Colonie de bactéries dans une assiette de Petri Compléments Mathématiques

Dimension: px
Commencer à balayer dès la page:

Download "Colonie de bactéries dans une assiette de Petri Compléments Mathématiques"

Transcription

1 Colonie de bactéries dans une assiette de Petri Compléments Mathématiques Jamila Sam, Corentin Perret & Roger Küng version 1.2 ( Octobre 2012) c EPFL Table des matières 1 Rappel du cadre du projet 2 2 Simulation du déplacement 2 3 Méthodes d intégration numérique Schéma d Euler-Cromer Runge-Kutta d ordre Tests de collision Test de collision avec l assiette de Petri Test de collision d un point avec une boîte Test de collision d un point avec une sphère Test de collision d un point avec un plan Plan infini Portion de plan Représentations graphiques 7 1

2 1 Rappel du cadre du projet Ce projet a pour but de construire un outil informatique permettant de visualiser et simuler de façon simplifiée l évolution de colonies de bactéries dans une assiette de Petri. Pour plus de détails sur le cadre général du projet lui-même, référez-vous à la page Web de description de celui-ci. Le présent document à pour seul but de vous fournir les compléments théoriques, notamment mathématiques, nécessaires à la mise en oeuvre du programme. 2 Simulation du déplacement Nous considérons dans le cadre de ce projet que le mouvement d une bactérie est régi par une équation de type : d v(t) = f( v(t), x(t)) (1) dt où f est une force s exerçant sur la bactérie et conditionnant son mouvement : par exemple une force d attraction dépendant de la position, x(t), de la bactérie et de sa vitesse, v(t), au moment t. Calculer les vitesse et position de la bactérie, conditionnés par f, après l écoulement d un certain temps, revient en fait à résoudre une équation différentielle du second ordre du type : ẍ = f(x, ẋ, t) où x R q est un vecteur (position), ẍ = d2 x dt, ẋ = dx (vitesse) et f est une fonction 2 dt vectorielle de R R q R q dans R q. Nous le ferons moyennant un intégrateur numérique (voir la section?? ci-dessous) qui nous permettra de calculer pas à pas l évolution du mouvement d une bactérie. 3 Méthodes d intégration numérique Peu d équations différentielles possèdent une solution calculable analytiquement. Pour les résoudre, il faut alors passer par l analyse numérique, c est-à-dire le calcul approché, numérique, d une solution particulière à l équation différentielle pour des conditions initiales données. On parle d «intégration numérique». Il existe de nombreux moyens d intégrer numériquement une équation différentielle (cf plus loin). Le moyen le plus simple, dont nous allons nous servir ici pour illustrer les principes, 2

3 est la méthode dite «d Euler». Imaginons que nous ayons une équation différentielle que l on peut écrire sous la forme : ẍ = f(x, ẋ, t) où x R q est un vecteur (typiquement la position), ẍ = d2 x dt, ẋ = dx et f est une 2 dt fonction vectorielle de R R q R q dans R q (qui en représente typiquement les équations du mouvement). Imaginons également que nous connaissions des conditions initiales i.e. les valeurs x(t 0 ) et ẋ(t 0 ) de x et ẋ au temps T 0. On peut alors utiliser un développement limité au premier ordre pour trouver la valeur de x à un temps t + t : x(t 0 + t) = x(t 0 ) + ẋ(t 0 ) t Par le même raisonnement, on peut écrire pour la dérivée : ẋ(t 0 + t) = ẋ(t 0 ) + ẍ(t 0 ) t = ẋ(t 0 ) + f(x(t 0 ), ẋ(t 0 ), T 0 ) t On peut alors, ainsi de suite, de proche en proche, déterminer de cette manière la valeur de x (la position) et ẋ (la vitesse) pour tout temps t de la forme T 0 + n t. Il suffit pour cela de connaître les conditions initiales x(0), ẋ(0) et la fonction f(x, ẋ, t) puis de faire une boucle sur les calculs précédents en avançant à chaque fois de t. Il est ainsi par exemple possible de déterminer la position et la vitesse d un système pour n importe quel temps T 0 + n t en utilisant l intégrateur d Euler, non pas en calculant directement la solution de l équation, mais en faisant des «petits sauts» pour approcher cette solution. La méthode passe par l utilisation d un «pas de temps» t. Il faut le choisir suffisamment petit pour que l approximation faite dans le développement limité soit «raisonnable». Ceci peut faire l objet de nombreuses études qui seront le sujet de vos cours d analyse numérique. Dans notre cas, un choix de 0.03 secondes semble suffisant. Dans ce projet, de façon générale on cherche donc à résoudre (numériquement) une équation différentielle du second ordre : ẍ = f(x, ẋ, t) (x R q, q vaudra 3 dans notre projet : monde 3D) c est-à-dire, partant de conditions initiales (x (0), ẋ (0) ) au temps T 0, calculer les valeurs x (n) et ẋ (n) ) de x et ẋ au temps T n = T 0 + n t (pour un pas de temps t donné et n 1). Il existe pour cela plusieurs méthodes différentes. En voici deux, de la plus simple à la plus compliquée. 3

4 3.1 Schéma d Euler-Cromer Calculer x (n) et ẋ (n) comme suit : ẋ (n) = ẋ (n 1) + t f(t n 1, x (n 1), ẋ (n 1) ) x (n) = x (n 1) + t ẋ (n) À noter la différence avec le schéma d Euler (explicite) classique qui utilise l ancienne version ẋ (n 1) de la vitesse dans la seconde équation. 3.2 Runge-Kutta d ordre 4 Cette méthode, plus fiable que la précédente, nécessite huit variables intermédiaires : k 1, k 2, k 3, k 4, k 1, k 2, k 3 et k 4. avec : x (n) = x (n 1) + t 6 (k 1 + 2k 2 + 2k 3 + k 4 ) ẋ (n) = ẋ (n 1) + t 6 (k 1 + 2k 2 + 2k 3 + k 4) k 1 = ẋ (n 1) k 1 = f(t n 1, x (n 1), ẋ (n 1) ) k 2 = ẋ (n 1) + t 2 k 1 k 2 = f(t n 1 + t 2, x(n 1) + t 2 k 1, ẋ (n 1) + t 2 k 1) k 3 = ẋ (n 1) + t 2 k 2 k 3 = f(t n 1 + t 2, x(n 1) + t 2 k 2, ẋ (n 1) + t 2 k 2) k 4 = ẋ (n 1) + t k 3 k 4 = f(t n, x (n 1) + t k 3, ẋ (n 1) + t k 3) Note : T n = T n 1 + t. Notez que quelque soit l intégrateur numérique choisi, si la force est nulle, il permettra de calculer un déplacement rectiligne uniforme (vitesse constante). 4

