Déterminer le sens du courant induit dans la spire sachant que B z. (t) est une fonction croissante du temps.

Dimension: px
Commencer à balayer dès la page:

Download "Déterminer le sens du courant induit dans la spire sachant que B z. (t) est une fonction croissante du temps."

Transcription

1 PC 13/14 TD INDUCTION AC1 : Loi de Lenz On considère une spire circulaire (C) fixe, conductrice de résistance R soumise à un champ magnétique extérieur uniforme variable et orthogonal à la surface du circuit B(t) = B z (t)e z Déterminer le sens du courant induit dans la spire sachant que B z (t) est une fonction croissante du temps Que peut-on dire si B z (t) est une fonction décroissante? Que peut-on dire si B z (t) est une fonction quelconque? Peut-on traduire la loi de Lenz par : «le courant induit crée un champ magnétique qui s oppose au champ magnétique extérieur»? AC2 : Spire soumise à un champ magnétique variable Un solénoïde d axe (Oz), suffisamment long pour que les effets de bord soient négligeables, comporte n spires par unité de longueur parcourues par un courant d intensité I(t) Les spires de ce solénoïde sont circulaires de rayon a Un circuit filiforme en forme de spire unique de rayon b et de résistance R entoure ce solénoïde 1 Rappeler l expression du champ magnétique créé par le solénoïde 2 Déterminer le courant i(t) circulant dans la spire en fonction de I(t) 3 Vérifier la validité de la loi de Lenz AC3 : Inductance propre d une bobine On reprend le même solénoïde qu à AC2 et on en considère une longueur Il n y a plus la spire extérieure de rayon b 1 Déterminer successivement : - le flux ϕ à travers une spire quelconque du solénoïde - le flux propre à travers toutes les spires de la tranche de longueur - l inductance propre correspondante 2 Déterminer l énergie emmagasinée de deux manières différentes

2 Exercice 1 : Pince Ampèremétrique Sur la notice de fonctionnement d une pince Ampèremétrique de la marque Chauvin- Arnoux, on peut lire l extrait suivant : 1 Justifier la relation indiquée dans le texte et donner les hypothèses implicites 2 Doit-on tenir compte des phénomènes d auto et de mutuelle induction dans ce dispositif? Pourquoi? 3 Proposer un circuit électrique plus réaliste pour illustrer l intégration du signal 4 Pourquoi ce dispositif n est-il pas adapté pour mesurer des courants continus? Proposer un type de capteur permettant d accéder à la mesure de courants continus

3 Exercice 2 : déplacement d un aimant Un petit aimant est déplacé de haut en bas devant un bobinage relié à un oscilloscope La manipulation est représentée sur les photos ci-dessous Commenter les courbes obtenues Exercice 3 : Chauffage par induction Le champ magnétique B(t) = B 0 cos(100πt)e z est uniforme dans le cylindre (non conducteur) de rayon a et nul en dehors Un disque troué en Cuivre, de conductivité γ, de rayon b et d épaisseur e entoure le cylindre On donne γ =5,910-7 Sm -1 On négligera le phénomène d auto-induction 1 Quelles dimensions maximales (on ordre de grandeur) doit-on donner au conducteur pour que l effet de peau ne soit pas limitatif? 2 Justifier que le champ électrique dans le conducteur est de la forme E = E(r,z,t)e θ 3 Calculer la puissance moyenne perdue par effet Joule dans le disque conducteur Exercice 4 : Freinage par courants de Foucault Un disque métallique de rayon a, d épaisseur e et de conductivité électrique γ est en rotation uniforme autour de son axe Oz à la vitesse angulaire ω 0 A partir de l instant t = 0, on impose un champ magnétique constant et uniforme B = B 0 e z 1 Déterminer la densité volumique de courants j( M, t) dans le métal On admettra que le potentiel électrique est nul dans le conducteur, ce qui revient à supposer que celui-ci reste localement neutre et on négligera le phénomène d auto-induction 2 En déduire, par une méthode énergétique, l évolution de la vitesse angulaire ω(t) On notera J le moment d inertie du disque par rapport à son axe

4 3 On note τ le temps de relaxation et on suppose que le mouvement du disque est totalement arrêté pour une durée de l ordre de 5τ Déterminer l intensité du champ magnétique nécessaire à un arrêt au bout de 5 secondes On donne, pour un disque en cuivre : µ Cu = 8, kgm -3 et γ Cu = 5, Sm -1 4 Le système de freinage ne produit pas un champ magnétique uniforme sur le disque mais localisé sur une zone limitée de ce disque grâce à un électroaimant (figure cidessous) Commenter Exercice 5 : Mesure d un coefficient d inductance mutuelle On considère deux bobines identiques, formées de N spires circulaires de rayon R (bobines plates bobinées sur une seule épaisseur), d inductance L, que l on place de telle façon que les deux bobinages soient coaxiaux, avec le même sens d enroulement, la distance entre leurs centres étant repérée le long de l axe commun Oz par la longueur d On se propose de mesurer le couplage entre les deux bobines en envoyant dans l une d elles, dite la première, une tension triangulaire et en comparant à l oscilloscope cette tension avec la tension induite dans l autre, celle-ci étant en circuit ouvert On a branché en série entre le générateur de fonction et la première bobine une résistance R = 100 Ω On néglige la résistance R des bobines 1 Faire le schéma du montage 2 Les traces observées à l oscilloscope ont l allure suivante : Les réglages de l oscilloscope sont les suivants :

