Suites généralités. u est une fonction qui à tout entier naturel n associe un nombre réel, noté u

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Suites généralités. u est une fonction qui à tout entier naturel n associe un nombre réel, noté u"

Transcription

1 Sites gééralités A Sites mériqes Notio de site Défiitio : Ue site ( qe : : a La site se ote o avec des parethèses ( est e foctio qi à tot etier atrel associe ombre réel, oté tel Le terme iitial de la site est o p qad la site commece à partir de l'idice p Notatios et vocablaire : o ( est le terme gééral de la site : c est le terme de rag Attetio à l écritre idicielle : + alors qe + Mode de géératio d e site est le + est la somme d ième terme et de ième terme c'est-à-dire le terme qi sit Défiitio : Ue site pet être défiie par procédé aléatoire, par e formle o par algorithme : Formle explicite : Por tot, f ( Le terme gééral est foctio de l idice Formle de récrrece : Por tot, + f ( Le terme gééral est foctio d terme précédet Das ce cas il fat idiqer le terme iitial Algorithme : Por tot, l algorithme revoie réel à partir d etier atrel Exemples : Soit f la foctio défiie sr IR par : f ( x x + 5 La site telle qe por tot etier par : + 5 La site est alors défiie par e formle explicite, o pet calcler directemet importe leqel de ces termes comme par exemple : + 5 La site v telle qe por tot etier par : v + v + 5 et v La site v est alors défiie par e formle de récrrece, por calcler de ces termes o a besoi de tos les précédets comme par exemple : v v + 5 mais o coaît pas v v v + 5 mais o coaît pas v v v v v v O e dédit qe : v Et efi : si est pair La site w telle qe por tot etier par : w + si est impair La site w est alors défiie par algorithme qi permet de calcler directemet importe leqel de ces termes comme par exemple : 7 + o Lycée Fraçais de DOHA Aée 5 6 ère S M Evao

2 Représetatio graphiqe d e site défiie de faço explicite Soit f e foctio défiie sr [ ; + [ et ( graphiqemet la site ( cosiste à placer les poits de coordoées ( ; Exemple : Soit la site défiie sr IN par : + 6 O a por tot etier atrel, f ( où f est la foctio défiie sr [ ; + [ la site défiie sr IN par : f ( Représeter par : f ( x x + 6 f ( 6 ; f ( 8 ; f ( f ( 6 Graphiqemet, les termes de la site sot les A ; d'abscisses etières de ordoées des poits ( la corbe C f das repère 4 Représetatio graphiqe d e site défiie de par récrrece Soit f e foctio défiie sr itervalle I et ( la site défiie sr IN par : + f ( et α Représeter graphiqemet la site ( cosiste à placer les poits de coordoées ( ; sivate, das repère O place poit A ( ; pis le poit B C f d abscisse O a alors B ( ; f ( d où B ( ; car f ( O place esite le poit C sr la droite d éqatio 4 O a alors C ( ; car y B et C d éqatio y x 5 O projette le poit 6 O recommece le procédé de la faço y x ayat même ordoée qe B A C sr l axe des abscisses por obteir le poit ( ; Exemple : Soit la site défiie sr IN par : et O a doc por tot etier, + f ( où f est la foctio défiie sr [ ; + [ par : f ( x x + 6 f ( f ( 4 f ( f ( B C Graphiqemet, ( ; f Por détermier (, l ordoée de O «reporte» doc B ; il fat placer B e abscisse Ox e tilisat la droite : y x O porsit de même por costrire : B ( ;, B ( ; 4 sr l'axe ( Lycée Fraçais de DOHA Aée 5 6 ère S M Evao

3 5 Ses de variatio d e site Défiitio : Ue site ( Ue site ( Ue site ( est croissate si et selemet si, por tot etier o a : + o + est décroissate si et selemet si, por tot etier o a : + o + est costate si et selemet si, por tot etier o a : + o + Théorème : Si la site est défiie par e formle explicite f ( o a : Si f est croissate sr [ ; + [ alors ( Si f est décroissate sr [ ; + [ alors la site ( est croissate est décroissate Exercice : Calcler les termes et por chace des sites ci-dessos : + 5, + 9 et et 6 et , 8 7 +, et Exercice : Ue foctio f est représetée ci-dessos O cosidère les sites défiies par por tot etier par : + f ( et v f ( Doer, par lectre graphiqe, les premiers termes des sites ( et ( v Lycée Fraçais de DOHA Aée 5 6 ère S M Evao

4 Exercice : La site est défiie sr IN * par : ( + Vérifiez qe por tot etier : + ( + ( + E dédire les variatios de la site Qelle atre méthode arait-o p tiliser por étdier les variatios de? 4 Vérifier qe por tot etier : + 5 E dédire qe por tot p : p p + Exercice 4 : Etdier les variatios des sites ( à l aide d sige de la différece : 4, 9 Exercice 5 : la site défiie sr IN par 4 Soit ( 5 + +, ( + et 5 O doe ci-dessos la représetatio de la foctio f défiie par : ( x x + 4 Représeter graphiqemet les trois premiers termes de la site ( Qelle cojectre pet-o émettre sr la mootoie de la site (? f Lycée Fraçais de DOHA Aée 5 6 ère S M Evao

5 B Comportemet d e site à l ifii Site Divergete Notatio : La site ( diverge vers + o admet + comme limite si fiit par deveir tojors pls grad qe importe qel réel M à partir d rag sffisammet grad O ote : lim + + Notatio : La site ( diverge vers o admet comme limite si fiit par deveir tojors pls petit qe importe qel réel M à partir d rag sffisammet grad O ote : lim + Notatio : O dit qe la site ( valer réelle diverge et 'admet pas de limite si elle e se stabilise ator d'ace Site Covergete Notatio : O dit qe la site ( coverge vers si pet être red assi proche de q o vet à partir d rag sffisammet grad O ote : lim + Lycée Fraçais de DOHA Aée 5 6 ère S M Evao

6 Exercice 6 : Détermier ititivemet la limite lorsqe ted vers + des sites défiies sr IN * par :, v et w E dédire la limite des sites défiies sr IN* par : r, 4 + s et w Exercice 7 : Cojectrer, graphiqemet, la valer de lim des sites ci-dessos : er Cas : ième Cas : + Exercice 8 : O cosidère la site ( Calcler les termes et défiie sr IN* par :, 5 et IN* Motrer qe ( est mootoe O cosidère l algorithme sivat : Iitialisatio Affecter à U la valer,5 Affecter à N la valer Traitemet Tat qe U < Affecter à U la valer U + N Affecter à N la valer N + Fi d Tat qe Sortie Afficher N a Faire «maellemet» les calcls effectés par cet algorithme b Tradire par e phrase ce qe cet algorithme permet d obteir Exercice 9 : Etde de variatios particlières Détermier la mootoie des sites sivates : IN + 5 et + + f ' IN ( La site ( et où f est e foctio croissate sr IR est défiie par : IN O admet qe IN : > IN f ( où f est la foctio défiie sr IR par : ( x x + x + x 5 f Lycée Fraçais de DOHA Aée 5 6 ère S M Evao