5 4 Tests de collision Les bactéries lors de leurs déplacements vont être amenées à être en contact (collision) avec divers éléments de l assiette de Petri : sources de nourriture, éventuellement des obstacles, paroi de l assiette, etc. De telles collisions ont un impact sur le déroulement de la simulation (consommation de nourriture, rebonds pendant le déplacement etc.), il est donc nécessaire de les détecter/tester. On considérera, pour simplifier, que la taille de la bactérie est négligeable : tester si elle est en collision avec un élément e de l assiette de Petri revient dans ces condition à tester si le point que constitue sa position est en collision avec e. Les sources de nourritures peuvent être assimilées à des boites ou à des sphères (selon des choix d implémentation simples). 4.1 Test de collision avec l assiette de Petri L assiette de Petri sera dans le projet un simple cylindre dessiné en position de base (centré en OZ et dont la base à 0 comme coordonnée Z). Dans ces conditions, soit p la position de la bactérie, r le rayon du cylindre et h sa hauteur, on considérera qu elle a été en collision avec l assiette de Petri : p [0] p [0] + p [1] p [1] > r 2 p [2] > h p [2] < 0 où désigne le "ou" logique. 4.2 Test de collision d un point avec une boîte Ce test sera implémenté de façon élémentaire, il ne fonctionnera que sur des boites représentées dans le repère absolu ; ce qui sera le cas dans l implémentation suggérée. Soit p le point à tester et, e min et e max les deux sommets extrêmes de la boites (resp. celui de plus petite et de plus grande norme dans le repère absolu) on considérera que p est en collision avec la boîte si la condition suivante est remplie : p [0] > e min [0] p [1] > e min [1] p [2] > e min [2] où désigne le et logique. p [0] < e max [0] p [1] < e max [1] p [2] < e max [2] 5

6 4.3 Test de collision d un point avec une sphère Un point sera considéré comme étant en collision avec une sphère si la distance qui le sépare du centre de la sphère est inférieure au rayon de la sphère. 4.4 Test de collision d un point avec un plan On considérera qu un point x 1 est en collision avec un plan si la distance la plus courte de x 1 au plan est inférieure à un certain seuil (par exemple 0.1) Plan infini Dans le cas d un plan infini défini par un point O et un vecteur normal n (unitaire), le point x 2 le plus proche sur ce plan du point x 1 s exprime comme : x 1 x 2 O n x 2 = x 1 + ( ( O x 1 ) n ) n n (. désigne le produit scalaire) Portion de plan Dans le cas d une portion rectangulaire de plan d origine O, de normale n (unitaire), de longueur L suivant la direction e L et de largeur l suivant la direction e l, le point x 2 le plus proche sur ce plan au point x 1 se calcule comme suit : n O e l e L x 1 x 2 1. Commencez par calculer le point le plus proche dans le plan infini comme précédemment : ( x 2 = ( O x 1 ) ) n n x 1 + n 6

7 2. Calculez ensuite ses coordonnées suivant e L et e l : x 2L = ( x 2 O) e L, x 2l = ( x 2 O) e l. 3. Si x 2L > L sinon, si x 2L < 0 4. Ensuite, si x 2l > l sinon, si x 2l < 0 x 2 x 2 (x 2L L) e L, x 2 x 2 x 2L el. x 2 x 2 (x 2l l) e l, x 2 x 2 x 2l el. 5 Représentations graphiques Ce projet utilise la bibliothèque opengl pour ses aspects graphiques. Le dessin de sphères ou de cylindres par le biais de quadriques s y réalise très naturellement. Le dessin de plans peut se réaliser de multiples façons. L algorithme ci-après vous indique comment faire si vous utilisez une représentation du plan sous la forme : d un point p ; et d un vecteur unitaire orthognal au plan, orth. 7

8 Algorithme 1. Trouver deux vecteurs v 1 et, v 2 tels que ( orth, v 1, v 2 ) forment une base orthogonale de R 3. Ces vecteurs peuvent être trouvés par une méthode d orthogonalisation de type Gramm-Schmidt (. désigne le produit scalaire et le produit d un scalaire par un vecteur) : : (a) Soit les trois vecteurs e1 = (1., 0., 0.), e2 = (0., 1., 0.) et e3 = (0., 0., 1.) ; (b) v1 = e1 ( orth. e1) orth ; (c) si v1 < ε, v1 = e2 ( orth. e2) orth (ε est la précision en dessous de laquelle la norme de v1 sera considérée comme nulle (par exemple 0.01)) ; (d) v2 = e3 ( orth. e3) orth ( v1. e3) v1 ; (e) si v2 < ε, v2 = ( e2 ( orth. e2) orth ( v1. e2) v1) ; (f) v1 = v1 L (1./ v1 ) (L : largeur souhaitée pour le dessin) ; (g) v2 = v2 L (1./ v2 ) ; 2. dessiner le polygone de sommets p + v1 + v2, p v1 + v2, p v1 v2 et p + v1 v2 8

Cours de Mécanique du point matériel

Cours de Mécanique du point matériel Cours de Mécanique du point matériel SMPC1 Module 1 : Mécanique 1 Session : Automne 2014 Prof. M. EL BAZ Cours de Mécanique du Point matériel Chapitre 1 : Complément Mathématique SMPC1 Chapitre 1: Rappels

Plus en détail

Chapitre 2 Le problème de l unicité des solutions

Chapitre 2 Le problème de l unicité des solutions Université Joseph Fourier UE MAT 127 Mathématiques année 2011-2012 Chapitre 2 Le problème de l unicité des solutions Ce que nous verrons dans ce chapitre : un exemple d équation différentielle y = f(y)

Plus en détail

Cours d Analyse. Fonctions de plusieurs variables

Cours d Analyse. Fonctions de plusieurs variables Cours d Analyse Fonctions de plusieurs variables Licence 1ère année 2007/2008 Nicolas Prioux Université de Marne-la-Vallée Table des matières 1 Notions de géométrie dans l espace et fonctions à deux variables........