5 balayage horizontal : 0,2 ms/div trace supérieure : 1 V/div trace inférieure variable (voir tableau) En faisant varier la distance d entre les bobines, on observe pour l amplitude crête à crête A du signal induit, mesurée en divisions de l écran, les valeurs suivantes : Calibre 0,01 V/div 5 mv/div 2 mv/div 1 mv/div d (cm) A 4,3 3,3 2,6 4,3 3,4 2,3 4,0 2,1 2,4 2a Ecrire les équations électriques du circuit 2b Etablir l expression de l inductance mutuelle M entre les deux bobines en fonction de la période T du signal d entrée, de son amplitude crête à crête e, de l amplitude crête à crête A du signal induit et de la résistance R (on pourra utiliser le fait que la tension induite est visiblement un carré «parfait») 2c Calculer alors, en mh, l inductance mutuelle entre les deux bobines pour chaque valeur de d Exercice 6 : Principe d un alternateur Un alternateur est constitué d un cadre carré, de côté a = 10 cm, plongé dans un champ magnétique uniforme et constant créé par un aimant permanent Ce cadre, qu un opérateur extérieur fait tourner à une vitesse angulaire ω constante, est relié électriquement (grâce à un système appelé balais) à un oscilloscope qui permet de visualiser la tension aux bornes de l alternateur 1 Expliquer le fonctionnement du dispositif 2 Etablir l expression du flux du champ magnétique à travers le cadre et en déduire la fem induite 3 On double la vitesse angulaire Que devient l oscillogramme? 4 Les calibres de l oscilloscope sont 1V/div et 5 ms/div Estimer la norme du champ magnétique créé par l aimant

6 Exercice 7 : Freinage par induction Une spire carrée de côté a, de masse m, tombe dans le champ de pesanteur Dans le demi-espace x > 0, règne un champ magnétique uniforme et permanent B = B 0 e z A l instant t = 0, la spire se trouve dans la situation représentée sur la figure ci-contre, sa vitesse est v(0) = v 0 e x et son côté inférieur est en x = 0 1 Mettre en place une analyse qualitative de la situation et dégager deux phases distinctes 2 Justifier que le mouvement de la spire reste vertical 3 On suppose que la spire admet une résistance R et on néglige le phénomène d autoinduction Déterminer la loi de vitesse v(t) de la spire dans la 1 ère phase Que peut-on dire de l évolution de la vitesse dans la phase 2? 4 On suppose maintenant que la spire est dans un matériau supraconducteur : sa résistance électrique est nulle On ne peut plus négliger l auto-induction de la spire et on note L son inductance propre Reprendre l étude de la question 3 et préciser la condition d oscillation de la spire Exercice 8 : Barre mobile sur un rail circulaire Une barre conductrice est mobile sur un fil circulaire conducteur Le circuit est fermé par un fil La barre, de masse m et de longueur, est lâchée à l instant t = 0, l angle θ 0 (0) étant petit, dans le champ magnétique B = B 0 e z La liaison avec l axe est parfaite La résistance de la barre est notée R, les résistances des autres éléments du circuit étant négligeables On donne le moment d inertie de la barre J = J Oz = 1 3 m 2 1 Effectuer une analyse qualitative de la situation 2 Déterminer le mouvement de la barre 3 Effectuer un bilan énergétique

TD ELECTROTECHNIQUE 1 ère année Module MC2-2. V. Chollet - TD-Trotech07-28/08/2006 page 1

TD ELECTROTECHNIQUE 1 ère année Module MC2-2. V. Chollet - TD-Trotech07-28/08/2006 page 1 TD ELECTROTECHNIQUE 1 ère année Module MC2-2 V. Chollet - TD-Trotech07-28/08/2006 page 1 IUT BELFORT MONTBELIARD Dpt Mesures Physiques TD ELECTROTECHNIQUE n 1 Avec l aide du cours, faire une fiche faisant

Plus en détail

Exercices induction électromagnétique

Exercices induction électromagnétique Exercices induction électromagnétique 1 Approximation des régimes quasi stationnaires 1.1 Plaque de cuivre dans un champ magnétique variable Deux plans P et P parallèles au plan xoy et de cotes respectives

Plus en détail

Chap.3 Induction : cas d un circuit fixe dans un champ variable

Chap.3 Induction : cas d un circuit fixe dans un champ variable Chap.3 Induction : cas d un circuit fixe dans un champ variable 1. Circulation du champ électrique Loi de Faraday 1.1. Le champ électrique n est pas à circulation conservative Force électromotrice 1.2.

Plus en détail

CONCOURS NATIONAL DEUG. Epreuve spécifique concours Physique PHYSIQUE PARTIE II. Durée : 2 heures

CONCOURS NATIONAL DEUG. Epreuve spécifique concours Physique PHYSIQUE PARTIE II. Durée : 2 heures SESSION 2003 CONCOUS NATIONAL DEUG Epreuve spécifique concours Physique PHYSIQUE PATIE II Durée : 2 heures N : Le candidat attachera la plus grande importance à la clarté, à la précision et à la concision

Plus en détail

Circuit fixe dans un champ magnétique variable

Circuit fixe dans un champ magnétique variable Circuit fixe dans un champ magnétique variable II. Auto-induction 1. Flux propre et inductance propre Soit un circuit filiforme ( par exemple une bobine ) parcouru par un courant d intensité. Ce circuit

Plus en détail

Circuit mobile dans un champ magnétique stationnaire

Circuit mobile dans un champ magnétique stationnaire Circuit mobile dans un champ magnétique stationnaire II. Conversion de puissance mécanique en puissance électrique 1. Retour sur les rails de Laplace ( générateur ) Les rails de Laplace vus dan des chapitres

Plus en détail

CONVERSION DE PUISSANCE

CONVERSION DE PUISSANCE Spé ψ 2012-2013 Devoir n 5 CONVERSION DE PUISSANCE Toutes les parties sont indépendantes. Un formulaire se trouve en fin de problème. Partie I On désire tracer expérimentalement le cycle d hystérésis B

Plus en détail

Induction électromagnétique

Induction électromagnétique Induction électromagnétique Exercice 1 : Freinage électromagnétique On étudie le freinage électromagnétique d une spire conductrice rectangulaire MNPQ mobile, de côtés a et b, de masse m négligeable, de

Plus en détail

8. PHÉNOMÈNES D INDUCTION ÉLECTROMAGNÉTIQUE Circuit déformable dans un champ d induction magnétique uniforme et constant

8. PHÉNOMÈNES D INDUCTION ÉLECTROMAGNÉTIQUE Circuit déformable dans un champ d induction magnétique uniforme et constant 8. PHÉNOMÈNES D INDUTION ÉLETROMAGNÉTIQUE 8.1 Observations expérimentales 8.1.1 ircuit déformable dans un champ d induction magnétique uniforme et constant On considère l expérience décrite au paragraphe

