Comment démontrer que deux droites sont parallèles

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Comment démontrer que deux droites sont parallèles"

Transcription

1 F1 Comment démontrer que deux droites sont parallèles P : Si deux droites sont parallèles, alors toute parallèle à l une est parallèle à l autre. P : Si deux droites sont perpendiculaires à une même troisième, alors elles sont parallèles. Déf : Un trapèze est un quadrilatère qui a deux côtés parallèles. P : Si deux droites sont symétriques par rapport à un point, alors elles sont parallèles. P : Si deux angles correspondants déterminés par deux droites et une sécante ont la même mesure, alors ces deux droites sont parallèles. P : Si deux angles alternes-internes déterminés par deux droites et une sécante ont la même mesure, alors ces deux droites sont parallèles. Déf : Un parallélogramme est un quadrilatère qui a ses côtés opposés parallèles. P : Si un quadrilatère est un rectangle, alors c est un parallélogramme particulier. P : Si un quadrilatère est un losange, alors c est un parallélogramme particulier. P : Si un quadrilatère est un carré, alors c est un parallélogramme particulier. P : Si, dans un triangle, une droite passe par les milieux de 2 côtés, alors elle est parallèle au troisième côté. fiche démo (début de 3e)-1.doc - 1 -

2 F2 Comment démontrer que deux droites sont perpendiculaires P : Si deux droites sont parallèles, alors toute perpendiculaire à l une est perpendiculaire à l autre. Déf : Une hauteur dans un triangle est une droite qui passe par un sommet et qui est perpendiculaire au côté opposé. Déf : Un rectangle est un quadrilatère qui a 4 angles droits. Déf : Un carré est un quadrilatère qui a 4 côtés de même longueur et 4 angles droits. Déf : La médiatrice d un segment est la droite qui passe par le milieu du segment et qui est perpendiculaire au segment. P : Si un quadrilatère est un losange, alors ses diagonales se coupent en leurs milieux et sont perpendiculaires. P : Si un quadrilatère est un carré, alors ses diagonales se coupent en leur milieu, ont la même longueur et sont perpendiculaires. Déf : A est un point du cercle C de centre O. La tangente en A au cercle C est la droite passant par A et perpendiculaire au rayon [OA]. F2 bis Comment démontrer qu un triangle est rectangle Déf : Un triangle rectangle est un triangle qui a un angle droit. P : Réciproque de Pythagore P : Si on relie un point d un cercle aux extrémités d un diamètre, alors on obtient un triangle rectangle, d hypoténuse le diamètre du cercle. fiche démo (début de 3e)-1.doc - 2 -

3 F3 Comment démontrer que deux angles ont la même mesure Déf : La bissectrice d un angle est la demi-droite qui passe par son sommet et qui le partage en deux angles de même mesure. P : Si un triangle est isocèle, alors il a deux angles de même mesure. P : Si un triangle est équilatéral, alors il a trois angles de même mesure : 60. P : Si 2 angles sont opposés par le sommet, alors ils ont la même mesure. P : Si 2 angles correspondants sont déterminés par deux droites parallèles et une sécante, alors ils ont la même mesure. P : Si 2 angles alternes-internes sont déterminés par deux droites parallèles et une sécante, alors ils ont la même mesure. P : Si deux angles sont symétriques par rapport à une droite, alors ils ont la même mesure. P : Si deux angles sont symétriques par rapport à un point, alors ils ont la même mesure. P : Si un quadrilatère est un parallélogramme, alors ses angles opposés ont la même mesure. F3 bis Comment calculer un angle Déf : Deux angles complémentaires sont deux angles dont la somme est égale à 90. Déf : Deux angles sont supplémentaires quand leur somme est égale à 180. P : La somme des angles d un triangle est égale à 180. P : Si un triangle est rectangle, alors ses 2 angles aigus sont complémentaires. P : Si un quadrilatère est un parallélogramme, alors 2 angles consécutifs sont supplémentaires. Déf : Dans un triangle rectangle, le cosinus d un angle aigu est égal au rapport du côté adjacent sur l hypoténuse. fiche démo (début de 3e)-1.doc - 3 -

4 F5 Comment démontrer qu un point est le milieu d un segment Déf : Le milieu d un segment est le point de ce segment, équidistant des extrémités du segment. Déf : La médiatrice d un segment est la droite qui passe par le milieu du segment et qui est perpendiculaire au segment. Déf : Deux points M et M sont symétriques par rapport à un point O quand O est le milieu du segment [MM ]. P : Si deux segments sont symétriques par rapport à une droite, alors leurs milieux sont symétriques. P : Si deux segments sont symétriques par rapport à un point, alors leurs milieux sont symétriques. P : Si un quadrilatère est un parallélogramme alors ses diagonales se coupent en leur milieu. P : Si un quadrilatère est un rectangle, alors ses diagonales se coupent en leur milieu et ont la même longueur. P : Si un quadrilatère est un losange, alors ses diagonales se coupent en leur milieu et sont perpendiculaires. P : Si un quadrilatère est un carré, alors ses diagonales se coupent en leur milieu, ont la même longueur et sont perpendiculaires. Déf : Une médiane dans un triangle est une droite qui passe par un sommet et le milieu du côté opposé. P : Si, dans un triangle, une droite passe par le milieu d un côté et est parallèle à un autre côté alors elle coupe le troisième côté en son milieu. F4 Comment démontrer que deux segments ont la même longueur fiche démo (début de 3e)-1.doc - 4 -

5 Déf : Le milieu d un segment est le point de ce segment, équidistant des extrémités du segment. Déf :Un cercle de centre O est l ensemble des points équidistants de O. Déf :Un triangle isocèle est un triangle qui a 2 côtés de la même longueur. Déf :Un triangle équilatéral est un triangle qui a 3 côtés de la même longueur. P: Si un point est situé sur la médiatrice d un segment, alors il est équidistant des extrémités du segment. P: Si deux segments sont symétriques par rapport à une droite, alors ils ont la même longueur. P: Si deux segments sont symétriques par rapport à un point, alors ils ont la même longueur. Déf : Un losange est un quadrilatère qui a 4 côtés de la même longueur. Déf : Un carré est un quadrilatère qui a 4 angles droits et 4 côtés de la même longueur. P: Si un triangle a deux angles de même mesure, alors il est isocèle. P: Si un triangle a trois angles de même mesure, alors il est équilatéral. P: Si un quadrilatère est un parallélogramme, alors il a ses côtés opposés de la même longueur. P : Si un quadrilatère est un rectangle, alors ses diagonales se coupent en leur milieu et ont la même longueur. P : Si un quadrilatère est un carré, alors ses diagonales se coupent en leur milieu, ont la même longueur et sont perpendiculaires. F4 bis Comment calculer une longueur fiche démo (début de 3e)-1.doc - 5 -