Plus en détail

Plan du cours : électricité 1

Plan du cours : électricité 1 Semestre : S2 Module Physique II 1 Electricité 1 2 Optique géométrique Plan du cours : électricité 1 Partie A : Electrostatique (discipline de l étude des phénomènes liés aux distributions de charges stationnaires)

Plus en détail

I. Polynômes de Tchebychev

I. Polynômes de Tchebychev Première épreuve CCP filière MP I. Polynômes de Tchebychev ( ) 1.a) Tout réel θ vérifie cos(nθ) = Re ((cos θ + i sin θ) n ) = Re Cn k (cos θ) n k i k (sin θ) k Or i k est réel quand k est pair et imaginaire

Plus en détail

Fonctions de plusieurs variables

Fonctions de plusieurs variables Module : Analyse 03 Chapitre 00 : Fonctions de plusieurs variables Généralités et Rappels des notions topologiques dans : Qu est- ce que?: Mathématiquement, n étant un entier non nul, on définit comme

Plus en détail

Capacité d un canal Second Théorème de Shannon. Théorie de l information 1/34

Capacité d un canal Second Théorème de Shannon. Théorie de l information 1/34 Capacité d un canal Second Théorème de Shannon Théorie de l information 1/34 Plan du cours 1. Canaux discrets sans mémoire, exemples ; 2. Capacité ; 3. Canaux symétriques ; 4. Codage de canal ; 5. Second

Plus en détail

Calcul intégral élémentaire en plusieurs variables

Calcul intégral élémentaire en plusieurs variables Calcul intégral élémentaire en plusieurs variables PC*2 2 septembre 2009 Avant-propos À part le théorème de Fubini qui sera démontré dans le cours sur les intégrales à paramètres et qui ne semble pas explicitement

Plus en détail

Amphi 3: Espaces complets - Applications linéaires continues

Amphi 3: Espaces complets - Applications linéaires continues Amphi 3: Espaces complets - Applications linéaires continues Département de Mathématiques École polytechnique Remise en forme mathématique 2013 Suite de Cauchy Soit (X, d) un espace métrique. Une suite

Plus en détail

Résolution d équations non linéaires

Résolution d équations non linéaires Analyse Numérique Résolution d équations non linéaires Said EL HAJJI et Touria GHEMIRES Université Mohammed V - Agdal. Faculté des Sciences Département de Mathématiques. Laboratoire de Mathématiques, Informatique

Plus en détail

OM 1 Outils mathématiques : fonction de plusieurs variables

OM 1 Outils mathématiques : fonction de plusieurs variables Outils mathématiques : fonction de plusieurs variables PCSI 2013 2014 Certaines partie de ce chapitre ne seront utiles qu à partir de l année prochaine, mais une grande partie nous servira dès cette année.

Plus en détail

3 Approximation de solutions d équations

3 Approximation de solutions d équations 3 Approximation de solutions d équations Une équation scalaire a la forme générale f(x) =0où f est une fonction de IR dans IR. Un système de n équations à n inconnues peut aussi se mettre sous une telle

Plus en détail

Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications

Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications A. Optimisation sans contrainte.... Généralités.... Condition nécessaire et condition suffisante

Plus en détail

Repérage d un point - Vitesse et

Repérage d un point - Vitesse et PSI - écanique I - Repérage d un point - Vitesse et accélération page 1/6 Repérage d un point - Vitesse et accélération Table des matières 1 Espace et temps - Référentiel d observation 1 2 Coordonnées

Plus en détail

F7n COUP DE BOURSE, NOMBRE DÉRIVÉ

F7n COUP DE BOURSE, NOMBRE DÉRIVÉ Auteur : S.& S. Etienne F7n COUP DE BOURSE, NOMBRE DÉRIVÉ TI-Nspire CAS Mots-clés : représentation graphique, fonction dérivée, nombre dérivé, pente, tableau de valeurs, maximum, minimum. Fichiers associés

Plus en détail

Michel Henry Nicolas Delorme

Michel Henry Nicolas Delorme Michel Henry Nicolas Delorme Mécanique du point Cours + Exos Michel Henry Maître de conférences à l IUFM des Pays de Loire (Le Mans) Agrégé de physique Nicolas Delorme Maître de conférences à l université

Plus en détail

Rappels sur les suites - Algorithme

Rappels sur les suites - Algorithme DERNIÈRE IMPRESSION LE 14 septembre 2015 à 12:36 Rappels sur les suites - Algorithme Table des matières 1 Suite : généralités 2 1.1 Déition................................. 2 1.2 Exemples de suites............................

Plus en détail

Chapitre 0 Introduction à la cinématique

Chapitre 0 Introduction à la cinématique Chapitre 0 Introduction à la cinématique Plan Vitesse, accélération Coordonnées polaires Exercices corrigés Vitesse, Accélération La cinématique est l étude du mouvement Elle suppose donc l existence à

Plus en détail

Circuits RL et RC. Chapitre 5. 5.1 Inductance

Circuits RL et RC. Chapitre 5. 5.1 Inductance Chapitre 5 Circuits RL et RC Ce chapitre présente les deux autres éléments linéaires des circuits électriques : l inductance et la capacitance. On verra le comportement de ces deux éléments, et ensuite

Plus en détail

Les équations différentielles

Les équations différentielles Les équations différentielles Equations différentielles du premier ordre avec second membre Ce cours porte exclusivement sur la résolution des équations différentielles du premier ordre avec second membre

Plus en détail

Exercices - Fonctions de plusieurs variables : corrigé. Pour commencer

Exercices - Fonctions de plusieurs variables : corrigé. Pour commencer Pour commencer Exercice 1 - Ensembles de définition - Première année - 1. Le logarithme est défini si x + y > 0. On trouve donc le demi-plan supérieur délimité par la droite d équation x + y = 0.. 1 xy

Plus en détail

= 1 si n = m& où n et m sont souvent des indices entiers, par exemple, n, m = 0, 1, 2, 3, 4... En fait,! n m

= 1 si n = m& où n et m sont souvent des indices entiers, par exemple, n, m = 0, 1, 2, 3, 4... En fait,! n m 1 épartement de Physique, Université Laval, Québec Pierre Amiot, 1. La fonction delta et certaines de ses utilisations. Clientèle Ce texte est destiné aux physiciens, ingénieurs et autres scientifiques.

