Programme des colles de mathématiques. Semaine 16 : du lundi 01 février au vendredi 05.

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Programme des colles de mathématiques. Semaine 16 : du lundi 01 février au vendredi 05."

Transcription

1 Programme des colles de mathématiques. Semaine 16 : du lundi 01 février au vendredi 05. Liste des questions de cours 1 ) Donner les trois définitions de la notion de limite en un point : définition séquentielle, définition par ε et définition par voisinages. Démontrer qu elles sont équivalentes. 2 ) L application (x, y) x3 e x+y avec (x, y) x2 e x+y x 2 + y 2. x 2 + y 2 est-elle prolongeable par continuité en (0, 0)? Même question 3 ) Montrer que l image réciproque d un ouvert par une application continue est un ouvert. 4 ) Montrer que {(x, y, z) R 3 / ln(x 2 +1) < sin(xyz)+2} est un ouvert de R 3. Montrer que GL n (K) est un ouvert de M n (K). 5 ) Caractérisation d une application linéaire continue. Enoncé et démonstration. 6 ) Sur E = C([0, 1], R), avec les normes 1 et, étudier la continuité de ϕ : f f(0). 7 ) On note LC(E) l ensemble des endomorphismes continus sur E. Montrer qu en posant u LC(E) u = u(x) E, on définit une norme sur LC(E). sup x E x E 1 Montrer que u LC(E) x E u(x) E u x E et (u, v) LC(E) 2 v u v u. 8 ) Donner la définition de la continuité uniforme. Enoncer et établir sa caractérisation séquentielle. 9 ) Image directe d un compact par une application continue. Enoncé et démonstration. Qu en déduiton lorsque l espace d arrivée est R (justifier)? 10 ) Enoncer et démontrer le théorème de Heine. Continuité et compacité 1 Limite en un point Définition. Soient A une partie de D f et a A. f(x) x a (x n ) n N A N x n a = f(x n) l, ou bien ε R + α R + x A ( x a E < α = f(x) l F < ε), ou bien V V(l) U V(a) f(u A) V. l, ou l = x a lim f(x) si et seulement si : Propriété. C aractère local de la notion de limite : Pour tout U 0 V(a), f(x) x a l f(x) x a l. U 0 Propriété. Unicité de la limite. 1

2 Propriété. On suppose que E = R. f(x) l si et seulement si f(x) admet une limite à droite et x a une limite à gauche de a et que ces deux limites sont égales. Propriété. Si f(x) x a l et si f(a) B, alors l B. 2 Continuité en un point Définition. f est continue en a si et seulement si f(x) x a f(a). x D f Propriété. Les applications lipschitziennes sont continues. Propriété. Si f est continue en a, alors f /A est aussi continue en a. Propriété. Si E = R, f est continue en a si et seulement si f est continue à droite et à gauche en a. Définition. Soit D D f. f : D F est un prolongement par continuité de f sur D si et seulement si f est continue et f /Df = f. Définition. Soit a D f \ D f. f admet un prolongement par continuité en a si et seulement si f admet une limite en a. Dans ce cas, l unique prolongement par continuité f de f est donné par f(a) = x a lim f(x). x a 3 Théorèmes de composition Propriété. Soient A E, a A, B F telle que f(a) B, b F et l G. Pour que g(f(x)) x a l, il suffit que f(x) x a b et que g(y) l. y b y B Corollaire. Si f est continue en a et g en f(a), alors g f est continue en a. Propriété. Limite en un point d une application à valeurs dans un produit. Si F = F 1 F q, notons. Soient A une partie de E, x f(x) = (f 1 (x),..., f q (x)) a A et l = (l 1,..., l q ) F. Alors, f(x) x a l si et seulement si pour tout i N q, f i (x) x a l i. Propriété. Limite d une application à valeurs dans un espace de dimension finie. Si F a pour base (e 1,..., e q ), notons. Soient A une partie de E, x f(x) = f i (x)e i a A et l = l i e i F. Alors, f(x) x a l si et seulement si pour tout i N q, f i (x) x a l i. Propriété. Continuité en un point d une application à valeurs dans un produit. Si F = F 1 F q, notons x f(x) = (f 1 (x),..., f q (x)). Soit a D f. Alors, f est continue en a si et seulement si pour tout i N q, f i est continue en a. Propriété. Continuité en un point d une application à valeurs dans un espace de dimension finie. Si F a pour base (e 1,..., e q ), notons. Soit a D x f(x) = f i (x)e f. Alors, f est continue en a si et seulement si pour tout i i N q, f i est continue en a. c Eric Merle 2 MP Fénelon

3 4 Opérations algébriques sur les limites Propriété. Si f(x) x a l et g(x) x a l, alors (f + g)(x) x a l + l. Propriété. Si f et g sont continues en a, f + g est continue en a. Propriété. Soient ϕ : E K, définie sur D ϕ, A D f D ϕ, a A et (α, l) K F. Si f(x) x a l et ϕ(x) x a α, alors (ϕ.f)(x) x a α.l. Propriété. Principe des gendarmes. Si x A h 1 (x) h 2 (x) h 3 (x), h 1 (x) x a alors h 2 (x) x a l. l et h 3 (x) x a l, Propriété. Le produit d une application scalaire continue par une application vectorielle continue est continue. 5 Extension aux limites infinies On étend la notation f(x) x a l aux cas suivants : Premier cas : E = R, A n est pas majoré et a = +, Deuxième cas : E = R, A n est pas minoré et a =, et Troisième cas : F = R et l = ±. Quatrième cas : A est une partie non bornée de E et a =. Cinquième cas : l =. Pour ceci, on étend la définition séquentielle de la notion de limite en un point. Propriété. f(x) x + l si et seulement si ε R + M R + x A (x M = f(x) l < ε). Propriété. f(x) x a + si et seulement si M R + α R + x A ( x a α = f(x) M). Propriété. La propriété de composition des limites se généralise aux cas des limites infinies. Les propriétés d opérations algébriques sur les limites de fonctions se généralisent aux cas des limites infinies, les formes indéterminées étant exceptées. Remarque. Si ϕ : N N vérifie ϕ(n) +, et si (x n) E N n + x n l E, alors, par composition des limites, x ϕ(n) l. 6 Continuité globale est une suite telle que Propriété. Soit A une partie de E. L ensemble C(A, F ) des applications continues de A dans F est un K-espace vectoriel et C(A, K) est une K-algèbre. Théorème. Les propriétés suivantes sont équivalentes : i) f est continue. ii) L image réciproque par f de tout ouvert de F est un ouvert pour la topologie induite sur D f. ii) L image réciproque par f de tout fermé de F est un fermé pour la topologie induite sur D f. 7 Continuité d une application linéaire Théorème. On suppose que f L(E, F ). Alors f est continue si et seulement si il existe k R + tel que x E f(x) k x. c Eric Merle 3 MP Fénelon

