si les interconnections sont suffisamment faibles, on a existence et unicité de l état stationnaire (Krein-Rutman) On montre la convergence exponentielle en norme L 1 de la solution avec poids vers l état stationnaire pour des réseaux sans interconnections (équation linéaire) Par perturbation, on en déduit convergence exponentielle pour des réseaux faiblement interconnectés.

22 Idée de la preuve. Cas des réseaux faiblement interconnectés (σ petit). Cas des réseaux plus fortement interconnectés. Comparaisons lorsque K (s, u) = δ s=u/2 et K (s, u) = δ s=0 Plusieurs méthodes permettent d arriver à la convergence exponentielle vers un état stationnaire dans le cas d équations structurées avec fragmentations (voir par exemple Caniso, Caceres, Mischler). Difficultés. Noyau K qui est peu régulier La fonction p s annule Stratégie. Reprend celle de Laurençot et Perthame Montre d abord un résultat de convergence exponentielle pour x M(t, x) = (n(s, t) A(s))ds. 0 M(t, x) a l avantage de vérifier une équation dont l équation adjointe de l équation stationnaire associée a une valeur propre strictement négative avec un vecteur propre uniformément minoré. On utilise le fait que t M vérifie aussi la même équation que M, ce qui permet de réappliquer le résultat obtenu sur M pour t M et conclure que n converge exponentiellement vers A en norme L 1 avec poids.

23 Cas des réseaux plus fortement interconnectés. Cas des réseaux faiblement interconnectés (σ petit). Cas des réseaux plus fortement interconnectés. Comparaisons lorsque K (s, u) = δ s=u/2 et K (s, u) = δ s=0 Dans le cas général avec fragmentation, on ne sait pas montrer l existence de solutions périodiques. Simulations numériques afin de comparer 2 noyaux K extrêmes : K (s, u) = δ s=0 et K (s, u) = δ s=u/2 Résultats Lorsque K (s, u) = δ s=0 : construction explicite d un très grand nombre de solutions périodiques mettant en évidence l apparition de synchronisations rythmées des décharges des neurones au sein du réseau. Ces solutions sont très instables par rapport au choix de la donnée initiale. Des simulations numériques montrent que ces solutions sont robustes par perturbation des paramètres (si on régularise p, si on rajoute un petit délai..). Lorsque K (s, u) = δ s=u/2 (résultats numériques) des simulations numériques montrent que si la période réfractaire est trop petite, alors la solution tend vers un état stationnaire. Si la période réfractaire est suffisamment grande, les solutions tendent vers une solution périodique qui semble stable.

24 Cas des réseaux faiblement interconnectés (σ petit). Cas des réseaux plus fortement interconnectés. Comparaisons lorsque K (s, u) = δ s=u/2 et K (s, u) = δ s=0 Comparaisons lorsque K (s, u) = δ s=u/2 et K (s, u) = δ s=0

25 Simulations lorsque K (s, u) = δ s=u/2 Cas des réseaux faiblement interconnectés (σ petit). Cas des réseaux plus fortement interconnectés. Comparaisons lorsque K (s, u) = δ s=u/2 et K (s, u) = δ s=0

26 Simulations lorsque K (s, u) = δ s=0 Cas des réseaux faiblement interconnectés (σ petit). Cas des réseaux plus fortement interconnectés. Comparaisons lorsque K (s, u) = δ s=u/2 et K (s, u) = δ s=0

27 Modèle taille finie. On prend pour amplitude de stimulation X telle que 1 a X (t) = X(t) + N(t). On suppose que l on a un nombre fini de neurones K. Description de la dynamique pour un neurone. On prend un neurone qui reçoit un signal d entrée X. Si le temps s écoulé depuis la dernière décharge est tel que s σ(x) alors p(s, X) = 0, sinon p(s, X) = 1. Si σ(x) > s, la probabilité de décharge du neurone est nulle, sinon elle est donnée par une loi exponentielle de paramètre 1.

28 Modèle taille finie Description de la dynamique pour un neurone. Tant qu il n y a pas de décharge de neurones X vérifie l équation Au moment de la décharge, au temps t 1 X(v) = X(0)e av. X(t 1 ) = X(0)e at 1 + a/k Pour trouver le temps t 1 On tire un qui vérifie une loi exponentielle de paramètre 1. Soit µ définie par u µ(u) = I [s(0)+v>σ(x(v))] dv. 0 On prend comme temps de décharge du neurone le temps t tel que µ(t) =.

29 Modèle taille finie

30 Modèle taille finie

Equations structurées avec fragmentations et phénomènes de synchronis. synchronisation pour des réseaux de neurones COLLOQUE EDP-NORMANDIE - CAEN 2013

Equations structurées avec fragmentations et phénomènes de synchronis. synchronisation pour des réseaux de neurones COLLOQUE EDP-NORMANDIE - CAEN 2013 Equations structurées avec fragmentations et phénomènes de synchronisation pour des réseaux de neurones 24 octobre 2013 Plan Introduction: motivations et présentation du modèle Introduction : motivations

Plus en détail

Partie 1 : de la notion de stabilité

Partie 1 : de la notion de stabilité vincent.mahout@insa-toulouse.fr p. 1/21 Théorie de Lyapunov pour les Σ autonomes Partie 1 : de la notion de stabilité Vincent MAHOUT Le coupable...sergei Milkhailovich Lyapunov vincent.mahout@insa-toulouse.fr