Plus en détail

Méthodes de quadrature. Polytech Paris-UPMC. - p. 1/48

Méthodes de quadrature. Polytech Paris-UPMC. - p. 1/48 Méthodes de Polytech Paris-UPMC - p. 1/48 Polynôme d interpolation de Preuve et polynôme de Calcul de l erreur d interpolation Étude de la formule d erreur Autres méthodes - p. 2/48 Polynôme d interpolation

Plus en détail

Chapitre 1 Cinématique du point matériel

Chapitre 1 Cinématique du point matériel Chapitre 1 Cinématique du point matériel 7 1.1. Introduction 1.1.1. Domaine d étude Le programme de mécanique de math sup se limite à l étude de la mécanique classique. Sont exclus : la relativité et la

Plus en détail

Exercice autour de densité, fonction de répatition, espérance et variance de variables quelconques.

Exercice autour de densité, fonction de répatition, espérance et variance de variables quelconques. 14-3- 214 J.F.C. p. 1 I Exercice autour de densité, fonction de répatition, espérance et variance de variables quelconques. Exercice 1 Densité de probabilité. F { ln x si x ], 1] UN OVNI... On pose x R,

Plus en détail

Cours d analyse numérique SMI-S4

Cours d analyse numérique SMI-S4 ours d analyse numérique SMI-S4 Introduction L objet de l analyse numérique est de concevoir et d étudier des méthodes de résolution de certains problèmes mathématiques, en général issus de problèmes réels,

Plus en détail

STATIQUE GRAPHIQUE ET STATIQUE ANALYTIQUE

STATIQUE GRAPHIQUE ET STATIQUE ANALYTIQUE ÉCOLE D'INGÉNIEURS DE FRIBOURG (E.I.F.) SECTION DE MÉCANIQUE G.R. Nicolet, revu en 2006 STATIQUE GRAPHIQUE ET STATIQUE ANALYTIQUE Eléments de calcul vectoriel Opérations avec les forces Equilibre du point

Plus en détail

TSTI 2D CH X : Exemples de lois à densité 1

TSTI 2D CH X : Exemples de lois à densité 1 TSTI 2D CH X : Exemples de lois à densité I Loi uniforme sur ab ; ) Introduction Dans cette activité, on s intéresse à la modélisation du tirage au hasard d un nombre réel de l intervalle [0 ;], chacun

Plus en détail

Cours Fonctions de deux variables

Cours Fonctions de deux variables Cours Fonctions de deux variables par Pierre Veuillez 1 Support théorique 1.1 Représentation Plan et espace : Grâce à un repère cartésien ( ) O, i, j du plan, les couples (x, y) de R 2 peuvent être représenté

Plus en détail

ANALYSE NUMERIQUE ET OPTIMISATION. Une introduction à la modélisation mathématique et à la simulation numérique

ANALYSE NUMERIQUE ET OPTIMISATION. Une introduction à la modélisation mathématique et à la simulation numérique 1 ANALYSE NUMERIQUE ET OPTIMISATION Une introduction à la modélisation mathématique et à la simulation numérique G. ALLAIRE 28 Janvier 2014 CHAPITRE I Analyse numérique: amphis 1 à 12. Optimisation: amphis

Plus en détail

3ème séance de Mécanique des fluides. Rappels sur les premières séances Aujourd hui : le modèle du fluide parfait. 2 Écoulements potentiels

3ème séance de Mécanique des fluides. Rappels sur les premières séances Aujourd hui : le modèle du fluide parfait. 2 Écoulements potentiels 3ème séance de Mécanique des fluides Rappels sur les premières séances Aujourd hui : le modèle du fluide parfait 1 Généralités 1.1 Introduction 1.2 Équation d Euler 1.3 Premier théorème de Bernoulli 1.4

Plus en détail

Chapitre 7 : Intégration sur un intervalle quelconque

Chapitre 7 : Intégration sur un intervalle quelconque Universités Paris 6 et Paris 7 M1 MEEF Analyse (UE 3) 2013-2014 Chapitre 7 : Intégration sur un intervalle quelconque 1 Fonctions intégrables Définition 1 Soit I R un intervalle et soit f : I R + une fonction

Plus en détail

Fonctions de plusieurs variables

Fonctions de plusieurs variables Maths MP Exercices Fonctions de plusieurs variables Les indications ne sont ici que pour être consultées après le T (pour les exercices non traités). Avant et pendant le T, tenez bon et n allez pas les

Plus en détail

Propriétés électriques de la matière

Propriétés électriques de la matière 1 Propriétés électriques de la matière La matière montre des propriétés électriques qui ont été observées depuis l antiquité. Nous allons distinguer les plus fondamentales de ces propriétés. 1 Propriétés

Plus en détail

Introduction à l analyse numérique : exemple du cloud computing

Introduction à l analyse numérique : exemple du cloud computing Introduction à l analyse numérique : exemple du cloud computing Tony FEVRIER Aujourd hui! Table des matières 1 Equations aux dérivées partielles et modélisation Equation différentielle et modélisation

Plus en détail

Erratum de MÉCANIQUE, 6ème édition. Introduction Page xxi (milieu de page) G = 6, 672 59 10 11 m 3 kg 1 s 2

