Mathématiques appliquées à la finance J. Printems Année

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Mathématiques appliquées à la finance J. Printems Année 2008 09"

Transcription

1 IAE Gustave Eiffel Master 2 Gestion de Portefeuille Université Paris xii Val de Marne Mathématiques appliquées à la finance J. Printems Année Épreuve du 15 juillet 2009 Durée : 1 heure 30 Calculatrices et documents de cours seuls autorisés. Exercice 1 Un couple canadien vient d avoir un enfant (t = 0). Comme tous les jeunes parents canadiens, ils prévoient d épargner en vue des futurs frais de scolarité. Ils projettent d envoyer leur enfant à l Université lorsqu il aura 18 ans (t = 18) pour une scolarité de 4 ans. Les frais de scolarité sont aujourd hui de C$7 000 et le couple estime que ces frais vont augmenter de 5% par an. Par ailleurs, dans leur prévision, ils comptent sur 6% par an comme rendement pour leur épargne. 1. Quels seront les frais de scolarité pour les années t = 18, t = 19, t = 20 et t = 21? 2. Quel doit être le montant de leur épargne à t = 17? 3. Combien devront-ils épargner tous les ans en partant de t = 1 en supposant qu ils fassent 17 paiements égaux? 1. On utilise la formule (1) p. 10 des transparents : valeurs futures aux dates t = 18, 19, 20 et 21 d un principal P =C$7 000 à t = 0 avec un taux d intérêt annuel r = 5% composé une fois par an. On obtient respectivement (avec notations évidentes) : soit F 18 = P (1 + r) 18, F 19 = P (1 + r) 19, F 20 = P (1 + r) 20, F 21 = P (1 + r) 21, F 18 = C$16 846, F 19 = C$17 689, F 20 = C$18 573, F 21 = C$ On adapte la formule (4) p. 22 (valeur de l emprunt) pour calculer la valeur présente N (à t = 17) d un flux futur aux dates t = 18, 19, 20 et 21 avec un taux r = 6%, soit N = F 18 (1 + r ) 1 + F 19 (1 + r ) 2 + F 20 (1 + r ) 3 + F 21 (1 + r ) 4. On obtient N =C$

2 3. Soit A le montant cherché. On égalise la valeur future (à t = 17) des annuités constantes A versées aux dates t = 1,..., t = 17 avec la somme nécessaire N (formule p. 18) : N = A ( (1 + r ) (1 + r ) (1 + r ) 17 17) ( ) (1 + r ) 17 1 = A Soit A = C$ r = A Exercice 2 On considère deux fonds A et B de rendement respectif R A et R B. Soit α un nombre compris entre 0 et 1 à déterminer par la suite. On compose un portefeuille avec α unités de A et de 1 α unités de B. On note R(α) le rendement de ce portefeuille. On a donc R(α) = αr A + (1 α)r B ou encore R(α) = R B + α(r A R B ). Les deux parties qui suivent sont indépendantes. Partie I. 1. Calculez Var(R(α)) en fonction de α, Var(R A ), Var(R B ) et de Cov(R A, R B ). 2. Déterminez α = α qui rend minimum Var(R(α)) et exprimez-le en fonction des variances et de la covariance de A et B. On pourra étudier les variations de la fonction α Var(R(α)). 3. (a) Exprimez la valeur minimale, notée V, de Var(R(α)) pour le paramètre α = α déterminé plus haut en fonction des variances-covariances de A et B. (b) Montrez que V < Var(R B ) et V < Var(R A ). 4. Le tableau 1 donne un exemple de rendements et de matrice de covariance pour deux fonds A et B : (a) Déterminez dans ce cas l allocation optimale d unités du fond A dans le portefeuille qui minimise la variance de R(α). Utilisez les réultats de la question 2. (b) Quels sont le rendement moyen et la variance du nouveau portefeuille ainsi constitué? 1. On utilise la formule qui fournit la variance de la somme de deux variables aléatoires X et Y : Var(X + Y ) = Var(X) + Var(Y ) + 2 Cov(X, Y ). 2

3 Il y a deux réponses possibles 1 selon que l on utilise l écriture R(α) = αr A + (1 α)r B ou bien R(α) = R B + α(r A R B ). Avec la deuxième, on obtient ( ) Var(R(α)) = Var(R B ) + α 2 Var(R A R B ) + 2αCov(R B, R A R B ). Avec la première, on obtient ( ) Var(R(α)) = α 2 Var(R A ) + (1 α) 2 Var(R B ) + 2α(1 α)cov(r A, R B ). 2. On remarque que la fonction α Var(R(α)) est du second degré en α. Grâce à son écriture en aα 2 + bα + c dans ( ), on sait qu elle atteint son minimum en b/(2a), soit : α = Cov(R B, R A R B ) Var(R A R B ) = Var(R B ) Cov(R B, R A ) Var(R A ) + Var(R B ) 2 Cov(R A, R B ). Autre solution : On peut aussi dériver l une des deux expressions plus hautes par rapport à α et en déduire la valeur de α qui annulle la dérivée. 3. (a) La valeur minimiale V est obtenue en remplaçant α par α dans ( ) ou ( ). On obtient par exemple : V = Var(R B ) (Cov(R B, R A R B )) 2. Var(R A R B ) D autres expressions sont possibles, par exemple : V = Var(R A)Var(R B ) Cov(R A, R B ) Var(R A ) + Var(R B ) 2 Cov(R A, R B ). (b) Comme V est le minimum de Var(R(α)) sur [0, 1], on ne peut dire en toute généralité que V Var(R(α = 0)) = Var(R B ), V Var(R(α = 1)) = Var(R A ). 4. (a) En utilisant l expression de α donnée plus haut, on obtient, grâce aux données de la table 1 : α = = (b) Rendement moyen : E(R(α )) = 13.62%, V = Partie II. 5. On note C le portefeuille qui correspond à l allocation α = 0.2. Un gérant souhaite réaliser un rendement minimum de 3% et hésite devant les trois placements : A (α = 1), B 1. Une seule réponse suffit. 3