4 8 La continuité uniforme Définition. f est uniformément continue sur D f si et seulement si ε R + α R + (x, y) D 2 f ( x y E α = f(x) f(y) F ε). Propriété. Caractérisation séquentielle de la continuité uniforme : f est uniformément continue si et seulement si pour tout couple ((x n ), (y n )) de suites d éléments de D f tel que d(x n, y n ) 0, d(f(x n), f(y n )) 0. Propriété. La composée de deux applications uniformément continues est uniformément continue. Propriété. Les applications lipschitziennes sont uniformément continues. Propriété. Si F = F 1 F q, où q N et F 1,..., F q sont q espaces vectoriels normés, l application x (f 1 (x),..., f q (x)) est uniformément continue si et seulement si pour tout i N q, f i est uniformément continue. Propriété. Si F est de dimension finie, égale à q N et si e = (e 1,..., e q ) est une base de F, l application est uniformément continue si et seulement si pour tout x f i (x)e i i N q, f i est uniformément continue. 9 Comparaison des fonctions vectorielles au voisinage d un point Brève extension des notations O, o et au cas des fonctions vectorielles. 10 Compacts Définition. Une suite extraite de (x n ) est une suite de la forme (x ϕ(n) ), où ϕ : N N est une application strictement croissante. Propriété. Si (x n ) converge, toute suite extraite de (x n ) converge vers la même limite. Propriété. Une suite extraite d une suite extraite de (x n ) est encore une suite extraite de (x n ). Définition. On appelle valeur d adhérence de la suite (x n ) toute limite d une suite extraite de (x n ). Définition. A est compacte si et seulement si toute suite d éléments de A admet au moins une valeur d adhérence dans A. Propriété. Tout compact de E est fermé et borné. Propriété. Soit A un compact de E et B A. Alors B est compact si et seulement s il est fermé. Théorème. Une suite d éléments d une partie compacte converge si et seulement si elle admet une unique valeur d adhérence. Théorème. L image directe d un compact par une application continue est un compact. Corollaire. Soient A un compact non vide de E et f : A R une application continue. Alors f est bornée et elle atteint ses bornes, c est-à-dire qu il existe (x m, x M ) A 2 tel que, pour tout x A, f(x m ) f(x) f(x M ). Théorème. Un produit cartésien de compacts est compact. Théorème de Heine. Toute application continue sur un compact est uniformément continue. c Eric Merle 4 MP Fénelon

5 11 Suites de Cauchy (hors programme) Définition. (x n ) est une suite de Cauchy si et seulement si ε R + N N p N q N d(x p, x q ) ε. Propriété. Toute suite convergente est une suite de Cauchy. Propriété. Toute suite de Cauchy de E est bornée. Propriété. Si une suite de Cauchy possède une valeur d adhérence alors elle est convergente. 12 En dimension finie Théorème. Sur un espace vectoriel de dimension finie, toutes les normes sont équivalentes. Théorème. Les compacts d un espace vectoriel de dimension finie sont les fermés bornés. Théorème de Bolzano-Weierstrass. De toute suite bornée de vecteurs d un espace vectoriel de dimension finie, on peut extraire une sous-suite convergente. Théorème. fermé. Dans un K-espace vectoriel normé, tout sous-espace vectoriel de dimension finie est Théorème. Toute application linéaire dont l ensemble de départ est un K-espace vectoriel de dimension finie est continue. Théorème. toute application multilinéaire dont l ensemble de départ est un produit d espaces vectoriels de dimensions finies est continue. Théorème. Les applications polynômiales de K n dans K sont continues. c Eric Merle 5 MP Fénelon

Amphi 3: Espaces complets - Applications linéaires continues

Amphi 3: Espaces complets - Applications linéaires continues Amphi 3: Espaces complets - Applications linéaires continues Département de Mathématiques École polytechnique Remise en forme mathématique 2013 Suite de Cauchy Soit (X, d) un espace métrique. Une suite

Plus en détail

Continuité d une fonction de plusieurs variables

Continuité d une fonction de plusieurs variables Chapitre 2 Continuité d une fonction de plusieurs variables Maintenant qu on a défini la notion de limite pour des suites dans R n, la notion de continuité s étend sans problème à des fonctions de plusieurs

Plus en détail

Cours MP. Espaces vectoriels normés

Cours MP. Espaces vectoriels normés Table des matières Espaces vectoriels normés B. Seddoug. Médiane Sup, Oujda I Norme et distance 1 I.1 Définitions..................... 1 I.2 Evn produit.................... 12 I.3 Notions topologiques

Plus en détail

Agrégation interne de Mathématiques. Session 2009. Deuxième épreuve écrite. (et CAERPA)

Agrégation interne de Mathématiques. Session 2009. Deuxième épreuve écrite. (et CAERPA) Agrégation interne de Mathématiques (et CAEPA Session 2009 Deuxième épreuve écrite 2 NOTATIONS ET PÉLIMINAIES On désigne par le corps des nombres réels et par C le corps des nombres complexes. Si f est

Plus en détail

Limites finies en un point

Limites finies en un point 8 Limites finies en un point Pour ce chapitre, sauf précision contraire, I désigne une partie non vide de R et f une fonction définie sur I et à valeurs réelles ou complees. Là encore, les fonctions usuelles,

