Phénomènes de synchronisation/désynchronisation pour des modèles de. de réseaux de neurones structurés avec fragmentation

Dimension: px
Commencer à balayer dès la page:

Download "Phénomènes de synchronisation/désynchronisation pour des modèles de. de réseaux de neurones structurés avec fragmentation"

Transcription

1 Phénomènes de synchronisation/désynchronisation pour des modèles de réseaux de neurones structurés avec fragmentation IJM, Université Paris-Diderot. 23 janvier 2014

2 Plan Introduction: motivations et présentation du modèle Introduction : motivations et présentation du modèle. Etude du cas sans fragmentation Modèle taille finie

3 Introduction Les neurones sont des cellules nerveuses excitables spécialisées dans la communication intercellulaire. En particulier les neurones assurent la réception des informations, des signaux en provenance de l environnement ou de l intérieur même du corps humain, le traitement des informations, la transmission d informations à d autres neurones ou bien aux cellules musculaires.

4 Introduction: motivations et pre sentation du mode le Mode le taille finie : cas sans fragmentations Introduction Formation de ve ritables re seaux apparition de phe nome nes de synchronisation de de charges de neurones plus ou moins rythme es avec une fre quence plus ou moins grande jouent un ro le important dans les fonctions motrices, perceptives et cognitives de l e tre humain. Khashayar Pakdaman, Benoı t Perthame, Delphine Salort Phe nome nes de synchronisation/de synchronisation pour des mode les de

5 Introduction Objectif Etudier d un point de vue théorique, via un nouveau modèle proposé par K. Pakdaman, les mécanismes sous-jacents aux phénomènes de synchronisation/désynchronisation de décharges de neurones en fonction de la force des interconnexions qui lient les neurones entre eux. Plusieurs modèles d EDP classiques existent afin d étudier les phénomènes de synchronisation 1. Le modèle de Wilson-Cowan : porte sur la proportion de neurones excitateurs et inhibiteurs qui déchargent au cours du temps; font intervenir des équations de type intégro-différentielles. 2. Le modèle Integrate and Fire : dynamique décrite à travers le potentiel de membrane des neurones (Brunel, Cáceres, Carillo, Hakim, Perthame, Delarue, Inglis, Rubenthale, Tanré, Dumont...). 3. Les modèles de Kuramoto : oscillateurs couplés entre eux ( Acebron, Bonilla, Bertini, Giacomin, Lucon, Pakdaman, Pellegrin, Perez, Ritort, Spigler...) 4. Le modèle cinétique type Fokker-Planck : dynamique décrite via le potentiel d action et la conductance des neurones (Cáceres, Carrillo, Tao, Rangan, Kovačič, Cai, Perthame, S)... Modèle étudié Dynamique des neurones décrite par le temps écoulé depuis leur dernière décharge. Modèle fait apparaître des équations structurées en âge avec fragmentation.

6 Modèle choisi Hypothèses sur le réseau Tous les neurones sont excitateurs Ils ont une activité spontanée: même sans stimulation extérieure, les neurones ont une activité qui persiste Les interconnexions entre les neurones sont supposées homogènes : à chaque temps t, tous les neurones sont soumis à la même amplitude de stimulation La dynamique des neurones est décrite via le temps écoulé depuis leur dernière décharge la longueur de leur période réfractaire qui peut varier en fonction de l amplitude de stimulation qu ils reçoivent.

7 Choix du modèle: Equation structurée en âge avec fragmentation Equation structurée en âge avec fragmentation n(s, t) n(s, t) p(s, N(t))n(s, t) = K (s, u)p(u, N(t))n(u, t)du, t s 0 n(s = 0, t) = 0, + N(t) := p(s, N(t)) n(s, t)ds 0 n(s, t): densité de neurones au temps t telle que le temps écoulé depuis la dernière décharge est s. N(t) : flux de neurones qui déchargent au temps t identifié à l amplitude de stimulation globale p(s, u) permet de mesurer la proportion de neurones d âge s qui déchargent avec une amplitude de stimulation u. K (s, u): mesure positive permettant de donner la proportion de neurones ayant déchargé à l âge u et qui reviennent à l âge s. Equations avec fragmentation beaucoup étudiées: Calvez, Canizo, Caceres, Doumic, Gabriel, Laurençot, Lenuzza, Mischler, Mouthon, Perthame...

8 Equation sans terme de fragmentation Cas des faibles interconnexions Cas avec fortes interconnexions Simulations numériques avec K = δ s=0 Equation donnée par n(s, t) n(s, t) + + p(s, N(t))n(s, t) = 0, t s + n(0, t) = N(t), n 0 (s) 0 avec n 0 1 et n 0 (s) = 1; 0 + N(t) := n(s = 0, t) = p(s, N(t)) n(s, t)ds. 0 Conservation de la masse avec n(s, t) 1 Particularité Pour un choix particulier de p on peut sous certaines conditions se ramener à une équation à retard. Traiter simplement le cas des faibles interconnexions Construire explicitement des solutions périodiques dans le cas de fortes interconnexions.

9 Si Introduction: motivations et présentation du modèle Réduction à l étude d une équation à retard p(s, u) = I s σ(u), Cas des faibles interconnexions Cas avec fortes interconnexions Simulations numériques avec K = δ s=0 on peut, sous certaines conditions sur σ se ramener à une équation à retard. Proposition Supposons que alors pour tout t 0, on a Si σ m < 1, alors d (σ(n(t)) 1, dt t N(t) + N(s)ds = 1. t σ(n(t)) Il existe un unique N tq (dès que n(s, t) 1) d dt (σ(n(t)) m N = n(s)ds, σ(n) 0 < N < 1, N Lipschitz.

10 Cas des faibles interconnexions Cas avec fortes interconnexions Simulations numériques avec K = δ s=0 Théorème Soit m < 1 avec σ m tel que σ(x) σ + < 1 m N, avec N < 1 l unique état stationnaire de notre équation. Alors, on a dσ(n(t)) < 1 et, avec une dt vitesse exponentielle de convergence lim N(t) = N. t +

11 Cas des fortes interconnexions Cas des faibles interconnexions Cas avec fortes interconnexions Simulations numériques avec K = δ s=0 Approche : Chercher des candidats N(t) qui sont T -périodique. Au lieu de regarder le problème non linéaire, on regarde l équation linéaire { n(s,t) t + n(s,t) s + p ( s, N(t) ) n(s, t) = 0, t R, s 0, n(s = 0, t) = N(t). La question de l existence de solutions périodiques se réduit à trouver des conditions sur N(t) tq le problème linéaire donne une solution pour le problème non linéaire i.e. N(t) = n(s, t)ds σ(n(t)) et n(s, t)ds = 1. 0

12 Cas des faibles interconnexions Cas avec fortes interconnexions Simulations numériques avec K = δ s=0 Théorème Soit σ( ) une fonction décroissante et supposons que la fonction T -périodique N satisfait d dt σ( N(t) ) σ(n(t)) 1, 1 = N(t) + N(t s)ds. 0 Alors, la solution n(s, t) de l équation linéaire est aussi solution de l équation non linéaire On sait trouver de nombreux exemples de solutions périodiques. On ne sait pas classifier l ensemble des σ donnant des solutions périodiques

13 Exemple Introduction: motivations et présentation du modèle Cas des faibles interconnexions Cas avec fortes interconnexions Simulations numériques avec K = δ s=0 Exemple le plus simple : Pour α > 0 on définit et on choisit 0 < Nm(α) := 1 2e α 1 2α σ(x) = α ln(x) + ln(np(α)) α < Np(α) := eα 2e α 1 < 1, sur [0, Nm(α)], sur [Nm(α), Np(α)], sur [Np(α), ).