7 Exercice : Por chace des sites ci-dessos : Lire graphiqemet e valer approchée de Cojectrer la limite e + de ( er cas : ème cas : et cojectrer la mootoie de ( ème cas : 4 ème cas : Exercice : Avec Excel O cosidère la site ( dot o a calclé les premiers termes à l aide de la feille de calcls ci-cotre : a Lire et b E B o a tapé la formle : B+*A+ E dédire e formle de récrrece liat + et por tot etier atrel c Compléter le tablea ci-cotre à l aide d mode site de votre calclatrice O pose v + + por tot IN a Qelle formle fat-il taper e C? b Motrer qe v v c Qe pet-o e dédire por les sites ( et ( v? Lycée Fraçais de DOHA Aée 5 6 ère S M Evao

8 Exercice : ( + O cosidère la site ( w défiie, por tot etier atrel, par : w + Soiet ( p et ( i les sites défiies, por tot etier atrel, par : p w et i w + Doer l expressio de p e foctio de Qe remarqe-t-o? Exprimer i et i + e foctio de i est croissate E dédire qe la site ( 4 Qe pet-o dire sr la mootoie de ( Exercice : O cosidère la site ( w? défiie por tot etier atrel par so premier terme et la relatio de récrrece : Compléter l algorithme sivat permettat de calcler les premiers termes de la site où est fixé par l tilisater Etrée etier atrel Iitialisatio Affecter à la valer Traitemet Por i allat de à Afficher Affecter à la valer Fi d Por À l aide de cet algorithme, o obtiet la table de valers sivate : a Cojectrer le ses de variatios de la site ( pis démotrer cette cojectre b L allre paraboliqe de cette représetatio graphiqe permet de cojectrer qe la forme s écrit : a + b + c où a, b et c sot trois réels et a explicite de la site ( E tilisat les valers de, et fories par la table de valers, détermier les valers a, b et c c Démotrer cette cojectre Lycée Fraçais de DOHA Aée 5 6 ère S M Evao

9 Exercice 4 : O cosidère OA A triagle rectagle e A tel qe OA A A O costrit esite e site de poits A, IN * tels qe OA A + soit triagle rectagle e A et qe A A + Soit ( la site défiie par OA por tot IN * Calcler et Jstifier qe la site ( est défiie par la formle de récrrece : + + Motrer qe + x x E dédire qe ( est croissate + x + x 4 Sr le graphiqe ci-dessos, o a représeté la droite d éqatio y x et la représetatio graphiqe de la foctio f ( x + x Représeter sr l axe des abscisses les qatre premiers termes de la site 5 Cojectrer la forme explicite de la site ( 6 Avec cette cojectre, la site ( semble-t-elle covergete o divergete? Lycée Fraçais de DOHA Aée 5 6 ère S M Evao

10 Exercice 5 : Les aées à coccielles O sait q il y a des aées à coccielles et d atres sas O se propose d étdier e poplatio de coccielles U mathématicie belge, Pierre-Fraçois Verhlst a démotré q e relatio mathématiqe décrivait cette alterace O a coccielles das jardi Notos la poplatio iitiale, e milliers, de coccielles et la poplatio e milliers, de coccielles a bot de aées O a alors : + 4 p ( où p est ombre qi tiet compte de l eviroemet et de la vitesse de reprodctio O sppose das cette qestio qe p, 5 et q o a a départ coccielles :, + ( a Calcler et b O doe, ci-dessos, la représetatio graphiqe, C f, de la foctio f défiie sr [ ; + [ par f ( x x( x et la droite ( d d éqatio y x Représeter sr l axe des abscisses les qatre premiers termes de la site c Qelle cojectre pet-o émettre sr le ses de variatio de cette site? d Démotrer cette cojectre e étdiat le ses de variatio de la site ( e La site semble-t-elle covergete o divergete? Préciser sa limite évetelle f Ecrire algorithme permettat de détermier le pls petit etier atrel N tel qe por tot etier N, Doer la valer N trovée par la calclatrice Lycée Fraçais de DOHA Aée 5 6 ère S M Evao

11 O sppose das cette qestio qe p, 7 et q o a tojors a départ coccielles a O doe, ci-dessos, la représetatio graphiqe, C f, de la foctio f défiie sr [ ; + [ par f ( x,8x( x et la droite ( d d éqatio y x Représeter sr l axe des abscisses les qatre premiers termes de la site b Qelle cojectre pet-o émettre sr le ses de variatio de cette site? Exercice 6 : Avec algorithme Partie A O cosidère l algorithme sivat : Etrée etier atrel Iitialisatio Affecter à la valer Affecter à S la valer Affecter à i la valer Traitemet Tat qe i < Affecter à la valer + i Affecter à S la valer S + Affecter à i la valer i + Fi d Tat qe Sortie Afficher à Afficher S Jstifier qe, por, l affichage obte est por et por S Reprodire et compléter le tablea sivat : Valer de 4 5 Affichage de Affichage de S Lycée Fraçais de DOHA Aée 5 6 ère S M Evao

12 Partie B Soiet ( et ( S les sites défiies sr IN par : et S N : + + Por etier IN doé, qe représetet les valers affichées par l algorithme de la Partie A? Le bt de cette qestio est d exprimer e foctio de a Recopier et compléter le tablea ci-dessos : 4 5 b Qelle cojectre pet-o faire à partir des résltats de ce tablea? c Vérifier qe : IN coviet comme forme explicite de ( + Lycée Fraçais de DOHA Aée 5 6 ère S M Evao

MATHEMATIQUES Option scientifique Mardi 9 mai 2006 de 8h à 12h

MATHEMATIQUES Option scientifique Mardi 9 mai 2006 de 8h à 12h ECOLE DE HUTES ETUDES COMMERCILES DU NORD Cocors d'admissio sr classes préparatoires MTHEMTIQUES Optio scietifiqe Mardi 9 mai 6 de 8h à h La présetatio, la lisibilité, l'orthographe, la qalité de la rédactio,

Plus en détail

x +1 + ln. Donner la valeur exacte affichée par cet algorithme lorsque l utilisateur entre la valeur n =3.

x +1 + ln. Donner la valeur exacte affichée par cet algorithme lorsque l utilisateur entre la valeur n =3. EXERCICE 3 (6 poits ) (Commu à tous les cadidats) Il est possible de traiter la partie C sas avoir traité la partie B Partie A O désige par f la foctio défiie sur l itervalle [, + [ par Détermier la limite

Plus en détail

Limites des Suites numériques

Limites des Suites numériques Chapitre 2 Limites des Suites umériques Termiale S Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Limite fiie ou ifiie d ue suite. Limites et comparaiso. Opératios sur les ites. Comportemet

