Module et Argument d un nombre complexe

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Module et Argument d un nombre complexe"

Transcription

1 I Module et Argument d un nombre complexe Tout point M du plan peut être repéré par un couple de coordonnées polaires (r, θ) (r > 0, θ réel) M r est la distance OM ; θ est une mesure de l angle ( u, OM). r = OM Lien entre coordonnées cartésiennes et coordonnées polaires : (r, θ) est un couple de coordonnées polaires de M et (x, y) les coordonnées cartésiennes de M : v 0 u θ On a : x = rcosθ et y = rsinθ r = x 2 + y 2 et cos(θ) = x r, sin(θ) = y r. I.1 Définition : Définition 1 Soit z un nombre complexe non nul, M le point d affixe z et (r, θ) un couple de coordonnées polaires de M. On décide des termes suivants : r est le module de z et cela se note r = z ; θ est un argument de z et cela se note θ =arg(z)[2π] ; I.2 Propriétés : z = x + iy, on a : z = x 2 + y 2 ou encore z 2 = x 2 + y 2 = zz Soit M d affixe z, arg(z) = ( u ; OM) (2π) Pour tout réel x, le module de x est la valeur absolue de x et : si x > 0, arg(x) = 0 (2π) ; si x < 0, arg(x) = π 2π) ; z 0, z imaginaire pur arg(z) = ± π 2 (2π) z = z et arg(z) = arg(z) (2π) ; z = z et arg( z) = π+arg(z) (2π) ; Exemple 1 Calculer le module et l argument de z 1 = 1 + i, z 2 = 1 + i 3, z 3 = 3i et z 4 = 2 + 3i I.3 Forme trigonométrique d un nombre complexe Théorème 1 Tout nombre complexe z non nul peut s écrire sous la forme z = r(cosθ + isinθ) où r = z et θ =arg(z) (2π). Réciproquement : Si un nombre complexe non nul z s écrit sous la forme z = r(cosθ + isinθ) avec r > 0 alors z = r et arg(z) = θ (2π). L écriture z = r(cosθ + isinθ) s appelle la forme trigonométrique de z. My Maths Space 1 sur 5

2 EXERCICE 1 1. Quelle est la forme trigonométrique de z 1 = 1 + i z 2 est un nombre complexe de module 3 et d argument π 4. Quelle est la forme algébrique de z 2? 3. z 3 = 3(cos θ + i sin θ). z 3 est-il écrit sous forme trigonométrique? Théorème 2 Soit z = r(cosθ + isinθ) et z = r (cosθ + isinθ ) deux nombres complexes. Alors, on a : zz = rr (cos(θ + θ ) + isin(θ + θ )) ; z z = r r (cos(θ θ ) + isin(θ θ )) (z 0) ; Tableau récapitulatif des propriétés vérifiées par module et argument : Quels que soient les nombres complexes z et z (z 0) : P roduit z z = z z arg(zz ) =arg(z)+arg(z ) (2π) P uissance z n = z n arg(z n ) = narg(z) (2π) Inverse 1 z = 1 ( ) 1 arg = arg(z) (2π) z z Quotient z z ( z ) = z z arg z =arg(z) arg(z ) (2π) Conjugué z = z arg(z) = arg(z) (2π) Opposé z = z arg( z) = π+arg(z) (2π) Exemple 2 d utilisation de la forme trigonométrique : 1. Calculer (1 + i 3) 5 ; 2. Déterminer une forme trigonométrique de 3 + i. 1 i 3. Déterminer une forme trigonométrique de ( 3 + 3i)(3 i 3). EXERCICE 2 On considère le nombre complexe : 1. Écrire z 2 sous forme algébrique. 2. Déterminer le module et un argument de z 2. z = i(1 + 3) 3. Indiquer le signe de la partie réelle de z et celui de la partie imaginaire, puis, à l aide des propriétés sur module et arguments, déterminer le module et un argument de z. 4. Déduire de ce qui précéde les lignes trigonométriques de 7π 12, puis de π 12. My Maths Space 2 sur 5

3 II Notation Exponentielle II.1 Notation Si l on pose f(θ) = cosθ + isinθ, le théorème 2 prouve que f(θ + θ ) = f(θ) f(θ ) De plus si l on applique la formule de la dérivée d une somme à la fonction f = cos + isin, on obtient : f (θ) = if(θ), d où par analogie avec les relations vérifiées par l exponentielle, on définit : Conséquences : Définition : Pour tout réel θ, on pose e iθ = cosθ + isinθ Tout nombre complexe z non nul, de module r et d argument θ s écrit z = re iθ : cette écriture est appelée forme exponentielle de z et réciproquement, de la même manière qu avec la forme trigonométrique : si z = re iθ et r > 0, alors z = r et arg(z) = θ[2π]. (important) e iθ = 1 et arg(e iθ ) = θ[2π]. Grâce aux propriétés des formes trigonométriques (th.2.) vues précédemment, l exponentielle complexe possède des propriétés qui rappellent celles de l exponentielle réelle : e iθ e iθ = e i(θ+θ ) ; e iθ e iθ = e i(θ θ ) ; (e iθ ) n = e inθ ; e iθ = e iθ. EXERCICE 3 : Écrire les nombres suivants sous forme algébrique : e i π 6 et 4e i π 4. Donner la forme exponentielle des nombres suivants : 1 ; 1 ; i ; i ; i 3 2 ; 1 + i ; (1 i)8. II.2 FORMULES de MOIVRE et D EULER Théorème 3 Formules de MOIVRE : Pour tout θ et tout entier n : (cosθ + isinθ) n = cos(nθ) + isin(nθ) (reformulation de (e iθ ) n = e inθ ) (cosθ isinθ) n = cos(nθ) isin(nθ) (changement en θ dans la formule précédente) Formules d EULER : Pour tout réel θ : cosθ = eiθ + e iθ 2 et sinθ = eiθ e iθ 2i III III.1 Nombres complexes en géométrie Module et argument de l affixe d un vecteur Soit w un vecteur d affixe z w et A le point tel que OA = w. D après ce qui précède, z w = z OA = z A z O = z A car z O = 0, donc nous avons : { z w = z A = OA = w arg(z w ) = arg(z A ) = ( u, OA) = ( u, w)[2π] r = OA A w v 0 u θ My Maths Space 3 sur 5