4 (α = 0) ou C (α = 0.2). On représente dans le tableau 1 les caractéristiques des deux fonds A et B. Selon la règle «Safety-First», laquelle de ces trois allocations est la meilleure? 6. En supposant que les rendements suivent des lois gaussiennes, donnez la probabilité que le rendement du portefeuille sélectionné à la question précédente soit inférieur à 3%. On pourra utiliser le tableau On forme les ratios de Sharpe suivant en utilisant la table 1 : E(R A ) R mini σ(r A ) = 0.68, E(R B ) R mini σ(r B ) = 0.64, E(R C ) R mini σ(r C ) = Pour estimer σ(r C ), on peut, soit remarquer que Var(R C ) Var(R(α = 0.202)) = V = , soit calculer directement Var(R C ) par la formule ( ) ou ( ) avec α = 0.2. Si la règle «Safety-First» s applique, c.-à-d. si les rendements de portefeuilles sont gaussiens, le portefeuille optimale est C. 6. On pose Z = (R C E(R C ))/σ(r C ). Alors par définition Z suit une loi normale centrée réduite. On a R C R mini R C E(R C ) σ(r C ) R mini E(R C ) σ(r C ) Z Or par symétrie, P (Z 0.82) = P (Z 0.82) = 1 P (Z 0.82) = Dans l hypothèse gaussienne, la probabilité d avoir un rendement inférieur au rendement minimum est de l ordre de 21%. Exercice 3 On considère un marché à deux périodes, dans lequel sont négociés : un actif sans risque rapportant un taux r = 5% sur chaque période et un actif risqué dont le prix S t, t = 0, 1, 2 évolue selon les scénarii suivants : {S 0 = 100, S 1 = 120, S 2 = 140} avec probabilité p 1 ; {S 0 = 100, S 1 = 120, S 2 = 110} avec probabilité p 2 ; {S 0 = 100, S 1 = 80, S 2 = 110} avec probabilité p 3 ; {S 0 = 100, S 1 = 80, S 2 = 60} avec probabilité p Exprimez P(S 1 = 120) et P(S 1 = 80) en fonction des p i. En déduire E(S 1 ) en fonction des p i. On pourra faire un dessin. 4

5 2. Exprimez E(S 2 S 1 = 120) et E(S 2 S 1 = 80) en fonction de p 1, p 2, p 3 et p Déterminez les probabilités risque-neutre p i, i = 1, 2, 3, 4 de ce modèle. 4. On prend les probabilités suivantes : p 1 = 0.4, p 2 = 0.35, p 3 = 0.12 et p 4 = Déterminez le prix d un put européen de prix d exercice 120 qui arrive à échéance à la fin de la deuxième période. La particularité de cet exercice est que les probabilités données sont celles des chemins entiers sur les 2 périodes et non pas celles de monter ou descendre à chaque période. Ce genre de donnée est utile lorsque l on traite des options trajectoiresdépendantes (path-dependent) (voir ex 5 feuille 3 pour un exercice similaire). 1. On a P (S 1 = 120) = P (S 1 = 120, S 2 = 140) + P (S 1 = 120, S 2 = 110) = p 1 + p 2. De même, P (S 1 = 80) = p 3 + p 4. On a donc E(S 1 ) = 120 P (S 1 = 120) + 80 P (S 1 = 80) = 120(p 1 + p 2 ) + 80(p 3 + p 4 ). 2. Par définition de l espérance conditionnelle, on a d une part : E(S 2 S 1 = 120) = 140 P (S 2 = 140 S 1 = 120)+110 P (S 2 = 110 S 1 = 120). D autre part, par définition de la probabilité conditionnelle, on a : P (S 2 = 140 S 1 = 120) = P (S 2 = 140, S 1 = 120) P (S 1 = 120) = p 1 p 1 + p 2, d après la question 1. De même, on a P (S 2 = 110 S 1 = 120) = P (S 2 = 110, S 1 = 120) P (S 1 = 120) = p 2 p 1 + p 2. Bilan : E(S 2 S 1 = 120) = 140 Le même raisonnement donne : E(S 2 S 1 = 80) = 110 p 1 p p 1 + p 2 p 1 + p 2 p 3 p p 3 + p 4 p 3 + p 4 3. Il faut déterminer un jeu de probabilités p 1, p 2, p 3, p4 pour lesquelles l actif risqué actualisé soit une martingale, c.-à-d. E(S 1 ) = (1 + r) S 0, E(S 2 S 1 ) = (1 + r) S 1. Soit 3 équations. Compte tenu des réponses précédentes, on obtient 120 (p 1 + p 2 ) + 80 (p 3 + p 4 ) = 100 (1 + r), (= E(S 1 )) p 1 p = 120 (1 + r), (= E(S 2 S 1 = 120)) p 1 + p 2 p 1 + p 2 p 3 p = 80 (1 + r), (= E(S 2 S 1 = 80)). p 3 + p 4 p 3 + p 4 5

6 En multipliant les deux dernières lignes par p 1 +p 2 et p 3 +p 4. On obtient le système llnéaire d inconnues p i, i = 1,..., 4 suivant D où l on tire la solution suivante 120p p p p 4 = 105, 14p 1 16p 2 = 0, 26p 3 24p 4 = 0, p 1 + p 2 + p 3 + p 4 = 1. p 1 = 1 3, p 2 = 7 24, p 3 = 0.18, p 4 = On calcule E(Z)/(1 + r) 2 où Z = (120 S 2 ) + avec le jeu de probabilités donné (qui n est pas risque-neutre). La v.a. Z prend pour valeurs 0 (proba. p 1 ), 10 (proba. p 2 + p 3 ) et 60 (proba. p 4 ). Sa moyenne est donc (le pricing risque-neutre donne 16.42) E(Z) = (p 2 + p 3 ) 10 + p 4 60 =

7 Table 1 Rendements moyens et matrice de covariance de deux fonds. Rendements Fond A B E(R A ) = 20% E(R B ) = 12% Matrice de covariance Fond A B A B

8 Table 2 Tabulation de N(x) = P (Z x) où Z N (0, 1) pour x [0, 3]. Première colonne = dixièmes ; première ligne = centièmes. Ex : N(0.73) =

IAE Master 2 Gestion de Portefeuille Année 2011 2012. Feuille 3 Pricing et couverture Modèles discret

IAE Master 2 Gestion de Portefeuille Année 2011 2012. Feuille 3 Pricing et couverture Modèles discret Université de Paris Est Créteil Mathématiques financières IAE Master 2 Gestion de Portefeuille Année 2011 2012 1. Le problème des partis 1 Feuille 3 Pricing et couverture Modèles discret Le chevalier de

Plus en détail

Mathématiques appliquées à la finance J. Printems Année 2007 08

Mathématiques appliquées à la finance J. Printems Année 2007 08 École Supérieure des Affaires Master 2 Gestion de Portefeuille Université Paris xii Val de Marne Mathématiques appliquées à la finance J Printems Année 2007 08 Correction de l épreuve du 2 février 2008

Plus en détail

Principes de Finance

Principes de Finance Principes de Finance 13. Théorie des options II Daniel Andrei Semestre de printemps 2011 Principes de Finance 13. Théorie des options II Printemps 2011 1 / 34 Plan I Stratégie de réplication dynamique

Plus en détail

Master IMEA 1 Calcul Stochastique et Finance Feuille de T.D. n o 1

Master IMEA 1 Calcul Stochastique et Finance Feuille de T.D. n o 1 Master IMEA Calcul Stochastique et Finance Feuille de T.D. n o Corrigé exercices8et9 8. On considère un modèle Cox-Ross-Rubinstein de marché (B,S) à trois étapes. On suppose que S = C et que les facteurs

Plus en détail

Probabilités II Étude de quelques lois. Master Gestion de Portefeuille IAE Gustave Eiffel Jacques Printems printems@u-pec.