Plus en détail

Image d un intervalle par une fonction continue

Image d un intervalle par une fonction continue DOCUMENT 27 Image d un intervalle par une fonction continue La continuité d une fonction en un point est une propriété locale : une fonction est continue en un point x 0 si et seulement si sa restriction

Plus en détail

Continuité en un point

Continuité en un point DOCUMENT 4 Continuité en un point En général, D f désigne l ensemble de définition de la fonction f et on supposera toujours que cet ensemble est inclus dans R. Toutes les fonctions considérées sont à

Plus en détail

I. Polynômes de Tchebychev

I. Polynômes de Tchebychev Première épreuve CCP filière MP I. Polynômes de Tchebychev ( ) 1.a) Tout réel θ vérifie cos(nθ) = Re ((cos θ + i sin θ) n ) = Re Cn k (cos θ) n k i k (sin θ) k Or i k est réel quand k est pair et imaginaire

Plus en détail

TD2 Fonctions mesurables Corrigé

TD2 Fonctions mesurables Corrigé Intégration et probabilités 2012-2013 TD2 Fonctions mesurables Corrigé 0 Exercice qui avait été préparé chez soi Exercice 1. Soit (Ω, F, µ) un espace mesuré tel que µ (Ω) = 1. Soient A, B P (Ω) deux sousensembles

Plus en détail

Cours d Analyse 3 Fonctions de plusieurs variables

Cours d Analyse 3 Fonctions de plusieurs variables Université Claude Bernard, Lyon I Licence Sciences, Technologies & Santé 43, boulevard 11 novembre 1918 Spécialité Mathématiques 69622 Villeurbanne cedex, France L. Pujo-Menjouet pujo@math.univ-lyon1.fr

Plus en détail

Université de Nantes Année 2009-2010 Faculté des Sciences et des Techniques Département de Mathématiques. Topologie et calculs différentiel Liste n 5

Université de Nantes Année 2009-2010 Faculté des Sciences et des Techniques Département de Mathématiques. Topologie et calculs différentiel Liste n 5 Université de Nantes Année 009-010 Faculté des Sciences et des Techniques Département de Mathématiques Topologie et calculs différentiel Liste n 5 Applications Différentiables Exercice 1. Soit f : R n

Plus en détail

3 Approximation de solutions d équations

3 Approximation de solutions d équations 3 Approximation de solutions d équations Une équation scalaire a la forme générale f(x) =0où f est une fonction de IR dans IR. Un système de n équations à n inconnues peut aussi se mettre sous une telle

Plus en détail

Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre

Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre IUFM du Limousin 2009-10 PLC1 Mathématiques S. Vinatier Rappels de cours Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre 1 Fonctions de plusieurs variables

Plus en détail

Théorie spectrale. Stéphane Maingot & David Manceau

Théorie spectrale. Stéphane Maingot & David Manceau Théorie spectrale Stéphane Maingot & David Manceau 2 Théorie spectrale 3 Table des matières Introduction 5 1 Spectre d un opérateur 7 1.1 Inversibilité d un opérateur........................... 7 1.2 Définitions

Plus en détail

Calcul fonctionnel holomorphe dans les algèbres de Banach

Calcul fonctionnel holomorphe dans les algèbres de Banach Chapitre 7 Calcul fonctionnel holomorphe dans les algèbres de Banach L objet de ce chapitre est de définir un calcul fonctionnel holomorphe qui prolonge le calcul fonctionnel polynômial et qui respecte

Plus en détail

Introduction à la Topologie

Introduction à la Topologie Introduction à la Topologie Licence de Mathématiques Université de Rennes 1 Francis Nier Dragoş Iftimie 2 3 Introduction Ce cours s adresse à des étudiants de Licence en mathématiques. Il a pour objectif

Plus en détail

MATHS Rappels Suites, Fonctions, Développements limités

MATHS Rappels Suites, Fonctions, Développements limités INSTITUT NATIONAL POLYTECHNIQUE DE TOULOUSE MATHS Rappels Suites, Fonctions, Développements limités Pascal Floquet Xuân Meyer Première Année à Distance Septembre 006 Jean-Claude Satge Table des matières

Plus en détail

Calculs approchés d un point fixe

Calculs approchés d un point fixe M11 ÉPREUVE COMMUNE DE TIPE 2013 - Partie D TITRE : Calculs approchés d un point fixe Temps de préparation :.. 2 h 15 minutes Temps de présentation devant les examinateurs :.10 minutes Dialogue avec les

Plus en détail

Théorème du point fixe - Théorème de l inversion locale

Théorème du point fixe - Théorème de l inversion locale Chapitre 7 Théorème du point fixe - Théorème de l inversion locale Dans ce chapitre et le suivant, on montre deux applications importantes de la notion de différentiabilité : le théorème de l inversion

Plus en détail

Dualité dans les espaces de Lebesgue et mesures de Radon finies

Dualité dans les espaces de Lebesgue et mesures de Radon finies Chapitre 6 Dualité dans les espaces de Lebesgue et mesures de Radon finies Nous allons maintenant revenir sur les espaces L p du Chapitre 4, à la lumière de certains résultats du Chapitre 5. Sauf mention

Plus en détail

Cours d Analyse. Fonctions de plusieurs variables

Cours d Analyse. Fonctions de plusieurs variables Cours d Analyse Fonctions de plusieurs variables Licence 1ère année 2007/2008 Nicolas Prioux Université de Marne-la-Vallée Table des matières 1 Notions de géométrie dans l espace et fonctions à deux variables........

