FONCTIONS. I Généralités sur les fonctions. Définitions. Remarque. Exercice 01. Remarque

Dimension: px
Commencer à balayer dès la page:

Download "FONCTIONS. I Généralités sur les fonctions. Définitions. Remarque. Exercice 01. Remarque"

Transcription

1 FNCTINS I Généralités sur les fonctions Définitions Soit D une partie de l'ensemble IR. n définit une fonction f de D dans IR, en associant à chaque réel de D, un réel et un seul noté f() et que l'on appelle l'image de par f. La fonction est notée f : D IR f() L'ensemble D est appelé ensemble de définition de la fonction f. n appelle représentation graphique de f, ou courbe représentative de f, l'ensemble (C) des points M de coordonnées ( ; f()) avec D L'équation y = f() est appelée équation de (C). Pour D, on sait que a une image et une seule par f. La représentation graphique de f a donc un et un seul point d'abscisse. f() Si l'ensemble de définition d'une fonction n'est pas indiqué, il est convenu que cet ensemble de définition est le plus grand ensemble sur lequel f() eiste. Par eemple la fonction f définie par f() = est définie sur IR* c'est-à-dire représente une fonction ne représente pas une fonction sur ]- ; 0[ ]0 ; + [. Eercice 0 Parmi les courbes ci-dessous, indiquer celles qui peuvent représenter une fonction. courbe y y courbe 2 y courbe 3 y courbe 4 Si et y sont deu réels tels que y = f(), alors y est l'image de par la fonction f. est un antécédent de y par la fonction f. Par une fonction f, un réel ne peut pas avoir plusieurs images, mais un réel y peut avoir plusieurs antécédents. ères Fonctions page / 0

2 Eercice 02 n considère la fonction f définie par f() = 2 + ) Justifier que f est définie sur IR. 2 ) Donner les images par f de 3 ; 0 ; 2 ;-3. 3 ) Les nombres 2 ; 0 ; 2 ont-ils des antécédents par f? Si oui déterminer ces antécédents. Eercice 03 ( voir animation ) n considère la fonction f dont la courbe est donnée par le graphique ci-contre ou par l'animation. Compléter le tableau de valeurs suivant : f() f() Eercice 04 n considère la fonction f dont la courbe est donnée par le graphique ci-contre ou par l'animation de l'eercice 3. ) Donner les antécédents par f de : 0 ; 2 ; - 0 ; ) Résoudre les équations f() = ; f() = ) Quel est le minimum de f sur [-5 ; 6]? En quelle valeur ce minimum est-il atteint? Quel est le maimum de f sur [-5 ; 6]? En quelle valeur ce maimum est-il atteint? Eercice 05-8 n considère la fonction f dont la courbe est donnée par -9 le graphique ci-dessus ou par l'animation de l'eercice 3. ) Compléter : f est décroissante sur <<<<<<<<<< f est croissante sur <<<<<<<<<<< Dresser le tableau de variations de f. 2 ) Donner l'ensemble des solutions de chacune des inéquations suivantes : f() 0 ; f() ³ 3 ) Compléter les propositions suivantes : Si 5 6 alors f() Si -3 3 alors f() 4 ) Tracer sur le dessin la droite D d'équation y = Donner les solutions de l'équation f() = ; de l'inéquation f() Eercice 06 n considère la fonction f définie par f() = 3 - (f est une fonction homographique) ) Quel est l'ensemble de définition D de f? 2 ) Donner les images par f de 0 ; ; ) Les nombres ; 0 ; 3 ont-ils des antécédents par f? Si oui déterminer ces antécédents. 2 4 ) a) Justifier que pour tout D, on a : f() = b) Préciser la position de la courbe de f par rapport à la droite d'équation y = 3 2. c) Vérifier en utilisant une calculatrice ou un ordinateur. ères Fonctions page 2 / 0