4 III.1.1 Module et argument de z B z A Théorème 4 A et B sont deux points d affixes respectives z A et z B dans le plan complexe repéré par (O ; u, v) orthonormé. On a : z B z A = AB Exemple 3 Soit A(1 2i), B(3 + 2i) et C( 3). Quelle est la nature du triangle ABC? = Utilisation dans la recherche d ensemble de points : M(z) vérifie z z 1 = r (r > 0). On pose... M(z) vérifie z z 1 = z z 2. On pose... Exemple 4 Quel est l ensemble des points M(z) qui vérifient z + 3i = z 1 + i? Théorème 5 A et B sont deux points d affixes respectives z A et z B dans le plan complexe repéré par (O ; u, v) orthonormé direct. On a : arg(z B z A ) = ( u ; AB) Exemple 5 Soit A( 2 2i), B(3 + 3i). Calculer ( u ; BA). Remarque 1 Il faudra être vigilant car z B z A = z A z B en effet AB = BA mais arg(z B z A ) arg(z A z B ). A vérifier... My Maths Space 4 sur 5

5 III.1.2 Module et argument de zd zc z B z A Propriété 1 Soit w et w des vecteurs non nuls d affixes respectives z w et z w, on a : ( ) z arg w = ( w, w ) (2π) Propriétés : Soit w et w des vecteurs non nuls d affixes respectives z w et z w. w et w colinéaires z w réel ; w et w orthogonaux z w imaginaire pur. Exemple 6 d utilisation : A, B, C et D sont quatre points deux à deux distincts d affixes respectives z A, z B, z c et z D. Exprimer en fonction d un angle orienté ( ) zd z C zd zc de vecteurs arg. Exprimer en fonction de AB et CD. z B z A z B z A Propriété 2 En résumé, z D z C z B z A = CD AB ( zd z C et arg z B z A ) = ( AB; CD) (2π) Remarque 2 En particulier, z C z A z B z A = ( ) zc z A et arg =... (2π) z B z A EXERCICE 4 Reprendre l exemple 3 et prouver, en utilisant la relation avec les angles orientés de vecteurs que le triangle ABC est rectangle en A. My Maths Space 5 sur 5

Représentation géométrique d un nombre complexe

Représentation géométrique d un nombre complexe CHAPITRE 1 NOMBRES COMPLEXES 1 Représentation géométrique d un nombre complexe 1. Ensemble des nombres complexes Soit i le nombre tel que i = 1 L ensemble des nombres complexes est l ensemble des nombres

Plus en détail

Séquence 6. Ensemble des nombres complexes. Sommaire. Prérequis Définition Forme algébrique Forme trigonométrique Synthèse

Séquence 6. Ensemble des nombres complexes. Sommaire. Prérequis Définition Forme algébrique Forme trigonométrique Synthèse Séquence 6 Ensemble des nombres complexes Sommaire Prérequis Définition Forme algébrique Forme trigonométrique Synthèse Cette séquence est une brève introduction à un nouvel ensemble de nombres, ensemble

Plus en détail

Rappels et compléments, première partie : Nombres complexes et applications à la géométrie

Rappels et compléments, première partie : Nombres complexes et applications à la géométrie Rappels et compléments, première partie : Nombres complexes et applications à la géométrie 1 Définition des nombres complexes On définit sur les couples de réels une loi d addition comme suit : (x; y)

Plus en détail

Exercices - Nombres complexes : corrigé. Formes algébriques et trigonométriques, module et argument

Exercices - Nombres complexes : corrigé. Formes algébriques et trigonométriques, module et argument Formes algébriques et trigonométriques, module et argument Exercice - - L/Math Sup - On multiplie le dénominateur par sa quantité conjuguée, et on obtient : Z = 4 i 3 + i 3 i 3 = 4 i 3 + 3 = + i 3. Pour

Plus en détail

Annexe D: Les nombres complexes

Annexe D: Les nombres complexes Annexe D: Les nombres complexes L'équation t + 1 = 0 n'a pas de solution dans les nombres réels. Pourtant, vous verrez lors de vos études qu'il est très pratique de pouvoir résoudre des équations de ce

Plus en détail

NOMBRES COMPLEXES. Exercice 1 :

NOMBRES COMPLEXES. Exercice 1 : Exercice 1 : NOMBRES COMPLEXES On donne θ 0 un réel tel que : cos(θ 0 ) 5 et sin(θ 0 ) 1 5. Calculer le module et l'argument de chacun des nombres complexes suivants (en fonction de θ 0 ) : a i( )( )(1

Plus en détail

Module et argument d un nombre complexe. Interprétation géométrique, lignes de niveau associées. Applications

Module et argument d un nombre complexe. Interprétation géométrique, lignes de niveau associées. Applications Module et argument d un nombre complexe. Interprétation géométrique, lignes de niveau associées. Applications Introduction : Cette leçon s inscrit dans la continuité de la précédente. On supposera connu

Plus en détail

Baccalauréat S Nombres complexes Index des exercices sur les complexes de septembre 1999 à juin 2012 Tapuscrit : DENIS VERGÈS

Baccalauréat S Nombres complexes Index des exercices sur les complexes de septembre 1999 à juin 2012 Tapuscrit : DENIS VERGÈS Baccalauréat S Nombres complexes Index des exercices sur les complexes de septembre 1999 à juin 2012 Tapuscrit : DENIS VERGÈS N o Lieu et date Q.C.M. Algébrique Géométrie 1 Asie juin 2012 2 Métropole juin

Plus en détail

1 radian. De même, la longueur d un arc de cercle de rayon R et dont l angle au centre a pour mesure α radians est α R. R AB =R.