Probabilités II Étude de quelques lois. Master Gestion de Portefeuille IAE Gustave Eiffel Jacques Printems printems@u-pec. Probabilités II Étude de quelques lois Master Gestion de Portefeuille IAE Gustave Eiffel Jacques Printems printems@u-pec.fr 2012 2013 1 1 Lois discrètes. On considère des v.a. ne prenant que des valeurs

Plus en détail

Chapitre 17 Le modèle de Black et Scholes

Chapitre 17 Le modèle de Black et Scholes Chapitre 17 Le modèle de Black et Scholes Introduction Au début des 70 s, Black, Scholes et Merton ont opéré une avancée majeure en matière d évaluation d options Ces contributions et leurs développements

Plus en détail

Probabilités. I- Expérience aléatoire, espace probabilisé : ShotGun. 1- Définitions :

Probabilités. I- Expérience aléatoire, espace probabilisé : ShotGun. 1- Définitions : Probabilités I- Expérience aléatoire, espace probabilisé : 1- Définitions : Ω : Ensemble dont les points w sont les résultats possibles de l expérience Des évènements A parties de Ω appartiennent à A une

Plus en détail

DEFINITION et PROPRIETES des PRINCIPALES LOIS de PROBABILITES

DEFINITION et PROPRIETES des PRINCIPALES LOIS de PROBABILITES Université Paris1, Licence 00-003, Mme Pradel : Principales lois de Probabilité 1 DEFINITION et PROPRIETES des PRINCIPALES LOIS de PROBABILITES Notations Si la variable aléatoire X suit la loi L, onnoterax

Plus en détail

Loi normale ou loi de Laplace-Gauss

Loi normale ou loi de Laplace-Gauss LivreSansTitre1.book Page 44 Mardi, 22. juin 2010 10:40 10 Loi normale ou loi de Laplace-Gauss I. Définition de la loi normale II. Tables de la loi normale centrée réduite S il y avait une seule loi de

Plus en détail

Master IMEA 1 Calcul Stochastique et Finance Feuille de T.D. n o 1

Master IMEA 1 Calcul Stochastique et Finance Feuille de T.D. n o 1 Master IMEA 1 Calcul Stochastique et Finance Feuille de T.D. n o 1 1. a. On considère un modèle de marché (B, S) à une étape. On suppose que S = 5 C et qu à la date t = 1 on a (S u 1 = 51, S d 1 = 48).

Plus en détail

Master Modélisation Statistique M2 Finance - chapitre 1. Gestion optimale de portefeuille, l approche de Markowitz

Master Modélisation Statistique M2 Finance - chapitre 1. Gestion optimale de portefeuille, l approche de Markowitz Master Modélisation Statistique M2 Finance - chapitre 1 Gestion optimale de portefeuille, l approche de Markowitz Clément Dombry, Laboratoire de Mathématiques de Besançon, Université de Franche-Comté.

Plus en détail

Master Modélisation Statistique M2 Finance - chapitre 3 Modèles financiers discrets

Master Modélisation Statistique M2 Finance - chapitre 3 Modèles financiers discrets Master Modélisation Statistique M2 Finance - chapitre 3 Modèles financiers discrets Clément Dombry, Laboratoire de Mathématiques de Besançon, Université de Franche-Comté. C.Dombry (Université de Franche-Comté)

Plus en détail

THEORIE FINANCIERE Préparation à l'examen

THEORIE FINANCIERE Préparation à l'examen THEORIE FINANCIERE Préparation à l'examen N.B. : Il faut toujours justifier sa réponse. 1. Qu'est-ce que l'axiomatique de Von Neumann et Morgenstern? La représentation des préférences des investisseurs

Plus en détail

TP1 Méthodes de Monte Carlo et techniques de réduction de variance, application au pricing d options

TP1 Méthodes de Monte Carlo et techniques de réduction de variance, application au pricing d options Université de Lorraine Modélisation Stochastique Master 2 IMOI 2014-2015 TP1 Méthodes de Monte Carlo et techniques de réduction de variance, application au pricing d options 1 Les options Le but de ce

Plus en détail

ECOLE DES HAUTES ETUDES COMMERCIALES DE L UNIVERSITE DE LAUSANNE. Professeur Matière Session. A. Ziegler Principes de Finance Automne 2005

ECOLE DES HAUTES ETUDES COMMERCIALES DE L UNIVERSITE DE LAUSANNE. Professeur Matière Session. A. Ziegler Principes de Finance Automne 2005 ECOLE DES HAUTES ETUDES COMMERCIALES DE L UNIVERSITE DE LAUSANNE Professeur Matière Session A. Ziegler Principes de Finance Automne 2005 Date: Lundi 12 septembre 2005 Nom et prénom:... Note:... Q1 :...

Plus en détail

SUITES ET SÉRIES GÉOMÉTRIQUES

SUITES ET SÉRIES GÉOMÉTRIQUES SUITES ET SÉRIES GÉOMÉTRIQUES Sommaire 1. Suites géométriques... 2 2. Exercice... 6 3. Application des suites géométriques aux mathématiques financières... 7 4. Vocabulaire... 7 5. Exercices :... 8 6.