Plus en détail

Comportement d'une suite

Comportement d'une suite Comportemet d'ue suite I) Approche de "ses de variatio et de ite d'ue suite" : 7 Soit la suite ( ) telle que = 5 ( + ) 2 Représetos graphiquemet la suite das u pla mui d' u repère. Il suffit de placer

Plus en détail

Exercice I ( non spé ) 1/ u 1 = 3 4. 2 3 u 2 4 + 3 9. 19 4 2/ Soit P la propriété : u n + 4. > 0 pour n 1. P est vraie au rang 1 car u 1

Exercice I ( non spé ) 1/ u 1 = 3 4. 2 3 u 2 4 + 3 9. 19 4 2/ Soit P la propriété : u n + 4. > 0 pour n 1. P est vraie au rang 1 car u 1 Bac blac TS Correctio Exercice I ( Spé ) / émotros par récurrece que 5x y = pour tout etier aturel 5x y = 5 8 = La propriété est doc vraie au rag = Supposos que la propriété est vraie jusqu au rag, o a

Plus en détail

DEVOIR SURVEILLE DE MATHEMATIQUES 3 heures Probabilités conditionnelles - Suites géométriques - fonctions exponentielles Calculatrice autorisée

DEVOIR SURVEILLE DE MATHEMATIQUES 3 heures Probabilités conditionnelles - Suites géométriques - fonctions exponentielles Calculatrice autorisée DEVOIR SURVEILLE DE MATHEMATIQUES 3 heures Probabilités coditioelles - Suites géométriques - foctios epoetielles Calculatrice autorisée Termiale ES123 Eercice 1 : 5 poits Partie A : Ue agece de locatio

Plus en détail

Séries numériques. Chap. 02 : cours complet.

Séries numériques. Chap. 02 : cours complet. Séris méris Cha : cors comlt Séris d réls t d comlxs Défiitio : séri d réls o d comlxs Défiitio : séri corgt o dirgt Rmar : iflc ds rmirs trms d séri sr la corgc Théorèm : coditio écssair d corgc Théorèm

Plus en détail

1/ ETUDE ASYMPTOTIQUE D'UNE MARCHE ALEATOIRE ENTRE DEUX ETATS

1/ ETUDE ASYMPTOTIQUE D'UNE MARCHE ALEATOIRE ENTRE DEUX ETATS CHAPITRE 4 MATRICES ET SUITES 1/ ETUDE ASYMPTOTIQUE D'UNE MARCHE ALEATOIRE ENTRE DEUX ETATS 11/ Présetatio et modélisatio O cosidère u système ui peut se trouver soit das u état A, soit das u état, et

Plus en détail

TRANSLATION ET VECTEURS

TRANSLATION ET VECTEURS TRNSLTION ET VETEURS 1 sr 17 ctivité conseillée ctivités de grope La Translation (Partie1) http//www.maths-et-tiqes.fr/telech/trans_gr1.pdf La Translation (Partie2) http//www.maths-et-tiqes.fr/telech/trans_gr2.pdf

Plus en détail

[http://mp.cpgedupuydelome.fr] édité le 10 juillet 2014 Enoncés 1. Exercice 6 [ 02475 ] [correction] Si n est un entier 2, le rationnel H n =

[http://mp.cpgedupuydelome.fr] édité le 10 juillet 2014 Enoncés 1. Exercice 6 [ 02475 ] [correction] Si n est un entier 2, le rationnel H n = [http://mp.cpgedupuydelome.fr] édité le 1 juillet 14 Eocés 1 Nombres réels Ratioels et irratioels Exercice 1 [ 9 ] [correctio] Motrer que la somme d u ombre ratioel et d u ombre irratioel est u ombre irratioel.

Plus en détail

Etude de la fonction ζ de Riemann

Etude de la fonction ζ de Riemann Etude de la foctio ζ de Riema ) Défiitio Pour x réel doé, la série de terme gééral,, coverge si et seulemet si x >. x La foctio zeta de Riema est la foctio défiie sur ], [ par : ( x > ), = x. Remarque.

Plus en détail

La spirale de Théodore bis, et la suite «somme=produit».

La spirale de Théodore bis, et la suite «somme=produit». Etde d e vrite de l spirle de Théodore, dot issce à e site dot les sommes prtielles sot égles x prodits prtiels. Mots clés : spirle de Théodore, théorème de Pythgore, site, série, polyôme. L spirle de

Plus en détail

Correction Bac ES France juin 2010

Correction Bac ES France juin 2010 Correctio Bac ES Frace jui 010 Exercice 1 (4 poits) (Commu à tous les cadidats) Pour ue meilleure compréhesio, les réposes serot justifiées das ce corrigé. Questio 1 Le ombre 3 est solutio de l équatio

Plus en détail

Dénombrement - Combinatoire Cours

Dénombrement - Combinatoire Cours Déombremet - Combiatoire Cours La combiatoire (ou aalyse combiatoire) étudie commet compter des objets. Elle fourit des méthodes de déombremet particulièremet utiles e probabilité. U des pricipaux exemples

Plus en détail

I. Quitte ou double. Pour n = 1 : C 0 + (2p 1) E (M k ) = C 0 + (2p 1) E (M 1 ) = E (C 1 ) d après le 1. Soit n N tel que E (C n ) = C 0 + (2p 1)

I. Quitte ou double. Pour n = 1 : C 0 + (2p 1) E (M k ) = C 0 + (2p 1) E (M 1 ) = E (C 1 ) d après le 1. Soit n N tel que E (C n ) = C 0 + (2p 1) Corrigé ESSEC III 008 par Pierre Veuillez Das certaies situatios paris sportifs, ivestissemets fiaciers..., o est ameé à miser de l arget de faço répétée sur des paris à espérace favorable. O se propose

Plus en détail

. (b) Si (u n ) est une suite géométrique de raison q, q 1, on obtient : N N, S N = 1 qn+1. n+1 1 S N = 1 1

. (b) Si (u n ) est une suite géométrique de raison q, q 1, on obtient : N N, S N = 1 qn+1. n+1 1 S N = 1 1 Premières propriétés des ombres réels 2 Suites umériques 3 Suites mootoes : à faire 4 Séries umériques 4. Notio de série. Défiitio 4.. Soit (u ) ue suite de ombres réels ou complexes. Pour N N, o ote S

Plus en détail

Inégalités souvent rencontrées

Inégalités souvent rencontrées Iégalités souvet recotrées Recotres Putam 004 Uiversité de Sherbrooke Jea-Philippe Mori Théorie Certaies iégalités sot deveues célèbres e raiso de leur grade utilité Elles sot aussi souvet au coeur de

Plus en détail

Devoir de statistiques: CORRIGE

Devoir de statistiques: CORRIGE CPP - la prépa des INP ( ème aée). Bordeaux, 6/04/04. Devoir de statistiques: CORRIGE durée h Doées: O rappelle que si Z suit ue loi N (0, ), o a P(Z.96) 0, 975 et P(Z.65) 0, 95. Exercice. θ et O cosidère