3 Définition n dit qu'une fonction f est croissante sur un intervalle I, si pour tout a et pour tout b de I tels que a b on a f(a) f(b) (n dira que f est strictement croissante si on a la même propriété avec des inégalités strictes) f(b) f(a) a b fonction croissante n dit qu'une fonction f est décroissante sur un intervalle I, si pour tout a et pour tout b de I tels que a b on a f(a) ³ f(b) (n dira que f est strictement décroissante si on a la même propriété avec des inégalités strictes) f(a) f(b) fonction décroissante a b Une fonction croissante est une fonction qui conserve l'ordre. Une fonction décroissante est une fonction qui inverse l'ordre. Si une fonction f est croissante sur un intervalle I ou décroissante sur I, on dit que f est monotone sur I. Eercice 07 a et b sont deu réels. ) Démontrer, en utilisant des inégalités que l'on justifiera soigneusement, que si a < b alors - 3a + 4 > - 3b + 4 Que peut-on en déduire pour la fonction f définie par f() = ? 2 ) De la même façon justifier le sens de variation de la fonction g définie par g() = 2-5. II Fonction carré - Fonction inverse - Fonctions affines Eercice 08 ) Soient a et b deu réels dans [0 ; + [ tels que a < b. En factorisant a 2 - b 2, et en étudiant le signe de chacun des facteurs, démontrer que a 2 - b 2 < 0. En déduire le sens de variation de la fonction carré sur [0 ; + [. 2 ) En utilisant la méthode du ), déterminer le sens de variation de la fonction carré sur ]- ; 0]. 3 ) Avec une calculatrice ou un ordinateur, tracer la courbe de la fonction carré et vérifier les résultats des questions précédentes. Fonction carré La fonction carré est définie par f : IR IR f() = 2 La fonction carré est strictement décroissante sur ]- ; 0]. La fonction carré est strictement croissante sur [0 ; + [. Son tableau de variations est : f() = 2 0 La fonction carré est une fonction paire c'est-à-dire que pour tout réel on a : f(-) = f(). La courbe de la fonction carré, donnée ci-contre, a pour ae de symétrie l'ae des ordonnées. La courbe de la fonction carré s'appelle une parabole. ères Fonctions page 3 / 0

4 Eercice 09 ) Soient a et b deu réels dans ]0; + [ tels que a < b. Justifier que a - b = b - a. En déduire que ab a - b > 0. Donner, en le justifiant, le sens de variation de la fonction inverse sur ]0; + [. 2 ) En raisonnant comme dans le ), déterminer le sens de variation de la fonction inverse sur ]- ; 0[. 3 ) Avec une calculatrice ou un ordinateur, tracer la courbe de la fonction inverse et vérifier le sens de variation trouvé. Fonction inverse La fonction inverse est définie par f : IR * IR f() = La fonction inverse est strictement décroissante sur ]- ; 0[. La fonction inverse est strictement décroissante sur ]0 ; + [. Son tableau de variations est : f() = La fonction inverse est une fonction impaire c'est-à-dire que pour tout réel non nul on a : f(-) = -f(). La courbe de la fonction inverse, donnée ci-contre, a pour centre de symétrie le point, origine du repère. La courbe de la fonction inverse s'appelle une hyperbole. Eercice 0 ) n considère la fonction f définie sur IR par f() = 3-4. Soient a et b deu réels tels que a < b. Étudier le signe de f(a) - f(b) et en déduire le sens de variation de la fonction f. 2 ) Même question avec la fonction g définie sur IR par g() = ) Avec une calculatrice ou un ordinateur, tracer les courbes représentatives des fonctions f et g et vérifier les résultats des questions précédentes. Fonctions affines - Variations ( voir animation ) n appelle fonction affine, toute fonction f définie sur IR par f() = a + b, a et b étant deu réels. La représentation graphique d'une fonction affine est une droite. a est appelé coefficient directeur, b est appelé ordonnée à l'origine. Si a = 0, la fonction f est une fonction constante sur IR (elle est définie par f() = b). Si a > 0, la fonction f est une fonction strictement Si a < 0, la fonction f est une fonction strictement croissante sur IR. décroissante sur IR. Son tableau de variations est : Son tableau de variations est : f() f() ères Fonctions page 4 / 0