Plus en détail

Un exemple de problème à résoudre. Introduction au calcul scientifique pour les EDP de la physique. p.4/27. La démarche de l ingénieur mathématicien

Un exemple de problème à résoudre. Introduction au calcul scientifique pour les EDP de la physique. p.4/27. La démarche de l ingénieur mathématicien Un exemple de problème à résoudre. Introduction au calcul scientifique pour les EDP de la physique. Patrick Joly INRIA-Rocquencourt Exemple: la conduction de la chaleur. Soit un domaine de R N (N =,, 3)

Plus en détail

Baccalauréat S Nouvelle-Calédonie 17 novembre 2014 Corrigé

Baccalauréat S Nouvelle-Calédonie 17 novembre 2014 Corrigé Baccalauréat S Nouvelle-Calédonie 17 novembre 014 Corrigé A. P. M. E. P. Exercice 1 Commun à tous les candidats Une fabrique de desserts glacés dispose d une chaîne automatisée pour remplir des cônes de

Plus en détail

Devoir surveillé 5 mathématiques

Devoir surveillé 5 mathématiques Devoir surveillé 5 mathématiques BCPST 205-206 Exercice. Soit t un réel strictement positif. On définit la suite ( n N par la donnée de x 0 = t et la relation de récurrence : n N, + =.. (a Soit g la fonction

Plus en détail

Séance 2 : Exercices corrigés FONCTIONS CONVEXES

Séance 2 : Exercices corrigés FONCTIONS CONVEXES Mathématiques 2 1 Séance 2 : Exercices corrigés FONCTIONS CONVEXES Question 1 Un circuit électrique : exemple de système non linéaire Montrer que les lois de Kirchhoff (la somme des intensités arrivant

Plus en détail

Analyse Numérique Equations différentielles ordinaires

Analyse Numérique Equations différentielles ordinaires 1 Master Mathématiques et Applications 1ère année Aix-Marseille Université Année 2010-2011 Analyse Numérique Equations différentielles ordinaires Exercice 1 Résoudre les équations différentielles suivantes

Plus en détail

TD 3 et 4 : Processus à temps discret et Martingales

TD 3 et 4 : Processus à temps discret et Martingales 2009 - Université Paris VI Master 1 : Introduction au calcul stochastique pour la finance (MM054) TD 3 et 4 : Processus à temps discret et Martingales 1. Questions basiques sur les filtrations 1. Une union

Plus en détail

FONCTIONS DE PLUSIEURS VARIABLES : CALCUL DIFFÉRENTIEL

FONCTIONS DE PLUSIEURS VARIABLES : CALCUL DIFFÉRENTIEL Chapitre 15 : FONCTIONS DE PLUSIEURS VARIABLES : CALCUL DIFFÉRENTIEL ECS2 Lycée La Bruyère, Versailles Année 2013/2014 1 Objets du calcul différentiel du premier ordre 2 1.1 Dérivées partielles et gradient..................................

Plus en détail

Chapitre 1 : Introduction à la commande optimale

Chapitre 1 : Introduction à la commande optimale Chapitre 1 : Introduction à la commande optimale 1- Objet de la commande optimale Pour introduire la notion de commande optimale, considérons l exemple suivant : Pour arrêter la rotation d un rotor tournant

Plus en détail

Chapitre 4 Equations différentielles couplées

Chapitre 4 Equations différentielles couplées Université Joseph Fourier UE MAT 127 Mathématiques année 2009-2010 Chapitre 4 Equations différentielles couplées 1 Champs de vecteurs et trajectoires : 1.1 Définitions : Définition 1.1 Un champ de vecteurs

Plus en détail

TERMINALE S Chapitre 1 : Les suites

TERMINALE S Chapitre 1 : Les suites Généralités 1. Mode de génération ( ) ( ) La La ( ) définie par ( ) définie par 2. Monotonie REMARQUE5 Si une suite ( ) est définie de maniére explicite telle que ( ) suivent celles de f =f(n) pour tout

Plus en détail

Cours 5: Inférences: Estimation, Echantillonnage et Tests

Cours 5: Inférences: Estimation, Echantillonnage et Tests Cours 5: Inférences:, Echantillonnage et Laboratoire de Mathématiques de Toulouse Université Paul Sabatier-IUT GEA Ponsan Module: Stat inférentielles Cours 5: Inférences:, Echantillonnage et 1 Les divers

Plus en détail

Cours d analyse - Résumé sur les suites 2015/2016

Cours d analyse - Résumé sur les suites 2015/2016 Cours d analyse - Résumé sur les suites 2015/2016 CPUS I. Les suites numériques I.1. Premières définitions. Définition. Une suite réelle est une fonction dont l ensemble de départ est une partie de N du

Plus en détail

Méthodes numériques de résolution d équations différentielles

Méthodes numériques de résolution d équations différentielles Méthodes numériques de résolution d équations différentielles Motivation. Quelques exemples de problèmes différentiels Modèle malthusien de croissance de population Modélisation de l évolution d une population

Plus en détail

Chapitre 5 ESTIMATION ET INTERVALLES DE CONFIANCE

Chapitre 5 ESTIMATION ET INTERVALLES DE CONFIANCE Thierry Foucart 1 http://foucart.thierry.free.fr Chapitre 5 ESTIMATION ET INTERVALLES DE CONFIANCE 1. DES PROBABILITÉS À LA STATISTIQUE. hypothèse intuitive élaborée à partir d expériences diverses : convergence

Plus en détail

Fiche de cours 2 - Suites de réels.