Plus en détail

SÉRIES STATISTIQUES À DEUX VARIABLES

SÉRIES STATISTIQUES À DEUX VARIABLES 1 ) POSITION DU PROBLÈME - VOCABULAIRE A ) DÉFINITION SÉRIES STATISTIQUES À DEUX VARIABLES O cosidère deux variables statistiques umériques x et y observées sur ue même populatio de idividus. O ote x 1

Plus en détail

Séries réelles ou complexes

Séries réelles ou complexes 6 Séries réelles ou complexes Comme pour le chapitre 3, les suites cosidérées sot a priori complexes et les résultats classiques sur les foctios cotiues ou dérivables d ue variable réelle sot supposés

Plus en détail

IUT Béthune Génie Civil Année Spéciale RDM COURS : STATIQUE

IUT Béthune Génie Civil Année Spéciale RDM COURS : STATIQUE IUT Béthe Géie Civil ée Spéciale RD CURS : STTIQUE I) Gééralités :.) Itrodctio : La statiqe et la écaiqe des Strctres ot por bt d epliqer les phéomèes régissat le dimesioemet des costrctios. Ces matières

Plus en détail

Chapitre 3 : Fonctions d une variable réelle (1)

Chapitre 3 : Fonctions d une variable réelle (1) Uiversités Paris 6 et Paris 7 M1 MEEF Aalyse (UE 3) 2013-2014 Chapitre 3 : Foctios d ue variable réelle (1) 1 Lagage topologique das R Défiitio 1 Soit a u poit de R. U esemble V R est u voisiage de a s

Plus en détail

BANQUE ÉPREUVE ORALE DE MATHÉMATIQUES SESSION 2015

BANQUE ÉPREUVE ORALE DE MATHÉMATIQUES SESSION 2015 CONCOURS COMMUNS POLYTECHNIQUES FILIÈRE MP BANQUE ÉPREUVE ORALE DE MATHÉMATIQUES SESSION 5 avec corrigés V. Bellecave, J.-L. Artigue, P. Berger, J.-P. Bourgade, S. Calmet, A. Calvez, D. Cleet, J. Esteba,

Plus en détail

Suites et séries de fonctions

Suites et séries de fonctions [http://mp.cpgedupuydelome.fr] édité le 3 avril 5 Eocés Suites et séries de foctios Propriétés de la limite d ue suite de foctios Eercice [ 868 ] [correctio] Etablir que la limite simple d ue suite de

Plus en détail

CHAPITRE 2 SÉRIES ENTIÈRES

CHAPITRE 2 SÉRIES ENTIÈRES CHAPITRE 2 SÉRIES ENTIÈRES 2. Séries etières Défiitio 2.. O appelle série etière toute série de foctios ( ) f dot le terme gééral est de la forme f ()=a, où (a ) désige ue suite réelle ou complee et R.

Plus en détail

Chapitre 4 Lois discrètes

Chapitre 4 Lois discrètes Chapitre 4 Lois discrètes 1. Loi de Beroulli Ue variable aléatoire X est ue variable de Beroulli si elle e pred que les valeurs 0 et 1 avec des probabilités o ulles. P(X = 1) = p, P(X = 0) = 1 p = q, avec

Plus en détail

1 Mesure et intégrale

1 Mesure et intégrale 1 Mesure et itégrale 1.1 Tribu boréliee et foctios mesurables Soit =[a, b] u itervalle (le cas où b = ou a = est pas exclu) et F ue famille de sous-esembles de. OditqueF est ue tribu sur si les coditios

Plus en détail

Loi binomiale. Niveau : Première S + SUP (Convergence) Prérequis : Variable aléatoire, espérance, variance, théorème limite central, loi de Poisson

Loi binomiale. Niveau : Première S + SUP (Convergence) Prérequis : Variable aléatoire, espérance, variance, théorème limite central, loi de Poisson 4 L E Ç O N Loi biomiale Niveau : Première S + SUP (Covergece) Prérequis : Variable aléatoire, espérace, variace, théorème limite cetral, loi de Poisso 1 Loi de Beroulli Défiitio 41 Loi de Beroulli Soit

Plus en détail

[http://mp.cpgedupuydelome.fr] édité le 16 octobre 2015 Enoncés 1. Exercice 7 [ 02253 ] [Correction] Soient (u n ) et (v n ) deux suites telles que

[http://mp.cpgedupuydelome.fr] édité le 16 octobre 2015 Enoncés 1. Exercice 7 [ 02253 ] [Correction] Soient (u n ) et (v n ) deux suites telles que [http://mp.cpgedupuydelome.fr] édité le 6 octobre 05 Eocés Suites umériques Covergece de suites Exercice [ 047 ] [Correctio] Soiet u ) et v ) deux suites réelles covergeat vers l et l avec l < l. Motrer

Plus en détail

ECOLE DES HAUTES ETUDES COMMERCIALES E.S.C.P.-E.A.P. ECOLE SUPERIEURE DE COMMERCE DE LYON MATHEMATIQUES II

ECOLE DES HAUTES ETUDES COMMERCIALES E.S.C.P.-E.A.P. ECOLE SUPERIEURE DE COMMERCE DE LYON MATHEMATIQUES II CHAMBRE DE COMMERCE ET D INDUSTRIE DE PARIS DIRECTION DE L ENSEIGNEMENT Directio des Admissios et cocours ECOLE DES HAUTES ETUDES COMMERCIALES E.S.C.P.-E.A.P. ECOLE SUPERIEURE DE COMMERCE DE LYON CONCOURS

Plus en détail

Intégration et probabilités ENS Paris, 2012-2013. TD (20)13 Lois des grands nombres, théorème central limite. Corrigé :

Intégration et probabilités ENS Paris, 2012-2013. TD (20)13 Lois des grands nombres, théorème central limite. Corrigé : Itégratio et probabilités EN Paris, 202-203 TD 203 Lois des grads ombres, théorème cetral limite. Corrigé Lois des grads ombres Exercice. Calculer e cet leços Détermier les limites suivates : x +... +

Plus en détail

PROJET DE MONTE CARLO SUJET 1: LE PRICING

PROJET DE MONTE CARLO SUJET 1: LE PRICING LE Age KHOURI Nadie M MMD PROJE DE MONE ARLO SUJE : LE PRIING Selim ZOUGHLAMI QUESION : Supposos d abord que X est u mouvemet browie W t G([ 0, ]) Alors W0 G( 0 ) suit ue loi N(0,0) et doc W 0ps 0 Esuite,

Plus en détail

Étudier si une famille est une base

Étudier si une famille est une base Base raisonnée d exercices de mathématiqes (Braise) Méthodes et techniqes des exercices Étdier si ne famille est ne base Soit E n K-espace vectoriel. Comment décider si ne famille donnée de vecters de

Plus en détail

Remise à Niveau Mathématiques

Remise à Niveau Mathématiques Mathématiques RAN - Calcul et raisoemet Remise à Niveau Mathématiques Première partie : Calcul et raisoemet Exercices Page sur 9 RAN Calcul et raisoemet Ex - Rev 04 Mathématiques RAN - Calcul et raisoemet