Plus en détail

MPSI FORMULAIRE LIONEL PORCHERON DANIEL PORCHERON MAGALI DÉCOMBE VASSET. Le Formulaire MPSI

MPSI FORMULAIRE LIONEL PORCHERON DANIEL PORCHERON MAGALI DÉCOMBE VASSET. Le Formulaire MPSI MPSI FORMULAIRE LIONEL PORCHERON DANIEL PORCHERON MAGALI DÉCOMBE VASSET Le Formulaire MPSI Conception et création de couverture : Atelier 3+ Collaboration technique : Thomas Fredon, ingénieur Télécom Bretagne

Plus en détail

Université Paris-Dauphine DUMI2E 1ère année, 2009-2010. Applications

Université Paris-Dauphine DUMI2E 1ère année, 2009-2010. Applications Université Paris-Dauphine DUMI2E 1ère année, 2009-2010 Applications 1 Introduction Une fonction f (plus précisément, une fonction réelle d une variable réelle) est une règle qui associe à tout réel x au

Plus en détail

Intégration et probabilités TD1 Espaces mesurés Corrigé

Intégration et probabilités TD1 Espaces mesurés Corrigé Intégration et probabilités TD1 Espaces mesurés Corrigé 2012-2013 1 Petites questions 1 Est-ce que l ensemble des ouverts de R est une tribu? Réponse : Non, car le complémentaire de ], 0[ n est pas ouvert.

Plus en détail

Commun à tous les candidats

Commun à tous les candidats EXERCICE 3 (9 points ) Commun à tous les candidats On s intéresse à des courbes servant de modèle à la distribution de la masse salariale d une entreprise. Les fonctions f associées définies sur l intervalle

Plus en détail

Mathématiques I. Recueil d exercices #2. Analyse II

Mathématiques I. Recueil d exercices #2. Analyse II FACULTE DES SCIENCES ECONOMIQUES ET SOCIALES Sections des sciences économiques et des hautes études commerciales Mathématiques I Cours du professeur D. Royer Recueil d exercices #2 Analyse II Semestre

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours Exo7 Continuité (étude globale). Diverses fonctions Exercices de Jean-Louis Rouget. Retrouver aussi cette fiche sur www.maths-france.fr * très facile ** facile *** difficulté moyenne **** difficile *****

Plus en détail

Intégration et probabilités 2012-2013. TD3 Intégration, théorèmes de convergence Corrigé. 1 Petites questions. n hésitez pas à m envoyer un mail à

Intégration et probabilités 2012-2013. TD3 Intégration, théorèmes de convergence Corrigé. 1 Petites questions. n hésitez pas à m envoyer un mail à Intégration et probabilités 212-213 TD3 Intégration, théorèmes de convergence Corrigé xercice ayant été voué à être préparé xercice 1 (Mesure image). Soient (, A, µ) un espace mesuré, (F, B) un espace

Plus en détail

Suites numériques 3. 1 Convergence et limite d une suite

Suites numériques 3. 1 Convergence et limite d une suite Suites numériques 3 1 Convergence et limite d une suite Nous savons que les termes de certaines suites s approchent de plus en plus d une certaine valeur quand n augmente : par exemple, les nombres u n

Plus en détail

Partie II. Supplémentaires d un sous-espace donné. Partie I. Partie III. Supplémentaire commun. MPSI B 8 octobre 2015

Partie II. Supplémentaires d un sous-espace donné. Partie I. Partie III. Supplémentaire commun. MPSI B 8 octobre 2015 Énoncé Dans tout le problème, K est un sous-corps de C. On utilisera en particulier que K n est pas un ensemble fini. Tous les espaces vectoriels considérés sont des K espaces vectoriels de dimension finie.

Plus en détail

L2 MIEE 2012-2013 VAR Université de Rennes 1

L2 MIEE 2012-2013 VAR Université de Rennes 1 . Sous-ensembles de R n et fonctions (suite) 1 Nappes paramétrées Si f une fonction de deux variables, son graphe est une surface incluse dans R 3 : {(x, y, f(x, y)) / (x, y) R 2 }. Une telle surface s

Plus en détail

Analyse - Résumés et exercices

Analyse - Résumés et exercices Analyse - Résumés et exercices Georges Skandalis Université Paris Diderot (Paris 7) - IREM Préparation à l Agrégation Interne 6 mars 205 Table des matières Suites de nombres réels. Développement décimal

Plus en détail

M11 - Résumé de cours et exercices d analyses Premier cycle universitaire TABLES DES MATIÈRES

M11 - Résumé de cours et exercices d analyses Premier cycle universitaire TABLES DES MATIÈRES M11 - Résumé de cours et exercices d analyses Premier cycle universitaire TABLES DES MATIÈRES I. Logique. II. Ensemble. III. Relation, fonction, application. IV. Composition, réciprocité. V. Relation d

Plus en détail

PAD - Notes de cours. S. Rigal, D. Ruiz, et J. C. Satgé

PAD - Notes de cours. S. Rigal, D. Ruiz, et J. C. Satgé ALGÈBRE PAD - Notes de cours S. Rigal, D. Ruiz, et J. C. Satgé November 23, 2006 Table des Matières Espaces vectoriels Applications linéaires - Espaces vectoriels............................... 3 -. Approche

Plus en détail

L usage de la calculatrice n est pas autorisé.

L usage de la calculatrice n est pas autorisé. e3a Concours ENSAM - ESTP - EUCLIDE - ARCHIMÈDE Épreuve de Mathématiques A durée 4 heures MP L usage de la calculatrice n est pas autorisé. Si, au cours de l épreuve, un candidat repère ce qui lui semble

Plus en détail

PROGRAMME DE I. NOMBRES COMPLEXES ET GÉOMÉTRIE ÉLÉMENTAIRE CLASSE DE PREMIÈRE ANNÉE MPSI

PROGRAMME DE I. NOMBRES COMPLEXES ET GÉOMÉTRIE ÉLÉMENTAIRE CLASSE DE PREMIÈRE ANNÉE MPSI CLASSE DE PREMIÈRE ANNÉE MPSI Le programme de première année MPSI est organisé en trois parties. Dans une première partie figurent les notions et les objets qui doivent être étudiés dès le début de l année

Plus en détail

Outils d analyse fonctionnelle Cours 5 Théorie spectrale

Outils d analyse fonctionnelle Cours 5 Théorie spectrale Outils d analyse fonctionnelle Cours 5 Théorie spectrale 22 septembre 2015 Généralités Dans tout ce qui suit V désigne un espace de Hilbert réel muni d un produit scalaire x, y. Définition Soit A une application