14 Simulations numériques. Cas des faibles interconnexions Cas avec fortes interconnexions Simulations numériques avec K = δ s=0

15 Simulations numériques. Cas des faibles interconnexions Cas avec fortes interconnexions Simulations numériques avec K = δ s=0

16 Simulations numériques. Cas des faibles interconnexions Cas avec fortes interconnexions Simulations numériques avec K = δ s=0

17 Simulations numériques. Cas des faibles interconnexions Cas avec fortes interconnexions Simulations numériques avec K = δ s=0

18 Simulations numériques. Cas des faibles interconnexions Cas avec fortes interconnexions Simulations numériques avec K = δ s=0

19 Equation structurée en âge Cas des réseaux faiblement interconnectés (σ petit). Cas des réseaux plus fortement interconnectés. Comparaisons lorsque K (s, u) = δ s=u/2 et K (s, u) = δ s=0 n(s, t) t n(s, t) p(s, N(t))n(s, t) = K (s, u)p(u, N(t))n(u, t)du, s 0 + n(s = 0, t) = 0, N(t) := p(s, N(t)) n(s, t)ds. 0 Hypothèses faites sur K On suppose que pour tout âge u, l ensemble des neurones qui déchargent à cet âge u reviennent tous à un âge antérieur u K (s, u)ds = 1 et K (s, u) 0 si u > s. 0 On suppose que la densité de neurones qui déchargent à l âge u et reviennent à un âge proche de u n est pas trop grand: il existe 0 θ < 1 tel que pour tout u 0, u u sk (s, u)ds θ. 0

20 Trois exemples typiques de choix de mesure K. Cas des réseaux faiblement interconnectés (σ petit). Cas des réseaux plus fortement interconnectés. Comparaisons lorsque K (s, u) = δ s=u/2 et K (s, u) = δ s=0 K (s, u) = δ s=0 : tous les neurones qui déchargent reviennent à l âge 0 quelque soit l âge où ils ont déchargé. C est le modèle le plus simple. K (s, u) = δ s=f (u) : lorsqu un neurone décharge à l âge u, il revient à un âge s fixé ne dépendant que de u et ceci quelque soit le neurone du réseau. Permet de tenir compte de la fatigue du seuil. K (s, u) non concentrée en un dirac : sur l ensemble des neurones qui déchargent à un certain âge u, tous ne reviennent pas au même âge s mais se répartissent sur toute une tranche d âge.

21 Cas des réseaux faiblement interconnectés (σ petit). Cas des réseaux plus fortement interconnectés. Comparaisons lorsque K (s, u) = δ s=u/2 et K (s, u) = δ s=0 Cas des réseaux faiblement interconnectés (σ petit). Résultat. Lorsque les interconnexions sont suffisamment faibles, les neurones tendent vers un état totalement désynchronisé. Les états totalement désynchronisés correspondent aux états stationnaires de l équation structurée en âge convergence exponentielle en norme L 1 de la solution avec poids vers l état stationnaire si σ L et la période réfractaire sont assez petites. Idée de preuve. Si les interconnections sont suffisamment faibles, on a existence et unicité de l état stationnaire (Krein-Rutman) On montre la convergence exponentielle en norme L 1 de la solution avec poids vers l état stationnaire pour des réseaux sans interconnections (équation linéaire) Par perturbation, on en déduit convergence exponentielle pour des réseaux faiblement interconnectés.

22 Idée de la preuve. Cas des réseaux faiblement interconnectés (σ petit). Cas des réseaux plus fortement interconnectés. Comparaisons lorsque K (s, u) = δ s=u/2 et K (s, u) = δ s=0 Plusieurs méthodes permettent d arriver à la convergence exponentielle vers un état stationnaire dans le cas d équations structurées avec fragmentations (voir par exemple Caniso, Caceres, Mischler). Difficultés. Noyau K qui est peu régulier La fonction p s annule Stratégie. Reprend celle de Laurençot et Perthame Montre d abord un résultat de convergence exponentielle pour x M(t, x) = (n(s, t) A(s))ds. 0 M(t, x) a l avantage de vérifier une équation dont l équation adjointe de l équation stationnaire associée a une valeur propre strictement négative avec un vecteur propre uniformément minoré. On utilise le fait que t M vérifie aussi la même équation que M, ce qui permet de réappliquer le résultat obtenu sur M pour t M et conclure que n converge exponentiellement vers A en norme L 1 avec poids.

23 Cas des réseaux plus fortement interconnectés. Cas des réseaux faiblement interconnectés (σ petit). Cas des réseaux plus fortement interconnectés. Comparaisons lorsque K (s, u) = δ s=u/2 et K (s, u) = δ s=0 Dans le cas général avec fragmentation, on ne sait pas montrer l existence de solutions périodiques. Simulations numériques afin de comparer 2 noyaux K extrêmes : K (s, u) = δ s=0 et K (s, u) = δ s=u/2 Résultats Lorsque K (s, u) = δ s=0 : construction explicite d un très grand nombre de solutions périodiques mettant en évidence l apparition de synchronisations rythmées des décharges des neurones au sein du réseau. Ces solutions sont très instables par rapport au choix de la donnée initiale. Des simulations numériques montrent que ces solutions sont robustes par perturbation des paramètres (si on régularise p, si on rajoute un petit délai..). Lorsque K (s, u) = δ s=u/2 (résultats numériques) des simulations numériques montrent que si la période réfractaire est trop petite, alors la solution tend vers un état stationnaire. Si la période réfractaire est suffisamment grande, les solutions tendent vers une solution périodique qui semble stable.