Plus en détail

14 Chapitre 14. Théorème du point fixe

14 Chapitre 14. Théorème du point fixe Chapitre 14 Chapitre 14. Théorème du poit fixe Si l o examie de plus près les méthodes de Lagrage et de Newto, étudiées au chapitre précédet, elles revieet das leur pricipe à remplacer la résolutio de

Plus en détail

Cryptographie et algorithmique

Cryptographie et algorithmique F.Gaudo 1 er ovembre 2010 Table des matières 1 Avat de commecer 2 2 Préformattage d'u texte pour aalyse 3 2.1 Élimiatio de la poctuatio et des espaces das u texte................. 3 2.2 Formatage du texte

Plus en détail

AVRIL 2012 CONCOURS INGÉNIEURS DES TRAVAUX STATISTIQUES. ITS Voie B Option Économie. MATHÉMATIQUES (Durée de l épreuve : 4 heures)

AVRIL 2012 CONCOURS INGÉNIEURS DES TRAVAUX STATISTIQUES. ITS Voie B Option Économie. MATHÉMATIQUES (Durée de l épreuve : 4 heures) ÉCOLE NATIONALE SUPÉRIEURE DE STATISTIQUE ET D ÉCONOMIE APPLIQUÉE ENSEA ABIDJAN AVRIL 2012 CONCOURS INGÉNIEURS DES TRAVAUX STATISTIQUES ITS Voie B Optio Écoomie MATHÉMATIQUES (Durée de l épreuve : 4 heures)

Plus en détail

II LES PROPRIETES DES ESTIMATEURS MCO 1. Rappel : M1 LA REGRESSION : HYPOTHESES ET TESTS Avril 2009

II LES PROPRIETES DES ESTIMATEURS MCO 1. Rappel : M1 LA REGRESSION : HYPOTHESES ET TESTS Avril 2009 M LA REGRESSION : HYPOTHESES ET TESTS Avril 009 I LES HYPOTHESES DE LA MCO. Hypothèses sur la variable explicative a. est o stochastique. b. a des valeurs xes das les différets échatillos. c. Quad ted

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable Eo7 Séries etières Eercices de Jea-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-fracefr * très facile ** facile *** difficulté moyee **** difficile ***** très difficile I : Icotourable Eercice

Plus en détail

Intérêt simple CHAPITRE. Sommaire

Intérêt simple CHAPITRE. Sommaire HAPTRE térêt simple Sommaire A B D E F G H J K L Notio d itérêt Formule fodametale de l itérêt simple Durée de placemet exprimée e mois Durée de placemet exprimée e jours alculs sur la formule fodametale

Plus en détail

Séquence 5. La fonction logarithme népérien. Sommaire

Séquence 5. La fonction logarithme népérien. Sommaire Séquece 5 La foctio logarithme épérie Objectifs de la séquece Itroduire ue ouvelle foctio : la foctio logarithme épérie. Coaître les propriétés de cette foctio : sa dérivée, ses variatios, sa courbe, sa

Plus en détail

[http://mp.cpgedupuydelome.fr] édité le 10 juillet 2014 Enoncés 1

[http://mp.cpgedupuydelome.fr] édité le 10 juillet 2014 Enoncés 1 [htt://m.cgeduuydelome.fr] édité le 10 juillet 2014 Eocés 1 Déombremet Exercice 1 [ 01529 ] [correctio] Soiet E et F deux esembles fiis de cardiaux resectifs et. Combie y a-t-il d ijectios de E das F?

Plus en détail

Correction HEC III 2007

Correction HEC III 2007 HEC III 7 Voie Écoomique Correctio Page Correctio HEC III 7 Voie écoomique La correctio comporte 9 pages. Eercice. Par dé itio est ue valeur propre de t si et seulemet si est ue valeur propre de T: Et

Plus en détail

Baccalauréat S Asie 19 juin 2014 Corrigé

Baccalauréat S Asie 19 juin 2014 Corrigé Bcclurét S Asie 9 jui 24 Corrigé A. P. M. E. P. Exercice Commu à tous les cdidts 4 poits Questio - c. O peut élimier rpidemet les réposes. et d. cr les vecteurs directeurs des droites proposées e sot ps

Plus en détail

Les Nombres Parfaits.

Les Nombres Parfaits. Les Nombres Parfaits. Agathe CAGE, Matthieu CABAUSSEL, David LABROUSSE (2 de Lycée MONTAIGNE BORDEAUX) et Alexadre DEVERT, Pierre Damie DESSARPS (TS Lycée SUD MEDOC LETAILLAN MEDOC) La première partie

Plus en détail

chapitre VIII exercices et problèmes de synthèse algorithmique et turbo-pascal

chapitre VIII exercices et problèmes de synthèse algorithmique et turbo-pascal chapitre VIII eercices et problèmes de sythèse algorithmique et turbo-pascal Algèbre liéaire et probabilités : Chaîes de Marov (esco 93) Partie A 4 3 O cosidère la matrice M = 8 6 ) a) Détermier les valeurs

Plus en détail

Suites et séries numériques

Suites et séries numériques Maths MP Cours Table des matières Suites et séries umériques Quelques prélimiaires. Les yeux fermés........................................... De quoi parle-t-o?........................................3

Plus en détail

capital en fin d'année 1 C 0 + T C 0 = C 0 (1 + T) = C 0 r en posant r = 1 + T 2 C 0 r + C 0 r T = C 0 r (1 + T) = C 0 r 2 3 C 0 r 3...

capital en fin d'année 1 C 0 + T C 0 = C 0 (1 + T) = C 0 r en posant r = 1 + T 2 C 0 r + C 0 r T = C 0 r (1 + T) = C 0 r 2 3 C 0 r 3... Applicatios des maths Algèbre fiacière 1. Itérêts composés O place u capital C 0 à u taux auel T a pedat aées. Quelle est la valeur fiale C de ce capital? aée capital e fi d'aée 1 C 0 + T C 0 = C 0 (1

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable Exo7 Topologie Exercices de Jea-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-fracefr * très facile ** facile *** difficulté moyee **** difficile ***** très difficile I : Icotourable Exercice **

Plus en détail

20. Algorithmique & Mathématiques

20. Algorithmique & Mathématiques L'éditeur L'éditeur permet à l'utilisateur de saisir les liges de codes d'u programme ou de défiir des foctios. Remarque : O peut saisir directemet des istructios das la cosole Scilab, mais il est plus

Plus en détail

EXERCICES : DÉNOMBREMENT

EXERCICES : DÉNOMBREMENT Chapitre 7 ECE 1 - Grad Nouméa - 015 EXERCICES : DÉNOMBREMENT LISTES / ARRANGEMENTS Exercice 1 : Le code ativol Pour so vélo, Toto possède u ativol a code. Le code est ue successio de trois chiffres compris