5 Fonctions affines - Représentation graphique - Signe La représentation graphique d'une fonction affine est une droite Si a = 0, la droite est parallèle à l'ae (). Si a > 0 Représentation graphique : Si a < 0 Représentation graphique : a a a > 0 b ( voir animation ) b a < 0 - b a - b a Tableau de signes avec a > 0 Tableau de signes avec a < b a b a + signe de a + b signe de a + b s Le coefficient directeur a est la valeur dont y varie lorsque varie de. Dans le cas où b = 0, la fonction f est définie sur IR par f() = a. C'est une fonction linéaire. Sa représentation graphique est une droite passant par l'origine du repère. Eercice Donner l'epression de la fonction affine représentée par chacune des droites ci-contre. d 5 d d 2 Eercice 2 Dans chacun des cas, tracer, dans le plan muni d'un repère orthonormal, la droite passant par le point A et ayant pour coefficient directeur a. Donner l'epression de la fonction affine représentée par la droite. ) A(- 2 ; - 3) ; a = 3 2 ) A(3 ; - 5) ; a = - 2 d 4 d 3 3 ) A(2 ; - 2) ; a = 2 4 ) A(- ; 3) ; a = - 5 Eercice 3 Dans le plan muni d'un repère orthonormal, tracer les représentations graphiques des fonctions affines suivantes : f () = 3-4 ; f 2 () = ; f 3 () = ; f 4 () = 3 ; f 5 () = ères Fonctions page 5 / 0

6 III Fonction racine carrée - Fonction valeur absolue Définition Soit un nombre réel supérieur ou égal à 0. n appelle racine carrée de et on note, l'unique nombre réel positif dont le carré est égal à. Eemple 4 est un nombre réel positif. Il y a deu nombres dont le carré est 4 : ce sont 2 et - 2. La racine carrée de 4 est le nombre réel positif dont le carré est 4. Donc 4 = 2. s La touche racine carrée racine carrée d'un nombre. d'une calculatrice permet d'obtenir une valeur approchée ou eacte de la 9 donne 3 3 est la valeur eacte de 9 car 3 2 = 9 lorsqu'on fait le calcul on obtient 0 2 donne n'est pas la valeur eacte de 2 lorsqu'on fait le calcul on n'obtient pas 0 n a = ; 2,44 ; 3,732 ; 4 = 2 ; 9 = 3 ; 6 = 4 ; 25 = 5 (Ces valeurs sont à connaître). Déterminer en utilisant votre calculatrice ; ; Les résultats donnés par la calculatrice sont-ils eacts? Propriétés Si a ³ 0 a 2 = a Si a 0 a 2 = - a Si a ³ 0 et b ³ 0 a b = a b Si a ³ 0 et b > 0 a b = a b Si a et b sont des nombres positifs a + b n'est pas égal à a + b. Par eemple + = 2 alors que + = + = 2. Eercice 4 ) Écrire plus simplement : 2-3 ; ( 2-3 )( ) ; ( ) 2. 2 ) Soit A = 2-5 et B = En calculant A 2 et B 2, justifier que A 2 = B 2. Peut-on en déduire que A = B? 3 ) Justifier les égalités suivantes : = 2 ; = + 3 ; = 4( 5-3 ). 2 4 ) Justifier que est un nombre positif. Calculer ( )( 3-5 ). En déduire que 3 < 5. Définition n appelle fonction racine carrée, la fonction qui à tout réel supérieur ou égal à 0 associe le nombre. n note : [0 ; + [ [0 ; + [ ères Fonctions page 6 / 0