Fiche de cours 2 - Suites de réels. Licence de Sciences et Technologies EM1 - Analyse Fiche de cours - Suites de réels. Généralités sur les suites. Définition : Une suite est une fonction u : N R, définie à partir dun certain rang au moins.

Plus en détail

Etude théorique d équation d ordre 2

Etude théorique d équation d ordre 2 [http://mp.cpgedupuydelome.fr] édité le 16 octobre 2015 Enoncés 1 Etude théorique d équation d ordre 2 Eercice 1 [ 01555 ] [Correction] Soit q : R R + une fonction continue non nulle. On se propose de

Plus en détail

(exemple texte session 2006)

(exemple texte session 2006) Agrégation externe de mathématiques, session 2007 Épreuve de modélisation, option (exemple texte session 2006) Résumé : On se propose ici de modéliser le trafic routier en identifiant chaque véhicule à

Plus en détail

Exercice n 114 page 128

Exercice n 114 page 128 Jeudi 28 Février 2013 DM de Maths Exercice n 114 page 128 1) a) Voir papier millimétré 1) b) D après la représentation graphique des premiers termes de la suite (u n ), on peut conjecturer qu elle est

Plus en détail

Contrôle des connaissances du cours «Méthodes de traitement des données» du DEA de Strasbourg. Corrigé

Contrôle des connaissances du cours «Méthodes de traitement des données» du DEA de Strasbourg. Corrigé Contrôle des connaissances du cours «Méthodes de traitement des données» du DEA de Strasbourg. Corrigé Le jeudi 28 janvier 1999 de 10h 30à 12h30 à l Observatoire de Strasbourg. Le contrôle est noté sur

Plus en détail

Fonction exponentielle

Fonction exponentielle Fonction exponentielle 1 Fonction exponentielle Définition et variation Théorème Définition Il existe une unique fonction définie et dérivable sur telle que et Cette fonction est appelée fonction exponentielle

Plus en détail

CONCOURS ESIM FILIERE MP MATHEMATIQUES 2. + (puisque α n est pas entier) απ α 2 n 2 cos(nx). Maintenant, g est de classe C 1 par morceaux.

CONCOURS ESIM FILIERE MP MATHEMATIQUES 2. + (puisque α n est pas entier) απ α 2 n 2 cos(nx). Maintenant, g est de classe C 1 par morceaux. SESSION CONCOURS ESIM FILIERE MP MATHEMATIQUES Préliminaire - Quand t tend vers, ft) t t t =. Par suite, f est prolongeable par continuité en. f étant d autre part continue / sur ], ], f est intégrable

Plus en détail

Rappels de théorie des probabilités

Rappels de théorie des probabilités Rappels de théorie des probabilités 1. modèle probabiliste. 1.1. Univers, événements. Soit un ensemble non vide. Cet ensemble sera appelé l univers des possibles ou l ensemble des états du monde. Dans

Plus en détail

RFIDEC cours 3 : Intervalles de confiance, tests d hypothèses, loi du χ 2

RFIDEC cours 3 : Intervalles de confiance, tests d hypothèses, loi du χ 2 RFIDEC cours 3 : Intervalles de confiance, tests d hypothèses, loi du χ 2 Christophe Gonzales LIP6 Université Paris 6, France Plan du cours n 3 RFIDEC cours 3 : Intervalles de confiance, tests d hypothèses,

Plus en détail

Analyse en composantes principales en météorologie & en mécanique des fluides

Analyse en composantes principales en météorologie & en mécanique des fluides Analyse en composantes principales en météorologie & en mécanique des fluides O.Pannekoucke Météo-France/ CNRS, CNRM/GAME, URA 357 ISAE Séminaire CPGE 9- Mai 0, oulouse Problématique : pourquoi chercher

Plus en détail

EABJM Bac Blanc Novembre 2009 MATHÉMATIQUES

EABJM Bac Blanc Novembre 2009 MATHÉMATIQUES EABJM Bac Blanc Novembre 2009 MATHÉMATIQUES Terminales S - S2 N. Chiffot S. Coursaget J. Giovendo Durée : 4 heures. Nombre de pages : 7. L utilisation de la calculatrice est autorisée. Corrigé TS - TS2

Plus en détail

Alexandre Popier. ENSAI, Bruz. apopier. Janvier-Mars 2011

Alexandre Popier. ENSAI, Bruz.  apopier. Janvier-Mars 2011 CHAÎNES DE MARKOV. Alexandre Popier ENSAI, Bruz apopier@univ-lemans.fr http://www.univ-lemans.fr/ apopier Janvier-Mars 2011 A. Popier (ENSAI) Chaînes de Markov. Janvier-Mars 2011 1 / 51 PLAN 1 INTRODUCTION

Plus en détail

Méthodes de points intérieurs pour la programmation linéaire

Méthodes de points intérieurs pour la programmation linéaire Cinquième partie Méthodes de points intérieurs pour la programmation linéaire 4 Notions de base Introduction L algorithme du simplexe n est pas un algorithme polynomial pour la programmation linéaire.