1 radian. De même, la longueur d un arc de cercle de rayon R et dont l angle au centre a pour mesure α radians est α R. R AB =R. Angles orientés Trigonométrie I. Préliminaires. Le radian Définition B R AB =R C O radian R A Soit C un cercle de centre O. Dire que l angle géométrique AOB a pour mesure radian signifie que la longueur

Plus en détail

LE PRODUIT SCALAIRE ( En première S )

LE PRODUIT SCALAIRE ( En première S ) LE PRODUIT SCALAIRE ( En première S ) Dernière mise à jour : Jeudi 4 Janvier 007 Vincent OBATON, Enseignant au lycée Stendhal de Grenoble ( Année 006-007 ) 1 Table des matières 1 Grille d autoévaluation

Plus en détail

2 Nombres complexes. et trigonométrie CHAPITRE

2 Nombres complexes. et trigonométrie CHAPITRE CHAPITRE Nombres complexes et trigonométrie A Les nombres complexes 66 B Représentation géométrique Affixe Module Argument 67 1 Image d un complexe Affixe d un point, d un vecteur 67 Module 68 3 Nombres

Plus en détail

Nombres complexes. cours, exercices corrigés, programmation

Nombres complexes. cours, exercices corrigés, programmation 1 Nombres complexes cours, exercices corrigés, programmation Nous allons partir des nombres réels pour définir les nombres complexes. Au cours de cette construction, les nombres complexes vont être munis

Plus en détail

Cours de mathématiques Première année. Exo7

Cours de mathématiques Première année. Exo7 Cours de mathématiques Première année Eo7 2 Eo7 Sommaire Logique et raisonnements 9 Logique 9 2 Raisonnements 4 2 Ensembles et applications 9 Ensembles 20 2 Applications 23 3 Injection, surjection, bijection

Plus en détail

Correction du Baccalauréat S Amérique du Nord mai 2007

Correction du Baccalauréat S Amérique du Nord mai 2007 Correction du Baccalauréat S Amérique du Nord mai 7 EXERCICE points. Le plan (P) a une pour équation cartésienne : x+y z+ =. Les coordonnées de H vérifient cette équation donc H appartient à (P) et A n

Plus en détail

Applications des nombres complexes à la géométrie

Applications des nombres complexes à la géométrie Chapitre 6 Applications des nombres complexes à la géométrie 6.1 Le plan complexe Le corps C des nombres complexes est un espace vectoriel de dimension 2 sur R. Il est donc muni d une structure naturelle

Plus en détail

Angles orientés et trigonométrie

Angles orientés et trigonométrie Chapitre Angles orientés et trigonométrie Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Trigonométrie Cercle trigonométrique. Radian. Mesure d un angle orienté, mesure principale.

Plus en détail

Cours de Mathématiques

Cours de Mathématiques Cours de Mathématiques MPSI-2 Lycée Fermat Alain Soyeur Table des matières 1 Raisonnement, ensembles 7 1.1 Logique................................................... 7 1.2 Ensembles.................................................

Plus en détail

Produit scalaire dans l Espace

Produit scalaire dans l Espace Produit scalaire dans l Espace Christophe ROSSIGNOL Année scolaire 014/015 Table des matières 1 Produit scalaire du plan 1.1 Différentes expressions du produit scalaire............................... 1.

Plus en détail

Exercices - Polynômes : corrigé. Opérations sur les polynômes

Exercices - Polynômes : corrigé. Opérations sur les polynômes Opérations sur les polynômes Exercice 1 - Carré - L1/Math Sup - Si P = Q est le carré d un polynôme, alors Q est nécessairement de degré, et son coefficient dominant est égal à 1. On peut donc écrire Q(X)

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours.

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours. Eo7 Fonctions de plusieurs variables Eercices de Jean-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-francefr * très facile ** facile *** difficulté moenne **** difficile ***** très difficile I

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable Eo7 Fonctions de plusieurs variables Eercices de Jean-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-francefr * très facile ** facile *** difficulté moenne **** difficile ***** très difficile I

Plus en détail

1S Modèles de rédaction Enoncés

1S Modèles de rédaction Enoncés Par l équipe des professeurs de 1S du lycée Parc de Vilgénis 1S Modèles de rédaction Enoncés Produit scalaire & Corrigés Exercice 1 : définition du produit scalaire Soit ABC un triangle tel que AB, AC

Plus en détail

Angles orientés et fonctions circulaires ( En première S )

Angles orientés et fonctions circulaires ( En première S ) Angles orientés et fonctions circulaires ( En première S ) Dernière mise à jour : Jeudi 01 Septembre 010 Vincent OBATON, Enseignant au lycée Stendhal de Grenoble (Année 006-007) Lycée Stendhal, Grenoble

Plus en détail

4. NOMBRES COMPLEXES ET TRIGONOMÉTRIE

4. NOMBRES COMPLEXES ET TRIGONOMÉTRIE 4. NOMBRES COMPLEXES ET TRIGONOMÉTRIE 1 Introduction. 1. 1 Justication historique. La résolution de l'équation du degré (par la méthode de Cardan) amena les mathématiciens italiens du seizième 3ème siècle

Plus en détail

Cours arithmétique et groupes. Licence première année, premier semestre

Cours arithmétique et groupes. Licence première année, premier semestre Cours arithmétique et groupes. Licence première année, premier semestre Raphaël Danchin, Rejeb Hadiji, Stéphane Jaffard, Eva Löcherbach, Jacques Printems, Stéphane Seuret Année 2006-2007 2 Table des matières