6 P : Propriété de Pythagore P : Si, dans un triangle, un segment relie les milieux de deux côtés, alors sa longueur est la moitié de la longueur du 3 côté. P : Propriété de Thalès. Déf : Dans un triangle rectangle, le cosinus d un angle aigu est égal au rapport du côté adjacent sur l hypoténuse. P : Si un point est le point de concours des trois médianes d un triangle alors il est situé aux deux tiers de chaque médiane à partir du sommet. F6 Comment démontrer qu un quadrilatère est un parallélogramme fiche démo (début de 3e)-1.doc - 6 -

7 Déf : Un parallélogramme est un quadrilatère qui a ses côtés opposés parallèles. P : Si un quadrilatère (non croisé) a ses côtés opposés de même longueur, alors c est un parallélogramme. P : Si un quadrilatère (non croisé) a 2côtés opposés parallèles et de même longueur, alors c est un parallélogramme. P : Si un quadrilatère a ses diagonales qui se coupent en leur milieu, alors c est un parallélogramme. F7 Comment démontrer qu un quadrilatère est un losange Déf : Un losange est un quadrilatère qui a 4 côtés de la même longueur. P : Si un parallélogramme a 2 côtés consécutifs de la même longueur, alors c est un losange. P : Si un quadrilatère a ses diagonales qui se coupent en leurs milieux et sont perpendiculaires, alors c est un losange. P : Si un parallélogramme a ses diagonales qui sont perpendiculaires, alors c est un losange. F8 Comment démontrer qu un quadrilatère est un rectangle fiche démo (début de 3e)-1.doc - 7 -

8 Déf : Un rectangle est un quadrilatère qui a 4 angles droits. P : Si un quadrilatère a trois angles droits, alors c est un rectangle. P : Si un parallélogramme a 1 angle droit, alors c est un rectangle. P : Si un quadrilatère a ses diagonales qui se coupent en leurs milieux et ont la même longueur, alors c est un rectangle. P : Si un parallélogramme a ses diagonales qui ont la même longueur, alors c est un rectangle. F9 Comment démontrer qu un quadrilatère est un carré Déf : Un carré est un quadrilatère qui a 4 angles droits et 4 côtés de la même longueur. Ou Déf : Un carré est un quadrilatère qui est à la fois un rectangle et un losange. P : Si un parallélogramme a 1 angle droit et 2 côtés consécutifs de la même longueur, alors c est un carré. P : Si un losange a 1 angle droit, alors c est un carré. P : Si un rectangle a 2 côtés consécutifs de la même longueur, alors c est un carré. P : Si un quadrilatère a ses diagonales qui se coupent en leur milieu, ont la même longueur et sont perpendiculaires, alors c est un carré. P : Si un parallélogramme a ses diagonales qui ont la même longueur et sont perpendiculaires, alors c est un carré. P : Si un losange a ses diagonales qui ont la même longueur, alors c est un carré. P : Si un rectangle a ses diagonales qui sont perpendiculaires, alors c est un carré. fiche démo (début de 3e)-1.doc - 8 -

9 F10 Divers P : Si un point est équidistant des extrémités d un segment alors ce point appartient à la médiatrice de ce segment. P : Par une symétrie axiale, trois points alignés ont pour images trois points alignés. P : Par une symétrie axiale, une figure et son image ont la même aire. P : «Inégalité triangulaire appliquée au triangle» La longueur de chaque côté d un triangle est inférieure à la somme des longueurs des deux autres côtés. P : Les trois médiatrices d un triangle sont concourantes. Le point de concours est le centre du cercle circonscrit au triangle. P : Par une symétrie centrale, trois points alignés ont pour images trois points alignés. P : Par une symétrie centrale, une figure et son image ont la même aire. P : Si un triangle est isocèle alors la médiatrice de sa base est aussi bissectrice de l angle principal, hauteur et médiane issues du sommet principal. P : Par une translation, les images de trois points alignés sont trois points alignés. P : Par une translation, une figure et son image ont la même aire. Déf : La distance d un point A à une droite (d) est la distance AH du point A au pied H de la perpendiculaire à (d) passant par A. (AH est la plus petite distance séparant A d un point quelconque de (d).) P : Si un point est équidistant des côtés d un angle alors ce point appartient à la bissectrice de cet angle. P : Les bissectrices des trois angles d un triangle sont concourantes. Le point de concours est le centre du cercle inscrit au triangle. P : Les trois hauteurs d un triangle sont concourantes. Le point de concours est l orthocentre du triangle. P : Les trois médianes d un triangle sont concourantes. Le point de concours est le centre de gravité du triangle. P : Le centre de gravité d un triangle est situé aux 3 2, à partir du sommet, de chaque médiane. P : Si un triangle est rectangle alors son cercle circonscrit a pour diamètre l hypoténuse. fiche démo (début de 3e)-1.doc - 9 -

Si deux droites sont parallèles à une même troisième. alors les deux droites sont parallèles entre elles. alors

Si deux droites sont parallèles à une même troisième. alors les deux droites sont parallèles entre elles. alors N I) Pour démontrer que deux droites (ou segments) sont parallèles (d) // (d ) (d) // (d ) deux droites sont parallèles à une même troisième les deux droites sont parallèles entre elles (d) // (d) deux

Plus en détail

Comment démontrer que deux droites sont perpendiculaires?