Plus en détail

Introduction à l Optimisation Numérique

Introduction à l Optimisation Numérique DÉPARTEMENT STPI 3ÈME ANNÉE MIC Introduction à l Optimisation Numérique Frédéric de Gournay & Aude Rondepierre Table des matières Introduction 5 Rappels de topologie dans R n 7 0.1 Ouverts et fermés de

Plus en détail

Exercices - Fonctions de plusieurs variables : corrigé. Pour commencer

Exercices - Fonctions de plusieurs variables : corrigé. Pour commencer Pour commencer Exercice 1 - Ensembles de définition - Première année - 1. Le logarithme est défini si x + y > 0. On trouve donc le demi-plan supérieur délimité par la droite d équation x + y = 0.. 1 xy

Plus en détail

MATHEMATIQUES Option Economique

MATHEMATIQUES Option Economique Concours EDHEC 9 Classes Préparatoires MATHEMATIQUES Option Economique La présentation, la lisibilité, l'orthographe, la qualité de la rédaction, la clarté et la précision des raisonnements entreront pour

Plus en détail

Calcul différentiel sur R n Première partie

Calcul différentiel sur R n Première partie Calcul différentiel sur R n Première partie Université De Metz 2006-2007 1 Définitions générales On note L(R n, R m ) l espace vectoriel des applications linéaires de R n dans R m. Définition 1.1 (différentiabilité

Plus en détail

Fonctions de plusieurs variables

Fonctions de plusieurs variables Module : Analyse 03 Chapitre 00 : Fonctions de plusieurs variables Généralités et Rappels des notions topologiques dans : Qu est- ce que?: Mathématiquement, n étant un entier non nul, on définit comme

Plus en détail

Théorèmes du Point Fixe et Applications aux Equations Diérentielles

Théorèmes du Point Fixe et Applications aux Equations Diérentielles Université de Nice-Sophia Antipolis Mémoire de Master 1 de Mathématiques Année 2006-2007 Théorèmes du Point Fixe et Applications aux Equations Diérentielles Auteurs : Clémence MINAZZO - Kelsey RIDER Responsable

Plus en détail

Mathématiques MPSI. Pierron Théo. ENS Ker Lann

Mathématiques MPSI. Pierron Théo. ENS Ker Lann Mathématiques MPSI Pierron Théo ENS Ker Lann 2 Table des matières I Algèbre 1 1 Ensembles 3 1.1 Vocabulaire général........................ 3 1.2 Opérations sur les parties d un ensemble............ 4

Plus en détail

Analyse. Gaëtan Bisson. bisson@gaati.org

Analyse. Gaëtan Bisson. bisson@gaati.org Analyse Gaëtan Bisson bisson@gaati.org Table des matières Nombres réels 4. Construction........................................ 4. Densité et distance..................................... 6.3 Exercices...........................................

Plus en détail

BACCALAUREAT GENERAL

BACCALAUREAT GENERAL ACCALAUREAT GENERAL Session 2009 MATHÉMATIQUES - Série ES - Enseignement de Spécialité Liban EXERCICE 1 1) 2) C 3) C 4) A Explication 1. Chacun des logarithmes existe si et seulement si x > 4 et x > 2

Plus en détail

Les Interros Corrigées de Sup MPSI-PCSI en Mathématiques

Les Interros Corrigées de Sup MPSI-PCSI en Mathématiques Les Interros Corrigées de Sup MPSI-PCSI en Mathématiques Vandana BHANDARI Marc-Olivier CZARNECKI P R E P AMA TH Collection dirigée par Éric MAURETTE Sommaire Algèbre Notionsdebase... 1,2 Arithmétique...

Plus en détail

Séance de soutien PCSI2 numéro 10 : Espaces vectoriels et applications linéaires

Séance de soutien PCSI2 numéro 10 : Espaces vectoriels et applications linéaires Séance de soutien PCSI2 numéro 10 : Espaces vectoriels et applications linéaires Tatiana Labopin-Richard Mercredi 18 mars 2015 L algèbre linéaire est une très grosse partie du programme de Maths. Il est

Plus en détail

Problème 1 : applications du plan affine

Problème 1 : applications du plan affine Problème 1 : applications du plan affine Notations On désigne par GL 2 (R) l ensemble des matrices 2 2 inversibles à coefficients réels. Soit un plan affine P muni d un repère (O, I, J). Les coordonnées

Plus en détail

COURS METHODES MATHEMATIQUES POUR L INGENIEUR. MAM 3, Polytech Lyon. Ionel Sorin CIUPERCA

COURS METHODES MATHEMATIQUES POUR L INGENIEUR. MAM 3, Polytech Lyon. Ionel Sorin CIUPERCA COURS METHODES MATHEMATIQUES POUR L INGENIEUR MAM 3, Polytech Lyon Ionel Sorin CIUPERCA Le cours s adresse en principal à des élèves des écoles d ingénieurs, filière modélisation mathématique. Une partie

Plus en détail

Espaces vectoriels 2006-2007. Agrégation interne de Mathématiques Département de Mathématiques Université de La Rochelle F.

Espaces vectoriels 2006-2007. Agrégation interne de Mathématiques Département de Mathématiques Université de La Rochelle F. Agrégation interne de Mathématiques Département de Mathématiques Université de La Rochelle 2006-2007 Espaces vectoriels Convention 1. Dans toute la suite, k désignera un corps quelconque. Définition 2.