Plus en détail

Nombres complexes Forme trigonométrique d un complexe Exercices corrigés

Nombres complexes Forme trigonométrique d un complexe Exercices corrigés Nombres complexes Forme trigonométrique d un complexe Exercices corrigés Sont abordés dans cette fiche : Exercice 1 : affixe d un point, représentation d un point-image dans le plan complexe, argument

Plus en détail

Géométrie dans l espace Produit scalaire et équations

Géométrie dans l espace Produit scalaire et équations Chapitre 11. 2ème partie Géométrie dans l espace Produit scalaire et équations Terminale S Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES 2ème partie Produit scalaire Produit scalaire

Plus en détail

Corrigé du baccalauréat S Pondichéry 12 avril 2007

Corrigé du baccalauréat S Pondichéry 12 avril 2007 Corrigé du baccalauréat S Pondichéry 1 avril 7 EXERCICE 1 Commun à tous les candidats 4 points 1 a Les vecteurs AB et AC ont pour coordonnées AB ; ; ) et AC 1 ; 4 ; 1) Ils ne sont manifestement pas colinéaires

Plus en détail

I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES

I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES Théorème - Définition Soit un cercle (O,R) et un point. Une droite passant par coupe le cercle en deux points A et

Plus en détail

CHAPITRE 10. Jacobien, changement de coordonnées.

CHAPITRE 10. Jacobien, changement de coordonnées. CHAPITRE 10 Jacobien, changement de coordonnées ans ce chapitre, nous allons premièrement rappeler la définition du déterminant d une matrice Nous nous limiterons au cas des matrices d ordre 2 2et3 3,

Plus en détail

Quelques contrôle de Première S

Quelques contrôle de Première S Quelques contrôle de Première S Gilles Auriol auriolg@free.fr http ://auriolg.free.fr Voici l énoncé de 7 devoirs de Première S, intégralement corrigés. Malgré tout les devoirs et 5 nécessitent l usage

Plus en détail

Cours d Analyse. Fonctions de plusieurs variables

Cours d Analyse. Fonctions de plusieurs variables Cours d Analyse Fonctions de plusieurs variables Licence 1ère année 2007/2008 Nicolas Prioux Université de Marne-la-Vallée Table des matières 1 Notions de géométrie dans l espace et fonctions à deux variables........

Plus en détail

Vecteurs Géométrie dans le plan Exercices corrigés

Vecteurs Géométrie dans le plan Exercices corrigés Vecteurs Géométrie dans le plan Exercices corrigés Sont abordés dans cette fiche : Exercice 1 : notion de vecteur, transformation de points par translation et vecteurs égaux Exercice 2 : parallélogramme

Plus en détail

Planche n o 22. Fonctions de plusieurs variables. Corrigé

Planche n o 22. Fonctions de plusieurs variables. Corrigé Planche n o Fonctions de plusieurs variables Corrigé n o : f est définie sur R \ {, } Pour, f, = Quand tend vers, le couple, tend vers le couple, et f, tend vers Donc, si f a une limite réelle en, cette

Plus en détail

Introduction. Mathématiques Quantiques Discrètes

Introduction. Mathématiques Quantiques Discrètes Mathématiques Quantiques Discrètes Didier Robert Facultés des Sciences et Techniques Laboratoire de Mathématiques Jean Leray, Université de Nantes email: v-nantes.fr Commençons par expliquer le titre.

Plus en détail

Université Joseph Fourier, Grenoble. Calcul Algébrique. Eric Dumas, Emmanuel Peyre, Bernard Ycart

Université Joseph Fourier, Grenoble. Calcul Algébrique. Eric Dumas, Emmanuel Peyre, Bernard Ycart Université Joseph Fourier, Grenoble Maths en Ligne Calcul Algébrique Eric Dumas, Emmanuel Peyre, Bernard Ycart Ce chapitre est consacré à la manipulation de formules algébriques, constituées de variables

Plus en détail

Corrigé du baccalauréat S Asie 21 juin 2010

Corrigé du baccalauréat S Asie 21 juin 2010 Corrigé du baccalauréat S Asie juin 00 EXERCICE Commun à tous les candidats 4 points. Question : Le triangle GBI est : Réponse a : isocèle. Réponse b : équilatéral. Réponse c : rectangle. On a GB = + =

Plus en détail

Baccalauréat S Antilles-Guyane 11 septembre 2014 Corrigé

Baccalauréat S Antilles-Guyane 11 septembre 2014 Corrigé Baccalauréat S ntilles-guyane 11 septembre 14 Corrigé EXERCICE 1 6 points Commun à tous les candidats Une entreprise de jouets en peluche souhaite commercialiser un nouveau produit et à cette fin, effectue

Plus en détail

Equations cartésiennes d une droite

Equations cartésiennes d une droite Equations cartésiennes d une droite I) Vecteur directeur d une droite : 1) Définition Soit (d) une droite du plan. Un vecteur directeur d une droite (d) est un vecteur non nul la même direction que la

Plus en détail

X-ENS PSI - 2009 Un corrigé

X-ENS PSI - 2009 Un corrigé X-ENS PSI - 009 Un corrigé Première partie.. Des calculs élémentaires donnent χ A(α) = χ B(α) = X X + et χ A(α)+B(α) = X X + 4α + 4 On en déduit que Sp(A(α)) = Sp(B(α)) = {j, j } où j = e iπ 3 Sp(A(α)

Plus en détail

Démonstrations exigibles au bac

Démonstrations exigibles au bac Démonstrations exigibles au bac On donne ici les 11 démonstrations de cours répertoriées comme exigibles dans le programme officiel. Toutes ces démonstrations peuvent donner lieu à une «restitution organisée

Plus en détail

Correction du Brevet Blanc Shanghai mars 2013

Correction du Brevet Blanc Shanghai mars 2013 Correction exercice 1(4 points) Correction du Brevet Blanc Shanghai mars 2013 1. Calculer les expressions suivantes A et B et donner le résultat sous la forme d une fraction irréductible : 2. Calculer