Plus en détail

Probabilités III Introduction à l évaluation d options

Probabilités III Introduction à l évaluation d options Probabilités III Introduction à l évaluation d options Jacques Printems Promotion 2012 2013 1 Modèle à temps discret 2 Introduction aux modèles en temps continu Limite du modèle binomial lorsque N + Un

Plus en détail

TD 4 : HEC 2001 épreuve II

TD 4 : HEC 2001 épreuve II TD 4 : HEC 200 épreuve II Dans tout le problème, n désigne un entier supérieur ou égal à 2 On dispose de n jetons numérotés de à n On tire, au hasard et sans remise, les jetons un à un La suite (a, a 2,,

Plus en détail

Master 2 IMOI - Mathématiques Financières

Master 2 IMOI - Mathématiques Financières Master 2 IMOI - Mathématiques Financières Exercices - Liste 1 1 Comportement d un investisseur face au risque Exercice 1 Soit K la matrice définie par 1 2 [ 3 1 1 3 1.1 Montrer que K est la matrice de

Plus en détail

Bac Blanc Terminale ES - Février 2014 Épreuve de Mathématiques (durée 3 heures)

Bac Blanc Terminale ES - Février 2014 Épreuve de Mathématiques (durée 3 heures) Bac Blanc Terminale ES - Février 2014 Épreuve de Mathématiques (durée 3 heures) L attention des candidats est attirée sur le fait que la qualité de la rédaction, la clarté et la précision des raisonnements

Plus en détail

Éléments de calcul actuariel

Éléments de calcul actuariel Éléments de calcul actuariel Master Gestion de Portefeuille ESA Paris XII Jacques Printems printems@univ-paris2.fr 3 novembre 27 Valeur-temps de l argent Deux types de décisions duales l une de l autre

Plus en détail

1 La formule de Black et Scholes en t discret

1 La formule de Black et Scholes en t discret Université de Provence Préparation Agrégation Epreuve de Modélisation, Option Proba. Texte : La formule de Black Scholes en Finance Étienne Pardoux 1 La formule de Black et Scholes en t discret On suppose

Plus en détail

Processus aléatoires avec application en finance

Processus aléatoires avec application en finance Genève, le 16 juin 2007. Processus aléatoires avec application en finance La durée de l examen est de deux heures. N oubliez pas d indiquer votre nom et prénom sur chaque feuille. Toute documentation et

Plus en détail

T.D. 1. Licence 2, 2014 15 - Université Paris 8

T.D. 1. Licence 2, 2014 15 - Université Paris 8 Mathématiques Financières Licence 2, 2014 15 - Université Paris 8 C. FISCHLER & S. GOUTTE T.D. 1 Exercice 1. Pour chacune des suites ci-dessous, répondre aux questions suivantes : Est-ce une suite monotone?

Plus en détail

DCG 6. Finance d entreprise. L essentiel en fiches

DCG 6. Finance d entreprise. L essentiel en fiches DCG 6 Finance d entreprise L essentiel en fiches DCG DSCG Collection «Express Expertise comptable» J.-F. Bocquillon, M. Mariage, Introduction au droit DCG 1 L. Siné, Droit des sociétés DCG 2 V. Roy, Droit

Plus en détail

Modèles en temps continu pour la Finance

Modèles en temps continu pour la Finance Modèles en temps continu pour la Finance ENSTA ParisTech/Laboratoire de Mathématiques Appliquées 23 avril 2014 Evaluation et couverture pour les options européennes de la forme H = h(s 1 T ) Proposition

Plus en détail

Exercice : la frontière des portefeuilles optimaux sans actif certain

Exercice : la frontière des portefeuilles optimaux sans actif certain Exercice : la frontière des portefeuilles optimaux sans actif certain Philippe Bernard Ingénierie Economique & Financière Université Paris-Dauphine Février 0 On considère un univers de titres constitué

Plus en détail

Les emprunts indivis. Administration Économique et Sociale. Mathématiques XA100M

Les emprunts indivis. Administration Économique et Sociale. Mathématiques XA100M Les emprunts indivis Administration Économique et Sociale Mathématiques XA100M Les emprunts indivis sont les emprunts faits auprès d un seul prêteur. On va étudier le cas où le prêteur met à disposition

Plus en détail

Chapitre 4 : cas Transversaux. Cas d Emprunts

Chapitre 4 : cas Transversaux. Cas d Emprunts Chapitre 4 : cas Transversaux Cas d Emprunts Échéanciers, capital restant dû, renégociation d un emprunt - Cas E1 Afin de financer l achat de son appartement, un particulier souscrit un prêt auprès de

Plus en détail

Table des matières. Avant-propos. Chapitre 2 L actualisation... 21. Chapitre 1 L intérêt... 1. Chapitre 3 Les annuités... 33 III. Entraînement...

Table des matières. Avant-propos. Chapitre 2 L actualisation... 21. Chapitre 1 L intérêt... 1. Chapitre 3 Les annuités... 33 III. Entraînement... III Table des matières Avant-propos Remerciements................................. Les auteurs..................................... Chapitre 1 L intérêt............................. 1 1. Mise en situation...........................

Plus en détail

Chapitre IV : Couples de variables aléatoires discrètes

Chapitre IV : Couples de variables aléatoires discrètes UNIVERSITÉ DE CERG Année 0-03 UFR Économie & Gestion Licence d Économie et Gestion MATH0 : Probabilités Chapitre IV : Couples de variables aléatoires discrètes Généralités Définition Soit (Ω, P(Ω), P)

Plus en détail

Les mathématiques appliquées de la finance

Les mathématiques appliquées de la finance Les mathématiques appliquées de la finance Utiliser le hasard pour annuler le risque Emmanuel Temam Université Paris 7 19 mars 2007 Emmanuel Temam (Université Paris 7) Les mathématiques appliquées de la

Plus en détail

Propriétés des options sur actions

Propriétés des options sur actions Propriétés des options sur actions Bornes supérieure et inférieure du premium / Parité call put 1 / 1 Taux d intérêt, capitalisation, actualisation Taux d intéret composés Du point de vue de l investisseur,

Plus en détail

Définitions Covariance Corrélation Meilleur prédicteur linéaire. Chapitre 5 Couple de variables aléatoires

Définitions Covariance Corrélation Meilleur prédicteur linéaire. Chapitre 5 Couple de variables aléatoires Chapitre 5 Couple de variables aléatoires Définitions 1 On appelle couple de variables aléatoires (discrètes) l application: Ω R ω (X (ω), Y (ω)) 2 La distribution d un couple de v.a. est définie par les

Plus en détail

Méthodes de Monte-Carlo Simulation de grandeurs aléatoires

Méthodes de Monte-Carlo Simulation de grandeurs aléatoires Méthodes de Monte-Carlo Simulation de grandeurs aléatoires Master Modélisation et Simulation / ENSTA TD 1 2012-2013 Les méthodes dites de Monte-Carlo consistent en des simulations expérimentales de problèmes

Plus en détail

Master Modélisation Statistique M2 Finance - chapitre 4 Mouvement Brownien et modèle de Black-Scholes