Plus en détail

EXERCICES Électromagnétisme me 2 Equations de Maxwell - Induction

EXERCICES Électromagnétisme me 2 Equations de Maxwell - Induction EXERCICES Électromagnétisme me Equations de Maxwell - Induction E 1 Densité de charges dans les conducteurs On considère un conducteur ohmique de conductivité γ. Comment évolue la densité de charge globale

Plus en détail

P15 Induction et auto-induction

P15 Induction et auto-induction Induction et auto-induction Le phénomène d induction correspond à l apparition dans un conducteur d une force électromotrice lorsque celui-ci est soumis à un champ magnétique variable. Ceci peut alors

Plus en détail

G.P. DNS14 Mars Spire dans un champ B. I. Spire en rotation dans un champ magnétique uniforme et constant

G.P. DNS14 Mars Spire dans un champ B. I. Spire en rotation dans un champ magnétique uniforme et constant DNS Sujet Spire dans un champ B...1 I.Spire en rotation dans un champ magnétique uniforme et constant...1 A.Dipôle résistif...3 B.Dipôle capacitif...3 II.Spire fixe dans un champ magnétique variable...3

Plus en détail

Chap.1 Conversion de puissance : Machine à courant continu

Chap.1 Conversion de puissance : Machine à courant continu Chap.1 Conversion de puissance : Machine à courant continu 1. Principe de la conversion électromécanique de puissance 1.1. Porteurs de charge d un circuit mobile dans un champ magnétique : bilan de puissance

Plus en détail

Anémomètre à fil chaud

Anémomètre à fil chaud EPEUVE OPTIONNELLE de PHYSIQUE Anémomètre à fil chaud Un fil de platine de longueur l et de diamètre d est parcouru par un courant électrique qui lui fournit une puissance maintenue constante par un dispositif

Plus en détail

BACCALAURÉAT LIBANAIS - SG Corrigé

BACCALAURÉAT LIBANAIS - SG Corrigé Exercice 1 : Pendule de torsion Le but de l exercice est de déterminer le moment d inertie d une tige homogène par rapport à un axe qui lui est perpendiculaire en son milieu et la constante de torsion

Plus en détail

exercices de colle ATS. Colle 1 :

exercices de colle ATS. Colle 1 : Colle 1 : 1) Magnétostatique. L On désigne par L la longueur entre S et les spires (voir figure). 1. Donner la relation entre z et L, puis la relation entre z et r. r z 2. On désigne par dn le nombre de

Plus en détail

Correction du devoir n 3

Correction du devoir n 3 Correction du devoir n 3 Il est fortement conseillé de lire l'ensemble des énoncés avant de commencer. Exercice 1 (8 points) 1. On considère l'inductance représentée ci contre. L'intensité i L (t) a une

Plus en détail

TP 10. Induction électromagnétique

TP 10. Induction électromagnétique TP 10 Induction électromagnétique Objectifs : - Mettre en évidence le phénomène d induction par une expérience simple. - Etudier le phénomène d induction par visualisation d un signal de tension. - Vérifier

Plus en détail

Electromagnétisme Chap.7 ARQS Phénomène d induction

Electromagnétisme Chap.7 ARQS Phénomène d induction Electromagnétisme Chap.7 ARQS Phénomène d induction 1. ARQS magnétique 1.1. Définition de l ARQS 1.2. ARQS magnétique : nullité du courant de déplacement 1.3. Deux conséquences de l ARQS magnétique 2.

Plus en détail

Série d exercices Le dipôle RC et

Série d exercices Le dipôle RC et 226 214 EDUCTION EN LIGNE PRTGE DU SVOIR Série d exercices Le dipôle RC et dipôle RL Physique 4éme Sciences expérimentales WWW.NETSCHOOL1.NET Brain Power School Série d exercices thème : Le dipôle RC élaborée

Plus en détail

PHYSIQUE - PARTIE II

PHYSIQUE - PARTIE II SESSION 2015 DGPH206 CONCOURS NATIONAL D ADMISSION DANS LES GRANDES ECOLES D INGENIEURS (Concours national DEUG) Epreuve commune à 2 options (Mathématiques et Physique) PHYSIQUE - PARTIE II Durée : 2 heures

Plus en détail

Concours National Commun d admission aux Grandes Écoles d Ingénieurs ou assimilées Session 2007

Concours National Commun d admission aux Grandes Écoles d Ingénieurs ou assimilées Session 2007 ROYAUME DU MAROC Ministère de l Éducation Nationale, de l Enseignement Supérieur, de la Formation des Cadres et de la Recherche Scientifique Présidence du Concours National Commun École Supérieure d Électricité

Plus en détail

LA BOBINE ET LE DIPOLE RL

LA BOBINE ET LE DIPOLE RL LA BOBINE ET LE DIPOLE RL Prérequis 1. Cocher les ou la bonne réponse Un champ magnétique peut être produit par : un aimant permanant un corps isolant un corps aimanté un fil de cuivre un solénoïde parcourue

Plus en détail

Etude d une bobine par différentes méthodes

Etude d une bobine par différentes méthodes P a g e 1 TS Physique Etude d une bobine par différentes méthodes Electricité Exercice résolu Enoncé On se propose de déterminer l inductance d une bobine par différentes méthodes. On dispose pour cela

Plus en détail

PC - Lycée Dumont D Urville TD équations de Maxwell I. Champ électrique longitudinal

PC - Lycée Dumont D Urville TD équations de Maxwell I. Champ électrique longitudinal PC - Lycée Dumont D Urville TD équations de Maxwell I. Champ électrique longitudinal On considère la situation dans laquelle, le champ électrique s écrit: E(M,t) = E cos(ωt kx) e x. 1. Pourquoi dit-on

Plus en détail

Tronc commun scientifique Mahdade Allal année scolaire Énergie cinétique et travail : activités

Tronc commun scientifique Mahdade Allal année scolaire Énergie cinétique et travail : activités Énergie cinétique et travail : activités Application 1 a. Calculer l énergie cinétique : d une voiture de masse 1, 0tonnes roulant à 90km/h d un camion de masse 30tonnes roulant à 90km/h b. Calculer la

Plus en détail

1) Champ magnétique autour d un aimant droit.