Plus en détail

LIMITES EXERCICES CORRIGES

LIMITES EXERCICES CORRIGES ours et eercices de mathématiques LIMITES EXERIES ORRIGES M UAZ, http://mathscyrreer Eercice n Déterminer la ite éventuelle en de chacune des onctions suivantes : ) ) ) 4 ( ) Déterminer la ite éventuelle

Plus en détail

Projection orthogonale sur une droite du plan, projection vectorielle associée. Applications (calculs de distances et d angles, optimisation )

Projection orthogonale sur une droite du plan, projection vectorielle associée. Applications (calculs de distances et d angles, optimisation ) Projection orthogonale sur une droite du plan, projection vectorielle associée. Applications (calculs de distances et d angles, optimisation ) Introduction : On se place dans plan affine euclidien muni

Plus en détail

Mathématiques Algèbre et géométrie

Mathématiques Algèbre et géométrie Daniel FREDON Myriam MAUMY-BERTRAND Frédéric BERTRAND Mathématiques Algèbre et géométrie en 30 fiches Daniel FREDON Myriam MAUMY-BERTRAND Frédéric BERTRAND Mathématiques Algèbre et géométrie en 30 fiches

Plus en détail

I. Polynômes de Tchebychev

I. Polynômes de Tchebychev Première épreuve CCP filière MP I. Polynômes de Tchebychev ( ) 1.a) Tout réel θ vérifie cos(nθ) = Re ((cos θ + i sin θ) n ) = Re Cn k (cos θ) n k i k (sin θ) k Or i k est réel quand k est pair et imaginaire

Plus en détail

Brevet Juin 2007 Liban Corrigé Page 1 sur 6

Brevet Juin 2007 Liban Corrigé Page 1 sur 6 Brevet Juin 007 Liban Corrigé Page 1 sur 6 Exercice 1 : 1) A = 500 (10 3 ),4 10 7 8 10 4 = 500 10 6 4 10 1 10 7 8 10 4 500 4 = 8 = 500 3 8 8 = 500 3 100 10 4 = 1500 10 0 + 4 = 1500 10 4 = 1,5 10 3 10 4

Plus en détail

Enoncé et corrigé du brevet des collèges dans les académies d Aix- Marseille, Montpellier, Nice Corse et Toulouse en 2000. Énoncé.

Enoncé et corrigé du brevet des collèges dans les académies d Aix- Marseille, Montpellier, Nice Corse et Toulouse en 2000. Énoncé. Enoncé et corrigé du brevet des collèges dans les académies d Aix- Marseille, Montpellier, Nice Corse et Toulouse en 2000. Énoncé. I- ACTIVITES NUMERIQUES (12 points) Exercice 1 (3 points) On considère

Plus en détail

Corrigé du baccalauréat S Polynésie juin 2004

Corrigé du baccalauréat S Polynésie juin 2004 Durée : 4 heures Corrigé du baccalauréat S Polynésie juin 4 EXERCICE Commun à tous les candidats 4 points. X suit la loi de durée de vie sans vieillissement ou encore loi eponentielle de paramètre λ ;

Plus en détail

ANALYSE IV 29-06-2009. Informations. (5) Pour rendre l examen il faut signer une feuille de présence disponible avec les assistants responsables.

ANALYSE IV 29-06-2009. Informations. (5) Pour rendre l examen il faut signer une feuille de présence disponible avec les assistants responsables. EXAMEN CORRIGE ANALYSE IV 9-6-9 informations: http://cag.epfl.ch sections IN + SC Prénom : Nom : Sciper : Section : Informations () L épreuve a une durée de 3 heures et 45 minutes. () Les feuilles jaunes

Plus en détail

COMPOSITION DE MATHÉMATIQUES

COMPOSITION DE MATHÉMATIQUES CONCOURS GÉNÉRAL DES LYCÉES SESSION DE 2001 COMPOSITION DE MATHÉMATIQUES (Classe terminale S) Durée : 5 heures La calculatrice de poche est autorisée. La clarté et la précision de la rédaction seront prises

Plus en détail

Items étudiés dans le CHAPITRE N5. 7 et 9 p 129 D14 Déterminer par le calcul l'antécédent d'un nombre par une fonction linéaire

Items étudiés dans le CHAPITRE N5. 7 et 9 p 129 D14 Déterminer par le calcul l'antécédent d'un nombre par une fonction linéaire CHAPITRE N5 FONCTIONS LINEAIRES NOTION DE FONCTION FONCTIONS LINEAIRES NOTION DE FONCTION FONCTIONS LINEAIRES NOTION DE FONCTION Code item D0 D2 N30[S] Items étudiés dans le CHAPITRE N5 Déterminer l'image

Plus en détail

Correction. Mathématique Élémentaire. Test n 5 (14 octobre 2013) Question 1. Soit n N \ {0}. Prouvez par récurrence que

Correction. Mathématique Élémentaire. Test n 5 (14 octobre 2013) Question 1. Soit n N \ {0}. Prouvez par récurrence que Test n 5 (1 octobre 1 Question 1. Soit n N \ {}. Prouvez par récurrence que ( n x 1 x ( x n x (x n x n. Voir Test 5, 17 octobre 11, question. Question. (a On dit que A R n n est une matrice antisymétrique

Plus en détail

Le théorème de Thalès et sa réciproque

Le théorème de Thalès et sa réciproque Le théorème de Thalès et sa réciproque I) Agrandissement et Réduction d une figure 1) Définition : Lorsque toutes les longueurs d une figure F sont multipliées par un même nombre k on obtient une autre

Plus en détail

Courbes paramétrées. 1 ère étude

Courbes paramétrées. 1 ère étude Courbes paramétrées. ère étude Dans le programme de maths sup, l étude des courbes paramétrées est prévue en début d année à un moment où l on manque d outils en analyse. Le présent chapitre se place dans