Plus en détail

TD 3: Suites réelles

TD 3: Suites réelles Université Pierre et Marie Curie Année 2011/2012 LM115 TD 3: Suites réelles MIME Convergence des suites : Par définition, une suite (u n ) converge vers un réel l si : Pour tout ɛ réel strictement positif,

Plus en détail

Baccalauréat S Centres étrangers 10 juin 2015

Baccalauréat S Centres étrangers 10 juin 2015 Corrigé Baccalauréat S Centres étrangers 10 juin 015 A. P. M. E. P. Exercice 1 Commun à tous les candidats 4 points Partie A 1. On a p = 0, 0 et n = 500. Un intervalle de fluctuation au seuil de 95 % est

Plus en détail

COMPLÉMENTS SUR LES VARIABLES ALÉATOIRES RÉELLES, VARIABLES À DENSITÉ

COMPLÉMENTS SUR LES VARIABLES ALÉATOIRES RÉELLES, VARIABLES À DENSITÉ Chapitre 8 : COMPLÉMENTS SUR LES VARIABLES ALÉATOIRES RÉELLES, VARIABLES À DENSITÉ ECS2 Lycée La Bruyère, Versailles Année 2015/2016 1 Généralités sur les variables aléatoires réelles 2 1.1 Généralités.............................................

Plus en détail

Des outils pour les suites

Des outils pour les suites Des outils pour les suites Suites arithmético-géométriques Définition : ppelle suite arithmético-géométrique toute suite récurrente de la forme : où a et b sont des nombres réels. Quelques cas particuliers

Plus en détail

Master MASS 1 Calcul Stochastique et Finance Feuille de T.D. n o 4

Master MASS 1 Calcul Stochastique et Finance Feuille de T.D. n o 4 Master MASS Calcul Stochastique et Finance Feuille de T.D. n o 4 Corrigé Dans ces exercices, W désignera toujours un processus de Wiener brownien standard. Soient s et t deux réels positifs. Montrer que

Plus en détail

Université Paris-Dauphine Ceremade. Introduction aux méthodes particulaires. François BOLLEY

Université Paris-Dauphine Ceremade. Introduction aux méthodes particulaires. François BOLLEY Université Paris-Dauphine Ceremade o Introduction aux méthodes particulaires o François BOLLEY I - Les équations d Euler incompressibles : modèle macroscopique, particules déterministes II - L équation

Plus en détail

Suites logistiques Algorithme

Suites logistiques Algorithme DERNIÈRE IMPRESSION LE 17 octobre 2015 à 10:11 Suites logistiques Algorithme 1 Définition et propriétés Définition 1 : Une suite logistique (u n ) est une suite définie sur N par : u 0 [0 ; 1] et u n+1

Plus en détail

Type bac janvier Corrigé

Type bac janvier Corrigé Exercice (Métropole 24) Commun à tous les élèves Type bac janvier 27 - Corrigé Partie A ) L image de par la fonction f est : f () +e. Le point d abscisse sur la courbe C, représentative de la fonction

Plus en détail

Statistiques - Ajustement de courbes

Statistiques - Ajustement de courbes Statistiques - Ajustement de courbes 1 Rappels de Statistiques 1.1 Moyenne, variance, écart-type Soit une série statistique : x 1, x 2, x n (n valeurs) Moyenne x = 1 n x i n i=1 Somme des carrés des écarts

Plus en détail

Exercice. dont le dénominateur ne s annule pas. Donc I(r) est bien définie. 2 Posons: u = Ze it r convergence de n 0u n et l égalité

Exercice. dont le dénominateur ne s annule pas. Donc I(r) est bien définie. 2 Posons: u = Ze it r convergence de n 0u n et l égalité Corrigé de la première épreuve de l ENSIETA 96 Exercice f, étant la somme d une série entière de rayon de convergence R, est continue sur le disque ouvert de centre O, et de rayon R. On en déduit que l

Plus en détail

Estimation. Intervalle de confiance d une espérance d une loi de Gauss On se place dans le cas où X suit une loi N(m, σ) avec σ connu et m inconnu.

Estimation. Intervalle de confiance d une espérance d une loi de Gauss On se place dans le cas où X suit une loi N(m, σ) avec σ connu et m inconnu. Filière E Denis Pasquignon Résumé du cours :. l échantillonnage Estimation On appelle échantillon aléatoire de taille n la donnée de n variables aléatoires X,..., X n définies sur un espace probabilisé

Plus en détail

Contrôle stochastique sur un processus de naissance et mort

Contrôle stochastique sur un processus de naissance et mort Contrôle stochastique sur un processus de naissance et mort Equipe-projet TOSCA, INRIA Sophia Antipolis 7 juin 2011 Motivations Mettre en place une théorie du contrôle stochastique pour les processus de

Plus en détail

4.3 Processus de Poisson non-homogène

4.3 Processus de Poisson non-homogène L3 MIS 4.3 Processus de Poisson non-homogène Un processus de Poisson est dit non-homogène lorsque son intensité dépend du temps. Les postulats précédents deviennent : (i) P(N(t+ h) N(t)= N(t)= x)=λ(t)h+

Plus en détail

Corrigé du baccalauréat ES/L Amérique du Sud 17 novembre 2014

Corrigé du baccalauréat ES/L Amérique du Sud 17 novembre 2014 Corrigé du baccalauréat ES/L Amérique du Sud 17 novembre 201 A. P. M. E. P. Exercice 1 Commun à tous les candidats Une bibliothèque municipale dispose pour ses usagers de deux types de livres : les livres

Plus en détail

Chapitre 19. Echantillonnage. Estimation

Chapitre 19. Echantillonnage. Estimation Chapitre 9. Echantillonnage. Estimation Ce chapitre ne peut en aucun cas être étudié si on n a pas d abord étudié le chapitre 6 sur la loi binomiale et le chapitre 8 sur la loi normale. Les différentes