1) Champ magnétique autour d un aimant droit. 1) Champ magnétique autour d un aimant droit. Comme le courant électrique, le champ magnétique est invisible. Il est mis en évidence par les forces qui s exercent sur une aiguille aimantée et qui la font

Plus en détail

Exercice N 01. u R de courant d intensité constante I 0 = 20µA. A l instant t=0 le condensateur est complètement déchargé.

Exercice N 01. u R de courant d intensité constante I 0 = 20µA. A l instant t=0 le condensateur est complètement déchargé. Exercice N 0 Un condensateur de capacité = 0 µ F présente entre ses bornes une tension u = 6V ) eprésenter le schéma normalisé du condensateur et indiquer sur le schéma la flèche de la tension u, le sens

Plus en détail

PC A DOMICILE WAHAB DIOP LSLL

PC A DOMICILE WAHAB DIOP LSLL cos PC A DOMICILE - 779165576 WAHAB DIOP LSLL P13-OSCILLATIONS E L E C T R I Q U E S F O R C E E S E N R TRAVAUX DIRIGES TERMINALE S 1 On donne deux tensions sinusoïdales, exprimées en volts u 1 = 3cos(250t)

Plus en détail

Transformateur monophasé

Transformateur monophasé Transformateur monophasé I - Constitution et caractéristiques On rappelle qu'un transformateur monophasé est constitué d'un circuit magnétique fermé portant deux enroulements appelés "primaire" et "secondaire".

Plus en détail

Déflexion magnétique- Filtre de vitesse

Déflexion magnétique- Filtre de vitesse FORCE MAGNETIQUE, MOUVEMENT D UNE PARTICULE DANS B UNIFORME Déflexion magnétique- Filtre de vitesse EXERCICE N 1 Dans tout le problème, on supposera que le poids des ions est négligeable. Des atomes de

Plus en détail

Amérique du Sud 2005 Sans calculatrice I. ÉMISSION ET RÉCEPTION D UNE ONDE RADIO (4 points)

Amérique du Sud 2005 Sans calculatrice I. ÉMISSION ET RÉCEPTION D UNE ONDE RADIO (4 points) Amérique du Sud 25 Sans calculatrice I. ÉMISSION ET RÉCEPTION D UNE ONDE RADIO (4 points) Au cours d une séance de travaux pratiques, les élèves réalisent un montage permettant d émettre puis de recevoir

Plus en détail

G.P. DNS06 Octobre 2010

G.P. DNS06 Octobre 2010 DNS Sujet Chute d'un aimant dans un tube métallique...1 I.Potentiel vecteur et champ créés par un dipôle magnétique...1 II.Courant induit dans un circuit élémentaire...2 III.Force exercée par le tuyau

Plus en détail

3. Vérifier que l'expression: q = Q M cos. est solution de l'équation différentielle, si la période propre. T 0 a pour expression T 0 = 2π L.C.

3. Vérifier que l'expression: q = Q M cos. est solution de l'équation différentielle, si la période propre. T 0 a pour expression T 0 = 2π L.C. Sujet 1 (R,L,C) Dans cette partie, on étudie une application des oscillations électriques dans le domaine de la météorologie. Pour mesurer le taux d'humidité relative de l'air (noté % d'hr), on peut employer

Plus en détail

Sciences et technologie industrielles

Sciences et technologie industrielles Sciences et technologie industrielles Spécialité : Génie Mécanique Programme d enseignement des matières spécifiques Sciences physiques et physique appliquée CE TEXTE REPREND LE PUBLIE EN ANNEXE DE L ARRETE

Plus en détail

1. Sur un schéma représentez la force gravitationnelle exercée par la Terre (masse M T ) sur un satellite S (masse m S ) situé à la distance r de son

1. Sur un schéma représentez la force gravitationnelle exercée par la Terre (masse M T ) sur un satellite S (masse m S ) situé à la distance r de son Physique TC 1 Correction 1. Sur un schéma représentez la force gravitationnelle exercée par la Terre (masse M T ) sur un satellite S (masse m S ) situé à la distance r de son centre. 2. Proposer une expression

Plus en détail

2,42. B t(s) Figure 1 Figure 2. u C (V) G

2,42. B t(s) Figure 1 Figure 2. u C (V) G lasse: ème Math A.S. : 01/015 Lycée de cebala Sidi Bouzid Prof : Barhoulmi Ezzedine Le dipôle R EXERIE N 1 : I. harge d un condensateur par un générateur de courant constant. L étiquette d un condensateur

Plus en détail

Lycée Maknassy ALIBI.A.

Lycée Maknassy ALIBI.A. Lycée Maknassy ALIBI.A. 2010-2011 - 4 éme TEC - Sc.physiques EXERCICE 1 Un dipôle AB est constitue par l association en série d un résistor de résistance R = 10 ohms, d une bobine d inductance L = 0,5

Plus en détail

MODELISATION DU MOTEUR ELECTRIQUE A COURANT CONTINU

MODELISATION DU MOTEUR ELECTRIQUE A COURANT CONTINU 1/8 Le Moteur électrique à courant continu MODELISATION DU MOTEUR ELECTRIQUE A COURANT CONTINU Présentation : Le système étudié est un opérateur de positionnement angulaire MAXPID constitué (voir annexe

Plus en détail

1 ) Transformateur monophasé. 1.1) Définition

1 ) Transformateur monophasé. 1.1) Définition Chapitre B...Transformateur monophasé ) Transformateur monophasé.) Définition Un transformateur est un quadripôle formé de deux enroulements enlaçant un circuit magnétique commun. C est une machine statique

