LOGARITHME. Ph DEPRESLE. 29 juin Fonction logarithme népérien Définition Conséquences Propriétés algébriques 3

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "LOGARITHME. Ph DEPRESLE. 29 juin Fonction logarithme népérien Définition Conséquences Propriétés algébriques 3"

Transcription

1 LOGARITHME Ph DEPRESLE 9 juin 5 Table des matières Fonction logarithme népérien. Définition Conséquences Propriétés algébriques 3 3 Étude de la fonction ln 3 3. Dérivabilité et variations Limites aux bornes de l ensemble de définition Croissances comparées de la fonction ln et de la fonction x x 4 5 Dérivée de x ln(u(x)) 4 6 Logarithme décimal 4 7 QCM 6 8 EXERCICES : Les exercices de base 7 9 EXERCICES : Les exercices de base ( corrigés)

2 Fonction logarithme népérien. Définition Définition. Pour tout m ];+ [, logarithme népérien de m est l unique antécédent de m par la fonction exp. On le note ln(m). On définit ainsi une fonction sur l intervalle ]; + [. On dit que la fonction logarithme népérien, est la fonction réciproque de la fonction exponentielle. 5 y = e x 4 m 3 lnm 3 On a les équivalences suivantes : { x R y = e x { y ];+ [ x = ln(y) Propriétés. Dans un repère (O, i, j ) orthonormé, la courbe représentative Γ de la fonction logarithme népérien est la courbe symétrique de la courbe représentative C de la fonction exponentielle par rapport à la droite d équation y = x. y = e x m= e t t = lnm y = x y = ln x m> et t R e lnm = m lne t = t t m Ph Depresle :Notes de cours Page sur 3

3 . Conséquences a,b>, ln a= lnb a= b La fonction logarithme est strictement croissante sur ];+ [. Quelques valeurs : ln= lne= ln e= car e = e ln e = car e = e Propriétés algébriques Théorème. Pour tous réels x et y strictement positifs : ln(x y)=ln x+ ln y. Propriétés.. Pour tout réel x strictement positif, ln = ln x. x. Pour tous réels x et y strictement positifs, ln x = ln x ln y. y 3. Pour tout réel x strictement positif et pour tout entier relatif n, ln(x n )=nln x. 4. Pour tout réel x strictement positif : ln x= ln x. 3 Étude de la fonction ln 3. Dérivabilité et variations Théorème. La fonction ln est continue et dérivable sur ];+ [ et, pour tout x de ];+ [, ln (x)= x. Remarque : La fonction ln est strictement croissante sur ];+ [. On a vu que ln=, donc : ln x< x ];[ et ln x> x ];+ [ x + ln x = x ln Ph Depresle :Notes de cours Page 3 sur 3

4 3. Limites aux bornes de l ensemble de définition Théorème 3. lim ln x =+ et lim ln x = x On obtient le tableau de variation de la fonction ln : 4 3 y=x- x + y = x e ln (x)= x ln x + + e A B La représentation graphique de la fonction ln dans un repère (O; i, j ) admet l axe des ordonnées comme asymptote verticale. 4 Croissances comparées de la fonction ln et de la fonction x x Théorème 4. ln x lim = et lim x x ln x = x 5 Dérivée de x ln(u(x)) Théorème 5. Soit u une fonction dérivable et strictement positive sur un intervalle I, alors la fonction f définie sur I par f (x)=ln[u(x)] est dérivable sur I et, pour tout réel x I, f (x)= u (x) u(x). Exemple : Calculer la dérivée de f (x)=ln(x + x+ ). Solution : x + x+ est strictement positif. Donc D f =Ret f est dérivable surr. f (x) est de la forme ln(u(x)) avec u(x)= x + x+. On a u (x)=x+. On a donc : f (x)= x+ x + x+ 6 Logarithme décimal Définition. Pour tout réel x strictement positif, le logarithme décimal de x est le réel l og x= ln x ln. Propriétés 3. Pour tout entier relatif n, l og ( n )=n. En particulier l og =. Ph Depresle :Notes de cours Page 4 sur 3

5 7 QCM Pour chacune des propositions suivantes dire si elle est vraie ou fausse.. ln x est toujours positif. ( ). ln est égal à 8 3 ln. 3. L équation ln x= n a pas de solution. 4. La dérivée de la fonction x ln(3x) est x 3 x. 5. Si f (x)=ln(x + x+ ), alors f (x)= x+ x + x+. 6. La limite de ln x quand x tend vers est. x 7. La limite de ln x quand x tend vers est. x Solutions. FAUX, La fonction ln est définie seulement sur ],+ [. Mais ln x> si est seulement si x>. ( ). FAUX, car ln = ln8= ln( 3 )= 3ln FAUX, ln x= si et seulement si x = e. 4. FAUX, posons pour x> : u(x)=3x et f (x)=ln(u(x). f (x)= u (x) u(x) = 3 3x = x. 5. VRAI (enfin!) Posons u(x)= x + x+. On a f (x)= u (x) u(x) = x+ x + x+. 6. FAUX. lim ln x=, lim =+, donc lim ln x=. x x + x x x 7. VRAI, ln x lim x x = lim ln x ln = ln = x x Ph Depresle :Notes de cours Page 5 sur 3

6 8 EXERCICES : Les exercices de base Exercice Résoudre l inéquation : ln(3x x ) ln(6x+ 4). Exercice T C La courbe C représente une fonction f sur l intervalle [, 5; 3, 5]. On sait que f ()= et que la droite T est la tangente à C au point d abscisse.. On considère la fonction g définie par g (x) = ln( f (x)). (a) Quel est le domaine de définition de g? (b) Déterminer lim x x< g (x). (c) Donner une équation de la tangente à la courbe de la fonction g au point d abscisse.. Justifier que la fonction g admet un maximum positif sur ];[. Exercice 3 Soit f la fonction définie sur l intervalle ] ; + [ par f (x)= +ln(x) x et soit C la courbe représentative de la fonction f dans un repère du plan.. (a) Étudier la limite de f en. ln(x) (b) Que vaut lim? En déduire la limite de la fonction f en+. x (c) En déduire les asymptotes éventuelles à la courbe C.. (a) On note f la fonction dérivée de la fonction f sur l intervalle ] ; + [. Démontrer que, pour tout réel x appartenant à l intervalle ] ; + [, f (x)= ln(x) x 3. Ph Depresle :Notes de cours Page 6 sur 3