7 Propriété (voir démonstration 0) La fonction racine carrée est une fonction (strictement) croissante sur [0 ; + [. Son tableau de variations est : 0 + f() = 0 La représentation graphique de la fonction racine carrée est donnée ci-contre : Eercice 5 ) En utilisant la courbe de la fonction racine carrée justifier graphiquement que l'équation = 0 a une solution unique dans [0; + [. Donner avec la précision permise par le graphique une valeur approchée de cette solution α. 2 ) Justifier que α est aussi solution de l'équation = 0 3 ) Vérifier que peut aussi s'écrire sous la forme En déduire la valeur eacte 4 de α, puis donner une valeur approchée de α à 0-5 près. Propriété (voir démonstration 02) n considère les représentations graphiques : (R) représentant la fonction (D) représentant la fonction (P) représentant la fonction 2 (P) (D) Sur l'intervalle [0 ; ] (P) est au-dessous de (D) et (D) est au-dessous de (R) Sur l'intervalle [ ; + [ (R) est au-dessous de (D) et (D) est au-dessous de (P) Définition n appelle fonction valeur absolue la fonction définie par : = si ³ 0 et = - si < 0 (La valeur absolue de est le nombre lui-même si est positif, et son opposé si est négatif) Eemple n a ainsi 3 = 3 et -5 = - (-5) = 5 (R) (D) (P) (R) Propriétés (voir démonstration 03) Pour tout réel a, on a a ³ 0. Pour tout réel a, a est le plus grand des deu nombres a et -a. Pour tout réel a, a 2 = a 2 et a 2 = a 2. Pour tous réels a et b on a ab = a b et a + b a + b (inégalité triangulaire) Pour tous réels a et b on a a = b a = b ou a = -b Pour tout réel a, on a a 2 = a s b - a Dans IR l'écart entre deu nombres a et b est égal à b - a. a Avec une calculatrice la valeur absolue se note abs (on l'obtient avec math NUM sur une calculatrice TI ; optn NUM sur une calculatrice Casio) ères Fonctions page 7 / 0 b

8 Propriété (voir démonstration 04) La fonction valeur absolue est strictement décroissante sur ]- ; 0]. La fonction valeur absolue est strictement croissante sur [0 ; + [. Son tableau de variations est : f() = 0 La fonction valeur absolue est une fonction paire c'est-à-dire que pour tout réel on a : - =. La courbe de la fonction valeur absolue, donnée ci-contre, a pour ae de symétrie l'ae des ordonnées. La courbe de la fonction valeur absolue est formée de deu demi-droites. Eercice 6 Tracer en utilisant une calculatrice ou un ordinateur, la représentation graphique de la fonction f définie sur IR par f() = - 3. Comment cette courbe se déduit-elle de la courbe représentative de la fonction valeur absolue? (on ne demande pas de justifier) Résoudre graphiquement les équations f() = 5 ; f() =. Confirmer ces résultats par le calcul. Eercice 7 Tracer en utilisant une calculatrice ou un ordinateur, la représentation graphique de la fonction f définie sur IR par f() = + 3. Comment cette courbe se déduit-elle de la courbe représentative de la fonction valeur absolue? (on ne demande pas de justifier) Résoudre graphiquement les équations f() = -2 ; f() = ; f() = Confirmer ces résultats par le calcul. IV Sens de variation et opérations Eercice 8 Tracer avec une calculatrice ou un grapheur les courbes représentant les fonctions f ; g et h définies sur IR par f() = 2 ; g() = et h() = 2-2. Comment les courbes de g et h se déduisent-elles de la courbe de f? Conjecturer, d'après le graphique, le tableau de variations de g et le tableau de variations de h. Propriété (voir démonstration 05) Soit k un réel et u une fonction. Les fonctions u et u + k ont le même sens de variation. La représentation graphique de la fonction u + k se déduit de la représentation graphique de u en faisant une translation de vecteur v de coordonnées (0 ; k). ( voir animation ) C u+k C u v ères Fonctions page 8 / 0

9 Eercice 9 Tracer avec une calculatrice ou un grapheur les courbes représentant les fonctions f ; g et h définies sur IR par f() = 2 ; g() = 3 2 ; h() = et l() = 5 2 Conjecturer, d'après le graphique, les tableau de variations de g ; h et l. Propriété (voir démonstration 06) Soit λ un réel et u une fonction. Si λ > 0, les fonctions u et λu ont le même sens de variation. Si λ < 0, les fonctions u et λu ont des sens de variation contraires. ( voir animation ) Si λ = 0, la fonction λu est la fonction constante nulle. Eercice 20 Soit f définie sur IR par : f() = n pose g() = f() ) Le tableau de variations de f est donné ci-dessous (on ne demande pas de le justifier) : f 3 2 a) Quel est le minimum de f sur IR? b) En déduire que la fonction g est définie sur IR. c) Déterminer les valeurs eactes de g(- ) ; g(0) et g(2) et en donner des valeurs approchées à 0-3 près 2 ) a) Tracer avec une calculatrice ou un grapheur la courbe représentative de f et vérifier qu'elle correspond au tableau de variations donné. b) Tracer sur le même graphique la courbe représentative de g. c) Conjecturer, d'après le graphique, le tableau de variations de g. 3 Propriété (voir démonstration 07) Soit u une fonction positive. Les fonctions u et u ont le même sens de variation. Eercice 2 Soit f définie sur IR par : f() = n pose g() = 2 f() ) Donner le sens de variation de f. Justifier que g est définie sur IR. 2 ) a) Tracer avec une calculatrice ou un grapheur les courbes représentatives de f et de g. b) Conjecturer, d'après le graphique, le sens de variation de g. Propriété (voir démonstration 08) Soit u une fonction strictement positive. Les fonctions u et ont des sens de variation contraires. u Soit u une fonction strictement négative. Les fonctions u et ont des sens de variation contraires. u ères Fonctions page 9 / 0