Erratum de MÉCANIQUE, 6ème édition. Introduction Page xxi (milieu de page) G = 6, 672 59 10 11 m 3 kg 1 s 2 Introduction Page xxi (milieu de page) G = 6, 672 59 1 11 m 3 kg 1 s 2 Erratum de MÉCANIQUE, 6ème édition Page xxv (dernier tiers de page) le terme de Coriolis est supérieur à 1% du poids) Chapitre 1 Page

Plus en détail

Commun à tous les candidats

Commun à tous les candidats EXERCICE 3 (9 points ) Commun à tous les candidats On s intéresse à des courbes servant de modèle à la distribution de la masse salariale d une entreprise. Les fonctions f associées définies sur l intervalle

Plus en détail

Statistiques Descriptives à une dimension

Statistiques Descriptives à une dimension I. Introduction et Définitions 1. Introduction La statistique est une science qui a pour objectif de recueillir et de traiter les informations, souvent en très grand nombre. Elle regroupe l ensemble des

Plus en détail

Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre

Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre IUFM du Limousin 2009-10 PLC1 Mathématiques S. Vinatier Rappels de cours Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre 1 Fonctions de plusieurs variables

Plus en détail

Entraînement au concours ACM-ICPC

Entraînement au concours ACM-ICPC Entraînement au concours ACM-ICPC Concours ACM-ICPC : format et stratégies Page 1 / 16 Plan Présentation Stratégies de base Page 2 / 16 Qu est-ce que c est? ACM-ICPC : International Collegiate Programming

Plus en détail

Intégrales doubles et triples - M

Intégrales doubles et triples - M Intégrales s et - fournie@mip.ups-tlse.fr 1/27 - Intégrales (rappel) Rappels Approximation éfinition : Intégrale définie Soit f définie continue sur I = [a, b] telle que f (x) > 3 2.5 2 1.5 1.5.5 1 1.5

Plus en détail

Techniques d interaction dans la visualisation de l information Séminaire DIVA

Techniques d interaction dans la visualisation de l information Séminaire DIVA Techniques d interaction dans la visualisation de l information Séminaire DIVA Zingg Luca, luca.zingg@unifr.ch 13 février 2007 Résumé Le but de cet article est d avoir une vision globale des techniques

Plus en détail

Valeur cible et solveur. Les calculs effectués habituellement avec Excel utilisent des valeurs numériques qui constituent les données d'un problème.

Valeur cible et solveur. Les calculs effectués habituellement avec Excel utilisent des valeurs numériques qui constituent les données d'un problème. Valeur cible et solveur Atteindre une valeur cible Les calculs effectués habituellement avec Excel utilisent des valeurs numériques qui constituent les données d'un problème. A l'aide d'un certain nombre

Plus en détail

Chafa Azzedine - Faculté de Physique U.S.T.H.B 1

Chafa Azzedine - Faculté de Physique U.S.T.H.B 1 Chafa Azzedine - Faculté de Physique U.S.T.H.B 1 Définition: La cinématique est une branche de la mécanique qui étudie les mouements des corps dans l espace en fonction du temps indépendamment des causes

Plus en détail

Deux disques dans un carré

Deux disques dans un carré Deux disques dans un carré Table des matières 1 Fiche résumé 2 2 Fiche élève Seconde - version 1 3 2.1 Le problème............................................... 3 2.2 Construction de la figure avec geogebra...............................

Plus en détail

La Licence Mathématiques et Economie-MASS Université de Sciences Sociales de Toulouse 1

La Licence Mathématiques et Economie-MASS Université de Sciences Sociales de Toulouse 1 La Licence Mathématiques et Economie-MASS Université de Sciences Sociales de Toulouse 1 La licence Mathématiques et Economie-MASS de l Université des Sciences Sociales de Toulouse propose sur les trois

Plus en détail

Algorithmes pour la planification de mouvements en robotique non-holonome

Algorithmes pour la planification de mouvements en robotique non-holonome Algorithmes pour la planification de mouvements en robotique non-holonome Frédéric Jean Unité de Mathématiques Appliquées ENSTA Le 02 février 2006 Outline 1 2 3 Modélisation Géométrique d un Robot Robot

Plus en détail

Microsoft Excel : tables de données

Microsoft Excel : tables de données UNIVERSITE DE LA SORBONNE NOUVELLE - PARIS 3 Année universitaire 2000-2001 2ème SESSION SLMD2 Informatique Les explications sur la réalisation des exercices seront fournies sous forme de fichiers informatiques.

Plus en détail

Resolution limit in community detection

Resolution limit in community detection Introduction Plan 2006 Introduction Plan Introduction Introduction Plan Introduction Point de départ : un graphe et des sous-graphes. But : quantifier le fait que les sous-graphes choisis sont des modules.

Plus en détail

Continuité et dérivabilité d une fonction

Continuité et dérivabilité d une fonction DERNIÈRE IMPRESSIN LE 7 novembre 014 à 10:3 Continuité et dérivabilité d une fonction Table des matières 1 Continuité d une fonction 1.1 Limite finie en un point.......................... 1. Continuité

Plus en détail

3. Conditionnement P (B)

3. Conditionnement P (B) Conditionnement 16 3. Conditionnement Dans cette section, nous allons rappeler un certain nombre de définitions et de propriétés liées au problème du conditionnement, c est à dire à la prise en compte

Plus en détail

Université du Québec à Chicoutimi. Département d informatique et de mathématique. Plan de cours. Titre : Élément de programmation.

Université du Québec à Chicoutimi. Département d informatique et de mathématique. Plan de cours. Titre : Élément de programmation. Université du Québec à Chicoutimi Département d informatique et de mathématique Plan de cours Titre : Élément de programmation Sigle : 8inf 119 Session : Automne 2001 Professeur : Patrice Guérin Local

Plus en détail

Programmation linéaire

Programmation linéaire 1 Programmation linéaire 1. Le problème, un exemple. 2. Le cas b = 0 3. Théorème de dualité 4. L algorithme du simplexe 5. Problèmes équivalents 6. Complexité de l Algorithme 2 Position du problème Soit

Plus en détail

Informatique Générale

Informatique Générale Informatique Générale Guillaume Hutzler Laboratoire IBISC (Informatique Biologie Intégrative et Systèmes Complexes) guillaume.hutzler@ibisc.univ-evry.fr Cours Dokeos 625 http://www.ens.univ-evry.fr/modx/dokeos.html

Plus en détail

Les travaux doivent être remis sous forme papier.