Plus en détail

MACHINE A COURANT CONTINU

MACHINE A COURANT CONTINU 1) Stator ( ou inducteur ) ACHINE A COURANT CONTINU a) Fonction : il crée un champ magnétique fixe ; il est souvent bipolaire, quelquefois tétrapolaire. On l appelle aussi inducteur. A) STRUCTURE b) Types

Plus en détail

Conversion puissance Chap.4 Machine à courant continu - part1

Conversion puissance Chap.4 Machine à courant continu - part1 Conversion puissance Chap.4 Machine à courant continu - part1 1. Description et principe simplifié du fonctionnement d une MCC 1.1. Description de la machine 1.2. Explication simplifiée du principe de

Plus en détail

maximale. Qu appelle-t-on le phénomène qui se produit? c. À quelle condition ce phénomène se produit-t-il? Montrer que N 1 obéit à cette condition.

maximale. Qu appelle-t-on le phénomène qui se produit? c. À quelle condition ce phénomène se produit-t-il? Montrer que N 1 obéit à cette condition. Prof : Barhoumi Ezzedine Classe : 4 ème Math A.S. : 213/214 Tunisie - Sidi Bouzid - Lycée de Cebbala Les oscillations électriques forcées Exercice n 1 : Un dipôle RLC est constitué d un résistor de résistance

Plus en détail

1 Exercices d introduction

1 Exercices d introduction TD 4 : Mouvement accéléré 1 Exercices d introduction Exercice 1 Evolution de la population mondiale Année (1er janvier) 1500 1600 1700 1800 1900 2000 2013 Population (10 9 ) 0,500 0,560 0,640 0,900 1,650

Plus en détail

Physique appliquée BTS 1 Electrotechnique

Physique appliquée BTS 1 Electrotechnique Physique appliquée BTS 1 Electrotechnique Electromagnétisme Electromagnétisme Page 1 sur 21 1. Champ d excitation magnétique... 3 1.1. Interprétation de l aimantation.... 3 1.2. Champ d exitation magnétique

Plus en détail

Cette manipulation doit être effectuée 3 fois afin de minimiser certaines erreurs expérimentales.

Cette manipulation doit être effectuée 3 fois afin de minimiser certaines erreurs expérimentales. TP - N : LA LOI DE NEWTON But de l expérience : - Vérifier le principe fondamental de la dynamique pour un mouvement de translation uniformément accéléré. - Déterminer expérimentalement la valeur de g.

Plus en détail

La loi d Ohm et l effet Joule (Cours X et XI)

La loi d Ohm et l effet Joule (Cours X et XI) La loi d Ohm et l effet Joule (Cours X et XI) Dans un métal, les électrons de conduction sont libres de se déplacer. Comme pour les molécules d un gaz, ils sont animés d un mouvement erratique et changent

Plus en détail

Chapitre 7 : Le dipôle RL

Chapitre 7 : Le dipôle RL Connaissances et savoir-faire exigibles : Chapitre 7 : Le pôle RL (1) (2) (3) (4) (5) (6) (7) (8) Connaître la représentation symbolique d une bobine. En utilisant la convention récepteur, savoir orienter

Plus en détail

Chapitre 7 : CHAMP MAGNETIQUE ET ACTIONS DU CHAMP MAGNETIQUE

Chapitre 7 : CHAMP MAGNETIQUE ET ACTIONS DU CHAMP MAGNETIQUE Chapitre 7 : CHAMP MAGNETIQUE ET ACTIONS DU CHAMP MAGNETIQUE I- Le champ magnétique : 1.1. Sources de champ magnétique : a- Les aimants : L approche d une aiguille aimantée vers un aimant droit donne les

Plus en détail

Série : Oscillation électrique en régime sinusoïdale forcée

Série : Oscillation électrique en régime sinusoïdale forcée Exercice n 1 On considère un circuit électrique série constitué par un G.B.F délivrant une tension sinusoïdale U(t) = U m sin (2πNt), un condensateur de capacité C, un résistor de résistance R = 80 Ω et

Plus en détail

Série physique : Le circuit RLC libre amorti et non amorti. Exercice N 1. Exercice N 2. 4éme M S.exp. 1 Elaboré par afdal ali : GSM

Série physique : Le circuit RLC libre amorti et non amorti. Exercice N 1. Exercice N 2. 4éme M S.exp. 1 Elaboré par afdal ali : GSM Exercice N 1 1- Expliquer les termes suivants: Oscillations libres. Oscillation amorties. 2- Répondre par vrais ou faux et corriger les propositions fausses. L énergie emmagasinée dans un dipôlerlc en

Plus en détail

DE LA PHYSIQUE AUTOUR D UN TORE

DE LA PHYSIQUE AUTOUR D UN TORE Mines Physique 1 PSI 2014 Énoncé 1/5 ÉCOLE DES PONTS PARISTECH SUPAERO (ISAE), ENSTA PARISTECH, TELECOM PARISTECH, MINES PARISTECH, MINES DE SAINT ÉTIENNE, MINES DE NANCY, TÉLÉCOM BRETAGNE, ENSAE PARISTECH

Plus en détail

Le régime variable est caractérisé par des propriétés spécifiques liées à la dépendance des champs en fonction du temps. Ces particularités sont :

Le régime variable est caractérisé par des propriétés spécifiques liées à la dépendance des champs en fonction du temps. Ces particularités sont : Chapitre 4 Le régime variable 4.1 Introduction Le régime variable est caractérisé par des propriétés spécifiques liées à la dépendance des champs en fonction du temps. Ces particularités sont : Le phénomène

Plus en détail

G.P. DNS Janvier 2009

G.P. DNS Janvier 2009 DNS Sujet En roue libre...1 A.Bicyclette...1 B.Circuit RL...2 C.Analogies...2 D.Cycliste en roue libre...2 E.Diode roue libre...3 F.Exercice supplémentaire...4 En roue libre A. Bicyclette Une bicyclette

Plus en détail

L. Avicenne Gafsa Série N

L. Avicenne Gafsa Série N donné L orthogonale PU L. vicenne afsa Série : UP CLSSE : 3 UP ed PRF HR DTE : / /201 4 - UEssentiel à retenir U1- oment d une force : RF/ R= + F. U1- Force de Laplace F force de Laplace ses caractéristiques