24 Cas des réseaux faiblement interconnectés (σ petit). Cas des réseaux plus fortement interconnectés. Comparaisons lorsque K (s, u) = δ s=u/2 et K (s, u) = δ s=0 Comparaisons lorsque K (s, u) = δ s=u/2 et K (s, u) = δ s=0

25 Simulations lorsque K (s, u) = δ s=u/2 Cas des réseaux faiblement interconnectés (σ petit). Cas des réseaux plus fortement interconnectés. Comparaisons lorsque K (s, u) = δ s=u/2 et K (s, u) = δ s=0

26 Simulations lorsque K (s, u) = δ s=0 Cas des réseaux faiblement interconnectés (σ petit). Cas des réseaux plus fortement interconnectés. Comparaisons lorsque K (s, u) = δ s=u/2 et K (s, u) = δ s=0

27 Modèle taille finie. On prend pour amplitude de stimulation X telle que 1 a X (t) = X(t) + N(t). On suppose que l on a un nombre fini de neurones K. Description de la dynamique pour un neurone. On prend un neurone qui reçoit un signal d entrée X. Si le temps s écoulé depuis la dernière décharge est tel que s σ(x) alors p(s, X) = 0, sinon p(s, X) = 1. Si σ(x) > s, la probabilité de décharge du neurone est nulle, sinon elle est donnée par une loi exponentielle de paramètre 1.

28 Modèle taille finie Description de la dynamique pour un neurone. Tant qu il n y a pas de décharge de neurones X vérifie l équation Au moment de la décharge, au temps t 1 X(v) = X(0)e av. X(t 1 ) = X(0)e at 1 + a/k Pour trouver le temps t 1 On tire un qui vérifie une loi exponentielle de paramètre 1. Soit µ définie par u µ(u) = I [s(0)+v>σ(x(v))] dv. 0 On prend comme temps de décharge du neurone le temps t tel que µ(t) =.

29 Modèle taille finie

30 Modèle taille finie

Systèmes différentiels. 1 Généralités, existence et unicité des solutions

Systèmes différentiels. 1 Généralités, existence et unicité des solutions Systèmes différentiels Cours de YV, L3 Maths, Dauphine, 2012-2013 Plan du cours. Le cours a pour but de répondre aux questions suivantes : - quand une équation différentielle a-t-elle une unique solution

Plus en détail

Intégrale stochastique

Intégrale stochastique Intégrale stochastique Plan L intégrale stochastique générale Intégrale de Wiener Exemples Processus d Itô Formule d Itô Formule de Black & Scholes Le processus B est un mouvement Brownien et { Ft B,t

Plus en détail

3. Conditionnement P (B)

3. Conditionnement P (B) Conditionnement 16 3. Conditionnement Dans cette section, nous allons rappeler un certain nombre de définitions et de propriétés liées au problème du conditionnement, c est à dire à la prise en compte

Plus en détail

Fiche Méthode 11 : Noyaux et images.

Fiche Méthode 11 : Noyaux et images. Fiche Méthode 11 : Noyaux et images. On se place dans un espace vectoriel E de dimension finie n, muni d une base B = ( e 1,..., e n ). f désignera un endomorphisme de E 1 et A la matrice de f dans la

Plus en détail

Quand le bruit est à l origine de comportements périodiques

Quand le bruit est à l origine de comportements périodiques 1/17 Quand le bruit est à l origine de comportements périodiques Christophe Poquet Université Paris Dauphine, CEREMADE 28 juin 2014 En collaboration avec G.Giacomin, K.Pakdaman et X.Pellegrin (Paris 7).

Plus en détail

BTS Mécanique et Automatismes Industriels. Équations différentielles d ordre 2

BTS Mécanique et Automatismes Industriels. Équations différentielles d ordre 2 BTS Mécanique et Automatismes Industriels Équations différentielles d ordre, Année scolaire 005 006 . Définition Notation Dans tout ce paragraphe, y désigne une fonction de la variable réelle x. On suppose

Plus en détail

Probabilités III Introduction à l évaluation d options

Probabilités III Introduction à l évaluation d options Probabilités III Introduction à l évaluation d options Jacques Printems Promotion 2012 2013 1 Modèle à temps discret 2 Introduction aux modèles en temps continu Limite du modèle binomial lorsque N + Un

Plus en détail

CHAPITRE V SYSTEMES DIFFERENTIELS LINEAIRES A COEFFICIENTS CONSTANTS DU PREMIER ORDRE. EQUATIONS DIFFERENTIELLES.

CHAPITRE V SYSTEMES DIFFERENTIELS LINEAIRES A COEFFICIENTS CONSTANTS DU PREMIER ORDRE. EQUATIONS DIFFERENTIELLES. CHAPITRE V SYSTEMES DIFFERENTIELS LINEAIRES A COEFFICIENTS CONSTANTS DU PREMIER ORDRE EQUATIONS DIFFERENTIELLES Le but de ce chapitre est la résolution des deux types de systèmes différentiels linéaires

Plus en détail

I. Polynômes de Tchebychev

I. Polynômes de Tchebychev Première épreuve CCP filière MP I. Polynômes de Tchebychev ( ) 1.a) Tout réel θ vérifie cos(nθ) = Re ((cos θ + i sin θ) n ) = Re Cn k (cos θ) n k i k (sin θ) k Or i k est réel quand k est pair et imaginaire

Plus en détail

Commun à tous les candidats

Commun à tous les candidats EXERCICE 3 (9 points ) Commun à tous les candidats On s intéresse à des courbes servant de modèle à la distribution de la masse salariale d une entreprise. Les fonctions f associées définies sur l intervalle

Plus en détail

Baccalauréat S Antilles-Guyane 11 septembre 2014 Corrigé

Baccalauréat S Antilles-Guyane 11 septembre 2014 Corrigé Baccalauréat S ntilles-guyane 11 septembre 14 Corrigé EXERCICE 1 6 points Commun à tous les candidats Une entreprise de jouets en peluche souhaite commercialiser un nouveau produit et à cette fin, effectue

Plus en détail

POLY-PREPAS ANNEE 2009/2010 Centre de Préparation aux Concours Paramédicaux

POLY-PREPAS ANNEE 2009/2010 Centre de Préparation aux Concours Paramédicaux POLY-PREPAS ANNEE 2009/2010 Centre de Préparation aux Concours Paramédicaux - Section : i-prépa Audioprothésiste (annuel) - MATHEMATIQUES 8 : EQUATIONS DIFFERENTIELLES - COURS + ENONCE EXERCICE - Olivier

Plus en détail

Cours MP. Espaces vectoriels normés

Cours MP. Espaces vectoriels normés Table des matières Espaces vectoriels normés B. Seddoug. Médiane Sup, Oujda I Norme et distance 1 I.1 Définitions..................... 1 I.2 Evn produit.................... 12 I.3 Notions topologiques

Plus en détail

Exercices théoriques

Exercices théoriques École normale supérieure 2008-2009 Département d informatique Algorithmique et Programmation TD n 9 : Programmation Linéaire Avec Solutions Exercices théoriques Rappel : Dual d un programme linéaire cf.