Plus en détail

Convergences 2/2 - le théorème du point fixe - Page 1 sur 9

Convergences 2/2 - le théorème du point fixe - Page 1 sur 9 Au sommaire : Suites extraites Le théorème de Bolzao-Weierstrass La preuve du théorème de Bolzao-Weierstrass3 Foctio K-cotractate4 Le théorème du poit fixe5 La preuve du théorème du poit fixe6 Utilisatios

Plus en détail

Exo7. Déterminants. = 4(b + c)(c + a)(a + b). c + a c + b 2c Correction. b + a 2b b + c. Exercice 2 ** X a b c a X c b b c X a c b a X

Exo7. Déterminants. = 4(b + c)(c + a)(a + b). c + a c + b 2c Correction. b + a 2b b + c. Exercice 2 ** X a b c a X c b b c X a c b a X Exo7 Détermiats Exercices de Jea-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-fracefr * très facile ** facile *** difficulté moyee **** difficile ***** très difficile I : Icotourable T : pour

Plus en détail

Polynésie Septembre 2002 - Exercice On peut traiter la question 4 sans avoir traité les questions précédentes.

Polynésie Septembre 2002 - Exercice On peut traiter la question 4 sans avoir traité les questions précédentes. Polyésie Septembre 2 - Exercice O peut traiter la questio 4 sas avoir traité les questios précédetes Pour u achat immobilier, lorsqu ue persoe emprute ue somme de 50 000 euros, remboursable par mesualités

Plus en détail

Dénombrement. Chapitre 1. 1.1 Enoncés des exercices

Dénombrement. Chapitre 1. 1.1 Enoncés des exercices Chapitre 1 Déombremet 1.1 Eocés des exercices Exercice 1 L acie système d immatriculatio fraçais était le suivat : chaque plaque avait 4 chiffres, suivis de 2 lettres, puis des 2 uméros du départemet.

Plus en détail

On obtient la formule de Pascal en prenant le cardinal :

On obtient la formule de Pascal en prenant le cardinal : Colles du 3 ovembre 014 Solutio de la questio de cours 1. (i) Soit E u esemble de cardial. L esemble (E) peut alors être partitioé comme suit : (E) (E), où (E) est l esemble des parties de E de cardial.

Plus en détail

Solutions particulières d une équation différentielle...

Solutions particulières d une équation différentielle... Solutios particulières d ue équatio différetielle......du premier ordre à coefficiets costats O cherche ue solutio particulière de y + ay = f, où a est ue costate réelle et f ue foctio, appelée le secod

Plus en détail

DIDIER AUROUX POLYTECH NICE-SOPHIA MAM5 - OPTION IMAFA 2010-2011

DIDIER AUROUX POLYTECH NICE-SOPHIA MAM5 - OPTION IMAFA 2010-2011 MÉTHODES NUMÉRIQUES POUR LE PRICING D OPTIONS DIDIER AUROUX POLYTECH NICE-SOPHIA MAM5 - OPTION IMAFA 2010-2011 Table des matières 1 Notatios et équatio de Black-Scholes 2 11 Notatios 2 12 Équatio de Black-Scholes

Plus en détail

Examen final pour Conseiller financier / conseillère financière avec brevet fédéral. Recueil de formules. Auteur: Iwan Brot

Examen final pour Conseiller financier / conseillère financière avec brevet fédéral. Recueil de formules. Auteur: Iwan Brot Exame fial pour Coseiller fiacier / coseillère fiacière avec brevet fédéral Recueil de formules Auteur: Iwa Brot Ce recueil de formules est à dispositio olie et sera doé aux cadidats lors des exames oraux

Plus en détail

Chapitre 16 : Espaces vectoriels

Chapitre 16 : Espaces vectoriels PCSI Préparatio des Khôlles -4 Chapitre 6 : Espaces vectoriels Exercice type Soit E=R[X] et F ={P E, P(X)=XP (X)+P()}, motrer que F est u sous-espace vectoriel de E. : O a bie F E. Si P =est le polyôme

Plus en détail

Chap. 5 : Les intérêts (Les calculs financiers)

Chap. 5 : Les intérêts (Les calculs financiers) Chap. 5 : Les itérêts (Les calculs fiaciers) Das u cotrat de prêt, le prêteur met à la dispositio de l empruteur, à u taux d itérêt doé, ue somme d arget (le capital) qu il devra rembourser à ue certaie

Plus en détail

JE LÈGUE À L ŒUVRE DES VOCATIONS POUR FORMER NOS FUTURS PRÊTRES NOS RÉPONSES À VOS QUESTIONS SUR LES LEGS, DONATIONS, ASSURANCES VIE

JE LÈGUE À L ŒUVRE DES VOCATIONS POUR FORMER NOS FUTURS PRÊTRES NOS RÉPONSES À VOS QUESTIONS SUR LES LEGS, DONATIONS, ASSURANCES VIE Diocèses de Paris, Nanterre, Créteil et Saint-Denis JE LÈGUE À L ŒUVRE DES VOCATIONS POUR FORMER NOS FUTURS PRÊTRES NOS RÉPONSES À VOS QUESTIONS SUR LES LEGS, DONATIONS, ASSURANCES VIE FAITES DE VOS BIENS

Plus en détail

Examen final pour Conseiller financier / conseillère financière avec brevet fédéral. Recueil de formules. Auteur: Iwan Brot

Examen final pour Conseiller financier / conseillère financière avec brevet fédéral. Recueil de formules. Auteur: Iwan Brot Exame fial pour Coseiller fiacier / coseillère fiacière avec brevet fédéral Recueil de formules Auteur: Iwa Brot Ce recueil de formules sera mis à dispositio des cadidats, si écessaire. Etat au 1er mars

Plus en détail

Chap. 6 : Les principaux crédits de trésorerie et leur comptabilisation

Chap. 6 : Les principaux crédits de trésorerie et leur comptabilisation 1 / 9 Chap. 6 : Les pricipaux crédits de trésorerie et leur comptabilisatio Le cycle d exploitatio des etreprises (achats stockage productio stockage vetes) peut etraîer des décalages de trésorerie plus

Plus en détail

Dénombrement. 1 Dénombrer des listes 2 1.1 Permutation... 2 1.2 Arrangement... 3 1.3 p-liste... 4

Dénombrement. 1 Dénombrer des listes 2 1.1 Permutation... 2 1.2 Arrangement... 3 1.3 p-liste... 4 1 Déombremet Table des matières 1 Déombrer des listes 2 1.1 Permutatio................................ 2 1.2 Arragemet............................... 3 1.3 -liste.................................... 4

Plus en détail

Baccalauréat S Nouvelle - Calédonie Mars 2009

Baccalauréat S Nouvelle - Calédonie Mars 2009 Bcclurét S Nouvelle - Clédoie Mrs 009 Exercice Commu à tous les cdidts (5 poits) r r Le pl est rpporté à u repère orthoorml direct ( O, u, v) d uité grphique cm O cosidère les poits et B d ffixes respectives

Plus en détail

Chapitre 1: Calcul des intérêts

Chapitre 1: Calcul des intérêts Chapitre 1: Calcul des itérêts Ce chapitre vise à familiariser le lecteur avec les otios suivates : Itérêt Taux d itérêt omial Taux d itérêt périodique Valeur acquise Valeur actuelle Capitalisatio Le lecteur

Plus en détail

c. Calcul pour une évolution d une proportion entre deux années non consécutives

c. Calcul pour une évolution d une proportion entre deux années non consécutives Calcul des itervalles de cofiace our les EPCV 996-004 - Cas d u ourcetage ou d ue évolutio e oit das la oulatio totale des méages - Cas d u ourcetage ou d ue évolutio das ue sous oulatio das les méages

Plus en détail

Soit E un ensemble. On appelle classe de parties de E un sous-ensemble non vide de P(E).