Plus en détail

x 8 = 0 3x - 6 = 2x + 2 3x² 6 = 2x² + 2

x 8 = 0 3x - 6 = 2x + 2 3x² 6 = 2x² + 2 Partie numérique : 16 points Exercice n 1 (4 points) : Pour chaque ligne du tableau ci-dessous, 3 réponses sont proposées, mais une seule est exacte. Aucune justification n'est demandée. Écrire le numéro

Plus en détail

Fonctions homographiques

Fonctions homographiques Seconde-Fonctions homographiques-cours Mai 0 Fonctions homographiques Introduction Voir le TP Géogébra. La fonction inverse. Définition Considérons la fonction f définie par f() =. Alors :. f est définie

Plus en détail

1 Notion d espace vectoriel

1 Notion d espace vectoriel Arnaud de Saint Julien - MPSI Lycée La Merci 2014-2015 1 Résumé de cours sur les espaces vectoriels et les applications linéaires Les vecteurs du plan, les nombres réels, et les polynômes à coefficients

Plus en détail

Cours de Mécanique du point matériel

Cours de Mécanique du point matériel Cours de Mécanique du point matériel SMPC1 Module 1 : Mécanique 1 Session : Automne 2014 Prof. M. EL BAZ Cours de Mécanique du Point matériel Chapitre 1 : Complément Mathématique SMPC1 Chapitre 1: Rappels

Plus en détail

MPSI PCSI PTSI. Julien Freslon polytechnicien, professeur agrégé de mathématiques en classe préparatoire au lycée Dessaignes de Blois.

MPSI PCSI PTSI. Julien Freslon polytechnicien, professeur agrégé de mathématiques en classe préparatoire au lycée Dessaignes de Blois. Mathématiques Exercices incontournables MPSI PCSI PTSI Julien Freslon polytechnicien, professeur agrégé de mathématiques en classe préparatoire au lycée Dessaignes de Blois. Jérôme Poineau polytechnicien,

Plus en détail

PROBLEME(12) Première partie : Peinture des murs et du plafond.

PROBLEME(12) Première partie : Peinture des murs et du plafond. PROBLEME(12) Une entreprise doit rénover un local. Ce local a la forme d'un parallélépipède rectangle. La longueur est 6,40m, la largeur est 5,20m et la hauteur est 2,80m. Il comporte une porte de 2m de

Plus en détail

Correction du baccalauréat S Liban juin 2007

Correction du baccalauréat S Liban juin 2007 Correction du baccalauréat S Liban juin 07 Exercice. a. Signe de lnx lnx) : on fait un tableau de signes : x 0 e + ln x 0 + + lnx + + 0 lnx lnx) 0 + 0 b. On afx) gx) lnx lnx) lnx lnx). On déduit du tableau

Plus en détail

Repérage d un point - Vitesse et

Repérage d un point - Vitesse et PSI - écanique I - Repérage d un point - Vitesse et accélération page 1/6 Repérage d un point - Vitesse et accélération Table des matières 1 Espace et temps - Référentiel d observation 1 2 Coordonnées

Plus en détail

STATIQUE GRAPHIQUE ET STATIQUE ANALYTIQUE

STATIQUE GRAPHIQUE ET STATIQUE ANALYTIQUE ÉCOLE D'INGÉNIEURS DE FRIBOURG (E.I.F.) SECTION DE MÉCANIQUE G.R. Nicolet, revu en 2006 STATIQUE GRAPHIQUE ET STATIQUE ANALYTIQUE Eléments de calcul vectoriel Opérations avec les forces Equilibre du point

Plus en détail

Séquence 10. Géométrie dans l espace. Sommaire

Séquence 10. Géométrie dans l espace. Sommaire Séquence 10 Géométrie dans l espace Sommaire 1. Prérequis 2. Calculs vectoriels dans l espace 3. Orthogonalité 4. Produit scalaire dans l espace 5. Droites et plans de l espace 6. Synthèse Dans cette séquence,

Plus en détail

8.1 Généralités sur les fonctions de plusieurs variables réelles. f : R 2 R (x, y) 1 x 2 y 2

8.1 Généralités sur les fonctions de plusieurs variables réelles. f : R 2 R (x, y) 1 x 2 y 2 Chapitre 8 Fonctions de plusieurs variables 8.1 Généralités sur les fonctions de plusieurs variables réelles Définition. Une fonction réelle de n variables réelles est une application d une partie de R

Plus en détail

PROGRAMME DE I. NOMBRES COMPLEXES ET GÉOMÉTRIE ÉLÉMENTAIRE CLASSE DE PREMIÈRE ANNÉE MPSI

PROGRAMME DE I. NOMBRES COMPLEXES ET GÉOMÉTRIE ÉLÉMENTAIRE CLASSE DE PREMIÈRE ANNÉE MPSI CLASSE DE PREMIÈRE ANNÉE MPSI Le programme de première année MPSI est organisé en trois parties. Dans une première partie figurent les notions et les objets qui doivent être étudiés dès le début de l année

Plus en détail

TOUT CE QU IL FAUT SAVOIR POUR LE BREVET

TOUT CE QU IL FAUT SAVOIR POUR LE BREVET TOUT E QU IL FUT SVOIR POUR LE REVET NUMERIQUE / FONTIONS eci n est qu un rappel de tout ce qu il faut savoir en maths pour le brevet. I- Opérations sur les nombres et les fractions : Les priorités par

Plus en détail

LIVRET DE MATHEMATIQUES ENTREE EN PREMIERE S Institut Notre-Dame (Saint Germain en Laye) Année 2015-2016

LIVRET DE MATHEMATIQUES ENTREE EN PREMIERE S Institut Notre-Dame (Saint Germain en Laye) Année 2015-2016 LIVRET DE MATHEMATIQUES ENTREE EN PREMIERE S Institut Notre-Dame (Saint Germain en Laye) Année 015-016 Pourquoi ce livret? Afin de mieux préparer cette rentrée, ce livret reprend un ensemble de notions