Plus en détail

Sous-variétés de R n. Chapitre 9

Sous-variétés de R n. Chapitre 9 Chapitre 9 Sous-variétés de R n Après avoir considéré des fonctions définies sur des intervalles de R (autrement dit des morceaux de droites) puis sur des morceaux de plans ou d espaces de dimensions quelconques,

Plus en détail

Statistique : Intervalles de confiance et tests

Statistique : Intervalles de confiance et tests Statistique : Intervalles de confiance et tests Joseph Salmon Septembre 2014 Intervalle de confiance Contexte : on a une estimation ĝ(y 1,..., y n ) d une grandeur g(θ). On veut un intervalle Î autour

Plus en détail

Fonctions trigonométriques

Fonctions trigonométriques Fonctions trigonométriques Jérôme Germoni Novembre 2 Première étude : par équation différentielle.. Définition On s inspire de la définition de l exponentielle vue en terminale. Théorème (admis) Il existe

Plus en détail

u n lim S n (2) n=0 u n = ± quand lim n S n = ±. u n, ou n N u n si n 0 = 1.

u n lim S n (2) n=0 u n = ± quand lim n S n = ±. u n, ou n N u n si n 0 = 1. Chapitre III Séries III.a. Introduction Définition 31 (série) Soit (u n ) une suite de N dans un K-espace vectoriel normé E. La somme partielle S n = u 0 + u 1 + u 2 + + u n (1) définit une nouvelle suite,

Plus en détail

... quelques éléments

... quelques éléments vincent.mahout@insa-toulouse.fr p. 1/25 Théorie de Lyapunov pour les Σ non linéaires non autonome... quelques éléments Vincent MAHOUT vincent.mahout@insa-toulouse.fr p. 2/25 Où est le problème? Que se

Plus en détail

Chapitre 02 : Séries numériques

Chapitre 02 : Séries numériques Chapitre 02 : Séries numériques Introduction : La théorie des séries à pour but de donner si possible un sens à la somme d une infinité de nombres. Supposons que l on dispose d un gâteau et d un couteau

Plus en détail

Une condition nécessaire de convergence Considérons une série de terme général. Supposons cette série convergente. Soit sa somme.

Une condition nécessaire de convergence Considérons une série de terme général. Supposons cette série convergente. Soit sa somme. Séries numériques I) Définitions - Notions essentielles.) Séries numériques Définition Soit une suite numérique. On appelle série de terme général la suite dont les termes successifs sont : ₀ ₀ ₁ ₀ ₁ ₂

Plus en détail

Simulation numérique, contexte

Simulation numérique, contexte Introduction à la Simulation Numérique Jérémie Gressier Septembre 21 1 / 41 Plan 1 Présentation 2 Différences Finies 3 Intégration d un problème de Cauchy 4 Conclusion 2 / 41 Simulation numérique, contexte

Plus en détail

Chapitre II Oscillations libres amorties des systèmes à un seul degré

Chapitre II Oscillations libres amorties des systèmes à un seul degré Chapitre II Oscillations libres amorties des systèmes à un seul degré de liberté 1. Introduction : Oscillations libres amortis des mouvements oscillatoires dont l amplitude diminue au cours du temps jusqu

Plus en détail

Introduction à la théorie des probabilités

Introduction à la théorie des probabilités CHAPITRE I Introduction à la théorie des probabilités 1. Rappels sur les espaces probabilisés Les éléments ci-dessous ne sont que brièvement rappelés car ils sont normalement traités dans un cours d intégration.

Plus en détail

stochastique Arnaud Debussche 1 and Julien Vovelle 2 Congrès SMAI 2011 Limite diffusive d une équation cinétique

stochastique Arnaud Debussche 1 and Julien Vovelle 2 Congrès SMAI 2011 Limite diffusive d une équation cinétique Limite diffusive d une équation cinétique stochastique Arnaud Debussche 1 and Julien Vovelle 2 Congrès SMAI 2011 1 U. Rennes, ENS Cachan Bretagne 2 U. Lyon 1 Une équation cinétique stochastique Soit (V,

Plus en détail

Chapitre 4: Fonctions génératrices (notions)

Chapitre 4: Fonctions génératrices (notions) Chapitre 4: Fonctions génératrices (notions) 1 Généralités On considère ici le cas particulier des v.a. à valeurs dans l ensemble N des entiers naturels. Ces v.a. interviennent souvent dans les applications.

Plus en détail

Feuille d exercices de Théorie des Jeux. Alexandre Marino

Feuille d exercices de Théorie des Jeux. Alexandre Marino Feuille d exercices de Théorie des Jeux Alexandre Marino 1 1 Equilibre de Nash Exercice 1. Etudier les équilibres purs des jeux matriciels suivants : ( ) 2, 1 0, 0 1. Bach ou Stravinsky : 0, 0 1, 2 ( )

Plus en détail

Estimation, Échantillonnage et Tests

Estimation, Échantillonnage et Tests Estimation, Échantillonnage et Tests H. Hocquard HSE 2016-2017 Hervé Hocquard Estimation, Échantillonnage et Tests 1/60 Introduction : les 3 grandes lignes Les statistiques peuvent permettre : Hervé Hocquard