Soit E un ensemble. On appelle classe de parties de E un sous-ensemble non vide de P(E). Chapitre 1 Tribus 1.1 Défiitios Soit E u esemble. O appelle classe de parties de E u sous-esemble o vide de P(E). Défiitio 1.1.1. Ue tribu A sur E est u sous-esemble o vide de P(E) tel que : (i) la partie

Plus en détail

Les PAVÉS DE PARIS en Bois de Bout Situation dans son marché

Les PAVÉS DE PARIS en Bois de Bout Situation dans son marché Les PAVÉS DE PARIS e Bois de Bout Situatio das so marché Les plachers aspect bois ot vécu ue forte progressio ces dix derières aées au détrimet des revêtemets de sols textiles. Les plachers usuellemet

Plus en détail

Processus et martingales en temps continu

Processus et martingales en temps continu Chapitre 3 Processus et martigales e temps cotiu 1 Quelques rappels sur les martigales e temps discret (voir [4]) O cosidère u espace filtré (Ω, F, (F ) 0, IP). O ote F = 0 F. Défiitio 1.1 Ue suite de

Plus en détail

TD: Transformée de Fourier

TD: Transformée de Fourier TD: Transformée de Forier Définition + Soit ne fonction complee f de la variable réelle Si elle est de carré sommable, c est-à-dire si l intégrale f( d converge (on se reportera a cors de mathématiqes

Plus en détail

Modes propres de vibration ; interprétation ondulatoire

Modes propres de vibration ; interprétation ondulatoire SPECIALITE TS ( PHYSIQUE ) : FICHE CURS 6 1/5 MDES PRPRES DE IBRATI Ce qu'il faut reteir Modes propres de vibratio ; iterprétatio odulatoire 1. Productio d u so à l aide d u istrumet de musique U istrumet

Plus en détail

UNIVERSITE MONTESQUIEU BORDEAUX IV. Année universitaire 2006-2007. Semestre 2. Prévisions Financières. Travaux Dirigés - Séances n 4

UNIVERSITE MONTESQUIEU BORDEAUX IV. Année universitaire 2006-2007. Semestre 2. Prévisions Financières. Travaux Dirigés - Séances n 4 UNVERSTE MONTESQUEU BORDEAUX V Licece 3 ère aée Ecoomie - Gestio Aée uiversitaire 2006-2007 Semestre 2 Prévisios Fiacières Travaux Dirigés - Séaces 4 «Les Critères Complémetaires des Choix d vestissemet»

Plus en détail

Corrigé de Mathématique éco HEC

Corrigé de Mathématique éco HEC Corrigé de Mathématique éco HEC EXERCICE Hypothèses. M 3 R est l espace vectoriel des matrices carrées d ordre 3 à coefficiets réels. A M 3 R : s A 3 A,j, s A 3 A,j, s 3 A 3 somme des coefficiets des liges

Plus en détail

Le marché du café peut être segmenté en fonction de deux modes de production principaux : la torréfaction et la fabrication de café soluble.

Le marché du café peut être segmenté en fonction de deux modes de production principaux : la torréfaction et la fabrication de café soluble. II LE MARCHE DU CAFE 1 L attractivité La segmetatio selo le mode de productio Le marché du café peut être segmeté e foctio de deux modes de productio pricipaux : la torréfactio et la fabricatio de café

Plus en détail

Organisme de recherche et d information sur la logistique et le transport LES PREVISIONS DES CONSOMMATIONS

Organisme de recherche et d information sur la logistique et le transport LES PREVISIONS DES CONSOMMATIONS LES PREVISIONS DES CONSOMMATIONS Les logiciels utilisés pour la gestio des stocks itègret de ombreuses foctios de calcul. L ue des plus importates est l exécutio des prévisios des cosommatios futures d

Plus en détail

/RJLTXHERROpHQQH. Symbole (norme IEC 1 ) x

/RJLTXHERROpHQQH. Symbole (norme IEC 1 ) x /RJLTXHERROpHQQH I. Défiitios I.. Variable biaire O appelle variable biaire (ou logique), ue variable preat ses valeurs das l esemble {0, }. Eemple : état d u iterrupteur, d u bouto poussoir, la présece

Plus en détail

Maîtrise de Mathématiques TER Le bandit manchot à deux bras

Maîtrise de Mathématiques TER Le bandit manchot à deux bras Maîtrise de Mathématiques TER Le badit machot à deux bras Deis Cousieau Sous la directio de Jea-Michel Loubes Septembre 2003 Table des matières 1 Présetatio du problème 2 1.1 Exemple de la machie à sous,

Plus en détail

Chap. 6 : Les principaux crédits de trésorerie et leur comptabilisation

Chap. 6 : Les principaux crédits de trésorerie et leur comptabilisation Chap. 6 : Les pricipaux crédits de trésorerie et leur comptabilisatio Les etreprises ot souvet besoi de moyes de fiacemet à court terme : elles ot alors recours aux crédits bacaires (découverts bacaires

Plus en détail

Apprentissage: cours 3a Méthodes par moyennage local

Apprentissage: cours 3a Méthodes par moyennage local Appretissage: cours 3a Méthodes par moyeage local Guillaume Oboziski 1 er mars 2012 Réferece : chap. 6 of [Hastie et al., 2009] ad chap. 6 of [Devroye et al., 1996]. Algorithmes par moyeage local O cosidère

Plus en détail

Le montant des intérêts acquis est la différence entre la valeur acquise et le capital placé :

Le montant des intérêts acquis est la différence entre la valeur acquise et le capital placé : http://maths-scieces.fr OPÉRATIONS FINANIÈRES A INTÉRÊTS OMPOSÉS I) Itérêts et valeur acquise Défiitio U capital est placé à itérêts composés lorsque le motat des itérêts produits à la fi de chaque période

Plus en détail

FEUILLE D EXERCICES 17 - PROBABILITÉS SUR UN UNIVERS FINI

FEUILLE D EXERCICES 17 - PROBABILITÉS SUR UN UNIVERS FINI FEUILLE D EXERCICES 7 - PROBABILITÉS SUR UN UNIVERS FINI Exercice - Lacer de dés O lace deux dés à 6 faces équilibrés. Calculer la probabilité d obteir : u double ; ue somme des deux dés égale à 8 ; ue

Plus en détail

Microphones d appels Cloud avec message pré-enregistrés intégré

Microphones d appels Cloud avec message pré-enregistrés intégré Microphones d appels Clod avec message pré-enregistrés intégré Clearly better sond Modèles PM4-SA et PM8-SA Description générale Les microphones d appels nmériqes Clod de la gamme PM-SA ont été développés

Plus en détail

Demande de subsides de formation

Demande de subsides de formation Service des sbsides de formation SSF Amt für Asbildngsbeitrage ABBA Rote-Neve 7, Case postale, 1701 Friborg T +41 26 305 12 51, F +41 26 305 12 54 borses@fr.ch, www.fr.ch/ssf Demande de sbsides de formation

Plus en détail

Le choix d un contrat d assurance maladie entre traitement et compensation.