7 (b) Résoudre sur l intervalle ] ; + [ l inéquation ln(x) >. En déduire le signe de f (x) sur l intervalle ] ; + [. (c) Dresser le tableau des variations de la fonction f. 3. (a) Démontrer que la courbe C a un unique point d intersection avec l axe des abscisses, dont on précisera les coordonnées. (b) En déduire le signe de f (x) sur l intervalle ] ; + [. Exercice 4 Sur le graphique ci-dessous, on a tracé, dans le plan muni d un repère orthonormé (O; #» ı, #» j ), la courbe représentative C d une fonction f définie et dérivable sur l intervalle ] ; + [. C B C j O i A On dispose des informations suivantes : les points A, B,C ont pour coordonnées respectives (, ), (, ), (, ) ; la courbe C passe par le point B et la droite (BC ) est tangente à C en B ; il existe deux réels positifs a et b tels que pour tout réel strictement positif x, a+ b lnx f (x)=. x. (a) En utilisant le graphique, donner les valeurs de f () et f (). (b) Vérifier que pour tout réel strictement positif x, f (x)= (c) En déduire les réels a et b. (b a) b ln x x.. (a) Justifier que pour tout réel x appartenant à l intervalle ],+ [, f (x) a le même signe que ln x. (b) Déterminer les limites de f en et en +. On pourra remarquer que pour tout réel x strictement positif, f (x)= x + ln x x. (c) En déduire le tableau de variations de la fonction f. 3. (a) Démontrer que l équation f (x) = admet une unique solution α sur l intervalle ], ]. (b) Par un raisonnement analogue, on démontre qu il existe un unique réel β de l intervalle ],+ ] tel que f (β)=. Déterminer l entier n tel que n< β<n+. Ph Depresle :Notes de cours Page 7 sur 3

8 Exercice 5 Pour tout entier naturel n, on considère la fonction f n définie sur ] ; + [ par : f n (x)= nx x ln x. On note (C n ) la courbe représentative de la fonction f n, dans un repère orthonormal (O; #» ı, #» j ). Les courbes (C ), (C ) et (C ) représentatives des fonctions f, f et f sont données. Partie A : Étude de la fonction f définie sur ] ; + [ par f (x)= x ln x.. Déterminer la limite de f en+.. Étudier les variations de la fonction f sur ] ; + [. Partie B : Étude de certaines propriétés de la fonction f n, n entier naturel. Soit n un entier naturel.. Démontrer que pour x ] ; + [, f n (x)= n ln x où f n désigne la fonction dérivée de f n.. (a) Démontrer que la courbe (C n ) admet en un unique point A n d abscisse e n une tangente parallèle à l axe des abscisses. (b) Prouver que le point A n appartient à la droite d équation y = x. (c) Placer sur la figure en annexe les points A, A, A. 3. (a) Démontrer que la courbe (C n ) coupe l axe des abscisses en un unique point, noté B n, dont l abscisse est e n. (b) Démontrer que la tangente à (C n ) au point B n a un coefficient directeur indépendant de l entier n. (c) Placer sur la figure en annexe les points B, B,B. 3 C C C Ph Depresle :Notes de cours Page 8 sur 3

9 9 EXERCICES : Les exercices de base ( corrigés) Exercice On factorise : 3x x =(x )(3x+ ). Pour que ln(6x+ 4) soit défini, on doit avoir x> 3. Pour x>, ln(x )(3x+ ) est défini si et seulement si x>. 3 On cherche donc à résoudre l inéquation dans I =],+ [. Les inéquations suivantes sont équivalentes dans I : ln(3x x ) ln(6x+ 4) 3x x 6x+ 4 (car la fonction ln est strictement croissante). (x )(3x+ ) (3x+ ) x (car dans I la quantité 3x+ est positive). L ensemble des solutions est [3,+ [. Exercice. (a) ln(f (x)) est défini pour f (x) strictement positif. Donc l ensemble de définition de la fonction g est ];[ ]3;3,5]. (b) On cherche la limite de la fonction composée g : lim x x< f (x)= et lim ln y =. Donc lim g (x)=. y x x< (c) Sur le graphique on observe que la pente de T est -. Donc f ()=. Or pour tout x ];[, g (x)= f (x) f (x), donc g ()=. L équation de la tangente à la courbe représentative de la fonction g au point d abscisse est donc : y = g ()(x )+ g ()= (x )+ln.. Il existe α ];[ tel que f (α)=. Exercice 3 x α f (x) + f (α) f ln(f (α)) g g admet un maximum en α. Or f (α) >, donc ln( f (α)) > ln car la fonction ln est croissante. Or ln>ln, et ln=, ce maximum est bien strictement positif.. (a) lim x (+ln x)= et lim x x=+. Donc lim f (x)= x Ph Depresle :Notes de cours Page 9 sur 3

10 ln(x) (b) Par croissances comparées lim =. x ln x Donc lim = et lim x f (x)= (c) La droite x = est asymptote verticale à C en et la droite y = est asymptote verticale à C à+.. (a) Pour tout x ] ; + [, f (x)= f (x)= x( ln(x) x 4 (b) Soit x ] ; + [. = ln(x) x 3. x x x(+ln x) x 4 x x x ln(x) = x 4 (c) ln(x)> ln x< x< e. ] [ ] [ f est positive sur ;e, négative sur e ;+. x e + f (x) + f 3. (a) f (x)= +ln x= ln x= x = e Exercice 4 Donc la courbe C a un unique point d intersection avec l axe des abscisses : le point de coordonnées (e,). (b) Pour tout x ] ;e ], f (x) et pour tout x [ e ;+ [, f (x). x e e + f. (a) f ()=, car C passe par le point B. La tangente à C en B est dirigée par le vecteur C # B» = #» j (elle est horizontale), donc f ()=. b x (a+ b ln x) (b) Pour tout x>, f x (b a) b ln x (x)= x = x. (c) f ()=a et f ()=b a car ln()=, donc : { { { f ()= a= a= f ()= b a= b=. (a) Pour tout x ],+ [, f (x)= ln x x, donc a le même signe que ln x. (b) lim(+ln x)= et lim =+, donc lim x x x> x f (x)=. x lim = et par croissances comparées x lim Donc lim f (x)= ln x x =. Ph Depresle :Notes de cours Page sur 3

11 (c) Le tableau de variations de la fonction f est : x + f (x) + + f 3. (a) La fonction f est continue, strictement croissante de ];] sur ] ;] et appartient à ] ; ]. D après le théorème des valeurs intermédiaires pour une fonction strictement croissante, il existe un unique α ]; ] tel que f (α) =. Exercice 5 Partie A : (b) Avec la calculatrice on trouve que f (5)> et f (6)<, donc 5<β<6 et n= 5.. lim ln(x)=+, et lim x = donc par produit lim f (x)=. Pour tout x ] ; + [, f (x)= ln(x) x x = ln(x). Partie B : f (x) ln(x) ln(x) x e f est croissante sur ];e ], décroissante sur [e ;+ [.. Pour tout x ] ; + [, f n (x)= nx f (x), donc f n (x)= n f n (x)= n ln x.. (a) La courbe (C n ) admet une tangente parallèle à l axe des abscisses au point d abscisse x si et seulement si f n (x)=. f n (x)= ln(x)= n x = e n La courbe (C n ) admet une tangente parallèle à l axe des abscisses au point A n d abscisse e n. (b) L ordonnée de A n est f n (e n )= ne n e n ln(e n ) f n (e n )= ne n e n ( n )=e n Le point A n appartient bien à la droite d équation y = x. (c) Voir figure 3. (a) La courbe (C n ) coupe l axe des abscisses en un point d abscisse x si et seulement si f n (x)=. f n (x)= nx x ln(x)= ln(x)= n, car x. Donc la courbe (C n ) coupe l axe des abscisses en un unique point B n, dont l abscisse est e n. (b) La tangente à (C n ) au point B n a pour coefficient directeur (c) f n (e n )= n ln(e n )= n +n =. Ce coefficient directeur est toujours -, il est indépendant de l entier n. Ph Depresle :Notes de cours Page sur 3