Comment démontrer que deux droites sont perpendiculaires? omment démontrer que deux droites sont perpendiculaires? Utilisons On sait que (hypothèses) or...(propriété, définition) donc...(conclusion) Réciproque de Pythagore,5 1,5 = + Si dans un triangle le carré

Plus en détail

Correction : E = Soit E = -1,6. F = 12 Soit F = -6 3 + 45. y = 11. et G = -2z + 4y G = 2 6 = 3 G = G = -2 5 + 4 11

Correction : E = Soit E = -1,6. F = 12 Soit F = -6 3 + 45. y = 11. et G = -2z + 4y G = 2 6 = 3 G = G = -2 5 + 4 11 Correction : EXERCICE : Calculer en indiquant les étapes: (-6 +9) ( ) ( ) B = -4 (-) (-8) B = - 8 (+ 6) B = - 8 6 B = - 44 EXERCICE : La visite médicale Calcul de la part des élèves rencontrés lundi et

Plus en détail

CORRECTIONS. Consignes pour le déroulement de l épreuve d une durée de 2 heures

CORRECTIONS. Consignes pour le déroulement de l épreuve d une durée de 2 heures Consignes pour le déroulement de l épreuve d une durée de 2 heures * Calculatrice autorisée pour les deux parties mais en précisant les étapes des calculs. A] Nombres et Calculs : Exercice n 1 : Compléter

Plus en détail

BREVET BLANC Corrigé 15 avril 2013

BREVET BLANC Corrigé 15 avril 2013 REVET LN orrigé 15 avril 2013 *********************** Exercice 1 : On donne ci-dessous les représentations graphiques de trois fonctions. es représentations sont nommées 1, 2, 3. L une d entre elles est

Plus en détail

RECHERCHE DE CHEMIN MINIMAL

RECHERCHE DE CHEMIN MINIMAL REHERHE DE HEIN INIL par Yvon KWLSK, Sofiane SERUTU et Jérémy VEIRN, élèves de troisième au collège dulphe DELEGRGUE de ourcelles lès Lens (Pas de alais) 2003 Enseignant : Stéphane RERT (collège DELEGRGUE

Plus en détail

Si un quadrilatère a. Si un quadrilatère a. Si un quadrilatère a. Si un quadrilatère a. ses côtés opposés. ses côtés opposés de. deux côtés opposés

Si un quadrilatère a. Si un quadrilatère a. Si un quadrilatère a. Si un quadrilatère a. ses côtés opposés. ses côtés opposés de. deux côtés opposés P1 P2 P3 P4 a a a a ses côtés opposés ses côtés opposés de deux côtés opposés ses diagonales qui se parallèles, alors c est même longueur alors parallèles et de même coupent en leur un c est un longueur

Plus en détail

géométrie analytique

géométrie analytique Faculté des Sciences ppliquées Géométrie et géométrie analytique Notes théoriques et applications à destination des étudiants préparant l examen d admission aux études d ingénieur civil de l Université

Plus en détail

Triangle rectangle et cercle

Triangle rectangle et cercle Objectifs : 1 Savoir reconnaître et tracer une médiane. 2 Connaître et savoir utiliser la propriété qui caractérise le triangle rectangle par son inscription dans un demi-cercle. 3 Connaître et savoir

Plus en détail

LYCEE MICHEL-RODANGE LUXEMBOURG PROGRAMMES DE MATHEMATIQUES POUR LE CYCLE INFERIEUR

LYCEE MICHEL-RODANGE LUXEMBOURG PROGRAMMES DE MATHEMATIQUES POUR LE CYCLE INFERIEUR LYCEE MICHEL-RODANGE LUXEMBOURG PROGRAMMES DE MATHEMATIQUES POUR LE CYCLE INFERIEUR Introduction. page 2 Classe de septième.. page 3 Classe de sixième page 7-1 - INTRODUCTION D une manière générale on

Plus en détail

Brevet Juin 2007 Liban Corrigé Page 1 sur 6

Brevet Juin 2007 Liban Corrigé Page 1 sur 6 Brevet Juin 007 Liban Corrigé Page 1 sur 6 Exercice 1 : 1) A = 500 (10 3 ),4 10 7 8 10 4 = 500 10 6 4 10 1 10 7 8 10 4 500 4 = 8 = 500 3 8 8 = 500 3 100 10 4 = 1500 10 0 + 4 = 1500 10 4 = 1,5 10 3 10 4

Plus en détail

COURS EULER: PROGRAMME DE LA PREMIÈRE ANNÉE

COURS EULER: PROGRAMME DE LA PREMIÈRE ANNÉE COURS EULER: PROGRAMME DE LA PREMIÈRE ANNÉE Le cours de la première année concerne les sujets de 9ème et 10ème années scolaires. Il y a bien sûr des différences puisque nous commençons par exemple par

Plus en détail

Enoncé et corrigé du brevet des collèges dans les académies d Aix- Marseille, Montpellier, Nice Corse et Toulouse en 2000. Énoncé.

Enoncé et corrigé du brevet des collèges dans les académies d Aix- Marseille, Montpellier, Nice Corse et Toulouse en 2000. Énoncé. Enoncé et corrigé du brevet des collèges dans les académies d Aix- Marseille, Montpellier, Nice Corse et Toulouse en 2000. Énoncé. I- ACTIVITES NUMERIQUES (12 points) Exercice 1 (3 points) On considère

Plus en détail

TRIANGLE RECTANGLE. Chapitre 10. Triangle rectangle et cercle circonscrit Triangle rectangle et médiane

TRIANGLE RECTANGLE. Chapitre 10. Triangle rectangle et cercle circonscrit Triangle rectangle et médiane hapitre 10 TNGL TNGL Triangle rectangle et cercle circonscrit Triangle rectangle et médiane «git -Prop-Tram #2» de Dennis John shbaugh, 1974 TVTÉ TNGL TNGL T L NT TVTÉ 1 Dans un triangle rectangle oit

Plus en détail

1S Modèles de rédaction Enoncés

1S Modèles de rédaction Enoncés Par l équipe des professeurs de 1S du lycée Parc de Vilgénis 1S Modèles de rédaction Enoncés Produit scalaire & Corrigés Exercice 1 : définition du produit scalaire Soit ABC un triangle tel que AB, AC

Plus en détail

AC AB. A B C x 1. x + 1. d où. Avec un calcul vu au lycée, on démontre que cette solution admet deux solutions dont une seule nous intéresse : x =

AC AB. A B C x 1. x + 1. d où. Avec un calcul vu au lycée, on démontre que cette solution admet deux solutions dont une seule nous intéresse : x = LE NOMBRE D OR Présentation et calcul du nombre d or Euclide avait trouvé un moyen de partager en deu un segment selon en «etrême et moyenne raison» Soit un segment [AB]. Le partage d Euclide consiste

Plus en détail

Collège Henri Meck lundi 4 mai 2009 Molsheim BREVET BLANC DE MATHEMATIQUES N 2. ( Extraits d'épreuves du brevet de 2007 et 2008 ) PRESENTATION 4 pts

Collège Henri Meck lundi 4 mai 2009 Molsheim BREVET BLANC DE MATHEMATIQUES N 2. ( Extraits d'épreuves du brevet de 2007 et 2008 ) PRESENTATION 4 pts Collège Henri Meck lundi 4 mai 2009 Molsheim BREVET BLANC DE MATHEMATIQUES N 2 ( Extraits d'épreuves du brevet de 2007 et 2008 ) PRESENTATION 4 pts Rappel : Présenter les parties de l'épreuve sur feuilles