Le choix d un contrat d assurance maladie entre traitement et compensation. Le choix d n contrat d assrance maladie entre traitement et compensation. F.YAFIL Avril 3 Résmé : L objectif de cet article est de prendre en considération les différentes formes qe pevent revêtir les

Plus en détail

Éléments finis de joint mécaniques et éléments finis de joint couplés hydromécanique

Éléments finis de joint mécaniques et éléments finis de joint couplés hydromécanique Titre : Élémets fiis de joit mécaiques et élémets fi[...] Date : 28/10/2014 Pae : 1/10 Élémets fiis de joit mécaiques et élémets fiis de joit couplés hydromécaique Résumé : Cette documetatio porte sur

Plus en détail

Analyse fréquentielle des systèmes analogiques

Analyse fréquentielle des systèmes analogiques Analyse fréqentielle des systèmes analogiqes L'analyse fréqentielle d'n système consiste principalement dans la détermination de sa fonction de transfert harmoniqe, pis en l'étde de son modle G( et son

Plus en détail

LES ÉCLIPSES. Éclipser signifie «cacher». Vus depuis la Terre, deux corps célestes peuvent être éclipsés : la Lune et le Soleil.

LES ÉCLIPSES. Éclipser signifie «cacher». Vus depuis la Terre, deux corps célestes peuvent être éclipsés : la Lune et le Soleil. Qu appelle-t-o éclipse? Éclipser sigifie «cacher». Vus depuis la Terre, deu corps célestes peuvet être éclipsés : la Lue et le Soleil. LES ÉCLIPSES Pour qu il ait éclipse, les cetres de la Terre, de la

Plus en détail

Système d'éclairage et perturbations

Système d'éclairage et perturbations Lycée N.APPER 447 ORVAUL Essai de système Système d'éclairage et perturbatios Objectifs Etude du foctioemet des systèmes d'éclairage fluorescets à tube et "fluocompacte" : foctioemet, perturbatios du réseau.

Plus en détail

REQUÊTES. Il est possible de créer des formulaires ou des états à partir de requête.

REQUÊTES. Il est possible de créer des formulaires ou des états à partir de requête. Cliclasolutio Aée 2006/2007 REQUÊTES Utilité des requêtes QUESTIONNER LA BASE DE DONNÉES La foctio classique d'ue requête est de répodre à ue questio sur la base de doées. "Quels sot les cliets habitat

Plus en détail

COURS MPSI A 7. POLYNÔMES R. FERRÉOL 13/14

COURS MPSI A 7. POLYNÔMES R. FERRÉOL 13/14 Das tout ce cours, K désigerouc. I) DÉFINITIONS 1) Foctios polyômes. DEF : ue applicatio f d ue partie I de K das K est ditepolyomiale (ou appelée uefoctiopolyôme) si N (a 0,a 1,...,a ) K +1 / x I f(x)=

Plus en détail

Statistique descriptive bidimensionnelle

Statistique descriptive bidimensionnelle 1 Statistique descriptive bidimesioelle Statistique descriptive bidimesioelle Résumé Liaisos etre variables quatitatives (corrélatio et uages de poits), qualitatives (cotigece, mosaïque) et de types différets

Plus en détail

T.P. Le redressement commandé : le pont mixte.

T.P. Le redressement commandé : le pont mixte. I Introdcton : T.P. Le redressement commandé : le pont mxte. Précédemment, nos avons v qe nos povons réalser la converson d'ne tenson alternatve snsoïdale t =U 2sn t en ne tenson contne grâce à l'tlsaton

Plus en détail

Deuxième partie : LES CONTRATS D ASSURANCE VIE CLASSIQUES

Deuxième partie : LES CONTRATS D ASSURANCE VIE CLASSIQUES DEUXIEME PARTIE Deuième partie : LES CONTRATS D ASSURANCE VIE CLASSIQUES Chapitre. L assurace de capital différé Chapitre 2. Les opératios de retes Chapitre 3. Les assuraces décès Chapitre 4. Les assuraces

Plus en détail

LIRE LES RECHERCHES SUR LA LECTURE Jean Foucambert

LIRE LES RECHERCHES SUR LA LECTURE Jean Foucambert Les Actes de Lectre n, mars - Lire les recherches... LIRE LES RECHERCHES SUR LA LECTURE Jean Focambert Les partis pédagogiqes qi s affrontent ator de la lectre tentent assi de se présenter en hérats scientifiqes.

Plus en détail

par Jacques RICHALET Directeur société ADERSA

par Jacques RICHALET Directeur société ADERSA Commande prédictive par Jacqes RICHALET Directer société ADERSA 1. Les qatre principes de la commande prédictive... R 7 423 2 1.1 Modèle interne... 2 1.2 Trajectoire de référence... 3 1.3 Strctration de

Plus en détail

Probabilités exercices corrigés

Probabilités exercices corrigés Termiale S Probabilités Exercices corrigés Combiatoire avec démostratio Ragemets Calcul d évéemets Calcul d évéemets Calcul d évéemets 6 Dés pipés 7 Pièces d or 8 Agriculteur pas écolo 9 Boules Jeux 6

Plus en détail

Des prestations textiles personnalisées pour l hôtellerie et la restauration

Des prestations textiles personnalisées pour l hôtellerie et la restauration Ds prstatios txtils prsoalisés por l hôtllri t la rstaratio ti i R E R A R-GZ 992 por l trti profssiol d li Sivi d l hyiè t d la qalité ds txtils R_Hotl_Gastro_Iformatio_FRANZOESISCH.idd 1 1 19.04.2010

Plus en détail

Correction Devoir commun Classes de Secondes concernées : 2nde 10, 2nde 11, 2nde13,

Correction Devoir commun Classes de Secondes concernées : 2nde 10, 2nde 11, 2nde13, LYCEE GRAND AIR Correctio Devoir commu Classes de Secodes cocerées : de 10, de 11, de13, feuilles + papier millimétré. 08/0/013 Exercice 1 : L aée lumière. 1. D après le texte, la vitesse de la lumière

Plus en détail