12 Chapitre : Logarithme et autres fonctions A A A B C B C B C Ph Depresle :Notes de cours Page sur 3

Chapitre 3. Quelques fonctions usuelles. 1 Fonctions logarithme et exponentielle. 1.1 La fonction logarithme

Chapitre 3. Quelques fonctions usuelles. 1 Fonctions logarithme et exponentielle. 1.1 La fonction logarithme Chapitre 3 Quelques fonctions usuelles 1 Fonctions logarithme et eponentielle 1.1 La fonction logarithme Définition 1.1 La fonction 7! 1/ est continue sur ]0, +1[. Elle admet donc des primitives sur cet

Plus en détail

Commun à tous les candidats

Commun à tous les candidats EXERCICE 3 (9 points ) Commun à tous les candidats On s intéresse à des courbes servant de modèle à la distribution de la masse salariale d une entreprise. Les fonctions f associées définies sur l intervalle

Plus en détail

Vous trouverez dans ce dossier les documents correspondants à ce que nous allons travailler aujourd hui :

Vous trouverez dans ce dossier les documents correspondants à ce que nous allons travailler aujourd hui : Sommaire SAMEDI 7 JANVIER 202 Vous trouverez dans ce dossier les documents correspondants à ce que nous allons travailler aujourd hui : Un rappel de cours sur les suites ; Page 2 Deu eercices intitulés

Plus en détail

PETIT MANUEL DE SURVIE EN MATHÉMATIQUES À L USAGE DES TERMINALES STI2D (OU CE QU ON DOIT APPRENDRE ET CE QU ON PEUT RETROUVER SI ON EST MALIN) par M.

PETIT MANUEL DE SURVIE EN MATHÉMATIQUES À L USAGE DES TERMINALES STI2D (OU CE QU ON DOIT APPRENDRE ET CE QU ON PEUT RETROUVER SI ON EST MALIN) par M. PETIT MANUEL DE SURVIE EN MATHÉMATIQUES À L USAGE DES TERMINALES STI2D (OU CE QU ON DOIT APPRENDRE ET CE QU ON PEUT RETROUVER SI ON EST MALIN) par M. Vienney 2 M. VIENNEY Vous trouverez dans ce document

Plus en détail

La fonction exponentielle

La fonction exponentielle La fonction exponentielle L expression «croissance exponentielle» est passée dans le langage courant et désigne sans distinction toute variation «hyper rapide» d un phénomène. Ce vocabulaire est cependant

Plus en détail

Comparaison de fonctions Développements limités. Chapitre 10

Comparaison de fonctions Développements limités. Chapitre 10 PCSI - 4/5 www.ericreynaud.fr Chapitre Points importants 3 Questions de cours 6 Eercices corrigés Plan du cours 4 Eercices types 7 Devoir maison 5 Eercices Chap Et s il ne fallait retenir que si points?

Plus en détail

Chapitre 6. Fonction réelle d une variable réelle

Chapitre 6. Fonction réelle d une variable réelle Chapitre 6 Fonction réelle d une variable réelle 6. Généralités et plan d étude Une application de I dans R est une correspondance entre les éléments de I et ceu de R telle que tout élément de I admette

Plus en détail

EXERCICES. Exercice 3 : Soit f la fonction définie sur ]0; + [ par f (x) = 1 5 ln(x). 1. Déterminer les limites suivantes : lim f (x) et lim f (x)

EXERCICES. Exercice 3 : Soit f la fonction définie sur ]0; + [ par f (x) = 1 5 ln(x). 1. Déterminer les limites suivantes : lim f (x) et lim f (x) EXERCICES LN Eercice : Soit f la fonction définie sur ]0;+ [ par f ()=+ ln(). On note C sa courbe représentative dans un repère orthogonal.. a. Calculer f () b. Déterminer l équation de la tangente T à

Plus en détail

EXERCICE 4 (7 points ) (Commun à tous les candidats)

EXERCICE 4 (7 points ) (Commun à tous les candidats) EXERCICE 4 (7 points ) (Commun à tous les candidats) On cherche à modéliser de deux façons différentes l évolution du nombre, exprimé en millions, de foyers français possédant un téléviseur à écran plat

Plus en détail

Baccalauréat S Antilles-Guyane 11 septembre 2014 Corrigé

Baccalauréat S Antilles-Guyane 11 septembre 2014 Corrigé Baccalauréat S ntilles-guyane 11 septembre 14 Corrigé EXERCICE 1 6 points Commun à tous les candidats Une entreprise de jouets en peluche souhaite commercialiser un nouveau produit et à cette fin, effectue

Plus en détail

Baccalauréat ES/L Amérique du Sud 21 novembre 2013

Baccalauréat ES/L Amérique du Sud 21 novembre 2013 Baccalauréat ES/L Amérique du Sud 21 novembre 2013 A. P. M. E. P. EXERCICE 1 Commun à tous les candidats 5 points Une entreprise informatique produit et vend des clés USB. La vente de ces clés est réalisée

Plus en détail

Développements limités, équivalents et calculs de limites

Développements limités, équivalents et calculs de limites Développements ités, équivalents et calculs de ites Eercice. Déterminer le développement ité en 0 à l ordre n des fonctions suivantes :. f() e (+) 3 n. g() sin() +ln(+) n 3 3. h() e sh() n 4. i() sin(

Plus en détail

O, i, ) ln x. (ln x)2

O, i, ) ln x. (ln x)2 EXERCICE 5 points Commun à tous les candidats Le plan complee est muni d un repère orthonormal O, i, j Étude d une fonction f On considère la fonction f définie sur l intervalle ]0; + [ par : f = ln On

Plus en détail

Complément d information concernant la fiche de concordance

Complément d information concernant la fiche de concordance Sommaire SAMEDI 0 DÉCEMBRE 20 Vous trouverez dans ce dossier les documents correspondants à ce que nous allons travailler aujourd hui : La fiche de concordance pour le DAEU ; Page 2 Un rappel de cours