Master Modélisation Statistique M2 Finance - chapitre 4 Mouvement Brownien et modèle de Black-Scholes Master Modélisation Statistique M2 Finance - chapitre 4 Mouvement Brownien et modèle de Black-Scholes Clément Dombry, Laboratoire de Mathématiques de Besançon, Université de Franche-Comté. C.Dombry (Université

Plus en détail

Baccalauréat ES Polynésie (spécialité) 10 septembre 2014 Corrigé

Baccalauréat ES Polynésie (spécialité) 10 septembre 2014 Corrigé Baccalauréat ES Polynésie (spécialité) 10 septembre 2014 Corrigé A. P. M. E. P. Exercice 1 5 points 1. Réponse d. : 1 e Le coefficient directeur de la tangente est négatif et n est manifestement pas 2e

Plus en détail

Prix d options européennes

Prix d options européennes Page n 1. Prix d options européennes Une société française tient sa comptabilité en euros et signe un contrat avec une entreprise américaine qu elle devra payer en dollars à la livraison. Entre aujourd

Plus en détail

Espérance, variance, quantiles

Espérance, variance, quantiles Espérance, variance, quantiles Mathématiques Générales B Université de Genève Sylvain Sardy 22 mai 2008 0. Motivation Mesures de centralité (ex. espérance) et de dispersion (ex. variance) 1 f(x) 0.0 0.1

Plus en détail

EXAMEN 14 janvier 2009 Finance 1

EXAMEN 14 janvier 2009 Finance 1 EXAMEN 14 janvier 2009 Durée 2h30 heures Exercice 1 On considère un modèle de marché de type arbre binomial à trois étapes avec un actif risqué S et un actif non risqué. On suppose S 0 = 1000$ et à chaque

Plus en détail

Chapitre 2 L actualisation... 21

Chapitre 2 L actualisation... 21 III Table des matières Avant-propos Remerciements.... Les auteurs... XI XII Chapitre 1 L intérêt.... 1 1. Mise en situation.... 1 2. Concept d intérêt... 1 2.1. L unité de temps... 2 2.2. Le taux d intérêt...

Plus en détail

Ecole Supérieure d Ingénieurs Léonard de Vinci

Ecole Supérieure d Ingénieurs Léonard de Vinci Ecole Supérieure d Ingénieurs Léonard de Vinci «Pricing d options Monte Carlo dans le modèle Black-Scholes» Etudiant : / Partie A : Prix de Call et Put Européens Partie B : Pricing par Monte Carlo et réduction

Plus en détail

TD 1 : Taux d intérêt en univers déterministe

TD 1 : Taux d intérêt en univers déterministe Université Paris VI Master 1 : Introduction au calcul stochastique pour la finance 4M065) TD 1 : Taux d intérêt en univers déterministe 1 Interêts simples / Intérêts composés Définition : a) L intérêt

Plus en détail

Emprunts indivis (amortissement)

Emprunts indivis (amortissement) 1. Amortissement constant : a) Activité : Une entreprise souhaite renouveler son parc informatique. Elle estime qu elle doit dépenser 5 000 ; elle emprunte cette somme au taux de 5 % annuel le 1 er janvier

Plus en détail

Chapitre 1 : Évolution COURS

Chapitre 1 : Évolution COURS Chapitre 1 : Évolution COURS OBJECTIFS DU CHAPITRE Savoir déterminer le taux d évolution, le coefficient multiplicateur et l indice en base d une évolution. Connaître les liens entre ces notions et savoir

Plus en détail

Master en Droit et Economie / Automne 2015 / Prof. F. Alessandrini. Chapitre 1 : principes. 2 ème partie : la valeur temps de l argent 23.09.

Master en Droit et Economie / Automne 2015 / Prof. F. Alessandrini. Chapitre 1 : principes. 2 ème partie : la valeur temps de l argent 23.09. Chapitre 1 : principes 2 ème partie : la valeur temps de l argent 23.09.2015 Plan du cours Arbitrage et décisions financières valeur actuelle arbitrage loi du prix unique Valeur temps valeur actuelle et

Plus en détail

Valorisation d es des options Novembre 2007

Valorisation d es des options Novembre 2007 Valorisation des options Novembre 2007 Plan Rappels Relations de prix Le modèle binomial Le modèle de Black-Scholes Les grecques Page 2 Rappels (1) Définition Une option est un contrat financier qui confère

Plus en détail

Chapitre 5. Calculs financiers. 5.1 Introduction - notations

Chapitre 5. Calculs financiers. 5.1 Introduction - notations Chapitre 5 Calculs financiers 5.1 Introduction - notations Sur un marché économique, des acteurs peuvent prêter ou emprunter un capital (une somme d argent) en contrepartie de quoi ils perçoivent ou respectivement

Plus en détail

Portefeuille - Probabilité risque neutre

Portefeuille - Probabilité risque neutre Portefeuille - Probabilité risque neutre Marché complet sans opportunité d arbitrage ½/ Actifs risqué et non risqué Constitution du portefeuille On notera F n l information dont on dispose à l instant

Plus en détail

Chapitre 3. Les distributions à deux variables

Chapitre 3. Les distributions à deux variables Chapitre 3. Les distributions à deux variables Jean-François Coeurjolly http://www-ljk.imag.fr/membres/jean-francois.coeurjolly/ Laboratoire Jean Kuntzmann (LJK), Grenoble University 1 Distributions conditionnelles

Plus en détail

Hedging delta et gamma neutre d un option digitale

Hedging delta et gamma neutre d un option digitale Hedging delta et gamma neutre d un option digitale Daniel Herlemont 1 Introduction L objectif de ce projet est d examiner la couverture delta-gamma neutre d un portefeuille d options digitales Asset-Or-Nothing

Plus en détail

Terminale ES BAC blanc N 1 ( janvier 2014)

Terminale ES BAC blanc N 1 ( janvier 2014) Terminale ES BAC blanc N 1 ( janvier 2014) Epreuve de mathématiques N anonymat :... Durée : 3 heures Calculatrice autorisée Exercice 1 ( pour tous les candidats ) Cet exercice est un QCM Une seule bonne

Plus en détail

Actuariat I ACT2121. huitième séance. Arthur Charpentier. Automne 2012. charpentier.arthur@uqam.ca. http ://freakonometrics.blog.free.