Plus en détail

Mesure d angles et trigonométrie

Mesure d angles et trigonométrie Thierry Ciblac Mesure d angles et trigonométrie Mesure de l angle de deux axes (ou de deux demi-droites) de même origine. - Mesures en degrés : Divisons un cercle en 360 parties égales définissant ainsi

Plus en détail

Activités numériques [13 Points]

Activités numériques [13 Points] N du candidat L emploi de la calculatrice est autorisé. Le soin, la qualité de la présentation entrent pour 2 points dans l appréciation des copies. Les résultats seront soulignés. La correction est disponible

Plus en détail

OBJECTIFS DE FORMATION ET PROGRAMME DE MATHÉMATIQUES

OBJECTIFS DE FORMATION ET PROGRAMME DE MATHÉMATIQUES CLASSE PRÉPARATOIRE ATS OBJECTIFS DE FORMATION ET PROGRAMME DE MATHÉMATIQUES I. OBJECTIFS DE FORMATION 1- Mission de la filière et acquis des étudiants Les classes préparatoires ATS sont destinées aux

Plus en détail

Cours d Analyse I et II

Cours d Analyse I et II ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE Cours d Analyse I et II Sections Microtechnique & Science et génie des matériaux Dr. Philippe Chabloz avril 23 Table des matières Sur les nombres. Les nombres

Plus en détail

Espaces vectoriels de dimension finie

Espaces vectoriels de dimension finie Chapitre 14 Espaces vectoriels de dimension finie Dans tout le chapitre K désigne R ou C. 14.1 Espaces vectoriels de dimension finie 14.1.1 Bases et dimension Ò Ø ÓÒ ½ º½ Espace vectoriel de dimension

Plus en détail

Université Joseph Fourier MAT231 2008-2009

Université Joseph Fourier MAT231 2008-2009 Université Joseph Fourier MAT231 2008-2009 mat231-exo-03.tex (29 septembre 2008) Feuille d exercices n o 3 Exercice 3.1 Soit K un corps commutatif et soit {P 0, P 1,... P n } une famille de polynômes de

Plus en détail

E3A PC 2009 Math A. questions de cours. t C). On véri e que

E3A PC 2009 Math A. questions de cours. t C). On véri e que E3A PC 29 Math A questions de cours. Soit C 2 M 3 (R) Analyse : Si C = S + A, S 2 S 3 (R) et A 2 A 3 (R) alors t C = t S + t A = S A d où S = 2 (C +t C) et A = 2 (C t C). L analyse assure l unicité (sous

Plus en détail

Commun à tous les candidats

Commun à tous les candidats EXERCICE 3 (9 points ) Commun à tous les candidats On s intéresse à des courbes servant de modèle à la distribution de la masse salariale d une entreprise. Les fonctions f associées définies sur l intervalle

Plus en détail

Problèmes de Mathématiques MPSI. Erwan Biland

Problèmes de Mathématiques MPSI. Erwan Biland Problèmes de Mathématiques MPSI Erwan Biland Lycée Stanislas, classe de MPSI 1, 2009/2010 Ce recueil réunit une partie des problèmes posés aux élèves de PCSI 1 puis MPSI 1, en temps libre ou en temps limité,

Plus en détail

Fonctions analytiques

Fonctions analytiques CHAPITRE Fonctions analytiques Les principaux résultats à retenir : soit U un ouvert de C et f : U C. f est analytique sur U si et seulement si f est développable en série entière au voisinage de chaque

Plus en détail

- Module M2 - Fondamentaux d analyse

- Module M2 - Fondamentaux d analyse - Module M - Fondamentau d analyse Cléo BARAS, cleo.baras@ujf-grenoble.fr IUT - Grenoble Département Réseau et Télécommunications DUT - ère année Année universitaire 9- Web : http ://iut-tice.ujf-grenoble.fr/gtr/mathm/inde.asp

Plus en détail

JUIN : EXERCICES DE REVISIONS

JUIN : EXERCICES DE REVISIONS . Les fonctions JUIN : EXERCICES DE REVISIONS y 30 0 0-8 -7-6 - - 0 3 4 6 7 8 x -0 - -0 0 Fonction n : f(x) = y = 30x Fonction n : f(x) = y = -x³ + 3x² + x - 3 Fonction n 3 : f3(x) = y = -x + 30 Fonction

Plus en détail

Groupe seconde chance Feuille d exercices numéro 4

Groupe seconde chance Feuille d exercices numéro 4 Groupe seconde chance Feuille d exercices numéro 4 Exercice 1 Ecrire un programme de construction de la figure suivante. On utilisera seulement deux mesures : le rayon du cercle est 8 cm, la largeur d

Plus en détail

Ensembles et applications. Motivations. Exo7

Ensembles et applications. Motivations. Exo7 o7 nsembles et applications Vidéo partie 1. nsembles Vidéo partie 2. Applications Vidéo partie 3. Injection, surjection, bijection Vidéo partie 4. nsembles finis Vidéo partie 5. Relation d'équivalence

Plus en détail

Introduction aux inégalités

Introduction aux inégalités Introduction aux inégalités -cours- Razvan Barbulescu ENS, 8 février 0 Inégalité des moyennes Faisons d abord la liste des propritétés simples des inégalités: a a et b b a + b a + b ; s 0 et a a sa sa

Plus en détail

Exprimer ce coefficient de proportionnalité sous forme de pourcentage : 3,5 %

Exprimer ce coefficient de proportionnalité sous forme de pourcentage : 3,5 % 23 CALCUL DE L INTÉRÊT Tau d intérêt Paul et Rémi ont reçu pour Noël, respectivement, 20 et 80. Ils placent cet argent dans une banque, au même tau. Au bout d une année, ce placement leur rapportera une