Plus en détail

Traitement du Signal Compte Rendu TP 5 : Filtre RC

Traitement du Signal Compte Rendu TP 5 : Filtre RC Traitement du Signal Compte Rendu TP 5 : Filtre EE345 Traitement du Signal : CAILLOL Julien p28 IR 6/juin I ) ère partie Nous allons ici étudier la chaîne de traitement numérique associée au montage électrique

Plus en détail

Chapitre I : Atome d hydrogène et notion de mécanique quantique

Chapitre I : Atome d hydrogène et notion de mécanique quantique Chapitre I : Atome d hydrogène et notion de mécanique quantique Plan : ********************** II- INTRODUCTION DES NOTIONS FONDAMENTALES DE MECANIQUE QUANTIQUE... 3 1- Rappels sur l atome et présentation

Plus en détail

Préparation au CAPES (IUFM/ULP) Strasbourg, octobre 2007

Préparation au CAPES (IUFM/ULP) Strasbourg, octobre 2007 Préparation au CAPES (IUFM/ULP) Strasbourg, octobre 2007 Corrigé en janvier 2009 Rapidité de convergence d une suite réelle L objectif de ce texte est de se donner des outils pour «mesurer» la rapidité

Plus en détail

Corrigé du baccalauréat S Liban 31 mai 2016

Corrigé du baccalauréat S Liban 31 mai 2016 Corrigé du baccalauréat S Liban 3 mai 6 Exercice points Commun à tous les candidats A. P. M. E. P.. a) Le triangle AI E est rectangle en I. Par le théorème de Pythagore, on en déduit E I = AE AI. D autre

Plus en détail

Comprendre la finance stochastique Capitalisation stochastique 1

Comprendre la finance stochastique Capitalisation stochastique 1 Comprendre la finance stochastique Capitalisation stochastique 1 Première session Comprendre la mathématique sousjacente à la finance stochastique Modélisation d actifs boursiers au moyen de mouvements

Plus en détail

COMPLÉMENTS SUR LES VARIABLES ALÉATOIRES RÉELLES, VARIABLES À DENSITÉ

COMPLÉMENTS SUR LES VARIABLES ALÉATOIRES RÉELLES, VARIABLES À DENSITÉ Chapitre 8 : COMPLÉMENTS SUR LES VARIABLES ALÉATOIRES RÉELLES, VARIABLES À DENSITÉ ECS2 Lycée La Bruyère, Versailles Année 2013/2014 1 Généralités sur les variables aléatoires réelles 2 1.1 Généralités.............................................

Plus en détail

Devoir Surveillé /Evaluation

Devoir Surveillé /Evaluation Lycée Pierre-Gilles de Gennes BCPST Mathématiques 4-5 Devoir Surveillé /Evaluation Le 4 septembre 4 Documents écrits, électroniques, calculatrices et téléphones portables interdits La plus grande attention

Plus en détail

Université Denis Diderot Paris 7 ( ) Devoir maison 2

Université Denis Diderot Paris 7 ( ) Devoir maison 2 Université Denis Diderot Paris 7 (03-04) Maths, Agro & Véto Devoir maison Exercice [Sujet Analyse 03] Soit la fonction d une variable réelle f définie sur D = [0,+ [ par f(x) = xe x +x. On appelle Cf la

Plus en détail

Plan Général du Cours Stabilité des structures

Plan Général du Cours Stabilité des structures 1 Plan Général du Cours Stabilité des structures Définition de la stabilité, bifurcation Système à un degré de liberté Système à nombre fini de ddls Extension au continu (interface fluide,...) Applications

Plus en détail

Cours d Analyse I : les réels et les fonctions

Cours d Analyse I : les réels et les fonctions Introduction à R Suites numériques Cours d Analyse I : les réels et les fonctions Université Lyon 1 Institut Camille Jordan CNRS UMR 5208 FRANCE Automne 2014 - Licence L1 Introduction à R Suites numériques

Plus en détail

METHODE DU PIVOT DE GAUSS

METHODE DU PIVOT DE GAUSS METHODE DU PIVOT DE GAUSS La méthode du pivot de Gauss permet la résolution générale des systèmes d équations linéaires à n équations et p inconnues Elle s utilise notamment pour leur résolution numérique

Plus en détail

Convergence des suites

Convergence des suites Convergence des suites Cours maths Terminale S Dans ce module consacré à l étude de la convergence d une suite, on commence par redéfinir rigoureusement la notion de limite finie d une suite. Ensuite,

Plus en détail

Chaînes de Markov (et applications)

Chaînes de Markov (et applications) Chaînes de Markov (et applications) Raphael Lachieze-Rey 25 avril 2016 M1 Paris Descartes. Table des matières 1 Chaînes de Markov homogènes 2 1.1 Eemples et définitions....................... 2 1.2 Loi

Plus en détail

Sujet Asie 2013 EXERCICE 1. [5 pts] Probabilités

Sujet Asie 2013 EXERCICE 1. [5 pts] Probabilités Sujet Asie 203 EXERCICE. [5 pts] Probabilités Dans cet exercice, les probabilités seront arrondies au centième. Partie A Une grossiste achète des boîtes de thé chez deux fournisseurs. Il achète 80% de

Plus en détail

Comment faut-il enseigner les fonctions logarithme et exponentielle?