10 Eercice 22 n considère les fonctions f, g et h définies sur IR par : f() = ; g() = ; h() = ) Donner les sens de variation des fonctions f ; g et h. 2 ) n considère les fonctions s et t définies sur IR par : s() = f() + g() et t() = f() + h(). Donner le sens de variation de s et de t. Peut-on espérer trouver une règle générale donnant le sens de variation de la somme d'une fonction croissante et d'une fonction décroissante? 3 ) a) n considère la fonction p définie sur IR par : p() = f() g(). Donner, en le justifiant le sens de variation de p. b) n considère la fonction q définie sur IR par : q() = f() h(). En observant la courbe de q obtenue en utilisant une calculatrice ou un grapheur, peut-on penser que la fonction q a le même sens de variation que la fonction p? c) Peut-on espérer trouver une règle générale donnant le sens de variation du produit d'une fonction croissante et d'une fonction décroissante? Eercice 23 Donner, en le justifiant, le sens de variation des fonctions f ; g et h définie sur IR par : f() = ; g() = ; h() = 2 + Tracer les courbes représentatives de f, g et h et vérifier que ces courbes sont compatibles avec les résultats trouvés. Eercice 24 n considère la fonction f définie par f() = ) Soit D l'ensemble de définition de f. Déterminer D. 2 ) a) Justifier que pour tout réel dans D, on a f() = b) En déduire le sens de variation de f sur chacun des intervalles de D. c) Vérifier en traçant la courbe représentative de f avec une calculatrice ou un grapheur. Eercice 25 La fonction f est donnée par le tableau de variation ci-dessous : f 2 3 ) Déterminer le tableau de variations de la fonction g définie par g() = - 3f() ) Déterminer le tableau de variations de la fonction h définie par h() = f() - 2 Eercice 26 La fonction f est donnée par le tableau de variation ci-dessous : Soit g définie par g() = f() - 2. ) Donner l'ensemble de définition de g. 2 ) Donner le tableau de variations de g f 2 3 ères Fonctions page 0 / 0

Fonctions de référence Variation des fonctions associées

Fonctions de référence Variation des fonctions associées DERNIÈRE IMPRESSION LE 9 juin 05 à 8:33 Fonctions de référence Variation des fonctions associées Table des matières Fonction numérique. Définition.................................. Ensemble de définition...........................3

Plus en détail

DÉRIVÉES. I Nombre dérivé - Tangente. Exercice 01 (voir réponses et correction) ( voir animation )

DÉRIVÉES. I Nombre dérivé - Tangente. Exercice 01 (voir réponses et correction) ( voir animation ) DÉRIVÉES I Nombre dérivé - Tangente Eercice 0 ( voir animation ) On considère la fonction f définie par f() = - 2 + 6 pour [-4 ; 4]. ) Tracer la représentation graphique (C) de f dans un repère d'unité

Plus en détail

FONCTIONS. I Généralités sur les fonctions. Définitions. Remarque. Exercice 01 (voir réponses et correction) Remarque

FONCTIONS. I Généralités sur les fonctions. Définitions. Remarque. Exercice 01 (voir réponses et correction) Remarque FNCTINS I Généralités sur les fonctions Définitions Soit D une partie de l'ensemble IR. n définit une fonction f de D dans IR, en associant à chaque réel de D, un réel et un seul noté f() et que l'on appelle