Plus en détail

La fonction exponentielle

La fonction exponentielle DERNIÈRE IMPRESSION LE 2 novembre 204 à :07 La fonction exponentielle Table des matières La fonction exponentielle 2. Définition et théorèmes.......................... 2.2 Approche graphique de la fonction

Plus en détail

Correction du BAC BLANC TECHNOLOGIQUE - Epreuve E4 MATHEMATIQUES ET TECHNOLOGIES INFORMATIQUES ET MULTIMEDIA

Correction du BAC BLANC TECHNOLOGIQUE - Epreuve E4 MATHEMATIQUES ET TECHNOLOGIES INFORMATIQUES ET MULTIMEDIA Correction du BAC BLANC TECHNOLOGIQUE - Epreuve E4 MATHEMATIQUES ET TECHNOLOGIES INFORMATIQUES ET MULTIMEDIA Exercice 1 (4 points) Dans une classe de terminale STAV de 5 élèves, chaque élève possède une

Plus en détail

LIVRET DE MATHEMATIQUES ENTREE EN PREMIERE S Institut Notre-Dame (Saint Germain en Laye) Année 2015-2016

LIVRET DE MATHEMATIQUES ENTREE EN PREMIERE S Institut Notre-Dame (Saint Germain en Laye) Année 2015-2016 LIVRET DE MATHEMATIQUES ENTREE EN PREMIERE S Institut Notre-Dame (Saint Germain en Laye) Année 015-016 Pourquoi ce livret? Afin de mieux préparer cette rentrée, ce livret reprend un ensemble de notions

Plus en détail

LIMITES EXERCICES CORRIGES

LIMITES EXERCICES CORRIGES ours et eercices de mathématiques LIMITES EXERIES ORRIGES M UAZ, http://mathscyrreer Eercice n Déterminer la ite éventuelle en de chacune des onctions suivantes : ) ) ) 4 ( ) Déterminer la ite éventuelle

Plus en détail

Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures)

Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures) Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures) Eercice 1 (5 points) pour les candidats n ayant pas choisi la spécialité MATH Le tableau suivant donne l évolution du chiffre

Plus en détail

Chapitre 2 Le problème de l unicité des solutions

Chapitre 2 Le problème de l unicité des solutions Université Joseph Fourier UE MAT 127 Mathématiques année 2011-2012 Chapitre 2 Le problème de l unicité des solutions Ce que nous verrons dans ce chapitre : un exemple d équation différentielle y = f(y)

Plus en détail

CALCULATRICE AUTORISEE

CALCULATRICE AUTORISEE Lycée F. MISTRAL AVIGNON BAC BLANC 2012 Epreuve de MATHEMATIQUES Série S CALCULATRICE AUTORISEE DUREE : 4 heures Dès que le sujet vous est remis, assurez-vous qu il est complet Ce sujet comporte 3 pages

Plus en détail

Baccalauréat ES Nouvelle-Calédonie 2 mars 2015

Baccalauréat ES Nouvelle-Calédonie 2 mars 2015 Baccalauréat ES Nouvelle-Calédonie mars 015 A. P. M. E. P. EXERCICE 1 Commun à tous les candidats Soit f la fonction définie sur l intervalle [1,5 ; 6] par : f (x)=(5x )e x On note C la courbe représentative

Plus en détail

Cours Fonctions de deux variables

Cours Fonctions de deux variables Cours Fonctions de deux variables par Pierre Veuillez 1 Support théorique 1.1 Représentation Plan et espace : Grâce à un repère cartésien ( ) O, i, j du plan, les couples (x, y) de R 2 peuvent être représenté

Plus en détail

BACCALAURÉAT GÉNÉRAL SESSION 2012 OBLIGATOIRE MATHÉMATIQUES. Série S. Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE

BACCALAURÉAT GÉNÉRAL SESSION 2012 OBLIGATOIRE MATHÉMATIQUES. Série S. Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE BACCALAURÉAT GÉNÉRAL SESSION 2012 MATHÉMATIQUES Série S Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE Les calculatrices électroniques de poche sont autorisées, conformément à la

Plus en détail

BTS Mécanique et Automatismes Industriels. Équations différentielles d ordre 2

BTS Mécanique et Automatismes Industriels. Équations différentielles d ordre 2 BTS Mécanique et Automatismes Industriels Équations différentielles d ordre, Année scolaire 005 006 . Définition Notation Dans tout ce paragraphe, y désigne une fonction de la variable réelle x. On suppose

Plus en détail

NATHALIE RODRIGUEZ mars 2014

NATHALIE RODRIGUEZ mars 2014 Ä ÒÒ Ð Ù ÌË Å Ø Ñ Ø ÕÙ Áº º Ô٠˺ÁºÇº NATHALIE RODRIGUEZ mars 2014 IREM PARIS XIII - GROUPE «ENSEIGNEMENTS TECHNOLOGIQUES» Sommaire 1 I.G. Nouvelle-Calédonie, novembre 2000 13 Exercice 1 (5 pts) : calcul

Plus en détail

Développements limités. Notion de développement limité

Développements limités. Notion de développement limité MT12 - ch2 Page 1/8 Développements limités Dans tout ce chapitre, I désigne un intervalle de R non vide et non réduit à un point. I Notion de développement limité Dans tout ce paragraphe, a désigne un

Plus en détail

BACCALAUREAT GENERAL MATHÉMATIQUES

BACCALAUREAT GENERAL MATHÉMATIQUES BACCALAUREAT GENERAL FEVRIER 2014 MATHÉMATIQUES SERIE : ES Durée de l épreuve : 3 heures Coefficient : 5 (ES), 4 (L) 7(spe ES) Les calculatrices électroniques de poche sont autorisées, conformement à la

Plus en détail

Correction du baccalauréat ES/L Métropole 20 juin 2014

Correction du baccalauréat ES/L Métropole 20 juin 2014 Correction du baccalauréat ES/L Métropole 0 juin 014 Exercice 1 1. c.. c. 3. c. 4. d. 5. a. P A (B)=1 P A (B)=1 0,3=0,7 D après la formule des probabilités totales : P(B)=P(A B)+P(A B)=0,6 0,3+(1 0,6)

Plus en détail

I. Ensemble de définition d'une fonction

I. Ensemble de définition d'une fonction Chapitre 2 Généralités sur les fonctions Fonctions de références et fonctions associées Ce que dit le programme : Étude de fonctions Fonctions de référence x x et x x Connaître les variations de ces deux

Plus en détail

Seconde Généralités sur les fonctions Exercices. Notion de fonction.