Plus en détail

Leçon 01 Exercices d'entraînement

Leçon 01 Exercices d'entraînement Leçon 01 Exercices d'entraînement Exercice 1 Etudier la convergence des suites ci-dessous définies par leur terme général: 1)u n = 2n3-5n + 1 n 2 + 3 2)u n = 2n2-7n - 5 -n 5-1 4)u n = lnn2 n+1 5)u n =

Plus en détail

Compacité faible et Axiome du Choix Séminaire ERMIT

Compacité faible et Axiome du Choix Séminaire ERMIT Compacité faible et Axiome du Choix Séminaire ERMIT Marianne Morillon 12 et 19 février 2007 Questions Etant donné un espace normé E, on note par défaut. sa norme, B E sa boule unité large: B E := {x E

Plus en détail

Programme de mathématiques TSI1

Programme de mathématiques TSI1 Programme de mathématiques TSI1 1. PROGRAMME DE DÉBUT D ANNÉE I. Nombres complexes et géométrie élémentaire 1. Nombres complexes 1 2. Géométrie élémentaire du plan 3 3. Géométrie élémentaire de l espace

Plus en détail

Calcul différentiel. Chapitre 1. 1.1 Différentiabilité

Calcul différentiel. Chapitre 1. 1.1 Différentiabilité Chapitre 1 Calcul différentiel L idée du calcul différentiel est d approcher au voisinage d un point une fonction f par une fonction plus simple (ou d approcher localement le graphe de f par un espace

Plus en détail

Différentiabilité ; Fonctions de plusieurs variables réelles

Différentiabilité ; Fonctions de plusieurs variables réelles Différentiabilité ; Fonctions de plusieurs variables réelles Denis Vekemans R n est muni de l une des trois normes usuelles. 1,. 2 ou.. x 1 = i i n Toutes les normes de R n sont équivalentes. x i ; x 2

Plus en détail

Optimisation des fonctions de plusieurs variables

Optimisation des fonctions de plusieurs variables Optimisation des fonctions de plusieurs variables Hervé Hocquard Université de Bordeaux, France 8 avril 2013 Extrema locaux et globaux Définition On étudie le comportement d une fonction de plusieurs variables

Plus en détail

THÉORIE DE LA MESURE ET INTÉGRATION

THÉORIE DE LA MESURE ET INTÉGRATION Université Pierre et Marie Curie Licence de Mathématiques Années 2004-2005-2006 LM 363 THÉORIE DE LA MESURE ET INTÉGRATION Cours de P. MAZET Edition 2004-2005-2006 Table des matières Table des matières

Plus en détail

Systèmes différentiels. 1 Généralités, existence et unicité des solutions

Systèmes différentiels. 1 Généralités, existence et unicité des solutions Systèmes différentiels Cours de YV, L3 Maths, Dauphine, 2012-2013 Plan du cours. Le cours a pour but de répondre aux questions suivantes : - quand une équation différentielle a-t-elle une unique solution

Plus en détail

Développements limités, équivalents et calculs de limites

Développements limités, équivalents et calculs de limites Développements ités, équivalents et calculs de ites Eercice. Déterminer le développement ité en 0 à l ordre n des fonctions suivantes :. f() e (+) 3 n. g() sin() +ln(+) n 3 3. h() e sh() n 4. i() sin(

Plus en détail

De même, le périmètre P d un cercle de rayon 1 vaut P = 2π (par définition de π). Mais, on peut démontrer (difficilement!) que

De même, le périmètre P d un cercle de rayon 1 vaut P = 2π (par définition de π). Mais, on peut démontrer (difficilement!) que Introduction. On suppose connus les ensembles N (des entiers naturels), Z des entiers relatifs et Q (des nombres rationnels). On s est rendu compte, depuis l antiquité, que l on ne peut pas tout mesurer

Plus en détail

Cours de mathématiques

Cours de mathématiques DEUG MIAS premier niveau Cours de mathématiques année 2003/2004 Guillaume Legendre (version révisée du 3 avril 2015) Table des matières 1 Éléments de logique 1 1.1 Assertions...............................................

Plus en détail

Table des matières. 3 Suites de nombres réels 29. 3.2 Limites... 30

Table des matières. 3 Suites de nombres réels 29. 3.2 Limites... 30 Table des matières 1 Généralités 3 1.1 Un peu de logique................................. 3 1.1.1 Vocabulaire................................ 3 1.1.2 Opérations logiques............................ 4 1.1.3

Plus en détail

Théorie des ensembles

Théorie des ensembles Théorie des ensembles Cours de licence d informatique Saint-Etienne 2002/2003 Bruno Deschamps 2 Contents 1 Eléments de théorie des ensembles 3 1.1 Introduction au calcul propositionnel..................

Plus en détail

Suites réelles. 4 Relations de comparaison des suites 9 4.1 Encore du vocabulaire... 9. 5.2 Quelques propriétés... 13

Suites réelles. 4 Relations de comparaison des suites 9 4.1 Encore du vocabulaire... 9. 5.2 Quelques propriétés... 13 Maths PCSI Cours Table des matières Suites réelles 1 Généralités 2 2 Limite d une suite 2 2.1 Convergence d une suite....................... 2 2.2 Deux premiers résultats....................... 3 2.3 Opérations

Plus en détail

-1 Goupes, Anneaux, Corps, Algèbres. Qu est-ce? 5 1 Groupes... 5 2 Anneaux... 5 3 Corps... 6 4 Algèbre... 6

-1 Goupes, Anneaux, Corps, Algèbres. Qu est-ce? 5 1 Groupes... 5 2 Anneaux... 5 3 Corps... 6 4 Algèbre... 6 Table des matières -1 Goupes, Anneaux, Corps, Algèbres. Qu est-ce? 5 1 Groupes.......................................... 5 2 Anneaux.......................................... 5 3 Corps...........................................