Plus en détail

3ème séance de Mécanique des fluides. Rappels sur les premières séances Aujourd hui : le modèle du fluide parfait. 2 Écoulements potentiels

3ème séance de Mécanique des fluides. Rappels sur les premières séances Aujourd hui : le modèle du fluide parfait. 2 Écoulements potentiels 3ème séance de Mécanique des fluides Rappels sur les premières séances Aujourd hui : le modèle du fluide parfait 1 Généralités 1.1 Introduction 1.2 Équation d Euler 1.3 Premier théorème de Bernoulli 1.4

Plus en détail

Séries de Fourier. T f (x) exp 2iπn x T dx, n Z. T/2 f (x) cos ( ) f (x) dx a n (f) = 2 T. f (x) cos 2πn x )

Séries de Fourier. T f (x) exp 2iπn x T dx, n Z. T/2 f (x) cos ( ) f (x) dx a n (f) = 2 T. f (x) cos 2πn x ) Séries de Fourier Les séries de Fourier constituent un outil fondamental de la théorie du signal. Il donne lieu à des prolongements et des extensions nombreux. Les séries de Fourier permettent à la fois

Plus en détail

Lois de probabilité à densité Loi normale

Lois de probabilité à densité Loi normale DERNIÈRE IMPRESSIN LE 31 mars 2015 à 14:11 Lois de probabilité à densité Loi normale Table des matières 1 Lois à densité 2 1.1 Introduction................................ 2 1.2 Densité de probabilité

Plus en détail

Chapitre 2 Le problème de l unicité des solutions

Chapitre 2 Le problème de l unicité des solutions Université Joseph Fourier UE MAT 127 Mathématiques année 2011-2012 Chapitre 2 Le problème de l unicité des solutions Ce que nous verrons dans ce chapitre : un exemple d équation différentielle y = f(y)

Plus en détail

Jeux à somme nulle : le cas fini

Jeux à somme nulle : le cas fini CHAPITRE 2 Jeux à somme nulle : le cas fini Les jeux à somme nulle sont les jeux à deux joueurs où la somme des fonctions de paiement est nulle. Dans ce type d interaction stratégique, les intérêts des

Plus en détail

Limites finies en un point

Limites finies en un point 8 Limites finies en un point Pour ce chapitre, sauf précision contraire, I désigne une partie non vide de R et f une fonction définie sur I et à valeurs réelles ou complees. Là encore, les fonctions usuelles,

Plus en détail

Master Modélisation Statistique M2 Finance - chapitre 4 Mouvement Brownien et modèle de Black-Scholes

Master Modélisation Statistique M2 Finance - chapitre 4 Mouvement Brownien et modèle de Black-Scholes Master Modélisation Statistique M2 Finance - chapitre 4 Mouvement Brownien et modèle de Black-Scholes Clément Dombry, Laboratoire de Mathématiques de Besançon, Université de Franche-Comté. C.Dombry (Université

Plus en détail

Modèle classique Extensions Modèle multi-branches. Théorie de la ruine. Esterina Masiello (ISFA)

Modèle classique Extensions Modèle multi-branches. Théorie de la ruine. Esterina Masiello (ISFA) Esterina Masiello Institut de Science Financière et d Assurances Université Lyon 1 Premières Journées Actuarielles de Strasbourg 6-7 octobre 2010 En résumé... Modèle classique de la théorie de la ruine

Plus en détail

Agrégation interne de Mathématiques. Session 2009. Deuxième épreuve écrite. (et CAERPA)

Agrégation interne de Mathématiques. Session 2009. Deuxième épreuve écrite. (et CAERPA) Agrégation interne de Mathématiques (et CAEPA Session 2009 Deuxième épreuve écrite 2 NOTATIONS ET PÉLIMINAIES On désigne par le corps des nombres réels et par C le corps des nombres complexes. Si f est

Plus en détail

CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE. Cinquième épreuve d admissibilité STATISTIQUE. (durée : cinq heures)

CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE. Cinquième épreuve d admissibilité STATISTIQUE. (durée : cinq heures) CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE Cinquième épreuve d admissibilité STATISTIQUE (durée : cinq heures) Une composition portant sur la statistique. SUJET Cette épreuve est composée d un

Plus en détail

Le principe de moindre action

Le principe de moindre action Le principe de moindre action F. Hérau Laboratoire de Mathématiques Université de Reims Fete de la science novembre 2008 Définition Principe de moindre action : en physique, hypothèse selon laquelle la

Plus en détail

MATHEMATIQUES Option Economique

MATHEMATIQUES Option Economique Concours EDHEC 9 Classes Préparatoires MATHEMATIQUES Option Economique La présentation, la lisibilité, l'orthographe, la qualité de la rédaction, la clarté et la précision des raisonnements entreront pour

Plus en détail

F411 - Courbes Paramétrées, Polaires

F411 - Courbes Paramétrées, Polaires 1/43 Courbes Paramétrées Courbes polaires Longueur d un arc, Courbure F411 - Courbes Paramétrées, Polaires Michel Fournié michel.fournie@iut-tlse3.fr http://www.math.univ-toulouse.fr/ fournie/ Année 2012/2013

Plus en détail

Agrégation externe de mathématiques, session 2013 Épreuve de modélisation, option B : Calcul Scientifique

Agrégation externe de mathématiques, session 2013 Épreuve de modélisation, option B : Calcul Scientifique Agrégation externe de mathématiques, session 2013 Épreuve de modélisation, option (Public2014-B1) Résumé : On présente un exemple de système de deux espèces en compétition dans un environnement périodique.

Plus en détail

INTRODUCTION À LA THÉORIE DE STABILITÉ DES SYSTÈMES CONSERVATIFS

INTRODUCTION À LA THÉORIE DE STABILITÉ DES SYSTÈMES CONSERVATIFS INTRODUCTION À LA THÉORIE DE STABILITÉ DES SYSTÈMES CONSERVATIFS David Ryckelynck Centre des Matériaux, Mines ParisTech David.Ryckelynck@mines-paristech.fr Bibliographie : Stabilité et mécanique non linéaire,

Plus en détail

CCP PSI - 2010 Mathématiques 1 : un corrigé

CCP PSI - 2010 Mathématiques 1 : un corrigé CCP PSI - 00 Mathématiques : un corrigé Première partie. Définition d une structure euclidienne sur R n [X]... B est clairement symétrique et linéaire par rapport à sa seconde variable. De plus B(P, P

Plus en détail

L usage de la calculatrice n est pas autorisé.