Seconde Généralités sur les fonctions Exercices. Notion de fonction. Seconde Généralités sur les fonctions Exercices Notion de fonction. Exercice. Une fonction définie par une formule. On considère la fonction f définie sur R par = x + x. a) Calculer les images de, 0 et

Plus en détail

- Module M2 - Fondamentaux d analyse

- Module M2 - Fondamentaux d analyse - Module M - Fondamentau d analyse Cléo BARAS, cleo.baras@ujf-grenoble.fr IUT - Grenoble Département Réseau et Télécommunications DUT - ère année Année universitaire 9- Web : http ://iut-tice.ujf-grenoble.fr/gtr/mathm/inde.asp

Plus en détail

Probabilités conditionnelles Exercices corrigés

Probabilités conditionnelles Exercices corrigés Terminale S Probabilités conditionnelles Exercices corrigés Exercice : (solution Une compagnie d assurance automobile fait un bilan des frais d intervention, parmi ses dossiers d accidents de la circulation.

Plus en détail

3 Fonctions logarithmiques

3 Fonctions logarithmiques Log-Cours_standard.nb 12 3 Fonctions logarithmiques Edition 2007-2008 / DELM Liens hypertextes Cours de niveau avancé (plus étoffé): http://www.deleze.name/marcel/sec2/cours/logarithmes/log-cours_avance.pdf

Plus en détail

Exercices - Polynômes : corrigé. Opérations sur les polynômes

Exercices - Polynômes : corrigé. Opérations sur les polynômes Opérations sur les polynômes Exercice 1 - Carré - L1/Math Sup - Si P = Q est le carré d un polynôme, alors Q est nécessairement de degré, et son coefficient dominant est égal à 1. On peut donc écrire Q(X)

Plus en détail

Nombre dérivé et tangente

Nombre dérivé et tangente Nombre dérivé et tangente I) Interprétation graphique 1) Taux de variation d une fonction en un point. Soit une fonction définie sur un intervalle I contenant le nombre réel a, soit (C) sa courbe représentative

Plus en détail

Exo7. Limites de fonctions. 1 Théorie. 2 Calculs

Exo7. Limites de fonctions. 1 Théorie. 2 Calculs Eo7 Limites de fonctions Théorie Eercice Montrer que toute fonction périodique et non constante n admet pas de ite en + Montrer que toute fonction croissante et majorée admet une ite finie en + Indication

Plus en détail

Démonstrations exigibles au bac

Démonstrations exigibles au bac Démonstrations exigibles au bac On donne ici les 11 démonstrations de cours répertoriées comme exigibles dans le programme officiel. Toutes ces démonstrations peuvent donner lieu à une «restitution organisée

Plus en détail

x 8 = 0 3x - 6 = 2x + 2 3x² 6 = 2x² + 2

x 8 = 0 3x - 6 = 2x + 2 3x² 6 = 2x² + 2 Partie numérique : 16 points Exercice n 1 (4 points) : Pour chaque ligne du tableau ci-dessous, 3 réponses sont proposées, mais une seule est exacte. Aucune justification n'est demandée. Écrire le numéro

Plus en détail

BACCALAURÉAT GÉNÉRAL. MATHEMATIQUES Série S

BACCALAURÉAT GÉNÉRAL. MATHEMATIQUES Série S BACCALAURÉAT GÉNÉRAL Session 2015 MATHEMATIQUES Série S ÉPREUVE DU LUNDI 22 JUIN 2015 Enseignement Obligatoire Coefficient : 7 Durée de l épreuve : 4 heures Ce sujet comporte 7 pages numérotées de 1 à

Plus en détail

FONCTIONS. I Généralités sur les fonctions. Définitions. Remarque. Exercice 01. Remarque

FONCTIONS. I Généralités sur les fonctions. Définitions. Remarque. Exercice 01. Remarque FNCTINS I Généralités sur les fonctions Définitions Soit D une partie de l'ensemble IR. n définit une fonction f de D dans IR, en associant à chaque réel de D, un réel et un seul noté f() et que l'on appelle

Plus en détail

Baccalauréat Polynésie 11 juin 2013 Sciences et technologies du design et des arts appliqués

Baccalauréat Polynésie 11 juin 2013 Sciences et technologies du design et des arts appliqués Baccalauréat Polynésie juin 0 Sciences et technologies du design et des arts appliqués EXERCICE points Cet exercice est un Questionnaire à Choix Multiples. Pour chaque question, une seule réponse est exacte.

Plus en détail

NATHALIE RODRIGUEZ avril 2014

NATHALIE RODRIGUEZ avril 2014 Ä ÒÒ Ð Ù ÌË Å Ø Ñ Ø ÕÙ º ºÇº NATHALIE RODRIGUEZ avril 2014 IREM PARIS XIII - GROUPE «ENSEIGNEMENTS TECHNOLOGIQUES» Sommaire 1 C.G.O. métropole, mai 2002 9 Exercice 1 : suite géométrique, fonction exponentielle,

Plus en détail

Planche n o 22. Fonctions de plusieurs variables. Corrigé

Planche n o 22. Fonctions de plusieurs variables. Corrigé Planche n o Fonctions de plusieurs variables Corrigé n o : f est définie sur R \ {, } Pour, f, = Quand tend vers, le couple, tend vers le couple, et f, tend vers Donc, si f a une limite réelle en, cette

Plus en détail

MATHEMATIQUES Option Economique

MATHEMATIQUES Option Economique Concours EDHEC 9 Classes Préparatoires MATHEMATIQUES Option Economique La présentation, la lisibilité, l'orthographe, la qualité de la rédaction, la clarté et la précision des raisonnements entreront pour

Plus en détail

C f tracée ci- contre est la représentation graphique d une

C f tracée ci- contre est la représentation graphique d une TLES1 DEVOIR A LA MAISON N 7 La courbe C f tracée ci- contre est la représentation graphique d une fonction f définie et dérivable sur R. On note f ' la fonction dérivée de f. La tangente T à la courbe

Plus en détail

Exercice autour de densité, fonction de répatition, espérance et variance de variables quelconques.

Exercice autour de densité, fonction de répatition, espérance et variance de variables quelconques. 14-3- 214 J.F.C. p. 1 I Exercice autour de densité, fonction de répatition, espérance et variance de variables quelconques. Exercice 1 Densité de probabilité. F { ln x si x ], 1] UN OVNI... On pose x R,

Plus en détail

Baccalauréat ES/L Métropole 12 septembre 2014 Corrigé

Baccalauréat ES/L Métropole 12 septembre 2014 Corrigé Baccalauréat ES/L Métropole 12 septembre 2014 orrigé A. P. M. E. P. Exercice 1 6 points ommun à tous les candidats Avant de réaliser une opération marketing en début de saison, un revendeur de piscines

Plus en détail

Image d un intervalle par une fonction continue

Image d un intervalle par une fonction continue DOCUMENT 27 Image d un intervalle par une fonction continue La continuité d une fonction en un point est une propriété locale : une fonction est continue en un point x 0 si et seulement si sa restriction

Plus en détail

Corrigé de l examen partiel du 30 Octobre 2009 L2 Maths

Corrigé de l examen partiel du 30 Octobre 2009 L2 Maths Corrigé de l examen partiel du 30 Octobre 009 L Maths (a) Rappelons d abord le résultat suivant : Théorème 0.. Densité de Q dans R. QUESTIONS DE COURS. Preuve. Il nous faut nous montrer que tout réel est