Plus en détail

La médiatrice d un segment

La médiatrice d un segment EXTRT DE CURS DE THS DE 4E 1 La médiatrice d un segment, la bissectrice d un angle La médiatrice d un segment Définition : La médiatrice d un segment est l ae de smétrie de ce segment ; c'est-à-dire que

Plus en détail

Envoi no. 6 : géométrie

Envoi no. 6 : géométrie Envoi no. 6 : géométrie Exercice 1. Soit un triangle rectangle isocèle en. Soit un point de l arc du cercle de centre passant par et, H son projeté orthogonal sur (). On note I le centre du cercle inscrit

Plus en détail

La géométrie du triangle III IV - V Cercles remarquables - Lieux géométriques - Relations métriques

La géométrie du triangle III IV - V Cercles remarquables - Lieux géométriques - Relations métriques La géométrie du triangle III IV - V Cercles remarquables - Lieux géométriques - Relations métriques III. Cercles 1. Cercle d'euler 2. Droite d'euler 3. Théorème de Feuerbach 4. Milieux des segments joignant

Plus en détail

MAT2027 Activités sur Geogebra

MAT2027 Activités sur Geogebra MAT2027 Activités sur Geogebra NOTE: Il n est pas interdit d utiliser du papier et un crayon!! En particulier, quand vous demandez des informations sur les différentes mesures dans une construction, il

Plus en détail

JUIN : EXERCICES DE REVISIONS

JUIN : EXERCICES DE REVISIONS . Les fonctions JUIN : EXERCICES DE REVISIONS y 30 0 0-8 -7-6 - - 0 3 4 6 7 8 x -0 - -0 0 Fonction n : f(x) = y = 30x Fonction n : f(x) = y = -x³ + 3x² + x - 3 Fonction n 3 : f3(x) = y = -x + 30 Fonction

Plus en détail

BREVET BLANC DE MAI 2012

BREVET BLANC DE MAI 2012 COLLEGE GASPARD DES MONTAGNES BREVET BLANC DE MAI 2012 Ce sujet comporte 8 pages numérotées de 1/8 à 8/8, dont une feuille annexe à remettre avec la copie. L usage de la calculatrice est autorisé. Notation

Plus en détail

PROBLEME(12) Première partie : Peinture des murs et du plafond.

PROBLEME(12) Première partie : Peinture des murs et du plafond. PROBLEME(12) Une entreprise doit rénover un local. Ce local a la forme d'un parallélépipède rectangle. La longueur est 6,40m, la largeur est 5,20m et la hauteur est 2,80m. Il comporte une porte de 2m de

Plus en détail

Thierry JOFFREDO. Mémo DNB. Première partie : calcul, fonctions. Année 2006-07

Thierry JOFFREDO. Mémo DNB. Première partie : calcul, fonctions. Année 2006-07 Thierry JFFRED ØØÔ»»ÛÛÛºÑØÓÒÙØ ºÖ Mémo DN Première partie : calcul, fonctions nnée 006-07 CLCUL SUR LES FRCTINS Fractions égales n obtient une fraction égale en multipliant (ou en divisant) numérateur

Plus en détail

5 ème Chapitre 4 Triangles

5 ème Chapitre 4 Triangles 5 ème Chapitre 4 Triangles 1) Médiatrices Définition : la médiatrice d'un segment est l'ensemble des points équidistants des extrémités du segment (cours de 6 ème ). Si M appartient à la médiatrice du

Plus en détail

TOUT CE QU IL FAUT SAVOIR POUR LE BREVET

TOUT CE QU IL FAUT SAVOIR POUR LE BREVET TOUT E QU IL FUT SVOIR POUR LE REVET NUMERIQUE / FONTIONS eci n est qu un rappel de tout ce qu il faut savoir en maths pour le brevet. I- Opérations sur les nombres et les fractions : Les priorités par

Plus en détail

Démontrer qu'un point est le milieu d'un segment

Démontrer qu'un point est le milieu d'un segment émntrer qu'un pint est le milieu d'un segment P 1 Si un pint est sur un segment et à égale distance de ses etrémités alrs ce pint est le milieu du segment. P 2 Si un quadrilatère est un alrs ses diagnales

Plus en détail

Devoir commun Décembre 2014 3 ème LV2

Devoir commun Décembre 2014 3 ème LV2 Devoir commun Décembre 2014 3 ème LV2 Collège OASIS Corrigé de l Epreuve de Mathématiques L usage de la calculatrice est autorisé, mais tout échange de matériel est interdit Les exercices sont indépendants

Plus en détail

PÉRIMÈTRE ET SURFACE (AIRES) D UNE FIGURE SIMPLE MATHÉMATIQUES

PÉRIMÈTRE ET SURFACE (AIRES) D UNE FIGURE SIMPLE MATHÉMATIQUES PÉRIMÈTRE ET SURFACE (AIRES) D UNE FIGURE SIMPLE MATHÉMATIQUES CAHIER D EXERCICES Les Services de la formation professionnelle et de l éducation des adultes FP9706 C0106 TABLE DES MATIÈRES 1 EXPLICATION

Plus en détail

Devoir commun de seconde, mars 2006

Devoir commun de seconde, mars 2006 Devoir commun de seconde, mars 006 calculatrices autorisées On rappelle que le soin et la qualité de rédaction entrent pour une part non négligeable dans l appréciation de la copie. Eercice (7 points).

Plus en détail

Baccalauréat S Nombres complexes Index des exercices sur les complexes de septembre 1999 à juin 2012 Tapuscrit : DENIS VERGÈS

Baccalauréat S Nombres complexes Index des exercices sur les complexes de septembre 1999 à juin 2012 Tapuscrit : DENIS VERGÈS Baccalauréat S Nombres complexes Index des exercices sur les complexes de septembre 1999 à juin 2012 Tapuscrit : DENIS VERGÈS N o Lieu et date Q.C.M. Algébrique Géométrie 1 Asie juin 2012 2 Métropole juin

Plus en détail

c) Calculer MP. 3) Déterminer l'arrondi au degré de la mesure de Dˆ.

c) Calculer MP. 3) Déterminer l'arrondi au degré de la mesure de Dˆ. Exercice :(Amiens 1995) Les questions 2, 3 et 4 sont indépendantes. L'unité est le centimètre. 1) Construire un triangle MAI rectangle en A tel que AM = 8 et IM = 12. Indiquer brièvement les étapes de

Plus en détail

Les droites (d 1 ) et (d 2 ) sont sécantes en A Le point A est le point d intersection des 2 droites