Plus en détail

CHAPITRE 1 : NOTION DE MOMENTS

CHAPITRE 1 : NOTION DE MOMENTS Chapitre 1 : Notion de moments CHAPITRE 1 : NOTION DE MOMENTS Pour décrire un mouvement de précession, comme celui d une toupie, plusieurs types de moments doivent être distingués, notamment le moment

Plus en détail

Principes de la conversion d énergie

Principes de la conversion d énergie CHAPITRE 4 Principes de la conversion d énergie Gérard-André CAPOLIO Conversion d'énergie 1 Machines tournantes Construction de base Les principales parties d une machine tournante sont: Corps de la machine:

Plus en détail

Générateurs et pompes électromagnétiques à métal liquide

Générateurs et pompes électromagnétiques à métal liquide ÉCOLE POLYTECHNIQUE ÉCOLE SUPÉRIEURE DE PHYSIQUE ET DE CHIMIE INDUSTRIELLES CONCOURS D ADMISSION 2005 FILIÈRE PC DEUXIÈME COMPOSITION DE PHYSIQUE (Durée : 4 heures) L utilisation des calculatrices est

Plus en détail

EXERCICE PHYSIQUE TERMINALE. I. Influence d une bobine dans un circuit électrique

EXERCICE PHYSIQUE TERMINALE. I. Influence d une bobine dans un circuit électrique EXERCICE PHYSIQUE TERMINALE EXERCICE I. Influence d une bobine dans un circuit électrique Les élèves réalisent le circuit représenté sur la figure 1. Ce circuit est constitué d une source de tension idéale

Plus en détail

LA MACHINE ASYNCHRONE

LA MACHINE ASYNCHRONE Objectif terminal : A la fin de la séquence, l élève sera capable de : _ justifier le choix du convertisseur d énergie FONCTION CONVERTIR L ENERGIE LA MACHINE ASYNCHRONE Objectif intermédiaire : _ identifier

Plus en détail

Préparez votre baccalauréat

Préparez votre baccalauréat Exercice N 1 Un générateur basse fréquence, délivrant une tension sinusoïdale u(t) =U m sin(2 Nt), d amplitude U m constante et de fréquence N réglable, alimente un circuit électrique comportant les dipôles

Plus en détail

Epreuve de PHYSIQUE. Filière M P. durée 4 heures I. MECANIQUE : MODELISATION D'UN CABLE DE PRECONTRAINTE

Epreuve de PHYSIQUE. Filière M P. durée 4 heures I. MECANIQUE : MODELISATION D'UN CABLE DE PRECONTRAINTE concours Concours ESTP - ENSM - ECRIN - RCHIMEDE Epreuve de PHYSIQUE Filière M P durée 4 heures I. MECNIQUE : MODELISTION D'UN CBLE DE PRECONTRINTE On étudie successivement un élément mécanique simple,

Plus en détail

Série n 3. sciences physiques

Série n 3. sciences physiques Niveau :4 éme sciences info, Tech, Expert et Math Série n 3 sciences physiques Prof : Daghsni Sahbi Physique : Thème : Oscillations électriques Libres Exercice n 1 : (Bac 97) On réalise le montage expérimental

Plus en détail

Régulation de température d une soufflerie

Régulation de température d une soufflerie Régulation de température d une soufflerie Mise en situation La figure suivante donne le schéma de principe d une soufflerie. Une turbine aspire de l air ambiant, et le refoule avec un débit constant dans

Plus en détail

P5-GENERALITES SUR LE CHAMP MAGNETIQUE CHAMPS MAGNETIQUES DES COURANTS

P5-GENERALITES SUR LE CHAMP MAGNETIQUE CHAMPS MAGNETIQUES DES COURANTS PC A DOMICILE - 779165576 WAHAB DIOP LSLL P5-GENERALITES SUR LE CHAMP MAGNETIQUE CHAMPS MAGNETIQUES DES COURANTS TRAVAUX DIRIGES TERMINALE S Perméabilité magnétique du vide : µ 0 = 4π.10-7 S.I. ; Composante

Plus en détail

COMPOSITION DE PHYSIQUE (XULC) Imagerie par résonance magnétique

COMPOSITION DE PHYSIQUE (XULC) Imagerie par résonance magnétique ÉCOLE POLYTECHNIQUE ÉCOLES NORMALES SUPÉRIEURES CONCOURS D ADMISSION 2011 FILIÈRE MP COMPOSITION DE PHYSIQUE (XULC) (Durée : 4 heures) L utilisation des calculatrices n est pas autorisée pour cette épreuve.

Plus en détail

CHAMP ELECTRIQUE D UN CONDENSATEUR INTRODUCTION A L INDUCTION

CHAMP ELECTRIQUE D UN CONDENSATEUR INTRODUCTION A L INDUCTION TP ELECTROMAGNETISME R.DUPERRAY Lycée F.BUISSON PTSI CHAMP ELECTRIQUE D UN CONDENSATEUR INTRODUCTION A L INDUCTION PREMIERE PARTIE : CHAMP ELECTRIQUE D UN CONDENSATEUR OBJECTIFS Comprendre la topologie

Plus en détail

Exercice 1: Exercice2:

Exercice 1: Exercice2: Exercice 1: Un corps de masse m 1 = 3,2 kg se déplace vers l ouest à la vitesse de 6,0 m/s. Un autre corps différent, de masse m 2 = 1,6 kg, se déplace vers le nord à la vitesse de 5,0 m/s. Les deux corps

Plus en détail

Si nous mettons en présence deux aimants, des forces interactives sont crées.

Si nous mettons en présence deux aimants, des forces interactives sont crées. 1) Le champ magnétique terrestre En l absence de toute autre source de champ, le pôle Nord d une aiguille aimantée (ou boussole) s oriente vers le pôle Nord magnétique terrestre. 2) Les aimants Les aimants

Plus en détail

1 Cours Sciences Physiques MP. Induction. Il y a induction lorsqu une tension et ou un courant apparaît dans un circuit démuni de générateur.