L usage de la calculatrice n est pas autorisé. e3a Concours ENSAM - ESTP - EUCLIDE - ARCHIMÈDE Épreuve de Mathématiques A durée 4 heures MP L usage de la calculatrice n est pas autorisé. Si, au cours de l épreuve, un candidat repère ce qui lui semble

Plus en détail

Baccalauréat ES Nouvelle-Calédonie 2 mars 2015

Baccalauréat ES Nouvelle-Calédonie 2 mars 2015 Baccalauréat ES Nouvelle-Calédonie mars 015 A. P. M. E. P. EXERCICE 1 Commun à tous les candidats Soit f la fonction définie sur l intervalle [1,5 ; 6] par : f (x)=(5x )e x On note C la courbe représentative

Plus en détail

Fonctions de plusieurs variables

Fonctions de plusieurs variables Module : Analyse 03 Chapitre 00 : Fonctions de plusieurs variables Généralités et Rappels des notions topologiques dans : Qu est- ce que?: Mathématiquement, n étant un entier non nul, on définit comme

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours Exo7 Continuité (étude globale). Diverses fonctions Exercices de Jean-Louis Rouget. Retrouver aussi cette fiche sur www.maths-france.fr * très facile ** facile *** difficulté moyenne **** difficile *****

Plus en détail

Outils d analyse fonctionnelle Cours 5 Théorie spectrale

Outils d analyse fonctionnelle Cours 5 Théorie spectrale Outils d analyse fonctionnelle Cours 5 Théorie spectrale 22 septembre 2015 Généralités Dans tout ce qui suit V désigne un espace de Hilbert réel muni d un produit scalaire x, y. Définition Soit A une application

Plus en détail

Les correcteurs accorderont une importance particulière à la rigueur des raisonnements et aux représentations graphiques demandées.

Les correcteurs accorderont une importance particulière à la rigueur des raisonnements et aux représentations graphiques demandées. Les correcteurs accorderont une importance particulière à la rigueur des raisonnements et aux représentations graphiques demandées. 1 Ce sujet aborde le phénomène d instabilité dans des systèmes dynamiques

Plus en détail

MATHS FINANCIERES. Mireille.Bossy@sophia.inria.fr. Projet OMEGA

MATHS FINANCIERES. Mireille.Bossy@sophia.inria.fr. Projet OMEGA MATHS FINANCIERES Mireille.Bossy@sophia.inria.fr Projet OMEGA Sophia Antipolis, septembre 2004 1. Introduction : la valorisation de contrats optionnels Options d achat et de vente : Call et Put Une option

Plus en détail

Circuits RL et RC. Chapitre 5. 5.1 Inductance

Circuits RL et RC. Chapitre 5. 5.1 Inductance Chapitre 5 Circuits RL et RC Ce chapitre présente les deux autres éléments linéaires des circuits électriques : l inductance et la capacitance. On verra le comportement de ces deux éléments, et ensuite

Plus en détail

Exercices - Fonctions de plusieurs variables : corrigé. Pour commencer

Exercices - Fonctions de plusieurs variables : corrigé. Pour commencer Pour commencer Exercice 1 - Ensembles de définition - Première année - 1. Le logarithme est défini si x + y > 0. On trouve donc le demi-plan supérieur délimité par la droite d équation x + y = 0.. 1 xy

Plus en détail

Cours d Analyse. Fonctions de plusieurs variables

Cours d Analyse. Fonctions de plusieurs variables Cours d Analyse Fonctions de plusieurs variables Licence 1ère année 2007/2008 Nicolas Prioux Université de Marne-la-Vallée Table des matières 1 Notions de géométrie dans l espace et fonctions à deux variables........

Plus en détail

Mathématiques I. Recueil d exercices #2. Analyse II

Mathématiques I. Recueil d exercices #2. Analyse II FACULTE DES SCIENCES ECONOMIQUES ET SOCIALES Sections des sciences économiques et des hautes études commerciales Mathématiques I Cours du professeur D. Royer Recueil d exercices #2 Analyse II Semestre

Plus en détail

Finance, Navier-Stokes, et la calibration

Finance, Navier-Stokes, et la calibration Finance, Navier-Stokes, et la calibration non linéarités en finance 1 1 www.crimere.com/blog Avril 2013 Lignes directrices Non-linéarités en Finance 1 Non-linéarités en Finance Les équations de Fokker-Planck

Plus en détail

Suites réelles. 4 Relations de comparaison des suites 9 4.1 Encore du vocabulaire... 9. 5.2 Quelques propriétés... 13

Suites réelles. 4 Relations de comparaison des suites 9 4.1 Encore du vocabulaire... 9. 5.2 Quelques propriétés... 13 Maths PCSI Cours Table des matières Suites réelles 1 Généralités 2 2 Limite d une suite 2 2.1 Convergence d une suite....................... 2 2.2 Deux premiers résultats....................... 3 2.3 Opérations

Plus en détail

Chapitre 3. Mesures stationnaires. et théorèmes de convergence

Chapitre 3. Mesures stationnaires. et théorèmes de convergence Chapitre 3 Mesures stationnaires et théorèmes de convergence Christiane Cocozza-Thivent, Université de Marne-la-Vallée p.1 I. Mesures stationnaires Christiane Cocozza-Thivent, Université de Marne-la-Vallée

Plus en détail

aux différences est appelé équation aux différences d ordre n en forme normale.

aux différences est appelé équation aux différences d ordre n en forme normale. MODÉLISATION ET SIMULATION EQUATIONS AUX DIFFÉRENCES (I/II) 1. Rappels théoriques : résolution d équations aux différences 1.1. Équations aux différences. Définition. Soit x k = x(k) X l état scalaire

Plus en détail

Examen du cours de Mesures de risque en finance

Examen du cours de Mesures de risque en finance Examen du cours de Mesures de risque en finance Mercredi 15 Décembre 21 (9h-11h) Seul document autorisé: une feuille A4 manuscrite recto-verso. Important : rédiger sur une même copie les exercices 1 et

Plus en détail

Correction de l examen de la première session

Correction de l examen de la première session de l examen de la première session Julian Tugaut, Franck Licini, Didier Vincent Si vous trouvez des erreurs de Français ou de mathématiques ou bien si vous avez des questions et/ou des suggestions, envoyez-moi

Plus en détail

Introduction à l analyse numérique : exemple du cloud computing

Introduction à l analyse numérique : exemple du cloud computing Introduction à l analyse numérique : exemple du cloud computing Tony FEVRIER Aujourd hui! Table des matières 1 Equations aux dérivées partielles et modélisation Equation différentielle et modélisation

Plus en détail

ÉVALUATION FORMATIVE. On considère le circuit électrique RC représenté ci-dessous où R et C sont des constantes strictement positives.

ÉVALUATION FORMATIVE. On considère le circuit électrique RC représenté ci-dessous où R et C sont des constantes strictement positives. L G L G Prof. Éric J.M.DELHEZ ANALYSE MATHÉMATIQUE ÉALUATION FORMATIE Novembre 211 Ce test vous est proposé pour vous permettre de faire le point sur votre compréhension du cours d Analyse Mathématique.