Les droites (d 1 ) et (d 2 ) sont sécantes en A Le point A est le point d intersection des 2 droites I Droites perpendiculaires Lorsque deux droites se coupent, on dit qu elles sont sécantes Les droites (d 1 ) et (d 2 ) sont sécantes en A Le point A est le point d intersection des 2 droites Lorsque deux

Plus en détail

PARTIE 1 : ACTIVITÉS NUMÉRIQUES (12 points)

PARTIE 1 : ACTIVITÉS NUMÉRIQUES (12 points) COLLÈGE LA PRÉSENTATION BREVET BLANC Février 2011 ÉPREUVE DE MATHÉMATIQUES Classe de 3 e Durée : 2 heures Présentation et orthographe : 4 points Les calculatrices sont autorisées, ainsi que les instruments

Plus en détail

EXERCICES DE REVISIONS MATHEMATIQUES CM2

EXERCICES DE REVISIONS MATHEMATIQUES CM2 EXERCICES DE REVISIONS MATHEMATIQUES CM2 NOMBRES ET CALCUL Exercices FRACTIONS Nommer les fractions simples et décimales en utilisant le vocabulaire : 3 R1 demi, tiers, quart, dixième, centième. Utiliser

Plus en détail

Exercice numéro 1 - L'escalier

Exercice numéro 1 - L'escalier Exercice numéro 1 - L'escalier On peut monter un escalier une ou deux marches à la fois. La figure de droite montre un exemple. 1. De combien de façons différentes peut-on monter un escalier de une marche?

Plus en détail

Le contexte. Le questionnement du P.E.R. :

Le contexte. Le questionnement du P.E.R. : Le contexte Ce travail a débuté en janvier. Le P.E.R. engagé depuis fin septembre a permis de faire émerger ou de réactiver : Des raisons d être de la géométrie : Calculer des grandeurs inaccessibles et

Plus en détail

Ch.G3 : Distances et tangentes

Ch.G3 : Distances et tangentes 4 e - programme 2011 mathématiques ch.g3 cahier élève Page 1 sur 14 1 DISTC D U PIT À U DRIT Ch.G3 : Distances et tangentes 1.1 Définition ex 1 DÉFIITI 1 : Soit une droite et un point n'appartenant pas

Plus en détail

I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES

I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES Théorème - Définition Soit un cercle (O,R) et un point. Une droite passant par coupe le cercle en deux points A et

Plus en détail

Vecteurs Géométrie dans le plan Exercices corrigés

Vecteurs Géométrie dans le plan Exercices corrigés Vecteurs Géométrie dans le plan Exercices corrigés Sont abordés dans cette fiche : Exercice 1 : notion de vecteur, transformation de points par translation et vecteurs égaux Exercice 2 : parallélogramme

Plus en détail

Exercice 2. Exercice 3

Exercice 2. Exercice 3 Feuille d eercices n 10 Eercice 1 Une voiture parcours 150 km. Elle effectue une première partie du trajet à la vitesse moyenne de 80 km/h. On notera la longueur de cette partie, eprimée en km Suite à

Plus en détail

Brevet Amérique du sud novembre 2011

Brevet Amérique du sud novembre 2011 ACTIVITÉS NUMÉRIQUES (12 POINTS) Exercice 1 Cet exercice est un exercice à choix multiples (QCM). Pour chaque question, une seule réponse est exacte. Une réponse correcte rapportera 1 point. L absence

Plus en détail

Solutions. Exercice 470-1 (Corol aire n 41) Démontrer que, pour tout ensemble {x, y, z} de trois nombres réels quelconques, on a :

Solutions. Exercice 470-1 (Corol aire n 41) Démontrer que, pour tout ensemble {x, y, z} de trois nombres réels quelconques, on a : 888 Pour chercher et approfondir PEP Exercice 473-4 (ichel Lafond - ijon) ans le plan, un triangle a une aire de 344 m Un point P du plan vérifie P = 5 m, P = 33 et P = 39 m alculer les côtés de Solutions

Plus en détail

Module 8 : Périmètre et aire de figures planes

Module 8 : Périmètre et aire de figures planes RÉDUCTION DES ÉCARTS DE RENDEMENT 9 e année Module 8 : Périmètre et aire de figures planes Guide de l élève Module 8 Périmètre et aire de figures planes Évaluation diagnostique...3 Aire de parallélogrammes,

Plus en détail

Mesure d angles et trigonométrie

Mesure d angles et trigonométrie Thierry Ciblac Mesure d angles et trigonométrie Mesure de l angle de deux axes (ou de deux demi-droites) de même origine. - Mesures en degrés : Divisons un cercle en 360 parties égales définissant ainsi

Plus en détail

Brevet des collèges, correction, Métropole, 28 juin 2011

Brevet des collèges, correction, Métropole, 28 juin 2011 Brevet des collèges, correction, Métropole, 28 juin 2011 Activités numériques 12 points Exercice 1 Un dé cubique a 6 faces peintes : une en bleu, une en rouge, une en jaune, une en vert et deux en noir.

Plus en détail

Programmes du collège

Programmes du collège Bulletin officiel spécial n 6 du 28 août 2008 Programmes du collège Programmes de l enseignement de mathématiques Ministère de l Éducation nationale Classe de quatrième Note : les points du programme (connaissances,

Plus en détail

Activités à faire à la maison pour renforcer le concept de formes géométriques

Activités à faire à la maison pour renforcer le concept de formes géométriques pour renforcer le concept de formes géométriques Une œuvre en figures planes Crée une œuvre qui comprend toutes les figures planes décrites ci-dessous. Un cercle jaune Deux triangles isocèles rouges non

Plus en détail

Triangles isométriques Triangles semblables

Triangles isométriques Triangles semblables Triangles isométriques Triangles semblables Les transformations du plan ont permis de dégager des propriétés de figures superposables. Le théorème de Thalès a permis de s initier aux notions de réduction

Plus en détail

Paris et New-York sont-ils les sommets d'un carré?