Plus en détail

Corps des nombres complexes, J Paul Tsasa

Corps des nombres complexes, J Paul Tsasa Corps des nombres complexes, J Paul Tsasa One Pager Février 2013 Vol. 5 Num. 011 Copyright Laréq 2013 http://www.lareq.com Corps des Nombres Complexes Définitions, Règles de Calcul et Théorèmes «Les idiots

Plus en détail

Chapitre 1 : Évolution COURS

Chapitre 1 : Évolution COURS Chapitre 1 : Évolution COURS OBJECTIFS DU CHAPITRE Savoir déterminer le taux d évolution, le coefficient multiplicateur et l indice en base d une évolution. Connaître les liens entre ces notions et savoir

Plus en détail

ELECTROSTATIQUE - 2. 1. Rappels. 2. Outils mathématiques. 3. Distribution de charges. 4. Exemples de calculs de champ électrique

ELECTROSTATIQUE - 2. 1. Rappels. 2. Outils mathématiques. 3. Distribution de charges. 4. Exemples de calculs de champ électrique ELECTROTATIQUE - 2 1. Rappels 2. Outils mathématiques 2.1. ystèmes classiques de coordonnées 2.2. Volume élémentaire dans chaque système de coordonnées 2.3. Intégrales des fonctions de points 2.4. Circulation

Plus en détail

Contrôle de mathématiques

Contrôle de mathématiques Contrôle de mathématiques Correction du Lundi 18 octobre 2010 Exercice 1 Diviseurs (5 points) 1) Trouver dans N tous les diviseurs de 810. D 810 = {1; 2; 3; 5; 6; 9; 10; 15; 18; 27; 30; 45; 54; 81; 90;

Plus en détail

Dérivation : cours. Dérivation dans R

Dérivation : cours. Dérivation dans R TS Dérivation dans R Dans tout le capitre, f désigne une fonction définie sur un intervalle I de R (non vide et non réduit à un élément) et à valeurs dans R. Petits rappels de première Téorème-définition

Plus en détail

Programmes du collège

Programmes du collège Bulletin officiel spécial n 6 du 28 août 2008 Programmes du collège Programmes de l enseignement de mathématiques Ministère de l Éducation nationale Classe de quatrième Note : les points du programme (connaissances,

Plus en détail

Brevet Amérique du sud novembre 2011

Brevet Amérique du sud novembre 2011 ACTIVITÉS NUMÉRIQUES (12 POINTS) Exercice 1 Cet exercice est un exercice à choix multiples (QCM). Pour chaque question, une seule réponse est exacte. Une réponse correcte rapportera 1 point. L absence

Plus en détail

Développements limités, équivalents et calculs de limites

Développements limités, équivalents et calculs de limites Développements ités, équivalents et calculs de ites Eercice. Déterminer le développement ité en 0 à l ordre n des fonctions suivantes :. f() e (+) 3 n. g() sin() +ln(+) n 3 3. h() e sh() n 4. i() sin(

Plus en détail

SÉQUENCE 7 FONCTIONS LINÉAIRES ET AFFINES. f(0)= 5 0 + 4= 0 + 4 = 4.

SÉQUENCE 7 FONCTIONS LINÉAIRES ET AFFINES. f(0)= 5 0 + 4= 0 + 4 = 4. 196 Séquence 7 SÉQUENCE 7 FONCTIONS LINÉAIRES ET AFFINES Ce que tu devais faire Les commentaires du professeur Séance 1 JE RÉVISE LES ACQUIS DE LA 4 e 5 4 0 9 L image de 0 par la fonction f est le nombre

Plus en détail

L2 MIEE 2012-2013 VAR Université de Rennes 1

L2 MIEE 2012-2013 VAR Université de Rennes 1 . Sous-ensembles de R n et fonctions (suite) 1 Nappes paramétrées Si f une fonction de deux variables, son graphe est une surface incluse dans R 3 : {(x, y, f(x, y)) / (x, y) R 2 }. Une telle surface s

Plus en détail

Calcul matriciel. Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes.

Calcul matriciel. Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes. 1 Définitions, notations Calcul matriciel Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes. On utilise aussi la notation m n pour le

Plus en détail

Groupe orthogonal en petite dimension

Groupe orthogonal en petite dimension Maths PCSI Cours Groupe orthogonal en petite dimension Table des matières 1 Généralités 1.1 Rappels et définitions........................................ 1. Premières propriétés.........................................

Plus en détail

\documentclass[a4paper,12pt]{book}\usepackage{setspace}\usepackage{amsmath}

\documentclass[a4paper,12pt]{book}\usepackage{setspace}\usepackage{amsmath} \documentclass[a4paper,12pt]{book}\usepackage{setspace}\usepackage{amsmath} \usepackage{amstext}\usepackage{amsthm}\usepackage{mfpic}\usepackage{graphics} \usepackage{rotating}\input{macro}\definecolor{yellowgreen}{rgb}{0.68,1,0.15}

Plus en détail

BACCALAURÉAT GÉNÉRAL. MATHEMATIQUES Série S

BACCALAURÉAT GÉNÉRAL. MATHEMATIQUES Série S BACCALAURÉAT GÉNÉRAL Session 2015 MATHEMATIQUES Série S ÉPREUVE DU LUNDI 22 JUIN 2015 Enseignement Obligatoire Coefficient : 7 Durée de l épreuve : 4 heures Ce sujet comporte 7 pages numérotées de 1 à

Plus en détail

Calcul intégral élémentaire en plusieurs variables

Calcul intégral élémentaire en plusieurs variables Calcul intégral élémentaire en plusieurs variables PC*2 2 septembre 2009 Avant-propos À part le théorème de Fubini qui sera démontré dans le cours sur les intégrales à paramètres et qui ne semble pas explicitement

Plus en détail