1 Cours Sciences Physiques MP. Induction. Il y a induction lorsqu une tension et ou un courant apparaît dans un circuit démuni de générateur. 1 Cours Sciences Physiques MP Induction Le phénomène d induction électromagnétique a été découvert en 1831 par Michael Faraday (1791-1867) : Il y a induction lorsqu une tension et ou un courant apparaît

Plus en détail

Le champ magnétique. 1. Action d un champ magnétique sur un faisceau d électron

Le champ magnétique. 1. Action d un champ magnétique sur un faisceau d électron Le champ magnétique I. Mise en évidence du champ magnétique 1. Action d un champ magnétique sur un faisceau d électron Dans une ampoule ou règne un vide très pousser, une cathode émissive est chauffé par

Plus en détail

ELECTICITE II ETUDE DE L ALIMENTATION DE SECOURS D UNE ALARME

ELECTICITE II ETUDE DE L ALIMENTATION DE SECOURS D UNE ALARME ELECTICITE II ETUDE DE L ALIMENTATION DE SECOURS D UNE ALARME Etude du transformateur Etude du redressement ÉTUDE D UN TRANSFORMATEUR PAR CANDIDAT : - un oscilloscope ; - deux voltmètres ou multimètres

Plus en détail

I Introduction. TP Ondes 1 Câble coaxial. 1 Présentation. 2 Méthodes

I Introduction. TP Ondes 1 Câble coaxial. 1 Présentation. 2 Méthodes TP Ondes 1 Câble coaxial I Introduction 1 1 Présentation 1 2 Méthodes 1 II Rappel 2 1 Équation de propagation 2 2 Réflexion en bout de ligne 2 III Régime impulsionnel 3 1 Impédance caractéristique 3 2

Plus en détail

cpgedupuydelome.fr -PC Lorient

cpgedupuydelome.fr -PC Lorient EM1 : Induction électromagnétique Loi de modération de Lenz Les effets magnétiques, électrocinétiques et mécaniques de l induction s opposent à la cause qui les a produits. 1 Circuit fixe dans un champ

Plus en détail

Chapitre 5 : magnétisme et champs tournants

Chapitre 5 : magnétisme et champs tournants Chapitre 5 : magnétisme et champs tournants A Rappels sur le magnétisme I mise en évidence expérimentale de l induction électromagnétique II Application : alternateur III loi de Lenz IV flux magnétique

Plus en détail

EXERCICE PHYSIQUE TERMINALE DOCUMENT. On rappelle que mathématiquement cette équation admet en particulier 2 solutions : QUESTIONS

EXERCICE PHYSIQUE TERMINALE DOCUMENT. On rappelle que mathématiquement cette équation admet en particulier 2 solutions : QUESTIONS EXERCICE PHYSIQUE TERMINALE EXERCICE DOCUMENT L équation différentielle étant des grandeurs constantes), permet de décrire un grand nombre de phénomènes physiques variables au cours du temps : intensité,

Plus en détail

CONVERSION DE PUISSANCE

CONVERSION DE PUISSANCE Spé ψ 8-9 Devoir n 6 CONVERSION DE PUISSANCE UTILISATION DE L ENERGIE EOLIENNE Un aéromoteur entraîne une génératrice électrique destinée à alimenter une installation électrique. Pour les aéromoteurs de

Plus en détail

EXERCICES Conversion Puissance 1 Conversion électromagnétique statique

EXERCICES Conversion Puissance 1 Conversion électromagnétique statique EXERCICES Conversion Puissance 1 Conversion électromagnétique statique CP1 1. Transfert d une source de courant Une photopile est éclairée par une source d intensité lumineuse variable. Elle est équivalente

Plus en détail

Feuille d'exercices : Ferromagnétisme

Feuille d'exercices : Ferromagnétisme Feuille d'exercices : Ferromagnétisme P Colin 15 décembre 2016 1 Choix d'un matériau À l'aide du tableau 1, préciser si les matériaux proposés peuvent être utilisés dans : un transformateur basse fréquence

Plus en détail

BACCALAUREAT TECHNOLOGIQUE PHYSIQUE APPLIQUÉE SESSION Durée: 4 heures Coefficient : 7

BACCALAUREAT TECHNOLOGIQUE PHYSIQUE APPLIQUÉE SESSION Durée: 4 heures Coefficient : 7 BACCALAUREAT TECHNOLOGIQUE PHYSIQUE APPLIQUÉE SESSION 2001 Série : Sciences et technologies industrielles Spécialité : Génie Électrotechnique Durée: 4 heures Coefficient : 7 L'emploi de toutes les calculatrices

Plus en détail

PHYSIQUE ET APPLICATIONS DES MATHEMATIQUES EN OPTION SPECIFIQUE. Nom :... Prénom :... Groupe :...

PHYSIQUE ET APPLICATIONS DES MATHEMATIQUES EN OPTION SPECIFIQUE. Nom :... Prénom :... Groupe :... Département fédéral de lintérieur DFI Commission suisse de maturité CSM Examen suisse de maturité, session d hiver 0 PHYSIQUE ET APPLICATIONS DES MATHEMATIQUES EN OPTION SPECIFIQUE Durée : 3h Nom : Prénom

Plus en détail

Machines alternatives

Machines alternatives Machines alternatives Si on déplace un aimant, on crée un champ magnétique donc la direction change au cours du temps. Le déplacement de cet aimant au voisinage d une aiguille aimantée (de boussole par

Plus en détail

Les calculatrices sont autorisées. L usage de tout ouvrage de référence et de tout document est interdit.