Paris et New-York sont-ils les sommets d'un carré? page 95 Paris et New-York sont-ils les sommets d'un carré? par othi Mok (3 ), Michel Vongsavanh (3 ), Eric hin (3 ), iek-hor Lim ( ), Eric kbaraly ( ), élèves et anciens élèves du ollège Victor Hugo (2

Plus en détail

Diviser un nombre décimal par 10 ; 100 ; 1 000

Diviser un nombre décimal par 10 ; 100 ; 1 000 Diviser un nombre décimal par 10 ; 100 ; 1 000 Diviser un nombre décimal par 10 ; 100 ; 1 000. 23 1 et 2 Pauline collectionne les cartes «Tokéron» depuis plusieurs mois. Elle en possède 364 et veut les

Plus en détail

EXAMEN D ADMISSION POUR CANDIDATS SANS MATURITE FEDERALE

EXAMEN D ADMISSION POUR CANDIDATS SANS MATURITE FEDERALE EXAMEN D ADMISSION POUR CANDIDATS SANS MATURITE FEDERALE 1 1 Conformément à l article 43 du Règlement de la Faculté des Hautes Etudes Commerciales, les personnes qui sont de nationalité suisse ou domiciliées

Plus en détail

Exercice 1 : sur 2,5 points 1) Lire graphiquement les équations des droites D 1, D 2 et D 3 tracées dans le repère ci-dessous

Exercice 1 : sur 2,5 points 1) Lire graphiquement les équations des droites D 1, D 2 et D 3 tracées dans le repère ci-dessous NOM : Seconde A B C H J Mardi 19 janvier 010 Exercice 1 : sur,5 points 1) Lire graphiquement les équations des droites D 1, D et D tracées dans le repère ci-dessous ) Dans le même repère, tracer la droites

Plus en détail

Le sujet est à rendre avec la copie.

Le sujet est à rendre avec la copie. NOM : Prénom : Classe : ACADEMIE DE BORDEAUX Collège Jean Moulin, COULOUNIEIX-CHAMIERS Durée : h DIPLOME NATIONAL DU BREET Série Collège Brevet BLANC Du janvier 01 Epreuve : MATHEMATIQUES Les calculatrices

Plus en détail

BREVET BLANC de MATHEMATIQUES n 1 Janvier 2012 - durée : 2 heures

BREVET BLANC de MATHEMATIQUES n 1 Janvier 2012 - durée : 2 heures BREVET BLANC de MATHEMATIQUES n 1 Janvier 2012 - durée : 2 heures Les calculatrices sont autorisées. L orthographe, le soin et la présentation sont notés sur 4 points. Activités numériques (12 points)

Plus en détail

Utiliser les propriétés Savoir réduire un radical savoir +,-,x,: Utiliser les propriétés des puissances Calculer avec des puissances

Utiliser les propriétés Savoir réduire un radical savoir +,-,x,: Utiliser les propriétés des puissances Calculer avec des puissances ARITHMETIQUE 1 C B A Numération Ecrire en lettres et en chiffres Poser des questions fermées autour d un document simple (message, consigne, planning ) Connaître le système décimal Déterminer la position

Plus en détail

Applications des nombres complexes à la géométrie

Applications des nombres complexes à la géométrie Chapitre 6 Applications des nombres complexes à la géométrie 6.1 Le plan complexe Le corps C des nombres complexes est un espace vectoriel de dimension 2 sur R. Il est donc muni d une structure naturelle

Plus en détail

Triangle : milieux et parallèles

Triangle : milieux et parallèles 10 riangle : milieux et parallèles ÉUV ans un triangle : la propriété d une droite passant par les milieux de deux de ses côtés ; la propriété d un segment d extrémités les milieux de deux de ses côtés

Plus en détail

Construction de la bissectrice d un angle

Construction de la bissectrice d un angle onstruction de la bissectrice d un angle 1. Trace un angle. 1. 2. Trace un angle cercle. de centre (le sommet de l angle) et de rayon quelconque. 1. 2. 3. Trace Le cercle un angle cercle coupe. de la demi-droite

Plus en détail

Une bien jolie curiosité

Une bien jolie curiosité Une bien jolie curiosité Roland Dassonval et Catherine Combelles Tracez un polygone régulier à n sommets inscrit dans un cercle de rayon 1, puis les cordes qui joignent un sommet donné aux n-1 autres.

Plus en détail

Corrigé du baccalauréat S Pondichéry 12 avril 2007

Corrigé du baccalauréat S Pondichéry 12 avril 2007 Corrigé du baccalauréat S Pondichéry 1 avril 7 EXERCICE 1 Commun à tous les candidats 4 points 1 a Les vecteurs AB et AC ont pour coordonnées AB ; ; ) et AC 1 ; 4 ; 1) Ils ne sont manifestement pas colinéaires

Plus en détail

Comment pourrais-tu faire pour construire un triangle ABC si tu connais seulement : la mesure de deux angles : ABC = 40 et ACB = 110 ;

Comment pourrais-tu faire pour construire un triangle ABC si tu connais seulement : la mesure de deux angles : ABC = 40 et ACB = 110 ; omment pourrais-tu faire pour construire un triangle si tu connais seulement : la mesure de deux angles : = 40 et = 110 ; le périmètre du triangle : = 15 cm? 167 ctivité 1 : u côté des triangles... 1.

Plus en détail

Professeur des écoles Mathématiques

Professeur des écoles Mathématiques ENSEIGNEMENT CONCOURS 2014/2015 Concours NOUVEAU CRPE Professeur des écoles Mathématiques Cours et exercices opérations fonctions équations géométrie proportionnalité probabilités L essentiel en 35 fiches

Plus en détail

SÉQUENCE 7 FONCTIONS LINÉAIRES ET AFFINES. f(0)= 5 0 + 4= 0 + 4 = 4.

SÉQUENCE 7 FONCTIONS LINÉAIRES ET AFFINES. f(0)= 5 0 + 4= 0 + 4 = 4. 196 Séquence 7 SÉQUENCE 7 FONCTIONS LINÉAIRES ET AFFINES Ce que tu devais faire Les commentaires du professeur Séance 1 JE RÉVISE LES ACQUIS DE LA 4 e 5 4 0 9 L image de 0 par la fonction f est le nombre

Plus en détail

Construction d un cercle tangent à deux cercles donnés.

Construction d un cercle tangent à deux cercles donnés. Préparation au CAPES Strasbourg, octobre 2008 Construction d un cercle tangent à deux cercles donnés. Le problème posé : On se donne deux cercles C et C de centres O et O distincts et de rayons R et R

Plus en détail

Angles orientés et trigonométrie

Angles orientés et trigonométrie Chapitre Angles orientés et trigonométrie Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Trigonométrie Cercle trigonométrique. Radian. Mesure d un angle orienté, mesure principale.