Plus en détail

Prix d options européennes

Prix d options européennes Page n 1. Prix d options européennes Une société française tient sa comptabilité en euros et signe un contrat avec une entreprise américaine qu elle devra payer en dollars à la livraison. Entre aujourd

Plus en détail

Une application de méthodes inverses en astrophysique : l'analyse de l'histoire de la formation d'étoiles dans les galaxies

Une application de méthodes inverses en astrophysique : l'analyse de l'histoire de la formation d'étoiles dans les galaxies Une application de méthodes inverses en astrophysique : l'analyse de l'histoire de la formation d'étoiles dans les galaxies Ariane Lançon (Observatoire de Strasbourg) en collaboration avec: Jean-Luc Vergely,

Plus en détail

Dualité dans les espaces de Lebesgue et mesures de Radon finies

Dualité dans les espaces de Lebesgue et mesures de Radon finies Chapitre 6 Dualité dans les espaces de Lebesgue et mesures de Radon finies Nous allons maintenant revenir sur les espaces L p du Chapitre 4, à la lumière de certains résultats du Chapitre 5. Sauf mention

Plus en détail

Les mathématiques de la finance Université d été de Sourdun Olivier Bardou olivier.bardou@gdfsuez.com 28 août 2012 De quoi allons nous parler? des principales hypothèses de modélisation des marchés, des

Plus en détail

Algorithmes pour la planification de mouvements en robotique non-holonome

Algorithmes pour la planification de mouvements en robotique non-holonome Algorithmes pour la planification de mouvements en robotique non-holonome Frédéric Jean Unité de Mathématiques Appliquées ENSTA Le 02 février 2006 Outline 1 2 3 Modélisation Géométrique d un Robot Robot

Plus en détail

Chapitre 7. Circuits Magnétiques et Inductance. 7.1 Introduction. 7.1.1 Production d un champ magnétique

Chapitre 7. Circuits Magnétiques et Inductance. 7.1 Introduction. 7.1.1 Production d un champ magnétique Chapitre 7 Circuits Magnétiques et Inductance 7.1 Introduction 7.1.1 Production d un champ magnétique Si on considère un conducteur cylindrique droit dans lequel circule un courant I (figure 7.1). Ce courant

Plus en détail

Table des matières. Introduction Générale 5

Table des matières. Introduction Générale 5 Table des matières Introduction Générale 5 1 Généralités et rappels 16 1.1 Rappels... 16 1.1.1 Introduction... 16 1.1.2 Notion de stabilité...... 17 1.1.3 Stabilité globale et stabilité locale... 17 1.1.4

Plus en détail

Simulation d un système d assurance automobile

Simulation d un système d assurance automobile Simulation d un système d assurance automobile DESSOUT / PLESEL / DACHI Plan 1 Introduction... 2 Méthodes et outils utilisés... 2.1 Chaines de Markov... 2.2 Méthode de Monte Carlo... 2.3 Méthode de rejet...

Plus en détail

1 La formule de Black et Scholes en t discret

1 La formule de Black et Scholes en t discret Université de Provence Préparation Agrégation Epreuve de Modélisation, Option Proba. Texte : La formule de Black Scholes en Finance Étienne Pardoux 1 La formule de Black et Scholes en t discret On suppose

Plus en détail

Programmes des classes préparatoires aux Grandes Ecoles

Programmes des classes préparatoires aux Grandes Ecoles Programmes des classes préparatoires aux Grandes Ecoles Filière : scientifique Voie : Biologie, chimie, physique et sciences de la Terre (BCPST) Discipline : Mathématiques Seconde année Préambule Programme

Plus en détail

COUPLES DE VARIABLES ALÉATOIRES

COUPLES DE VARIABLES ALÉATOIRES CHAPITRE 13 COUPLES DE VARIABLES ALÉATOIRES Dans tout le chapitre, (Ω, P) désignera un espace probabilisé fini. 1 Couple de variables aléatoires Définition 13.1 On appelle couple de variables aléatoires

Plus en détail

3 Approximation de solutions d équations

3 Approximation de solutions d équations 3 Approximation de solutions d équations Une équation scalaire a la forme générale f(x) =0où f est une fonction de IR dans IR. Un système de n équations à n inconnues peut aussi se mettre sous une telle

Plus en détail

Une approche pour un contrôle non-linéaire temps réel

Une approche pour un contrôle non-linéaire temps réel Une approche pour un contrôle non-linéaire temps réel L. Mathelin 1 L. Pastur 1,2 O. Le Maître 1 1 LIMSI - CNRS Orsay 2 Université Paris-Sud 11 Orsay GdR Contrôle des décollements 25 Nov. 2009 Orléans

Plus en détail

Le modèle de Black et Scholes

Le modèle de Black et Scholes Le modèle de Black et Scholes Alexandre Popier février 21 1 Introduction : exemple très simple de modèle financier On considère un marché avec une seule action cotée, sur une période donnée T. Dans un

Plus en détail

La Volatilité Locale

La Volatilité Locale La Volatilité Locale Bertrand TAVIN Université Paris 1 - Panthéon Sorbonne 26 mai 2010 Résumé Dans cette courte note nous introduisons le concept de volatilité locale et les modèles de pricing basés sur

Plus en détail

Erreur statique. Chapitre 6. 6.1 Définition

Erreur statique. Chapitre 6. 6.1 Définition Chapitre 6 Erreur statique On considère ici le troisième paramètre de design, soit l erreur statique. L erreur statique est la différence entre l entrée et la sortie d un système lorsque t pour une entrée

Plus en détail

1. L ADN et l information génétique. l ADN l information génétique est contenue dans l ADN. traduction. comment fait-on une protéine?

1. L ADN et l information génétique. l ADN l information génétique est contenue dans l ADN. traduction. comment fait-on une protéine? 1. L ADN et l information génétique l ADN l information génétique est contenue dans l ADN (ADN) (ARN) 1 2 A G T C U comment fait-on une protéine? traduction l information génétique est organisée par triplets

Plus en détail

Contrôle du False Discovery Rate en tests multiples: conditions suffisantes et adaptivité.

Contrôle du False Discovery Rate en tests multiples: conditions suffisantes et adaptivité. Contrôle du False Discovery Rate en tests multiples: conditions suffisantes et adaptivité. G. Blanchard 1 1 Weierstrass Institut Berlin, Germany Journées Statistiques du Sud, Porquerolles 18/06/09 G. Blanchard

Plus en détail

Partie II. Supplémentaires d un sous-espace donné. Partie I. Partie III. Supplémentaire commun. MPSI B 8 octobre 2015

Partie II. Supplémentaires d un sous-espace donné. Partie I. Partie III. Supplémentaire commun. MPSI B 8 octobre 2015 Énoncé Dans tout le problème, K est un sous-corps de C. On utilisera en particulier que K n est pas un ensemble fini. Tous les espaces vectoriels considérés sont des K espaces vectoriels de dimension finie.