Plus en détail

Équations aux Dérivées Partielles. Pedro Ferreira et Sylvie Mas-Gallic

Équations aux Dérivées Partielles. Pedro Ferreira et Sylvie Mas-Gallic Équations aux Dérivées Partielles Pedro Ferreira et Sylvie Mas-Gallic 11 décembre 21 Table des matières 1 Introduction 3 1.1 Exemple d une équation aux dérivées partielles........... 3 1.2 Rappels sur

Plus en détail

FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4)

FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4) FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4) Bernard Le Stum Université de Rennes 1 Version du 13 mars 2009 Table des matières 1 Fonctions partielles, courbes de niveau 1 2 Limites et continuité

Plus en détail

Développements limités. Notion de développement limité

Développements limités. Notion de développement limité MT12 - ch2 Page 1/8 Développements limités Dans tout ce chapitre, I désigne un intervalle de R non vide et non réduit à un point. I Notion de développement limité Dans tout ce paragraphe, a désigne un

Plus en détail

Espaces vectoriels et applications

Espaces vectoriels et applications Espaces vectoriels et applications linéaires 1 Définitions On parle d espaces vectoriels sur le corps R ou sur le corps C. Les définitions sont les mêmes en substituant R à C ou vice versa. Définition

Plus en détail

2 Opérateurs non bornés dans un espace de Hilbert

2 Opérateurs non bornés dans un espace de Hilbert 2 Opérateurs non bornés dans un espace de Hilbert 2. Opérateurs non bornés: définitions et propriétés élémentaires Soit H un espace de Hilbert et A un opérateur dans H, c est-à-dire, une application linéaire

Plus en détail

ANALYSE MATHEMATIQUE. Jean SCHMETS

ANALYSE MATHEMATIQUE. Jean SCHMETS UNIVERSITE DE LIEGE Faculté des Sciences Institut de Mathématique ANALYSE MATHEMATIQUE Introduction aux espaces fonctionnels Notes du cours de la seconde candidature en sciences mathématiques ou en sciences

Plus en détail

Estimation consistante des paramètres d un. modèle non linéaire pour des données. fonctionnelles discrétisées aléatoirement

Estimation consistante des paramètres d un. modèle non linéaire pour des données. fonctionnelles discrétisées aléatoirement Estimation consistante des paramètres d un modèle non linéaire pour des données fonctionnelles discrétisées aléatoirement Consistent estimation of parameters in a nonlinear model for functional data with

Plus en détail

Exercice autour de densité, fonction de répatition, espérance et variance de variables quelconques.

Exercice autour de densité, fonction de répatition, espérance et variance de variables quelconques. 14-3- 214 J.F.C. p. 1 I Exercice autour de densité, fonction de répatition, espérance et variance de variables quelconques. Exercice 1 Densité de probabilité. F { ln x si x ], 1] UN OVNI... On pose x R,

Plus en détail

Chapitre 2 Le problème de l unicité des solutions

Chapitre 2 Le problème de l unicité des solutions Université Joseph Fourier UE MAT 127 Mathématiques année 2011-2012 Chapitre 2 Le problème de l unicité des solutions Ce que nous verrons dans ce chapitre : un exemple d équation différentielle y = f(y)

Plus en détail

Notes du cours MTH1101N Calcul I Partie II: fonctions de plusieurs variables

Notes du cours MTH1101N Calcul I Partie II: fonctions de plusieurs variables Notes du cours MTH1101N Calcul I Partie II: fonctions de plusieurs variables Fausto Errico Département de mathématiques et de génie industriel École Polytechnique de Montréal Automne 2012 Table des matières

Plus en détail

Le corps R des nombres réels

Le corps R des nombres réels Le corps R des nombres réels. Construction de R à l aide des suites de Cauchy de nombres rationnels On explique brièvement dans ce paragraphe comment construire le corps R des nombres réels à partir du

Plus en détail

Première partie. Préliminaires : noyaux itérés. MPSI B 6 juin 2015

Première partie. Préliminaires : noyaux itérés. MPSI B 6 juin 2015 Énoncé Soit V un espace vectoriel réel. L espace vectoriel des endomorphismes de V est désigné par L(V ). Lorsque f L(V ) et k N, on désigne par f 0 = Id V, f k = f k f la composée de f avec lui même k

Plus en détail

Cours3. Applications continues et homéomorphismes. 1 Rappel sur les images réciproques

Cours3. Applications continues et homéomorphismes. 1 Rappel sur les images réciproques Université de Provence Topologie 2 Cours3. Applications continues et homéomorphismes 1 Rappel sur les images réciproques Soit une application f d un ensemble X vers un ensemble Y et soit une partie P de

Plus en détail

C algèbre d un certain groupe de Lie nilpotent.

C algèbre d un certain groupe de Lie nilpotent. Université Paul Verlaine - METZ LMAM 6 décembre 2011 1 2 3 4 Les transformations de Fourier. Le C algèbre de G/ Z. Le C algèbre du sous-groupe G 5 / vect{u,v }. Conclusion. G un groupe de Lie, Ĝ l ensemble

Plus en détail

Cours Fonctions de deux variables

Cours Fonctions de deux variables Cours Fonctions de deux variables par Pierre Veuillez 1 Support théorique 1.1 Représentation Plan et espace : Grâce à un repère cartésien ( ) O, i, j du plan, les couples (x, y) de R 2 peuvent être représenté

Plus en détail

Notes du cours MTH1101 Calcul I Partie II: fonctions de plusieurs variables

Notes du cours MTH1101 Calcul I Partie II: fonctions de plusieurs variables Notes du cours MTH1101 Calcul I Partie II: fonctions de plusieurs variables Guy Desaulniers Département de mathématiques et de génie industriel École Polytechnique de Montréal Automne 2014 Table des matières

Plus en détail

Applications des nombres complexes à la géométrie

Applications des nombres complexes à la géométrie Chapitre 6 Applications des nombres complexes à la géométrie 6.1 Le plan complexe Le corps C des nombres complexes est un espace vectoriel de dimension 2 sur R. Il est donc muni d une structure naturelle

Plus en détail

Cours d algèbre. Maths1 LMD Sciences et Techniques. Par M. Mechab

Cours d algèbre. Maths1 LMD Sciences et Techniques. Par M. Mechab Cours d algèbre Maths1 LMD Sciences et Techniques Par M. Mechab 2 Avant Propos Ceci est un avant projet d un manuel de la partie Algèbre du cours de Mathématiques de premières années LMD Sciences et techniques

Plus en détail

3. Conditionnement P (B)

3. Conditionnement P (B) Conditionnement 16 3. Conditionnement Dans cette section, nous allons rappeler un certain nombre de définitions et de propriétés liées au problème du conditionnement, c est à dire à la prise en compte

Plus en détail

M42. Compléments d analyse (résumé).