Plus en détail

FORMATION INTERMÉDIAIRE MAT 2031 CAHIER 4 ET CORRIGÉ

FORMATION INTERMÉDIAIRE MAT 2031 CAHIER 4 ET CORRIGÉ FORMATION INTERMÉDIAIRE MAT 031 ET CORRIGÉ TABLE DES MATIÈRES I 1.0 UNITÉS D'AIRE... 1 1.1 Donner la différence entre l'aire et la surface... 1 1. Énumérer les principales unités d'aire... 3 1.3 Convertir

Plus en détail

Le seul ami de Batman

Le seul ami de Batman Le seul ami de Batman Avant de devenir un héros de cinéma en 1989, Batman est depuis plus de 50 ans un fameux personnage de bandes dessinées aux États-Unis. Il fut créé en mai 1939 dans les pages de Détective

Plus en détail

Pour répondre à cette question on peut faire un découpage en petites surfaces plus faciles à comparer ou à déplacer.

Pour répondre à cette question on peut faire un découpage en petites surfaces plus faciles à comparer ou à déplacer. I Aire d une surface A cause du remembrement, la commune de Thérouanne propose à M. Ducheval et à M. Leboeuf d échanger leurs parcelles de terrain qui ont les formes ci-dessous. L échange est-il équitable?

Plus en détail

SYSTÈMES CENTRÉS DANS LES CONDITIONS

SYSTÈMES CENTRÉS DANS LES CONDITIONS YTÈME ENTRÉ DAN LE ONDITION DE GAU Table des matières 1 ystèmes centrés focaux 2 1.1 oyer image Plan focal image................................ 2 1.2 oyer objet Plan focal objet.................................

Plus en détail

x 8 = 0 3x - 6 = 2x + 2 3x² 6 = 2x² + 2

x 8 = 0 3x - 6 = 2x + 2 3x² 6 = 2x² + 2 Partie numérique : 16 points Exercice n 1 (4 points) : Pour chaque ligne du tableau ci-dessous, 3 réponses sont proposées, mais une seule est exacte. Aucune justification n'est demandée. Écrire le numéro

Plus en détail

Mathématiques. Géométrie

Mathématiques. Géométrie Mathématiques CE2 Nombres Calcul Géométrie Grandeurs Mesures AVANT-PROPOS Ce livret a été réalisé dans le but de rendre plus lisibles les compétences à acquérir en mathématiques au terme du CE2. Il donne

Plus en détail

Trois personnes mangent dans un restaurant. Le serveur

Trois personnes mangent dans un restaurant. Le serveur 29=30 Trois personnes mangent dans un restaurant. Le serveur leur amène une addition de 30 francs. Les trois personnes décident de partager la facture en trois, soit 10 francs chacun. Le serveur rapporte

Plus en détail

b. Explique précisément comment tu as placé le point H sur ton schéma.

b. Explique précisément comment tu as placé le point H sur ton schéma. ctivité 1 : Trouve le plus court chemin 1. Conjecture a. De la rive gauche d'un fleuve, lexia crie à amid qui est assis de l'autre côté du fleuve qu'elle ne sait pas nager. Trop éloigné d'elle, amid l'entend

Plus en détail

LE PRODUIT SCALAIRE ( En première S )

LE PRODUIT SCALAIRE ( En première S ) LE PRODUIT SCALAIRE ( En première S ) Dernière mise à jour : Jeudi 4 Janvier 007 Vincent OBATON, Enseignant au lycée Stendhal de Grenoble ( Année 006-007 ) 1 Table des matières 1 Grille d autoévaluation

Plus en détail

Représentation géométrique d un nombre complexe

Représentation géométrique d un nombre complexe CHAPITRE 1 NOMBRES COMPLEXES 1 Représentation géométrique d un nombre complexe 1. Ensemble des nombres complexes Soit i le nombre tel que i = 1 L ensemble des nombres complexes est l ensemble des nombres

Plus en détail

Sujet de mathématiques du brevet des collèges

Sujet de mathématiques du brevet des collèges Sujet de mathématiques du brevet des collèges PONDICHÉRY Avril 2015 Durée : 2h00 Calculatrice autorisée La qualité de la rédaction, l orthographe et la rédaction comptent pour 4 points. EXERCICE 1 Cet

Plus en détail

4 ème _DEVOIR COMMUN 2 de MATHÉMATIQUES_Avril 2014

4 ème _DEVOIR COMMUN 2 de MATHÉMATIQUES_Avril 2014 4 ème _DEVOIR COMMUN 2 de MATHÉMATIQUES_Avril 2014 CORRECTIONS CALCULATRICE AUTORISÉE mais indiquer toutes les étapes des calculs!!! Les questions sont à traiter sur une grande copie double, la figure

Plus en détail

Épreuve pratique de mathématiques Printemps 2009. Descriptifs. (Page vide)

Épreuve pratique de mathématiques Printemps 2009. Descriptifs. (Page vide) Épreuve pratique de mathématiques Printemps 2009 Descriptifs (Page vide) Sujet 001 Épreuve pratique de mathématiques Descriptif Étude d une fonction dépendant d un paramètre Étant donné une fonction dépendant

Plus en détail

UNITÉS ET MESURES AIRES OU SURFACES. Dossier n 4 Juin 2005. Conçu et réalisé par : Marie-Christine LIEFOOGHE Bruno VANBAELINGHEM Annie VANDERSTRAELE

UNITÉS ET MESURES AIRES OU SURFACES. Dossier n 4 Juin 2005. Conçu et réalisé par : Marie-Christine LIEFOOGHE Bruno VANBAELINGHEM Annie VANDERSTRAELE UNITÉS ET MESURES AIRES OU SURFACES Dossier n 4 Juin 005 Tous droits réservés au réseau AGRIMÉDIA Conçu et réalisé par : Marie-Christine LIEFOOGHE Bruno VANBAELINGHEM Annie VANDERSTRAELE C. D. R. UNITÉS

Plus en détail

14 Proportionnalité. et géométrie. Avant de démarrer OMPÉTENCES

14 Proportionnalité. et géométrie. Avant de démarrer OMPÉTENCES 14 Proportionnalité et géométrie OMPÉTNS 1. grandir ou réduire une figure avec un facteur donné 2. grandir ou réduire une figure sans connaître le facteur 3. grandir ou réduire une figure en utilisant

Plus en détail

Partie numérique Exercice 1 1) Les nombres 288 et 224 sont pairs donc ils sont divisibles par 2. Ils ne sont donc pas premiers

Partie numérique Exercice 1 1) Les nombres 288 et 224 sont pairs donc ils sont divisibles par 2. Ils ne sont donc pas premiers Partie numérique Eercice 1 1) Les nombres 88 et sont pairs donc ils sont divisibles par. Ils ne sont donc pas premiers entre eu car leur Plus Grand Commun Diviseur est supérieur ou égal à. ) Pour calculer

Plus en détail

COLLÈGE LA PRÉSENTATION. BREVET BLANC Février 2014

COLLÈGE LA PRÉSENTATION. BREVET BLANC Février 2014 COLLÈGE LA PRÉSENTATION BREVET BLANC Février 2014 ÉPREUVE DE MATHÉMATIQUES Classe de 3 e Durée : 2 heures Présentation et orthographe : 4 points Les calculatrices sont autorisées, ainsi que les instruments

Plus en détail

Corrigé du baccalauréat S Polynésie juin 2004

Corrigé du baccalauréat S Polynésie juin 2004 Durée : 4 heures Corrigé du baccalauréat S Polynésie juin 4 EXERCICE Commun à tous les candidats 4 points. X suit la loi de durée de vie sans vieillissement ou encore loi eponentielle de paramètre λ ;

Plus en détail

I Translation et égalité vectorielle.