Plus en détail

AVRIL 2012 CONCOURS INGÉNIEURS STATISTICIENS ÉCONOMISTES. ISE Option Économie. ORDRE GÉNÉRAL (Durée de l épreuve : 4 heures)

AVRIL 2012 CONCOURS INGÉNIEURS STATISTICIENS ÉCONOMISTES. ISE Option Économie. ORDRE GÉNÉRAL (Durée de l épreuve : 4 heures) ÉCOLE NATIONALE SUPÉRIEURE DE STATISTIQUE ET D ÉCONOMIE APPLIQUÉE ENSEA ABIDJAN INSTITUT SOUS-RÉGIONAL DE STATISTIQUE ET D ÉCONOMIE APPLIQUÉE ISSEA YAOUNDÉ AVRIL 2012 CONCOURS INGÉNIEURS STATISTICIENS

Plus en détail

Exercice 3 (5 points) A(x) = 1-e -0039' -0 156e- 0,039x A '() -'-,..--,-,--,------:-- X = (l_e-0,039x)2

Exercice 3 (5 points) A(x) = 1-e -0039' -0 156e- 0,039x A '() -'-,..--,-,--,------:-- X = (l_e-0,039x)2 Les parties A et B sont indépendantes. Partie A Exercice 3 (5 points) Commun à tous les candidats On considère la fonction A définie sur l'intervalle [1 ; + 00 [ par A(x) = 1-e -0039' ' x 1. Calculer la

Plus en détail

212 année 2013/2014 DM de synthèse 2

212 année 2013/2014 DM de synthèse 2 22 année 20/204 DM de synthèse 2 Exercice Soit f la fonction représentée cicontre.. Donner l'ensemble de définition de la fonction f. 2. Donner l'image de 4 par f.. a. Donner un nombre qui n'a qu'un seul

Plus en détail

Corrigé du baccalauréat S Pondichéry 13 avril 2011

Corrigé du baccalauréat S Pondichéry 13 avril 2011 Corrigé du baccalauréat S Pondichéry avril EXERCICE Commun à tous ls candidats Parti I points. L ax ds ordonnés st asymptot à C au voisinag d ; la fonction étant décroissant sur ] ; + [, la limit quand

Plus en détail

Vecteurs Géométrie dans le plan Exercices corrigés

Vecteurs Géométrie dans le plan Exercices corrigés Vecteurs Géométrie dans le plan Exercices corrigés Sont abordés dans cette fiche : Exercice 1 : notion de vecteur, transformation de points par translation et vecteurs égaux Exercice 2 : parallélogramme

Plus en détail

Mercredi 24 Juin 2015

Mercredi 24 Juin 2015 BACCALAURÉAT GÉNÉRAL Session 2015 MATHÉMATIQUES Série ES ENSEIGNEMENT OBLIGATOIRE Durée de l épreuve : 3 heures coefficient : 5 MATHÉMATIQUES Série L ENSEIGNEMENT DE SPÉCIALITÉ Durée de l épreuve : 3 heures

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable Eo7 Fonctions de plusieurs variables Eercices de Jean-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-francefr * très facile ** facile *** difficulté moenne **** difficile ***** très difficile I

Plus en détail

Fonctions de plusieurs variables

Fonctions de plusieurs variables Module : Analyse 03 Chapitre 00 : Fonctions de plusieurs variables Généralités et Rappels des notions topologiques dans : Qu est- ce que?: Mathématiquement, n étant un entier non nul, on définit comme

Plus en détail

L usage de la calculatrice n est pas autorisé.

L usage de la calculatrice n est pas autorisé. e3a Concours ENSAM - ESTP - EUCLIDE - ARCHIMÈDE Épreuve de Mathématiques A durée 4 heures MP L usage de la calculatrice n est pas autorisé. Si, au cours de l épreuve, un candidat repère ce qui lui semble

Plus en détail

Baccalauréat ES Polynésie (spécialité) 10 septembre 2014 Corrigé

Baccalauréat ES Polynésie (spécialité) 10 septembre 2014 Corrigé Baccalauréat ES Polynésie (spécialité) 10 septembre 2014 Corrigé A. P. M. E. P. Exercice 1 5 points 1. Réponse d. : 1 e Le coefficient directeur de la tangente est négatif et n est manifestement pas 2e

Plus en détail

mathématiques mathématiques mathématiques mathématiques mathématiques mathématiques SÉRIE ES ANNALES DES SUJETS DE MATHÉMATIQUES SESSION 2013

mathématiques mathématiques mathématiques mathématiques mathématiques mathématiques SÉRIE ES ANNALES DES SUJETS DE MATHÉMATIQUES SESSION 2013 mathématiques mathématiques mathématiques mathématiques mathématiques mathématiques mathématiques mathématiques mathématiques mathématiques mathématiques mathématiques mathématiques mathématiques mathématiques

Plus en détail

mathématiques mathématiques mathématiques mathématiques

mathématiques mathématiques mathématiques mathématiques mathématiques mathématiques mathématiques mathématiques mathématiques mathématiques mathématiques mathématiques mathématiques mathématiques mathématiques mathématiques mathématiques mathématiques mathématiques

Plus en détail

Second degré : Résumé de cours et méthodes

Second degré : Résumé de cours et méthodes Second degré : Résumé de cours et méthodes 1 Définitions : DÉFINITIN n appelle trinôme du second degré toute fonction f définie sur R par f () = a + b + c (a,b et c réels avec a 0). Remarque : Par abus

Plus en détail

Collège Henri Meck lundi 4 mai 2009 Molsheim BREVET BLANC DE MATHEMATIQUES N 2. ( Extraits d'épreuves du brevet de 2007 et 2008 ) PRESENTATION 4 pts

Collège Henri Meck lundi 4 mai 2009 Molsheim BREVET BLANC DE MATHEMATIQUES N 2. ( Extraits d'épreuves du brevet de 2007 et 2008 ) PRESENTATION 4 pts Collège Henri Meck lundi 4 mai 2009 Molsheim BREVET BLANC DE MATHEMATIQUES N 2 ( Extraits d'épreuves du brevet de 2007 et 2008 ) PRESENTATION 4 pts Rappel : Présenter les parties de l'épreuve sur feuilles

Plus en détail

Contrôle de mathématiques

Contrôle de mathématiques Contrôle de mathématiques Correction du Lundi 18 octobre 2010 Exercice 1 Diviseurs (5 points) 1) Trouver dans N tous les diviseurs de 810. D 810 = {1; 2; 3; 5; 6; 9; 10; 15; 18; 27; 30; 45; 54; 81; 90;

Plus en détail

MATHS Rappels Suites, Fonctions, Développements limités

MATHS Rappels Suites, Fonctions, Développements limités INSTITUT NATIONAL POLYTECHNIQUE DE TOULOUSE MATHS Rappels Suites, Fonctions, Développements limités Pascal Floquet Xuân Meyer Première Année à Distance Septembre 006 Jean-Claude Satge Table des matières

Plus en détail

Chap 4. La fonction exponentielle Terminale S. Lemme : Si est une fonction dérivable sur R telle que : = et 0! = 1 alors ne s annule pas sur R.