Actuariat I ACT2121. huitième séance. Arthur Charpentier. Automne 2012. charpentier.arthur@uqam.ca. http ://freakonometrics.blog.free. Actuariat I ACT2121 huitième séance Arthur Charpentier charpentier.arthur@uqam.ca http ://freakonometrics.blog.free.fr/ Automne 2012 1 Exercice 1 Soit X une variable aléatoire continue de fonction de densité

Plus en détail

Table des matières. I Mise à niveau 11. Préface

Table des matières. I Mise à niveau 11. Préface Table des matières Préface v I Mise à niveau 11 1 Bases du calcul commercial 13 1.1 Alphabet grec...................................... 13 1.2 Symboles mathématiques............................... 14 1.3

Plus en détail

Licence MASS 2000-2001. (Re-)Mise à niveau en Probabilités. Feuilles de 1 à 7

Licence MASS 2000-2001. (Re-)Mise à niveau en Probabilités. Feuilles de 1 à 7 Feuilles de 1 à 7 Ces feuilles avec 25 exercices et quelques rappels historiques furent distribuées à des étudiants de troisième année, dans le cadre d un cours intensif sur deux semaines, en début d année,

Plus en détail

CORRIGES DES CAS TRANSVERSAUX. Corrigés des cas : Emprunts

CORRIGES DES CAS TRANSVERSAUX. Corrigés des cas : Emprunts CORRIGES DES CAS TRANSVERSAUX Corrigés des cas : Emprunts Remboursement par versements périodiques constants - Cas E1 Objectifs : Construire un échéancier et en changer la périodicité, Renégocier un emprunt.

Plus en détail

1 Diverses actualisation

1 Diverses actualisation durée : 2 heures Nom de l enseignant : M. Chassagnon NB : documents et calculatrices autorisées Les exercices, sont à faire sur le sujet d examen. Il est demandé de répondre aux questions oui/non type

Plus en détail

ECRICOME 2004. Voie Eco. 1 1 + x. f (x) dx n N, u n = 1. 0 xn f (x) dx

ECRICOME 2004. Voie Eco. 1 1 + x. f (x) dx n N, u n = 1. 0 xn f (x) dx ECRICOME 2004 Voie Eco 1 EXERCICE 1 EXERCICE Soient f la fonction numérique de la variable réelle définie par : x R, f (x = 1 2 et (u n la suite de nombres réels déterminée par : { u 0 = 1 f (x dx 0 n

Plus en détail

Couverture et calcul de Malliavin

Couverture et calcul de Malliavin Couverture et calcul de Malliavin L. Decreusefond TPT L. Decreusefond (TPT) Couverture et calcul de Malliavin 1 / 1 Modèle binomial L. Decreusefond (TPT) Couverture et calcul de Malliavin 2 / 1 Modèle

Plus en détail

ADMISSION AU COLLEGE UNIVERSITAIRE Samedi 1 mars 2014 MATHEMATIQUES durée de l épreuve : 3h coefficient 2

ADMISSION AU COLLEGE UNIVERSITAIRE Samedi 1 mars 2014 MATHEMATIQUES durée de l épreuve : 3h coefficient 2 ADMISSION AU COLLEGE UNIVERSITAIRE Samedi 1 mars 2014 MATHEMATIQUES durée de l épreuve : 3h coefficient 2 Le sujet est numéroté de 1 à 5. L annexe 1 est à rendre avec la copie. L exercice Vrai-Faux est

Plus en détail

Mathématiques financières

Mathématiques financières Mathématiques financières Arnaud Triay Table des matières 1 Introduction Position du problème.1 Pricing des options........................................... Formalisme..............................................

Plus en détail

Le financement des investissements par emprunts

Le financement des investissements par emprunts Le financement des investissements par emprunts Définition Pour bien démarrer I) Les emprunts a) Remboursables par amortissements constants b) Remboursables par échéances constantes c) Conclusion sur les

Plus en détail

Actuariat I ACT2121. septième séance. Arthur Charpentier. Automne 2012. charpentier.arthur@uqam.ca. http ://freakonometrics.blog.free.

Actuariat I ACT2121. septième séance. Arthur Charpentier. Automne 2012. charpentier.arthur@uqam.ca. http ://freakonometrics.blog.free. Actuariat I ACT2121 septième séance Arthur Charpentier charpentier.arthur@uqam.ca http ://freakonometrics.blog.free.fr/ Automne 2012 1 Exercice 1 En analysant le temps d attente X avant un certain événement

Plus en détail

A propos du calcul des rentabilités des actions et des rentabilités moyennes

A propos du calcul des rentabilités des actions et des rentabilités moyennes A propos du calcul des rentabilités des actions et des rentabilités moyennes On peut calculer les rentabilités de différentes façons, sous différentes hypothèses. Cette note n a d autre prétention que

Plus en détail

RAPPEL MATHÉMATIQUE Méthodes quantitatives (30 610 94 + 30 620 92)

RAPPEL MATHÉMATIQUE Méthodes quantitatives (30 610 94 + 30 620 92) RAPPEL MATHÉMATIQUE Méthodes quantitatives (30 610 94 + 30 620 92) 1. Suites géométriques Définition Suite Une suite,,,, est un ensemble de nombres. L indice de chaque terme de la suite indique la ou l

Plus en détail

Modèles stochastiques et applications à la finance

Modèles stochastiques et applications à la finance 1 Université Pierre et Marie Curie Master M1 de Mathématiques, 2010-2011 Modèles stochastiques et applications à la finance Partiel 25 Février 2011, Durée 2 heures Exercice 1 (3 points) On considère une

Plus en détail

Probabilités stationnaires d une chaîne de Markov sur TI-nspire Louis Parent, ing., MBA École de technologie supérieure, Montréal, Québec 1

Probabilités stationnaires d une chaîne de Markov sur TI-nspire Louis Parent, ing., MBA École de technologie supérieure, Montréal, Québec 1 Introduction Probabilités stationnaires d une chaîne de Markov sur TI-nspire Louis Parent, ing., MBA École de technologie supérieure, Montréal, Québec 1 L auteur remercie Mme Sylvie Gervais, Ph.D., maître

Plus en détail

Mathématiques Ch. 6 : Exercices

Mathématiques Ch. 6 : Exercices 1 BTS CGO - LYCÉE LOUIS PAYEN - Mathématiques Ch. 6 : Exercices Cours J-L NEULAT 1 Loi normale 1.1 Lecture directe EXERCICE 1 Soit X une variable aléatoire qui suitn(0,1). On donne : P(X 1) 0,84. Sans

Plus en détail

Variables aléatoires continues

Variables aléatoires continues IUT Aix-en-Provence Année 204-205 DUT Informatique TD Probabilités feuille n 6 Variables aléatoires continues Exercice (La station-service) Dans une station-service, la demande hebdomadaire en essence,