I Translation et égalité vectorielle. I Translation et égalité vectorielle. TRNSLTIONS ET VETEURS a) Translation. éfinition : ire que le point N est l image du point N par la translation qui transforme en, signifie que le quadrilatère NN'

Plus en détail

Les quatre opérations sur les nombres entiers Statistiques et probabilités I. Code Unités Devoirs Code Unités Devoirs

Les quatre opérations sur les nombres entiers Statistiques et probabilités I. Code Unités Devoirs Code Unités Devoirs 1 re secondaire 2 e secondaire Les quatre opérations sur les nombres entiers Statistiques et probabilités I MAT-1005-2 2 3 MAT-2008-2 2 3 (+, -, x, ) dans l ensemble des entiers Z. Ce premier cours portant

Plus en détail

Chapitre 2 : Vecteurs

Chapitre 2 : Vecteurs 1 Chapitre 2 : Vecteurs Nous allons définir ce qu'est un vecteur grâce à une figure (le parallélogramme), mais au préalable nous allons aussi définir une nouvelle transformation (la translation). Nous

Plus en détail

7 / LONGUEURS ET AIRES

7 / LONGUEURS ET AIRES LONGUEURS ET AIRES THÉORIE 7 / LONGUEURS ET AIRES THÉORIE I. FIGURES ET SURFACES 1. FIGURES ET SURFACES PLANES On peut se faire une idée d'un plan en regardant le plateau d'une table et en imaginant ce

Plus en détail

Solides et patrons. Cours

Solides et patrons. Cours Solides et patrons EXERCICE 1 : Cours 1) Représenter un cube en perspective cavalière. 2) Qu est-ce qu un polyedre? 3) Qu est-ce qu un prisme droit? Si les bases du prisme ont n côtés combien le prisme

Plus en détail

Chapitre n 8 : «Parallélogrammes particuliers»

Chapitre n 8 : «Parallélogrammes particuliers» Chapitre n 8 : «Parallélogrammes particuliers» I. Rappels (parallélogramme) Un parallélogramme est un quadrilatère qui a ses côtés opposés parallèles. Construction Propriétés des parallélogrammes Dans

Plus en détail

Projection orthogonale sur une droite du plan, projection vectorielle associée. Applications (calculs de distances et d angles, optimisation )

Projection orthogonale sur une droite du plan, projection vectorielle associée. Applications (calculs de distances et d angles, optimisation ) Projection orthogonale sur une droite du plan, projection vectorielle associée. Applications (calculs de distances et d angles, optimisation ) Introduction : On se place dans plan affine euclidien muni

Plus en détail

Programme de mathématiques TSI1

Programme de mathématiques TSI1 Programme de mathématiques TSI1 1. PROGRAMME DE DÉBUT D ANNÉE I. Nombres complexes et géométrie élémentaire 1. Nombres complexes 1 2. Géométrie élémentaire du plan 3 3. Géométrie élémentaire de l espace

Plus en détail

Exprimer ce coefficient de proportionnalité sous forme de pourcentage : 3,5 %

Exprimer ce coefficient de proportionnalité sous forme de pourcentage : 3,5 % 23 CALCUL DE L INTÉRÊT Tau d intérêt Paul et Rémi ont reçu pour Noël, respectivement, 20 et 80. Ils placent cet argent dans une banque, au même tau. Au bout d une année, ce placement leur rapportera une

Plus en détail

CRPE 2011-2012 derniers réglages avant l écrit (2).

CRPE 2011-2012 derniers réglages avant l écrit (2). CRPE 2011-2012 derniers réglages avant l écrit (2). Problème 1 OAB et OAC sont deux triangles distincts, tous les deux isocèles en O et tels que AOB = AOC. D est le symétrique de B par rapport à O. Démontrer

Plus en détail

Les TICE en cours de Mathématiques au collège. Quelques pistes de travail pour les classes de 6 ème, 5 ème et 4 ème

Les TICE en cours de Mathématiques au collège. Quelques pistes de travail pour les classes de 6 ème, 5 ème et 4 ème Les TICE en cours de Mathématiques au collège Quelques pistes de travail pour les classes de 6 ème, 5 ème et 4 ème Généralités page 2 Différents outils page 4 Classe de 6 ème page 5 Classe de 5 ème page

Plus en détail

Quelques contrôle de Première S

Quelques contrôle de Première S Quelques contrôle de Première S Gilles Auriol auriolg@free.fr http ://auriolg.free.fr Voici l énoncé de 7 devoirs de Première S, intégralement corrigés. Malgré tout les devoirs et 5 nécessitent l usage

Plus en détail

GEOGEBRA : Les indispensables

GEOGEBRA : Les indispensables Préambule GeoGebra est un logiciel de géométrie dynamique dans le plan qui permet de créer des figures dans lesquelles il sera possible de déplacer des objets afin de vérifier si certaines conjectures

Plus en détail

Deux disques dans un carré

Deux disques dans un carré Deux disques dans un carré Table des matières 1 Fiche résumé 2 2 Fiche élève Seconde - version 1 3 2.1 Le problème............................................... 3 2.2 Construction de la figure avec geogebra...............................

Plus en détail

CONJUGUÉ D'UN POINT PAR RAPPORT À UN TRIANGLE

CONJUGUÉ D'UN POINT PAR RAPPORT À UN TRIANGLE CONJUGUÉ D'UN POINT PAR RAPPORT À UN TRIANGLE Jean Luc Bovet, Auvernier L'article de Monsieur Jean Piquerez (Bulletin de la SSPMP No 86), consacré aux symédianes me paraît appeler une généralisation. En

Plus en détail