Les travaux doivent être remis sous forme papier. Physique mathématique II Calendrier: Date Pondération/note nale Matériel couvert ExercicesSérie 1 : 25 septembre 2014 5% RH&B: Ch. 3 ExercicesSérie 2 : 23 octobre 2014 5% RH&B: Ch. 12-13 Examen 1 : 24

Plus en détail

Master Modélisation Aléatoire Paris VII, Cours Méthodes de Monte Carlo en nance et C++, TP n 2.

Master Modélisation Aléatoire Paris VII, Cours Méthodes de Monte Carlo en nance et C++, TP n 2. Master Modélisation Aléatoire Paris VII, Cours Méthodes de Monte Carlo en nance et C++, TP n 2. Techniques de correction pour les options barrières 25 janvier 2007 Exercice à rendre individuellement lors

Plus en détail

Quantification Scalaire et Prédictive

Quantification Scalaire et Prédictive Quantification Scalaire et Prédictive Marco Cagnazzo Département Traitement du Signal et des Images TELECOM ParisTech 7 Décembre 2012 M. Cagnazzo Quantification Scalaire et Prédictive 1/64 Plan Introduction

Plus en détail

IRL : Simulation distribuée pour les systèmes embarqués

IRL : Simulation distribuée pour les systèmes embarqués IRL : Simulation distribuée pour les systèmes embarqués Yassine El Khadiri, 2 ème année Ensimag, Grenoble INP Matthieu Moy, Verimag Denis Becker, Verimag 19 mai 2015 1 Table des matières 1 MPI et la sérialisation

Plus en détail

CHAPITRE V SYSTEMES DIFFERENTIELS LINEAIRES A COEFFICIENTS CONSTANTS DU PREMIER ORDRE. EQUATIONS DIFFERENTIELLES.

CHAPITRE V SYSTEMES DIFFERENTIELS LINEAIRES A COEFFICIENTS CONSTANTS DU PREMIER ORDRE. EQUATIONS DIFFERENTIELLES. CHAPITRE V SYSTEMES DIFFERENTIELS LINEAIRES A COEFFICIENTS CONSTANTS DU PREMIER ORDRE EQUATIONS DIFFERENTIELLES Le but de ce chapitre est la résolution des deux types de systèmes différentiels linéaires

Plus en détail

Algèbre binaire et Circuits logiques (2007-2008)

Algèbre binaire et Circuits logiques (2007-2008) Université Mohammed V Faculté des Sciences Département de Mathématiques et Informatique Filière : SMI Algèbre binaire et Circuits logiques (27-28) Prof. Abdelhakim El Imrani Plan. Algèbre de Boole 2. Circuits

Plus en détail

MIS 102 Initiation à l Informatique

MIS 102 Initiation à l Informatique MIS 102 Initiation à l Informatique Responsables et cours : Cyril Gavoille Catherine Pannier Matthias Robine Marc Zeitoun Planning : 6 séances de cours 5 séances de TD (2h40) 4 séances de TP (2h40) + environ

Plus en détail

Les algorithmes de base du graphisme

Les algorithmes de base du graphisme Les algorithmes de base du graphisme Table des matières 1 Traçage 2 1.1 Segments de droites......................... 2 1.1.1 Algorithmes simples.................... 3 1.1.2 Algorithmes de Bresenham (1965).............

Plus en détail

8.1 Généralités sur les fonctions de plusieurs variables réelles. f : R 2 R (x, y) 1 x 2 y 2

8.1 Généralités sur les fonctions de plusieurs variables réelles. f : R 2 R (x, y) 1 x 2 y 2 Chapitre 8 Fonctions de plusieurs variables 8.1 Généralités sur les fonctions de plusieurs variables réelles Définition. Une fonction réelle de n variables réelles est une application d une partie de R

Plus en détail

Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures)

Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures) Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures) Eercice 1 (5 points) pour les candidats n ayant pas choisi la spécialité MATH Le tableau suivant donne l évolution du chiffre

Plus en détail

Projet de Traitement du Signal Segmentation d images SAR

Projet de Traitement du Signal Segmentation d images SAR Projet de Traitement du Signal Segmentation d images SAR Introduction En analyse d images, la segmentation est une étape essentielle, préliminaire à des traitements de haut niveau tels que la classification,

Plus en détail

Exemples de problèmes et d applications. INF6953 Exemples de problèmes 1

Exemples de problèmes et d applications. INF6953 Exemples de problèmes 1 Exemples de problèmes et d applications INF6953 Exemples de problèmes Sommaire Quelques domaines d application Quelques problèmes réels Allocation de fréquences dans les réseaux radio-mobiles Affectation

Plus en détail

FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4)

FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4) FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4) Bernard Le Stum Université de Rennes 1 Version du 13 mars 2009 Table des matières 1 Fonctions partielles, courbes de niveau 1 2 Limites et continuité

Plus en détail

Synthèse d'images I. Venceslas BIRI IGM Université de Marne La

Synthèse d'images I. Venceslas BIRI IGM Université de Marne La Synthèse d'images I Venceslas BIRI IGM Université de Marne La La synthèse d'images II. Rendu & Affichage 1. Introduction Venceslas BIRI IGM Université de Marne La Introduction Objectif Réaliser une image

Plus en détail

INITIATION AU LANGAGE C SUR PIC DE MICROSHIP

INITIATION AU LANGAGE C SUR PIC DE MICROSHIP COURS PROGRAMMATION INITIATION AU LANGAGE C SUR MICROCONTROLEUR PIC page 1 / 7 INITIATION AU LANGAGE C SUR PIC DE MICROSHIP I. Historique du langage C 1972 : naissance du C dans les laboratoires BELL par

Plus en détail

L ANALYSE EN COMPOSANTES PRINCIPALES (A.C.P.) Pierre-Louis GONZALEZ

L ANALYSE EN COMPOSANTES PRINCIPALES (A.C.P.) Pierre-Louis GONZALEZ L ANALYSE EN COMPOSANTES PRINCIPALES (A.C.P.) Pierre-Louis GONZALEZ INTRODUCTION Données : n individus observés sur p variables quantitatives. L A.C.P. permet d eplorer les liaisons entre variables et

Plus en détail

LES TYPES DE DONNÉES DU LANGAGE PASCAL

LES TYPES DE DONNÉES DU LANGAGE PASCAL LES TYPES DE DONNÉES DU LANGAGE PASCAL 75 LES TYPES DE DONNÉES DU LANGAGE PASCAL CHAPITRE 4 OBJECTIFS PRÉSENTER LES NOTIONS D ÉTIQUETTE, DE CONS- TANTE ET DE IABLE DANS LE CONTEXTE DU LAN- GAGE PASCAL.