Chap 4. La fonction exponentielle Terminale S. Lemme : Si est une fonction dérivable sur R telle que : = et 0! = 1 alors ne s annule pas sur R. Lemme : Si est une fonction dérivable sur R telle que : = et 0! = 1 alors ne s annule pas sur R. Démonstration : Soit la fonction %:& %&!= &!, elle est dérivable sur R et & R, %. &!= &! = &! = %&! gaelle.buffet@ac-montpellier.fr

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours Exo7 Continuité (étude globale). Diverses fonctions Exercices de Jean-Louis Rouget. Retrouver aussi cette fiche sur www.maths-france.fr * très facile ** facile *** difficulté moyenne **** difficile *****

Plus en détail

MPSI PCSI PTSI. Julien Freslon polytechnicien, professeur agrégé de mathématiques en classe préparatoire au lycée Dessaignes de Blois.

MPSI PCSI PTSI. Julien Freslon polytechnicien, professeur agrégé de mathématiques en classe préparatoire au lycée Dessaignes de Blois. Mathématiques Exercices incontournables MPSI PCSI PTSI Julien Freslon polytechnicien, professeur agrégé de mathématiques en classe préparatoire au lycée Dessaignes de Blois. Jérôme Poineau polytechnicien,

Plus en détail

Baccalauréat L spécialité, Métropole et Réunion, 19 juin 2009 Corrigé.

Baccalauréat L spécialité, Métropole et Réunion, 19 juin 2009 Corrigé. Baccalauréat L spécialité, Métropole et Réunion, 19 juin 2009 Corrigé. L usage d une calculatrice est autorisé Durée : 3heures Deux annexes sont à rendre avec la copie. Exercice 1 5 points 1_ Soit f la

Plus en détail

PRÉPARATION DU BACCALAURÉAT MATHÉMATIQUES. SÉRIE ES Obligatoire et Spécialité

PRÉPARATION DU BACCALAURÉAT MATHÉMATIQUES. SÉRIE ES Obligatoire et Spécialité PRÉPARATIN DU BACCALAURÉAT MATHÉMATIQUES SÉRIE ES bligatoire et Spécialité Décembre 0 Durée de l épreuve : heures Coefficient : ou L usage d une calculatrice électronique de poche à alimentation autonome,

Plus en détail

5. Étude de fonctions

5. Étude de fonctions ÉTUDE DE FONCTIONS 33 5. Étude de fonctions 5.1. Asymptotes Asymptote verticale La droite = a est dite asymptote verticale (A. V.) de la fonction f si l'une au moins des conditions suivantes est vérifiée

Plus en détail

Eléments de correction du Bac Blanc n 2 de Mathématiquesdu Lundi 8 Avril2013. Calculatrice autorisée - Aucun document n'est autorisé.

Eléments de correction du Bac Blanc n 2 de Mathématiquesdu Lundi 8 Avril2013. Calculatrice autorisée - Aucun document n'est autorisé. TES Spé Maths Eléments de correction du Bac Blanc n 2 de Mathématiquesdu Lundi 8 Avril2013 Calculatrice autorisée - Aucun document n'est autorisé. Vous apporterez un grand soin à la présentation et à la

Plus en détail

T ES DEVOIR N 1 SEPTEMBRE 2013

T ES DEVOIR N 1 SEPTEMBRE 2013 T ES DEVOIR N 1 SEPTEMBRE 2013 Durée : 2h NOM : Prénom : Calculatrice autorisée «Le candidat est invité à faire figurer sur la copie toute trace de recherche, même incomplète ou non fructueuse, qu il aura

Plus en détail

Baccalauréat STI Génie civil Métropole 16 septembre 2010

Baccalauréat STI Génie civil Métropole 16 septembre 2010 Durée : 4 heures Baccalauréat STI Génie civil Métropole 16 septembre 010 L utilisation d une calculatrice est autorisée pour cette épreuve. Le candidat doit traiter les deux exercices et le problème. EXERCICE

Plus en détail

Baccalauréat ES/L Métropole La Réunion 13 septembre 2013 Corrigé

Baccalauréat ES/L Métropole La Réunion 13 septembre 2013 Corrigé Baccalauréat S/L Métropole La Réunion 13 septembre 2013 Corrigé A. P. M.. P. XRCIC 1 Commun à tous les candidats Partie A 1. L arbre de probabilité correspondant aux données du problème est : 0,3 0,6 H

Plus en détail

Etude de fonctions: procédure et exemple

Etude de fonctions: procédure et exemple Etude de fonctions: procédure et exemple Yves Delhaye 8 juillet 2007 Résumé Dans ce court travail, nous présentons les différentes étapes d une étude de fonction à travers un exemple. Nous nous limitons

Plus en détail

Mathématiques mise à niveau - 521

Mathématiques mise à niveau - 521 Mathématiques mise à niveau - 521 Ces trois modules de mathématiques 521 ont été conçus pour préparer le PR1 de l activité SES option Informatique (EV7). Cette formation est néanmoins ouverte aux agents

Plus en détail

MATIÈRE DU COURS D'ALGÈBRE ET D'ANALYSE

MATIÈRE DU COURS D'ALGÈBRE ET D'ANALYSE MATIÈRE DU COURS D'ALGÈBRE ET D'ANALYSE Titulaire : A.M. Tilkin 8h/semaine 1) MATIERE DE 4 e ANNEE a) ALGEBRE - Rappels algébriques concernant la résolution d équations et d inéquations (fractionnaires

Plus en détail

Baccalauréat SMS 2001 L intégrale de juin à novembre 2001

Baccalauréat SMS 2001 L intégrale de juin à novembre 2001 Baccalauréat SMS 001 L intégrale de juin à novembre 001 Antilles Guyane juin 001............................... 3 La Réunion juin 001.................................... 5 Métropole juin 001.....................................