Plus en détail

ALGORITHMIQUE II NOTION DE COMPLEXITE. SMI AlgoII

ALGORITHMIQUE II NOTION DE COMPLEXITE. SMI AlgoII ALGORITHMIQUE II NOTION DE COMPLEXITE 1 2 Comment choisir entre différents algorithmes pour résoudre un même problème? Plusieurs critères de choix : Exactitude Simplicité Efficacité (but de ce chapitre)

Plus en détail

Objectifs. Calcul scientifique. Champ d applications. Pourquoi la simulation numérique?

Objectifs. Calcul scientifique. Champ d applications. Pourquoi la simulation numérique? Objectifs Calcul scientifique Alexandre Ern ern@cermics.enpc.fr (CERMICS, Ecole des Ponts ParisTech) Le Calcul scientifique permet par la simulation numérique de prédire, optimiser, contrôler... le comportement

Plus en détail

La fonction exponentielle

La fonction exponentielle DERNIÈRE IMPRESSION LE 2 novembre 204 à :07 La fonction exponentielle Table des matières La fonction exponentielle 2. Définition et théorèmes.......................... 2.2 Approche graphique de la fonction

Plus en détail

Modélisation de petits systèmes biophysiques Dynamique des algorithmes de recherche

Modélisation de petits systèmes biophysiques Dynamique des algorithmes de recherche Modélisation de petits systèmes biophysiques Dynamique des algorithmes de recherche Habilitation à Diriger des Recherches Simona Cocco Laboratoire Physique Statistique ENS, Paris (Laboratoire de Dynamique

Plus en détail

de calibration Master 2: Calibration de modèles: présentation et simulation d

de calibration Master 2: Calibration de modèles: présentation et simulation d Master 2: Calibration de modèles: présentation et simulation de quelques problèmes de calibration Plan de la présentation 1. Présentation de quelques modèles à calibrer 1a. Reconstruction d une courbe

Plus en détail

Simulations de Monte Carlo

Simulations de Monte Carlo Simulations de Monte Carlo 2 février 261 CNAM GFN 26 Gestion d actifs et des risques Gréory Taillard GFN 26 Gestion d actifs et des risques 2 Biblioraphie Hayat, Sere, Patrice Poncet et Roland Portait,

Plus en détail

14. Introduction aux files d attente

14. Introduction aux files d attente 14. Introduction aux files d attente MTH2302D S. Le Digabel, École Polytechnique de Montréal H2015 (v2) MTH2302D: Files d attente 1/24 Plan 1. Introduction 2. Modèle M/M/1 3. Modèle M/M/1/K MTH2302D: Files

Plus en détail

Estimation du Quantile conditionnel par les Réseaux de neurones à fonction radiale de base

Estimation du Quantile conditionnel par les Réseaux de neurones à fonction radiale de base Estimation du Quantile conditionnel par les Réseaux de neurones à fonction radiale de base M.A. Knefati 1 & A. Oulidi 2 & P.Chauvet 1 & M. Delecroix 3 1 LUNAM Université, Université Catholique de l Ouest,

Plus en détail

PAD - Notes de cours. S. Rigal, D. Ruiz, et J. C. Satgé

PAD - Notes de cours. S. Rigal, D. Ruiz, et J. C. Satgé ALGÈBRE PAD - Notes de cours S. Rigal, D. Ruiz, et J. C. Satgé November 23, 2006 Table des Matières Espaces vectoriels Applications linéaires - Espaces vectoriels............................... 3 -. Approche

Plus en détail

Méthodes numériques pour la finance

Méthodes numériques pour la finance Méthodes numériques pour la finance Olivier Guibé 1 mars 010 Table des matières 1 Les outils de modélisation pour les options 1.1 Options............................................... 1. Modèle du marché

Plus en détail

La fonction zêta de Riemann

La fonction zêta de Riemann Sébastien Godillon Les nombres premiers Problème de répartition Arithmétique des entiers naturels 2 + 5 = 7 7 6 = 42 Les nombres premiers Problème de répartition Arithmétique des entiers naturels 7 6 =

Plus en détail

Correction du baccalauréat ES/L Métropole 20 juin 2014

Correction du baccalauréat ES/L Métropole 20 juin 2014 Correction du baccalauréat ES/L Métropole 0 juin 014 Exercice 1 1. c.. c. 3. c. 4. d. 5. a. P A (B)=1 P A (B)=1 0,3=0,7 D après la formule des probabilités totales : P(B)=P(A B)+P(A B)=0,6 0,3+(1 0,6)

Plus en détail

UNIVERSITE PARIS 1 PANTHEON SORBONNE LICENCE DE SCIENCES ECONOMIQUES. STATISTIQUE APPLIQUEE F. Gardes / P. Sevestre. Fiche N 7.

UNIVERSITE PARIS 1 PANTHEON SORBONNE LICENCE DE SCIENCES ECONOMIQUES. STATISTIQUE APPLIQUEE F. Gardes / P. Sevestre. Fiche N 7. UNIVERSITE PARIS 1 PANTHEON SORBONNE LICENCE DE SCIENCES ECONOMIQUES STATISTIQUE APPLIQUEE F. Gardes / P. Sevestre Fiche N 7 (avec corrigé) L objet de ce TD est de vous initier à la démarche et à quelques

Plus en détail

ANALYSE NUMERIQUE ET OPTIMISATION. Une introduction à la modélisation mathématique et à la simulation numérique

ANALYSE NUMERIQUE ET OPTIMISATION. Une introduction à la modélisation mathématique et à la simulation numérique 1 ANALYSE NUMERIQUE ET OPTIMISATION Une introduction à la modélisation mathématique et à la simulation numérique G. ALLAIRE 28 Janvier 2014 CHAPITRE I Analyse numérique: amphis 1 à 12. Optimisation: amphis

Plus en détail

Correction du baccalauréat S Liban juin 2007

Correction du baccalauréat S Liban juin 2007 Correction du baccalauréat S Liban juin 07 Exercice. a. Signe de lnx lnx) : on fait un tableau de signes : x 0 e + ln x 0 + + lnx + + 0 lnx lnx) 0 + 0 b. On afx) gx) lnx lnx) lnx lnx). On déduit du tableau

Plus en détail

Travaux Dirigés de Probabilités - Statistiques, TD 4. Lois limites ; estimation.