Plus en détail

TABLE DES MATIÈRES CHAPITRE I. Les quanta s invitent

TABLE DES MATIÈRES CHAPITRE I. Les quanta s invitent TABLE DES MATIÈRES AVANT-PROPOS III CHAPITRE I Les quanta s invitent I-1. L Univers est en constante évolution 2 I-2. L âge de l Univers 4 I-2.1. Le rayonnement fossile témoigne 4 I-2.2. Les amas globulaires

Plus en détail

Évaluation et implémentation des langages

Évaluation et implémentation des langages Évaluation et implémentation des langages Les langages de programmation et le processus de programmation Critères de conception et d évaluation des langages de programmation Les fondations de l implémentation

Plus en détail

Différentiabilité ; Fonctions de plusieurs variables réelles

Différentiabilité ; Fonctions de plusieurs variables réelles Différentiabilité ; Fonctions de plusieurs variables réelles Denis Vekemans R n est muni de l une des trois normes usuelles. 1,. 2 ou.. x 1 = i i n Toutes les normes de R n sont équivalentes. x i ; x 2

Plus en détail

Corps des nombres complexes, J Paul Tsasa

Corps des nombres complexes, J Paul Tsasa Corps des nombres complexes, J Paul Tsasa One Pager Février 2013 Vol. 5 Num. 011 Copyright Laréq 2013 http://www.lareq.com Corps des Nombres Complexes Définitions, Règles de Calcul et Théorèmes «Les idiots

Plus en détail

Modèles à Événements Discrets. Réseaux de Petri Stochastiques

Modèles à Événements Discrets. Réseaux de Petri Stochastiques Modèles à Événements Discrets Réseaux de Petri Stochastiques Table des matières 1 Chaînes de Markov Définition formelle Idée générale Discrete Time Markov Chains Continuous Time Markov Chains Propriétés

Plus en détail

Programmation linéaire et Optimisation. Didier Smets

Programmation linéaire et Optimisation. Didier Smets Programmation linéaire et Optimisation Didier Smets Chapitre 1 Un problème d optimisation linéaire en dimension 2 On considère le cas d un fabricant d automobiles qui propose deux modèles à la vente, des

Plus en détail

Exercices Alternatifs. Quelqu un aurait-il vu passer un polynôme?

Exercices Alternatifs. Quelqu un aurait-il vu passer un polynôme? Exercices Alternatifs Quelqu un aurait-il vu passer un polynôme? c 2004 Frédéric Le Roux, François Béguin (copyleft LDL : Licence pour Documents Libres). Sources et figures: polynome-lagrange/. Version

Plus en détail

Exercices Alternatifs. Quelqu un aurait-il vu passer un polynôme?

Exercices Alternatifs. Quelqu un aurait-il vu passer un polynôme? Exercices Alternatifs Quelqu un aurait-il vu passer un polynôme? c 2004 Frédéric Le Roux, François Béguin (copyleft LDL : Licence pour Documents Libres). Sources et figures: polynome-lagrange/. Version

Plus en détail

Fonctions de deux variables. Mai 2011

Fonctions de deux variables. Mai 2011 Fonctions de deux variables Dédou Mai 2011 D une à deux variables Les fonctions modèlisent de l information dépendant d un paramètre. On a aussi besoin de modéliser de l information dépendant de plusieurs

Plus en détail

Souad EL Bernoussi. Groupe d Analyse Numérique et Optimisation Rabat http ://www.fsr.ac.ma/ano/

Souad EL Bernoussi. Groupe d Analyse Numérique et Optimisation Rabat http ://www.fsr.ac.ma/ano/ Recherche opérationnelle Les démonstrations et les exemples seront traités en cours Souad EL Bernoussi Groupe d Analyse Numérique et Optimisation Rabat http ://www.fsr.ac.ma/ano/ Table des matières 1 Programmation

Plus en détail

L informatique en BCPST

L informatique en BCPST L informatique en BCPST Présentation générale Sylvain Pelletier Septembre 2014 Sylvain Pelletier L informatique en BCPST Septembre 2014 1 / 20 Informatique, algorithmique, programmation Utiliser la rapidité

Plus en détail

Objectifs du cours d aujourd hui. Informatique II : Cours d introduction à l informatique et à la programmation objet. Complexité d un problème (2)

Objectifs du cours d aujourd hui. Informatique II : Cours d introduction à l informatique et à la programmation objet. Complexité d un problème (2) Objectifs du cours d aujourd hui Informatique II : Cours d introduction à l informatique et à la programmation objet Complexité des problèmes Introduire la notion de complexité d un problème Présenter

Plus en détail

ÉVALUATION FORMATIVE. On considère le circuit électrique RC représenté ci-dessous où R et C sont des constantes strictement positives.

ÉVALUATION FORMATIVE. On considère le circuit électrique RC représenté ci-dessous où R et C sont des constantes strictement positives. L G L G Prof. Éric J.M.DELHEZ ANALYSE MATHÉMATIQUE ÉALUATION FORMATIE Novembre 211 Ce test vous est proposé pour vous permettre de faire le point sur votre compréhension du cours d Analyse Mathématique.