Plus en détail

B A C C A L A U R E A T G E N E R A L

B A C C A L A U R E A T G E N E R A L B A C C A L A U R E A T G E N E R A L SESSION 2006 MATHÉMATIQUES SERIE : ES DUREE DE L EPREUVE: 3 heures - COEFFICIENT : 7 Ce sujet comporte 6 pages dont feuille ANNEXE L utilisation d une calculatrice

Plus en détail

COURS GESTION FINANCIERE SEANCE 5 VOCABULAIRE BANCAIRE ET FINANCIER MATHEMATIQUES FINANCIERES

COURS GESTION FINANCIERE SEANCE 5 VOCABULAIRE BANCAIRE ET FINANCIER MATHEMATIQUES FINANCIERES COURS GESTION FINANCIERE SEANCE 5 VOCABULAIRE BANCAIRE ET FINANCIER MATHEMATIQUES FINANCIERES SEANCE 5 VOCABULAIRE BANCAIRE ET FINANCIER MATHEMATIQUES FINANCIERES Objet de la séance 5: les séances précédentes

Plus en détail

Apllication au calcul financier

Apllication au calcul financier Apllication au calcul financier Hervé Hocquard Université de Bordeaux, France 1 er novembre 2011 Intérêts Généralités L intérêt est la rémunération du placement d argent. Il dépend : du taux d intérêts

Plus en détail

Probabilités et Statistiques. Feuille 2 : variables aléatoires discrètes

Probabilités et Statistiques. Feuille 2 : variables aléatoires discrètes IUT HSE Probabilités et Statistiques Feuille : variables aléatoires discrètes 1 Exercices Dénombrements Exercice 1. On souhaite ranger sur une étagère 4 livres de mathématiques (distincts), 6 livres de

Plus en détail

Exercices sur les lois de probabilités continues

Exercices sur les lois de probabilités continues Terminale S Exercices sur les lois de probabilités continues Exercice n 1 : X est la variable aléatoire de la loi continue et uniforme sur [0 ; 1]. Donner la probabilité des événements suivants : a. b.

Plus en détail

Cours de spécialité mathématiques en Terminale ES

Cours de spécialité mathématiques en Terminale ES Cours de spécialité mathématiques en Terminale ES O. Lader 2014/2015 Lycée Jean Vilar Spé math terminale ES 2014/2015 1 / 51 Systèmes linéaires Deux exemples de systèmes linéaires à deux équations et deux

Plus en détail

CONCOURS D'ELEVE INGENIEUR STATISTICIEN ECONOMISTE OPTIONS MATHEMATIQUES ET ECONOMIE. Les candidats traiteront l'un des trois sujets au choix.

CONCOURS D'ELEVE INGENIEUR STATISTICIEN ECONOMISTE OPTIONS MATHEMATIQUES ET ECONOMIE. Les candidats traiteront l'un des trois sujets au choix. ECOLE NATIONALE SUPERIEURE DE STATISTIQUE ET D'ECONOMIE APPLIQUEE ABIDJAN 1 AVRIL 21 CONCOURS D'ELEVE INGENIEUR STATISTICIEN ECONOMISTE OPTIONS MATHEMATIQUES ET ECONOMIE EPREUVE D'ORDRE GENERAL DUREE :

Plus en détail

Le Modèle de taux de Ho-Lee - Pricing d obligation

Le Modèle de taux de Ho-Lee - Pricing d obligation Le Modèle de taux de Ho-Lee - Pricing d obligation Le modèle de Thomas S. Y. Ho et Sang-bin Lee [1] est un modèle simple de fluctuation de taux d intérêts. Il est utilisé sous l hypothèse d absence d opportunité

Plus en détail

DUT Techniques de commercialisation Mathématiques et statistiques appliquées

DUT Techniques de commercialisation Mathématiques et statistiques appliquées DUT Techniques de commercialisation Mathématiques et statistiques appliquées Francois.Kauffmann@unicaen.fr Université de Caen Basse-Normandie 3 novembre 2014 Francois.Kauffmann@unicaen.fr UCBN MathStat

Plus en détail

Chapitre 4 : construction de portefeuille (II)

Chapitre 4 : construction de portefeuille (II) Chapitre 4 : construction de portefeuille (II) 08.11.2013 Plan du cours Espérance de rentabilité d un portefeuille Volatilité d un portefeuille Choix du portefeuille efficient Prise en compte de l actif

Plus en détail

La méthode Monte-Carlo. DeriveXperts. 19 mai 2011

La méthode Monte-Carlo. DeriveXperts. 19 mai 2011 19 mai 2011 Outline 1 Introduction Définition Générale Génération de nombre aléatoires Domaines d application 2 Cadre d application Méthodologie générale Remarques Utilisation pratique Introduction Outline

Plus en détail

Exercice complémentaire du cours de Gestion Financière : Couverture optimale du besoin de financement avec découvert

Exercice complémentaire du cours de Gestion Financière : Couverture optimale du besoin de financement avec découvert Exercice complémentaire du cours de Gestion Financière : Couverture optimale du besoin de financement avec découvert Le trésorier de l'entreprise TRESO vient d établir les prévisions trimestrielles du

Plus en détail

Suites numériques. Exercice 1 Pour chacune des suites suivantes, calculer u 1, u 2, u 3, u 10 et u 100 : Introduction : Intérêts simpleset composés.

Suites numériques. Exercice 1 Pour chacune des suites suivantes, calculer u 1, u 2, u 3, u 10 et u 100 : Introduction : Intérêts simpleset composés. Suites numériques 1ère STG Introduction : Intérêts simpleset composés. On dispose d un capital de 1 000 euros que l on peut placer de deux façons différentes : à intérêts simples au taux annuel de 10%.

Plus en détail

I Suites géométriques, maths fi (1 + α + α 2 + + α n )

I Suites géométriques, maths fi (1 + α + α 2 + + α n ) UPV MathsL1S1 1 Suites. Maths fi I Suites géométriques, maths fi (1 + α + α 2 + + α n ) I Deux résultats fondamentaux 1) 1 + 2 + + n = n (n + 1) / 2 On peut connaître ce résultat par coeur. (D ailleurs

Plus en détail

Exercice 1 Métropole juin 2014 5 points

Exercice 1 Métropole juin 2014 5 points Le sujet comporte 6 pages. Seule l annexe est à rendre avec la copie. BAC BLANC MATHÉMATIQUES TERMINALE STMG Durée de l épreuve : 3 heures Les calculs doivent être détaillés. Les calculatrices sont autorisées,

Plus en détail

Utilisation des arbres binomiaux pour le pricing des options américaines

Utilisation des arbres binomiaux pour le pricing des options américaines Utilisation des arbres binomiaux pour le pricing des options américaines Anne-Victoire Auriault Plan de la présentation Introduction. Le problème des options 2. Le modèle de Cox-Ross-Rubinstein 3. Les

Plus en détail

Plan. 5 Actualisation. 7 Investissement. 2 Calcul du taux d intérêt 3 Taux équivalent 4 Placement à versements fixes.