Travaux Dirigés de Probabilités - Statistiques, TD 4. Lois limites ; estimation. Travaux Dirigés de Probabilités - Statistiques, TD 4 Lois limites ; estimation. Exercice 1. Trois machines, A, B, C fournissent respectivement 50%, 30%, 20% de la production d une usine. Les pourcentages

Plus en détail

l École nationale des ponts et chaussées http://cermics.enpc.fr/scilab

l École nationale des ponts et chaussées http://cermics.enpc.fr/scilab scilab à l École nationale des ponts et chaussées http://cermics.enpc.fr/scilab Tests de comparaison pour l augmentation du volume de précipitation 13 février 2007 (dernière date de mise à jour) Table

Plus en détail

Sur les K-nombres de Pisot de petite mesure

Sur les K-nombres de Pisot de petite mesure ACTA ARITHMETICA LXXVII.2 (1996) Sur les K-nombres de Pisot de petite mesure par Toufik Zaïmi (Riyadh) Introduction. Soient K un corps de nombres et θ un entier algébrique de module > 1 et de polynôme

Plus en détail

StatEnAction 2009/10/30 11:26 page 111 #127 CHAPITRE 10. Machines à sous

StatEnAction 2009/10/30 11:26 page 111 #127 CHAPITRE 10. Machines à sous StatEnAction 2009/0/30 :26 page #27 CHAPITRE 0 Machines à sous Résumé. On étudie un problème lié aux jeux de hasard. Il concerne les machines à sous et est appelé problème de prédiction de bandits à deux

Plus en détail

Calcul intégral élémentaire en plusieurs variables

Calcul intégral élémentaire en plusieurs variables Calcul intégral élémentaire en plusieurs variables PC*2 2 septembre 2009 Avant-propos À part le théorème de Fubini qui sera démontré dans le cours sur les intégrales à paramètres et qui ne semble pas explicitement

Plus en détail

Chap 4. La fonction exponentielle Terminale S. Lemme : Si est une fonction dérivable sur R telle que : = et 0! = 1 alors ne s annule pas sur R.

Chap 4. La fonction exponentielle Terminale S. Lemme : Si est une fonction dérivable sur R telle que : = et 0! = 1 alors ne s annule pas sur R. Lemme : Si est une fonction dérivable sur R telle que : = et 0! = 1 alors ne s annule pas sur R. Démonstration : Soit la fonction %:& %&!= &!, elle est dérivable sur R et & R, %. &!= &! = &! = %&! gaelle.buffet@ac-montpellier.fr

Plus en détail

TP 7 : oscillateur de torsion

TP 7 : oscillateur de torsion TP 7 : oscillateur de torsion Objectif : étude des oscillations libres et forcées d un pendule de torsion 1 Principe général 1.1 Définition Un pendule de torsion est constitué par un fil large (métallique)

Plus en détail

EXERCICE 4 (7 points ) (Commun à tous les candidats)

EXERCICE 4 (7 points ) (Commun à tous les candidats) EXERCICE 4 (7 points ) (Commun à tous les candidats) On cherche à modéliser de deux façons différentes l évolution du nombre, exprimé en millions, de foyers français possédant un téléviseur à écran plat

Plus en détail

Modélisation et simulation de l activité électrique du coeur dans le thorax, analyse numérique et méthodes de volumes finis

Modélisation et simulation de l activité électrique du coeur dans le thorax, analyse numérique et méthodes de volumes finis Modélisation et simulation de l activité électrique du coeur dans le thorax, analyse numérique et méthodes de volumes finis Charles Pierre Laboratoire de Mathématiques Jean Leray, Université de Nantes

Plus en détail

Exercice autour de densité, fonction de répatition, espérance et variance de variables quelconques.

Exercice autour de densité, fonction de répatition, espérance et variance de variables quelconques. 14-3- 214 J.F.C. p. 1 I Exercice autour de densité, fonction de répatition, espérance et variance de variables quelconques. Exercice 1 Densité de probabilité. F { ln x si x ], 1] UN OVNI... On pose x R,

Plus en détail

ECRICOME 2004. Voie Eco. 1 1 + x. f (x) dx n N, u n = 1. 0 xn f (x) dx

ECRICOME 2004. Voie Eco. 1 1 + x. f (x) dx n N, u n = 1. 0 xn f (x) dx ECRICOME 2004 Voie Eco 1 EXERCICE 1 EXERCICE Soient f la fonction numérique de la variable réelle définie par : x R, f (x = 1 2 et (u n la suite de nombres réels déterminée par : { u 0 = 1 f (x dx 0 n

Plus en détail

Cours de Tests paramétriques

Cours de Tests paramétriques Cours de Tests paramétriques F. Muri-Majoube et P. Cénac 2006-2007 Licence Ce document est sous licence ALC TYPE 2. Le texte de cette licence est également consultable en ligne à l adresse http://www.librecours.org/cgi-bin/main?callback=licencetype2.

Plus en détail

M1107 : Initiation à la mesure du signal. T_MesSig

M1107 : Initiation à la mesure du signal. T_MesSig 1/81 M1107 : Initiation à la mesure du signal T_MesSig Frédéric PAYAN IUT Nice Côte d Azur - Département R&T Université de Nice Sophia Antipolis frederic.payan@unice.fr 15 octobre 2014 2/81 Curriculum

Plus en détail

Corrigé Pondichéry 1999

Corrigé Pondichéry 1999 Corrigé Pondichéry 999 EXERCICE. = 8 = i ). D'où les solutions de l'équation : z = + i et z = z = i. a. De manière immédiate : z = z = b. Soit θ la mesure principale de arg z : cos θ = Par suite arg z

Plus en détail

Chapitre 1 Régime transitoire dans les systèmes physiques

Chapitre 1 Régime transitoire dans les systèmes physiques Chapitre 1 Régime transitoire dans les systèmes physiques Savoir-faire théoriques (T) : Écrire l équation différentielle associée à un système physique ; Faire apparaître la constante de temps ; Tracer

Plus en détail

Filtrage et EDP. Philippe Montesinos. EMA/LGI2P - Site EERIE. Parc Scientifique G. Besse - 30035 Nîmes Cedex 1- France http://www.lgi2p.ema.

Filtrage et EDP. Philippe Montesinos. EMA/LGI2P - Site EERIE. Parc Scientifique G. Besse - 30035 Nîmes Cedex 1- France http://www.lgi2p.ema. Filtrage et EDP Philippe Montesinos EMA/LGI2P - Site EERIE Parc Scientifique G. Besse - 30035 Nîmes Cedex 1- France http://www.lgi2p.ema.fr 1 Plan 1. Rappels: - Les analyses multi-échelles. - Méthodes

Plus en détail

CHAPITRE CP1 C Conversion électromagnétique statique

CHAPITRE CP1 C Conversion électromagnétique statique PSI Brizeux Ch. CP1: Conversion électromagnétique statique 1 CHAPITRE CP1 C Conversion électromagnétique statique Les sources d énergie, naturelles ou industrielles, se trouvent sous deux formes : thermique

Plus en détail