Les calculatrices sont autorisées. L usage de tout ouvrage de référence et de tout document est interdit. Les calculatrices sont autorisées L usage de tout ouvrage de référence et de tout document est interdit. De très nombreuses parties sont indépendantes. Il est conseillé aux candidats de prendre connaissance

Plus en détail

Devoir du mardi 15 décembre 2009

Devoir du mardi 15 décembre 2009 Les calculatrices ne sont pas autorisées. Devoir du mardi 15 décembre 2009 Exercice 1 : connaissez-vous, comprenez-vous et maîtrisez-vous votre cours? (8 points, 45 minutes) 1) On étudie la réaction de

Plus en détail

G.P. DNS07 Novembre 2012

G.P. DNS07 Novembre 2012 DNS Sujet Isolation thermique d'un tube vaporisateur...1 I.Transfert thermique dans un milieu homogène...1 II.Transferts thermiques pour un tube...2 A.Conduction ou diffusion...2 B.Conducto-convection...3

Plus en détail

B1 - L induction électromagnétique

B1 - L induction électromagnétique B1 - L induction électromagnétique L induction électomagnétique est un phénomène physique qui se manifeste par la production d une force électromotrice, f.e.m., dans un conducteur électrique plongé dans

Plus en détail

POLY-PREPAS Centre de Préparation aux Concours Paramédicaux. - Section Orthoptiste / stage i-prépa intensif -

POLY-PREPAS Centre de Préparation aux Concours Paramédicaux. - Section Orthoptiste / stage i-prépa intensif - POLY-PREPAS Centre de Préparation aux Concours Paramédicaux - Section Orthoptiste / stage i-prépa intensif - 1 Chapitre 11 : Bobine et circuit RL I. La bobine : a) Définition : Une bobine (solénoïde) est

Plus en détail

GENERALITES SUR LES MACHINES SYNCHRONES

GENERALITES SUR LES MACHINES SYNCHRONES GENERALITES SUR LES MACHINES SYNCHRONES 1. Constitution 1-1. Rotor = inducteur Il est constitué d un enroulement parcouru par un courant d excitation Ie continu créant un champ magnétique 2p polaire. Il

Plus en détail

La machine à courant continu (MCC) Année 2006/2007

La machine à courant continu (MCC) Année 2006/2007 La machine à courant continu (MCC) Année 2006/2007 Ventilateur nduit bobiné nducteur Balais Collecteur Composition On distingue les éléments suivants: Les pôles inducteurs avec leurs enroulements (ou leurs

Plus en détail

Le sujet comporte trois parties indépendantes présentées sur 8 pages numérotées de 1 à 8 dont les pages 7 et 8 sont à rendre avec la copie.

Le sujet comporte trois parties indépendantes présentées sur 8 pages numérotées de 1 à 8 dont les pages 7 et 8 sont à rendre avec la copie. Il est rappelé aux candidats que la qualité de la rédaction et la clarté des raisonnements, entreront pour une part importante dans l'appréciation des copies. Le sujet comporte trois parties indépendantes

Plus en détail

POLY-PREPAS Centre de Préparation aux Concours Paramédicaux. - Section i-prépa -

POLY-PREPAS Centre de Préparation aux Concours Paramédicaux. - Section i-prépa - POLY-PREPAS Centre de Préparation aux Concours Paramédicaux - Section i-prépa - 1 exercice 1 : 1. Un récepteur électrique alimenté sous une tension U= 12 V est traversé par un courant intensif I = 500

Plus en détail

LA THEORIE SUR L ELECTRICITE

LA THEORIE SUR L ELECTRICITE Cours d électricité LA THEORIE SUR L ELECTRICITE LES NOTIONS DE BASE Le courant alternatif La théorie sur l électricité - les notions de base - AC - Table des matières générales TABLE DES MATIERES PARTIE

Plus en détail

SOMMAIRE. Champ magnétique... 1

SOMMAIRE. Champ magnétique... 1 SMMAIRE Champ magnétique 1 Exercice 1: Analyse de spectres de champs magnétiques 1 Exercice : Bobines de Helmholt 1 Exercice 3: Etude d une bobine Actions de Laplace Exercice 4: Freinage magnétique Exercice

Plus en détail

Séquence 13 : mesure des tensions alternatives Cours niveau troisième

Séquence 13 : mesure des tensions alternatives Cours niveau troisième Séquence 13 : mesure des tensions alternatives Cours niveau troisième Objectifs : - Comprendre les courbes affichées par un oscilloscope (oscillogramme) - Savoir mesurer la fréquence d une tension périodique

Plus en détail

Etude d un Transformateur

Etude d un Transformateur 2AP Promo 2012 ARNOULD Mathilde CHAIX Cécile RENAUDIN Gaëlle Etude d un Transformateur INTRODUCTION L objectif de ce TP est de : Mettre en pratique nos connaissances de première année Comprendre un outil

Plus en détail

CH5 : La machine à courant continu en régime transitoire

CH5 : La machine à courant continu en régime transitoire BTS électrotechnique 2 ème année - Sciences physiques appliquées CH5 : La machine à courant continu en régime transitoire Motorisation des systèmes. Problématique : Une ligne d usinage de culasses pour

Plus en détail

ETUDE DES OSCILLATIONS MECANIQUE FORCEES

ETUDE DES OSCILLATIONS MECANIQUE FORCEES EXERCICE 1 ETUDE DES OSCILLATIONS MECANIQUE FORCEES A/ Un pendule élastique horizontal est formé d'un ressort (R) à spires non jointives, de masse négligeable, de raideur K=20N.m -1 dont l'une de ses extrémités

Plus en détail

Matière : Physique Classe : SG.

Matière : Physique Classe : SG. Matière : Physique Classe : SG. Premier exercice (7pts) : étude énergétique Un jouet d'enfant est formé d'un rail placé dans un plan vertical comme indique la figure ci-dessous. La partie ABC est un trajet

Plus en détail

Champ magnétique et force de Laplace

Champ magnétique et force de Laplace Champ magnétique et force de Laplace Introduction : champ magnétique créé par un aimant et par un courant... I Propriétés du champ magnétique...4 Pôle Nord et pôle Sud...4 Propriétés des lignes de champ

Plus en détail

LE TRANSFORMATEUR MONOPHASE

LE TRANSFORMATEUR MONOPHASE LE TRANSFORMATEUR MONOPHASE I) Généralité sur le transformateur : 1) Définition : Le transformateur a pour but de modifier les amplitudes des grandeurs électriques alternatives : il transforme des signaux

Plus en détail