Comment faut-il enseigner les fonctions logarithme et exponentielle? Comment faut-il enseigner les fonctions logarithme et exponentielle? A. El Kacimi Dans les manuels récents de Terminale (c est ce qui figure aussi dans les programmes officiels) la fonction logarithme

Plus en détail

Par Jean-Christophe Yoccoz

Par Jean-Christophe Yoccoz Une erreur féconde du mathématicien Henri Poincaré, Par Jean-Christophe Yoccoz UPJV, Amiens, le 8 février 2012 Préconférence par Véronique Martin, Samuel Petite, Emmanuelle Sebert, Barbara Schapira, Gabriel

Plus en détail

Exercices : Fonctions Dérivables

Exercices : Fonctions Dérivables Exercices : Fonctions Dérivables Exercice Déterminez l ensemble de dérivabilité des fonctions suivantes et calculez leur dérivée. ) f : x x 2 + x 2 2) f : x x + cos( x ) 3) f : x arctan( xe x ) 4) f :

Plus en détail

Variables aléatoires réelles

Variables aléatoires réelles Variables aléatoires réelles Table des matières 1 Généralités sur les variables aléatoires réelles. 3 1.1 Rappels sur les σ-algèbres ou tribus d événements................................. 3 1.2 σ-algèbre

Plus en détail

COMMANDE DE PROCESSUS INTRODUCTION À LA COMMANDE DE PROCESSUS DOCUMENT DE SYNTHÈSE

COMMANDE DE PROCESSUS INTRODUCTION À LA COMMANDE DE PROCESSUS DOCUMENT DE SYNTHÈSE COMMANDE DE PROCESSUS INTRODUCTION À LA COMMANDE DE PROCESSUS DOCUMENT DE SYNTHÈSE Ressources pédagogiques : http://cours.espci.fr/cours.php?id=159397 Forum aux questions : https://iadc.info.espci.fr/bin/cpx/mforum

Plus en détail

Convergence de suites. Suites récurrentes

Convergence de suites. Suites récurrentes Convergence de suites Les suites dont on donne ci-dessous le terme général sont-elles convergentes? cos n + 3n a) ln n + 2n g) sin n n b) 4n 2 + 5n + 6 2n c) en n h) 2 n ( 1) n n 2 d) sin n e n e) n 1

Plus en détail

1.2 Notions de conductivité et de conservation

1.2 Notions de conductivité et de conservation Modélisation d un phénomène de diffusion J. Erhel Janvier 2014 1 Phénomène de diffusion voir http://www.breves-de-maths.fr/la-conduction-un-moteur-universel/ 1.1 Exemples de diffusion Le phénomène de diffusion

Plus en détail

COURS MA103. Introduction aux équations aux dérivées partielles hyperboliques et à leur discrétisation par différences finies.

COURS MA103. Introduction aux équations aux dérivées partielles hyperboliques et à leur discrétisation par différences finies. COURS MA103 Introduction aux équations aux dérivées partielles hyperboliques et à leur discrétisation par différences finies Patrick Joly 1 Equation aux dérivées partielles : équation dont l inconnue est

Plus en détail

Corrigé du baccalauréat S (spécialité) Polynésie 9 septembre 2015

Corrigé du baccalauréat S (spécialité) Polynésie 9 septembre 2015 Corrigé du baccalauréat S spécialité) Polynésie 9 septembre 015 A. P. M. E. P. EXERCICE 1 Commun à tous les candidats 7 points Partie A 1. Soit u le nombre complexe 1 i. u = 1 + 1) = ; donc u= 1 1 ) i

Plus en détail

MASTER M2 E.D.P. ET ANALYSE NUMERIQUE UNIVERSITE PARIS 6 - ECOLE POLYTECHNIQUE Cours de G. Allaire, Homogénéisation 13 Janvier 2011 (3 heures)

MASTER M2 E.D.P. ET ANALYSE NUMERIQUE UNIVERSITE PARIS 6 - ECOLE POLYTECHNIQUE Cours de G. Allaire, Homogénéisation 13 Janvier 2011 (3 heures) MASTER M2 E.D.P. ET ANALYSE NUMERIQUE UNIVERSITE PARIS 6 - ECOLE POLYTECHNIQUE Cours de G. Allaire, Homogénéisation 13 Janvier 2011 (3 heures On attachera le plus grand soin à la rédaction et à la présentation

Plus en détail

Notes du cours RFIDEC (5)

Notes du cours RFIDEC (5) 1 Notes du cours RFIDEC (5) Jean-Yves Jaffray 20 janvier 2006 1 Classification non-paramétrique : la méthode des k plus proches voisins 1.1 Introduction Lorsque nous avons fait des hypothèses probabilistes

Plus en détail

Multiplicateurs de Lagrange

Multiplicateurs de Lagrange Analyse numérique et optimisation TD5 27/05/204 A. Ern et A. de Bouard Groupes 5 & 2 Multiplicateurs de Lagrange Exercice : optimisation quadratique sous contraintes affines On pose V = R n et on considère

Plus en détail

THERMODYNAMIQUE-DIFFUSION

THERMODYNAMIQUE-DIFFUSION Spé y 3-4 Devoir n THERMODYNAMIQUE-DIFFUSION On étudie la compression ou la détente d un ga enfermé dans un récipient. Lorsque le bouchon se déplace, le volume V occupé par le ga varie. L atmosphère est

Plus en détail

Les suites numériques

Les suites numériques Les suites numériques chapitre 4 I Premier regard Définition : suite numérique Une suite numérique est une liste de nombres réels, numérotés généralement par des indices, entiers naturels consécutifs 0,

Plus en détail

Chapitre 3: Les séries de Fourier

Chapitre 3: Les séries de Fourier Chapitre 3: Les séries de Fourier 6 février 008 1 La base hilbertienne trigonométrique 1.1 L espace de Hilbert L ([, π]) Soit L ([, π]) l espace des fonctions f : [, π] C mesurables au sens de Lebesgue