Plus en détail

CCP PSI - 2010 Mathématiques 1 : un corrigé

CCP PSI - 2010 Mathématiques 1 : un corrigé CCP PSI - 00 Mathématiques : un corrigé Première partie. Définition d une structure euclidienne sur R n [X]... B est clairement symétrique et linéaire par rapport à sa seconde variable. De plus B(P, P

Plus en détail

8.1 Généralités sur les fonctions de plusieurs variables réelles. f : R 2 R (x, y) 1 x 2 y 2

8.1 Généralités sur les fonctions de plusieurs variables réelles. f : R 2 R (x, y) 1 x 2 y 2 Chapitre 8 Fonctions de plusieurs variables 8.1 Généralités sur les fonctions de plusieurs variables réelles Définition. Une fonction réelle de n variables réelles est une application d une partie de R

Plus en détail

Devoir Surveillé n 5 BTS 2009 groupement B

Devoir Surveillé n 5 BTS 2009 groupement B EXERCICE 1 (12 points) Devoir Surveillé n 5 BTS 2009 groupement B Les trois parties de cet exercice peuvent être traitées de façon indépendante. A. Résolution d une équation différentielle On considère

Plus en détail

POLY-PREPAS ANNEE 2009/2010 Centre de Préparation aux Concours Paramédicaux

POLY-PREPAS ANNEE 2009/2010 Centre de Préparation aux Concours Paramédicaux POLY-PREPAS ANNEE 2009/2010 Centre de Préparation aux Concours Paramédicaux - Section : i-prépa Audioprothésiste (annuel) - MATHEMATIQUES 8 : EQUATIONS DIFFERENTIELLES - COURS + ENONCE EXERCICE - Olivier

Plus en détail

Fonctions de deux variables. Mai 2011

Fonctions de deux variables. Mai 2011 Fonctions de deux variables Dédou Mai 2011 D une à deux variables Les fonctions modèlisent de l information dépendant d un paramètre. On a aussi besoin de modéliser de l information dépendant de plusieurs

Plus en détail

BREVET BLANC DE MAI 2012

BREVET BLANC DE MAI 2012 COLLEGE GASPARD DES MONTAGNES BREVET BLANC DE MAI 2012 Ce sujet comporte 8 pages numérotées de 1/8 à 8/8, dont une feuille annexe à remettre avec la copie. L usage de la calculatrice est autorisé. Notation

Plus en détail

Concours de recrutement interne PLP 2009

Concours de recrutement interne PLP 2009 Concours de recrutement interne PLP 2009 Le sujet est constitué de quatre exercices indépendants. Le premier exercice, de nature pédagogique au niveau du baccalauréat professionnel, porte sur le flocon

Plus en détail

a et b étant deux nombres relatifs donnés, une fonction affine est une fonction qui a un nombre x associe le nombre ax + b

a et b étant deux nombres relatifs donnés, une fonction affine est une fonction qui a un nombre x associe le nombre ax + b I Définition d une fonction affine Faire l activité 1 «une nouvelle fonction» 1. définition générale a et b étant deux nombres relatifs donnés, une fonction affine est une fonction qui a un nombre x associe

Plus en détail

Baccalauréat ES Amérique du Nord 4 juin 2008

Baccalauréat ES Amérique du Nord 4 juin 2008 Baccalauréat ES Amérique du Nord 4 juin 2008 EXERCICE 1 Commun à tous les candidats f est une fonction définie sur ] 2 ; + [ par : 4 points f (x)=3+ 1 x+ 2. On note f sa fonction dérivée et (C ) la représentation

Plus en détail

Problèmes de Mathématiques MPSI. Erwan Biland

Problèmes de Mathématiques MPSI. Erwan Biland Problèmes de Mathématiques MPSI Erwan Biland Lycée Stanislas, classe de MPSI 1, 2009/2010 Ce recueil réunit une partie des problèmes posés aux élèves de PCSI 1 puis MPSI 1, en temps libre ou en temps limité,

Plus en détail

FONCTION EXPONENTIELLE ( ) 2 = 0.

FONCTION EXPONENTIELLE ( ) 2 = 0. FONCTION EXPONENTIELLE I. Définition Théorème : Il eiste une unique fonction f dérivable sur R telle que f ' = f et f (0) =. Démonstration de l'unicité (eigible BAC) : L'eistence est admise - Démontrons

Plus en détail

Fonction réciproque. Christelle MELODELIMA. Chapitre 2 :

Fonction réciproque. Christelle MELODELIMA. Chapitre 2 : UE4 : Evaluation des méthodes d analyses appliquées aux sciences de la vie et de la santé Analyse Chapitre 2 : Fonction réciproque Christelle MELODELIMA Année universitaire 2011/2012 Université Joseph

Plus en détail

Continuité et dérivabilité d une fonction

Continuité et dérivabilité d une fonction DERNIÈRE IMPRESSIN LE 7 novembre 014 à 10:3 Continuité et dérivabilité d une fonction Table des matières 1 Continuité d une fonction 1.1 Limite finie en un point.......................... 1. Continuité

Plus en détail

Limites finies en un point

Limites finies en un point 8 Limites finies en un point Pour ce chapitre, sauf précision contraire, I désigne une partie non vide de R et f une fonction définie sur I et à valeurs réelles ou complees. Là encore, les fonctions usuelles,

Plus en détail

Mathématiques en Terminale ES. David ROBERT

Mathématiques en Terminale ES. David ROBERT Mathématiques en Terminale ES David ROBERT 0 0 Sommaire Suites. Activités........................................................... Suites géométriques Rappels..............................................

Plus en détail

Calcul intégral élémentaire en plusieurs variables

Calcul intégral élémentaire en plusieurs variables Calcul intégral élémentaire en plusieurs variables PC*2 2 septembre 2009 Avant-propos À part le théorème de Fubini qui sera démontré dans le cours sur les intégrales à paramètres et qui ne semble pas explicitement

Plus en détail

Fonctions homographiques

Fonctions homographiques Seconde-Fonctions homographiques-cours Mai 0 Fonctions homographiques Introduction Voir le TP Géogébra. La fonction inverse. Définition Considérons la fonction f définie par f() =. Alors :. f est définie

Plus en détail

Correction du Baccalauréat S Amérique du Nord mai 2007

Correction du Baccalauréat S Amérique du Nord mai 2007 Correction du Baccalauréat S Amérique du Nord mai 7 EXERCICE points. Le plan (P) a une pour équation cartésienne : x+y z+ =. Les coordonnées de H vérifient cette équation donc H appartient à (P) et A n

Plus en détail

BACCALAUREAT GENERAL

BACCALAUREAT GENERAL ACCALAUREAT GENERAL Session 2009 MATHÉMATIQUES - Série ES - Enseignement de Spécialité Liban EXERCICE 1 1) 2) C 3) C 4) A Explication 1. Chacun des logarithmes existe si et seulement si x > 4 et x > 2

Plus en détail

Utiliser les propriétés Savoir réduire un radical savoir +,-,x,: Utiliser les propriétés des puissances Calculer avec des puissances

Utiliser les propriétés Savoir réduire un radical savoir +,-,x,: Utiliser les propriétés des puissances Calculer avec des puissances ARITHMETIQUE 1 C B A Numération Ecrire en lettres et en chiffres Poser des questions fermées autour d un document simple (message, consigne, planning ) Connaître le système décimal Déterminer la position

Plus en détail