Plus en détail

Qualité du logiciel: Méthodes de test

Qualité du logiciel: Méthodes de test Qualité du logiciel: Méthodes de test Matthieu Amiguet 2004 2005 Analyse statique de code Analyse statique de code Étudier le programme source sans exécution Généralement réalisée avant les tests d exécution

Plus en détail

1 Description générale de VISFIELD

1 Description générale de VISFIELD Guide d utilisation du logiciel VISFIELD Yann FRAIGNEAU LIMSI-CNRS, Bâtiment 508, BP 133 F-91403 Orsay cedex, France 11 décembre 2012 1 Description générale de VISFIELD VISFIELD est un programme écrit

Plus en détail

OLYMPIADES ACADÉMIQUES DE MATHÉMATIQUES

OLYMPIADES ACADÉMIQUES DE MATHÉMATIQUES OLYMPIADES ACADÉMIQUES DE MATHÉMATIQUES ACADÉMIE DE RENNES SESSION 2006 CLASSE DE PREMIERE DURÉE : 4 heures Ce sujet s adresse à tous les élèves de première quelle que soit leur série. Il comporte cinq

Plus en détail

Découverte du logiciel ordinateur TI-n spire / TI-n spire CAS

Découverte du logiciel ordinateur TI-n spire / TI-n spire CAS Découverte du logiciel ordinateur TI-n spire / TI-n spire CAS Mémento Ouvrir TI-Nspire CAS. Voici la barre d outils : L insertion d une page, d une activité, d une page où l application est choisie, pourra

Plus en détail

De même, le périmètre P d un cercle de rayon 1 vaut P = 2π (par définition de π). Mais, on peut démontrer (difficilement!) que

De même, le périmètre P d un cercle de rayon 1 vaut P = 2π (par définition de π). Mais, on peut démontrer (difficilement!) que Introduction. On suppose connus les ensembles N (des entiers naturels), Z des entiers relatifs et Q (des nombres rationnels). On s est rendu compte, depuis l antiquité, que l on ne peut pas tout mesurer

Plus en détail

Introduction à MATLAB R

Introduction à MATLAB R Introduction à MATLAB R Romain Tavenard 10 septembre 2009 MATLAB R est un environnement de calcul numérique propriétaire orienté vers le calcul matriciel. Il se compose d un langage de programmation, d

Plus en détail

Feuille TD n 1 Exercices d algorithmique éléments de correction

Feuille TD n 1 Exercices d algorithmique éléments de correction Master Sciences, Technologies, Santé Mention Mathématiques, spécialité Enseignement des mathématiques Algorithmique et graphes, thèmes du second degré Feuille TD n 1 Exercices d algorithmique éléments

Plus en détail

Premiers pas avec Mathematica

Premiers pas avec Mathematica Premiers pas avec Mathematica LP206 : Mathématiques pour physiciens I Année 2010/2011 1 Introduction Mathematica est un logiciel de calcul formel qui permet de manipuler des expressions mathématiques symboliques.

Plus en détail

Examen optimisation Centrale Marseille (2008) et SupGalilee (2008)

Examen optimisation Centrale Marseille (2008) et SupGalilee (2008) Examen optimisation Centrale Marseille (28) et SupGalilee (28) Olivier Latte, Jean-Michel Innocent, Isabelle Terrasse, Emmanuel Audusse, Francois Cuvelier duree 4 h Tout resultat enonce dans le texte peut

Plus en détail

Documentation Technique du programme HYDRONDE_LN

Documentation Technique du programme HYDRONDE_LN Documentation Technique du programme HYDRONDE_LN Réalisation du programme H.GUYARD Réalisation du matériel électronique C.COULAUD & B.MERCIER Le programme HYDRONDE_LN est un programme qui permet de visualiser

Plus en détail

Baccalauréat S Antilles-Guyane 11 septembre 2014 Corrigé

Baccalauréat S Antilles-Guyane 11 septembre 2014 Corrigé Baccalauréat S ntilles-guyane 11 septembre 14 Corrigé EXERCICE 1 6 points Commun à tous les candidats Une entreprise de jouets en peluche souhaite commercialiser un nouveau produit et à cette fin, effectue

Plus en détail

Calcul fonctionnel holomorphe dans les algèbres de Banach

Calcul fonctionnel holomorphe dans les algèbres de Banach Chapitre 7 Calcul fonctionnel holomorphe dans les algèbres de Banach L objet de ce chapitre est de définir un calcul fonctionnel holomorphe qui prolonge le calcul fonctionnel polynômial et qui respecte

Plus en détail

10 leçon 2. Leçon n 2 : Contact entre deux solides. Frottement de glissement. Exemples. (PC ou 1 er CU)

10 leçon 2. Leçon n 2 : Contact entre deux solides. Frottement de glissement. Exemples. (PC ou 1 er CU) 0 leçon 2 Leçon n 2 : Contact entre deu solides Frottement de glissement Eemples (PC ou er CU) Introduction Contact entre deu solides Liaisons de contact 2 Contact ponctuel 2 Frottement de glissement 2

Plus en détail

Plan du cours 2014-2015. Cours théoriques. 29 septembre 2014

Plan du cours 2014-2015. Cours théoriques. 29 septembre 2014 numériques et Institut d Astrophysique et de Géophysique (Bât. B5c) Bureau 0/13 email:.@ulg.ac.be Tél.: 04-3669771 29 septembre 2014 Plan du cours 2014-2015 Cours théoriques 16-09-2014 numériques pour

Plus en détail

n N = u N u N+1 1 u pour u 1. f ( uv 1) v N+1 v N v 1 1 2 t

n N = u N u N+1 1 u pour u 1. f ( uv 1) v N+1 v N v 1 1 2 t 3.La méthode de Dirichlet 99 11 Le théorème de Dirichlet 3.La méthode de Dirichlet Lorsque Dirichlet, au début des années 180, découvre les travaux de Fourier, il cherche à les justifier par des méthodes

Plus en détail

Modélisation et Simulation

Modélisation et Simulation Cours de modélisation et simulation p. 1/64 Modélisation et Simulation G. Bontempi Département d Informatique Boulevard de Triomphe - CP 212 http://www.ulb.ac.be/di Cours de modélisation et simulation

Plus en détail