Plus en détail

Corrigé - Baccalauréat S Métropole La Réunion 12 septembre 2016

Corrigé - Baccalauréat S Métropole La Réunion 12 septembre 2016 Corrigé - Baccalauréat S Métropole La Réunion septembre 6 A. P. M. E. P. EXERCICE COMMUN À TOUS LES CANDIDATS 6 POINTS Partie On estime qu en la population mondiale est composée de 4,6 milliards de personnes

Plus en détail

Cours de terminale S Suites numériques

Cours de terminale S Suites numériques 0 - - de terminale S Suites s LPO de Chirongui 20 mai 2016 1 - Introduction- Introduction Principe de récurrence Exemple En Mathématiques, un certain nombre de propriétés dépendent d un entier naturel

Plus en détail

Séries de fonctions ( ) ( )

Séries de fonctions ( ) ( ) Séries de fonctions Exercice 1. On considère la série de fonctions 1. Etudier la convergence simple de cette série sur [ [. 2. Etudier la convergence uniforme de cette série sur [ ] où ] [. 3. Etudier

Plus en détail

Reconnaissance de forme: Rappels de probabilités et de statistiques

Reconnaissance de forme: Rappels de probabilités et de statistiques Reconnaissance de forme: Rappels de probabilités et de statistiques 1 er février 2010 Plan 1 Introduction : pourquoi des probabilités? 2 Notions de probabilités 3 Statistiques et estimation Introduction

Plus en détail

Ondes dans un plasma peu dense, en l absence ou en présence d un champ magnétique stationnaire.

Ondes dans un plasma peu dense, en l absence ou en présence d un champ magnétique stationnaire. Ondes dans un plasma peu dense, en l absence ou en présence d un champ magnétique stationnaire. L équation du mouvement d un électron libre dans l ionosphère soumise aux champs électrique E et magnétique

Plus en détail

Corrigé du bac S Antilles-Guyane juin 2014

Corrigé du bac S Antilles-Guyane juin 2014 orrigé du bac S Antilles-Guyane juin 204 EXERIE ommun à tous les candidats Partie A 5 points. a. L arbre pondéré est le suivant : 0,80 0,85 J 0,20 0,5 J 0,0 b. D après l arbre : 0,90 ( ) p J = 0,5 0,0=0,05.

Plus en détail

Introduction. 1 Rappel sur les suites de Cauchy. Arthur LANNUZEL http ://mathutbmal.free.fr

Introduction. 1 Rappel sur les suites de Cauchy. Arthur LANNUZEL http ://mathutbmal.free.fr 1 le 30 Septembre 2010 UTBM MT26 Arthur LANNUZEL http ://mathutbmal.free.fr Séries numériques Introduction. Une série est la somme des termes d une suite. Mais la théorie des séries n est pas qu une simple

Plus en détail

Recherche de régions génomiques conservées

Recherche de régions génomiques conservées Recherche de régions génomiques conservées Modèle mathématique et test statistique S. Grusea, E. Pardoux 1 V. Lopez Rascol, P. Pontarotti 2 1 L.A.T.P., Centre de Mathématique et d Informatique Université

Plus en détail

Suites - Récurrence 10X. 2 quiselit:sommedes 2 pouriallantde1à10vaut:

Suites - Récurrence 10X. 2 quiselit:sommedes 2 pouriallantde1à10vaut: Suites - Récurrence 1. Définitions - Rappels 1.1.Modes de définition d une suite La suite 0 =0 1 = =4 3 =6 peut être définiededeuxmanières: Définition explicite : ½ = Définition récurrente : 0 =0 +1 =

Plus en détail

DNS. Roues. Sujet. I. Roue soumise à un couple de freinage. G.P. DNS10 Décembre 2012

DNS. Roues. Sujet. I. Roue soumise à un couple de freinage. G.P. DNS10 Décembre 2012 DNS Sujet Roues...1 I.Roue soumise à un couple de freinage...1 II.Roue sur un tapis roulant incliné...2 III.Expérience de Timochenko...2 Roues I. Roue soumise à un couple de freinage 1. Rappel sur la notion

Plus en détail

Feuille TD n 1 : Calcul approché

Feuille TD n 1 : Calcul approché Feuille TD n : Calcul approché Exercice. Convertir (.) 2 en hexadécimal, octal et décimal. Exercice 2. Proposer une méthode pour éviter la perte de précision dans les calculs suivants :. e x sin(x) cos(x)

Plus en détail

Le sujet comporte 8 pages numérotées de 2 à 9. Il faut choisir et réaliser seulement trois des quatre exercices proposés EXERCICE I

Le sujet comporte 8 pages numérotées de 2 à 9. Il faut choisir et réaliser seulement trois des quatre exercices proposés EXERCICE I Le sujet comporte 8 pages numérotées de à 9 Il faut choisir et réaliser seulement trois des quatre exercices proposés EXERCICE I Donner les réponses à cet exercice dans le cadre prévu à la page 3 Une enquête

Plus en détail

démonstrations exigibles au baccalauréat

démonstrations exigibles au baccalauréat démonstrations exigibles au baccalauréat fonction exponentielle (1/2) propriété : Il existe une unique fonction dérivable sur telle que ' = et (0) = 1 1 L'existence de la fonction est admise conformément

Plus en détail