Plan. 5 Actualisation. 7 Investissement. 2 Calcul du taux d intérêt 3 Taux équivalent 4 Placement à versements fixes. Plan Intérêts 1 Intérêts 2 3 4 5 6 7 Retour au menu général Intérêts On place un capital C 0 à intérêts simples de t% par an : chaque année une somme fixe s ajoute au capital ; cette somme est calculée

Plus en détail

Examen Gestion de portefeuille

Examen Gestion de portefeuille ESC Toulouse 2005 D. Herlemont Mastère BIF Examen Gestion de portefeuille Durée : 2 heures Les documents ne sont pas autorisés. Pour les questions à choix multiples, une ou plusieurs réponses peuvent être

Plus en détail

LISTE D EXERCICES 2 (à la maison)

LISTE D EXERCICES 2 (à la maison) Université de Lorraine Faculté des Sciences et Technologies MASTER 2 IMOI, parcours AD et MF Année 2013/2014 Ecole des Mines de Nancy LISTE D EXERCICES 2 (à la maison) 2.1 Un particulier place 500 euros

Plus en détail

DUT Techniques de commercialisation Mathématiques et statistiques appliquées

DUT Techniques de commercialisation Mathématiques et statistiques appliquées DUT Techniques de commercialisation Mathématiques et statistiques appliquées Francois.Kauffmann@unicaen.fr Université de Caen Basse-Normandie 15 septembre 2015 Francois.Kauffmann@unicaen.fr UCBN MathStat

Plus en détail

Introduction aux modèles financiers

Introduction aux modèles financiers Notes pour le module spécifique Introduction aux modèles financiers Ecole Centrale de Lyon Option Mathématiques 1 2 Introduction Quelques références Pour comprendre les marchés financiers, avoir un apreçu

Plus en détail

CONCOURS GÉNÉRAL DES LYCÉES SESSION DE 2009 COMPOSITION DE MATHÉMATIQUES. (Classe terminale S)

CONCOURS GÉNÉRAL DES LYCÉES SESSION DE 2009 COMPOSITION DE MATHÉMATIQUES. (Classe terminale S) MA 09 CONCOURS GÉNÉRAL DES LYCÉES SESSION DE 009 COMPOSITION DE MATHÉMATIQUES (Classe terminale S) DURÉE : 5 heures La calculatrice de poche est autorisée, conformément à la réglementation. La clarté et

Plus en détail

Examen d accès - 28 Septembre 2012

Examen d accès - 28 Septembre 2012 Examen d accès - 28 Septembre 2012 Aucun document autorisé - Calculatrice fournie par le centre d examen Cet examen est un questionnaire à choix multiples constitué de 50 questions. Plusieurs réponses

Plus en détail

Etude et valorisation

Etude et valorisation MAJ 02/01/2010 : 026 332 026 GSM : 0497 301 007 e-mail : info@newdeal-immo.be Photo1 Photo 2 Photo 3 Photo 4 Adresse :.1420 Braine-l'Alleud - A l'attention de Monsieur xxxxxxxxxx Etude et valorisation

Plus en détail

Un corrigé de l épreuve de mathématiques du baccalauréat blanc

Un corrigé de l épreuve de mathématiques du baccalauréat blanc Terminale ES Un corrigé de l épreuve de mathématiques du baccalauréat blanc EXERCICE ( points). Commun à tous les candidats On considère une fonction f : définie, continue et doublement dérivable sur l

Plus en détail

Dérivés Financiers Evaluation des options sur action

Dérivés Financiers Evaluation des options sur action Dérivés Financiers Evaluation des options sur action Owen Williams Grenoble Ecole de Management > 2 Définitions : options sur actions Option : un contrat négociable donnant le droit d acheter ou vendre

Plus en détail

Les options : Lien entre les paramètres de pricing et les grecs

Les options : Lien entre les paramètres de pricing et les grecs Cette page est soutenue par ALGOFI Cabinet de conseil, d ingénierie financière et dépositaire de systèmes d information financiers. Par Ingefi, le Pôle Métier Ingénierie Financière d Algofi. ---------------------------------------------------------------------------------------------------------------------

Plus en détail

Chapitre 2 - choix efficace et non-efficace des

Chapitre 2 - choix efficace et non-efficace des Chapitre 2 - choix efficace et non-efficace des firmes Arnold Chassagnon Université Paris-Dauphine (LEDA-SDFi) DU1 - Université Paris-Dauphine, 2009-2010 1 Analyse positive - analyse normative 1 Objectif

Plus en détail

Sujet de Bac 2013 Maths ES Obligatoire & Spécialité - Pondichéry

Sujet de Bac 2013 Maths ES Obligatoire & Spécialité - Pondichéry Sujet de Bac 2013 Maths ES Obligatoire & Spécialité - Pondichéry Exercice 1 : 4 points Commun à tous les candidats Cet exercice est un questionnaire à choix multiples. Une réponse exacte rapporte 1 point.

Plus en détail

SESSION 2014 MATHÉMATIQUES. Série : SCIENCES ET TECHNOLOGIES DU MANAGEMENT ET DE LA GESTION STMG. DURÉE DE L ÉPREUVE : 3 heures COEFFICIENT : 3

SESSION 2014 MATHÉMATIQUES. Série : SCIENCES ET TECHNOLOGIES DU MANAGEMENT ET DE LA GESTION STMG. DURÉE DE L ÉPREUVE : 3 heures COEFFICIENT : 3 BACCALAURÉAT TECHNOLOGIQUE SESSION 2014 MATHÉMATIQUES Série : SCIENCES ET TECHNOLOGIES DU MANAGEMENT ET DE LA GESTION STMG DURÉE DE L ÉPREUVE : 3 heures COEFFICIENT : 3 Calculatrice autorisée, conformément

Plus en détail

MATHÉMATIQUES ET SCIENCES HUMAINES

MATHÉMATIQUES ET SCIENCES HUMAINES MATHÉMATIQUES ET SCIENCES HUMAINES B. MARCHADIER Dépendance et indépendance de deux aléas numériques images Mathématiques et sciences humaines, tome 25 (1969), p. 2534.

Plus en détail