M42. Compléments d analyse (résumé). Université d Evry-Val-d Essonne. Année 2008-09 D. Feyel M42. Compléments d analyse (résumé). Table. I. Rappels sur les suites. Limites supérieure et inférieure. II. Topologie élémentaire. III. Fonctions

Plus en détail

Mathématiques. Résumé du cours en fiches. MPsi MP. Daniel Fredon. Ancien maître de conférences à l université de Limoges

Mathématiques. Résumé du cours en fiches. MPsi MP. Daniel Fredon. Ancien maître de conférences à l université de Limoges Mathématiques Résumé du cours en fiches MPsi MP Daniel Fredon Ancien maître de conférences à l université de Limoges Dunod, Paris, 2010. ISBN 978-2-10-055590-1 Table des matières Partie 1 Analyse dans

Plus en détail

UNIFORMITÉ DE LA DISTORTION DE ŚWIA TEK POUR LES FAMILLES COMPACTES DE PRODUITS DE BLASCHKE M.R. HERMAN

UNIFORMITÉ DE LA DISTORTION DE ŚWIA TEK POUR LES FAMILLES COMPACTES DE PRODUITS DE BLASCHKE M.R. HERMAN UNIFORMITÉ DE LA DISTORTION DE ŚWIA TEK POUR LES FAMILLES COMPACTES DE PRODUITS DE BLASCHKE M.R. HERMAN Note du transcripteur : ce document fait suite à Conugaison quasi symétrique des homéomorphismes

Plus en détail

Exercices de mathématiques MPSI et PCSI

Exercices de mathématiques MPSI et PCSI Exercices de mathématiques MPSI et PCSI par Abdellah BECHATA www.mathematiques.ht.st Table des matières Généralités sur les fonctions 2 2 Continuité 3 3 Dérivabilité 4 4 Fonctions de classes C k 5 5 Bijections

Plus en détail

Jeux à somme nulle : le cas fini

Jeux à somme nulle : le cas fini CHAPITRE 2 Jeux à somme nulle : le cas fini Les jeux à somme nulle sont les jeux à deux joueurs où la somme des fonctions de paiement est nulle. Dans ce type d interaction stratégique, les intérêts des

Plus en détail

Fonctions de plusieurs variables et applications pour l ingénieur

Fonctions de plusieurs variables et applications pour l ingénieur Service Commun de Formation Continue Année Universitaire 2006-2007 Fonctions de plusieurs variables et applications pour l ingénieur Polycopié de cours Rédigé par Yannick Privat Bureau 321 - Institut Élie

Plus en détail

Continuité et dérivabilité d une fonction

Continuité et dérivabilité d une fonction DERNIÈRE IMPRESSIN LE 7 novembre 014 à 10:3 Continuité et dérivabilité d une fonction Table des matières 1 Continuité d une fonction 1.1 Limite finie en un point.......................... 1. Continuité

Plus en détail

1 Fiche méthodologique Passage d un mode de représentation d un sev à l autre

1 Fiche méthodologique Passage d un mode de représentation d un sev à l autre 1 Fiche méthodologique Passage d un mode de représentation d un sev à l autre BCPST Lycée Hoche $\ CC BY: Pelletier Sylvain Les deux modes de représentation des sous-espaces vectoriels Il existe deux modes

Plus en détail

Opérateurs non-bornés

Opérateurs non-bornés Master Mathématiques Analyse spectrale Chapitre 4. Opérateurs non-bornés 1 Domaine, graphe et fermeture Soit H un espace de Hilbert. On rappelle que H H est l espace de Hilbert H H muni du produit scalaire

Plus en détail

8.1 Généralités sur les fonctions de plusieurs variables réelles. f : R 2 R (x, y) 1 x 2 y 2

8.1 Généralités sur les fonctions de plusieurs variables réelles. f : R 2 R (x, y) 1 x 2 y 2 Chapitre 8 Fonctions de plusieurs variables 8.1 Généralités sur les fonctions de plusieurs variables réelles Définition. Une fonction réelle de n variables réelles est une application d une partie de R

Plus en détail

Corrigé de l examen partiel du 30 Octobre 2009 L2 Maths

Corrigé de l examen partiel du 30 Octobre 2009 L2 Maths Corrigé de l examen partiel du 30 Octobre 009 L Maths (a) Rappelons d abord le résultat suivant : Théorème 0.. Densité de Q dans R. QUESTIONS DE COURS. Preuve. Il nous faut nous montrer que tout réel est

Plus en détail

CCP PSI - 2010 Mathématiques 1 : un corrigé

CCP PSI - 2010 Mathématiques 1 : un corrigé CCP PSI - 00 Mathématiques : un corrigé Première partie. Définition d une structure euclidienne sur R n [X]... B est clairement symétrique et linéaire par rapport à sa seconde variable. De plus B(P, P

Plus en détail

Chp. 4. Minimisation d une fonction d une variable

Chp. 4. Minimisation d une fonction d une variable Chp. 4. Minimisation d une fonction d une variable Avertissement! Dans tout ce chapître, I désigne un intervalle de IR. 4.1 Fonctions convexes d une variable Définition 9 Une fonction ϕ, partout définie

Plus en détail

CHAPITRE V. de U U dans Hom(F, F ) est de classe C. b dans Hom(F,F ) est de classe C, l application b b. de U U

CHAPITRE V. de U U dans Hom(F, F ) est de classe C. b dans Hom(F,F ) est de classe C, l application b b. de U U CHAPITRE V FIBRÉS VECTORIELS 1. Fibrés vectoriels 1. Cartes et atlas vectoriels Soit B une variété différentielle. Considérons un B -ensemble, c est à-dire un ensemble M muni d une application p : M B.

Plus en détail

Méthodes de quadrature. Polytech Paris-UPMC. - p. 1/48

Méthodes de quadrature. Polytech Paris-UPMC. - p. 1/48 Méthodes de Polytech Paris-UPMC - p. 1/48 Polynôme d interpolation de Preuve et polynôme de Calcul de l erreur d interpolation Étude de la formule d erreur Autres méthodes - p. 2/48 Polynôme d interpolation

Plus en détail