Plus en détail

CHAPITRE 7 Fonction carré et fonction inverse

CHAPITRE 7 Fonction carré et fonction inverse CHAPITRE 7 Fonction carré et fonction inverse A) La fonction "carré" : f() = ² ) Domaine de définition Elle est définie sur ℝ complet (on peut toujours multiplier deu nombres entre eu). 2) Sens de variation

Plus en détail

FONCTIONS TRIGONOMÉTRIQUES

FONCTIONS TRIGONOMÉTRIQUES FONCTIONS TRIGONOMÉTRIQUES Définition ( voir animation ) On dit qu'un repère orthonormé (O; i, j) est direct lorsque ( i ; j ) = + []. Dans le plan rapporté à un repère orthonormé direct, si M est le point

Plus en détail

( ) = ax. On dit que f est une fonction linéaire. ( ) = b. On dit que f est une fonction constante.

( ) = ax. On dit que f est une fonction linéaire. ( ) = b. On dit que f est une fonction constante. Chapitre : Fonctions de référence I Fonctions affines Définition d'une fonction affine f est une fonction affine si, et seulement si, il existe deux réels a et b tels que pour tout x, f x ( ) = ax + b

Plus en détail

FONCTIONS DE REFERENCE

FONCTIONS DE REFERENCE FONCTIONS DE REFERENCE I. Rappels de la classe de seconde 1) Sens de variation d'une fonction Définitions : Soit f une fonction définie sur un intervalle I. - Dire que f est croissante sur I (respectivement

Plus en détail

La fonction carré Cours

La fonction carré Cours La fonction carré Cours CHAPITRE 1 : Définition CHAPITRE 2 : Sens de variation CHAPITRE 3 : Parité et symétrie CHAPITRE 4 : Représentation graphique CHAPITRE 5 : Equation du type CHAPITRE 6 : Inéquation

Plus en détail

Cahier de vacances - Préparation à la Première S

Cahier de vacances - Préparation à la Première S Cahier de vacances - Préparation à la Première S Ce cahier est destiné à vous permettre d aborder le plus sereinement possible la classe de Première S. Je vous conseille de le travailler pendant les 0

Plus en détail

I. Ensemble de définition d'une fonction

I. Ensemble de définition d'une fonction Chapitre 2 Généralités sur les fonctions Fonctions de références et fonctions associées Ce que dit le programme : Étude de fonctions Fonctions de référence x x et x x Connaître les variations de ces deux

Plus en détail

GÉNÉRALITÉS SUR LES FONCTIONS

GÉNÉRALITÉS SUR LES FONCTIONS . Qu'est-ce qu'une fonction? Vocabulaire GÉNÉRALITÉS SUR LES FONCTIONS Définition Notion de fonction À chaque fois que l'on associe à une quantité une (autre) quantité, on dit que que l'on définit une

Plus en détail

Fonctions homographiques

Fonctions homographiques Seconde-Fonctions homographiques-cours Mai 0 Fonctions homographiques Introduction Voir le TP Géogébra. La fonction inverse. Définition Considérons la fonction f définie par f() =. Alors :. f est définie

Plus en détail

Fonction inverse Fonctions homographiques

Fonction inverse Fonctions homographiques Fonction inverse Fonctions homographiques Année scolaire 203/204 Table des matières Fonction inverse 2. Définition Parité............................................ 2.2 Variations Courbe représentative...................................

Plus en détail

MATHEMATIQUES ECE 1 NOTIONS DE COURS A CONNAITRE PAR COEUR

MATHEMATIQUES ECE 1 NOTIONS DE COURS A CONNAITRE PAR COEUR MATHEMATIQUES ECE NOTIONS DE COURS A CONNAITRE PAR COEUR CALCULS NUMERIQUES Fractions, puissances, racines carrées, résolution d équations et inéquations GENERALITES SUR LES FONCTIONS ) Nombre dérivé d

Plus en détail

Équations - Inéquations - Systèmes

Équations - Inéquations - Systèmes Équations - Inéquations - Systèmes I Premier degré Propriétés Soit f définie sur IR par f(x = ax + b avec a 0. f est une fonction affine, elle est représentée graphiquement par une droite. a est le coefficient

Plus en détail

Chapitre 11. Premières Notions sur les fonctions

Chapitre 11. Premières Notions sur les fonctions Chapitre 11 Premières Notions sur les fonctions 1. Exemples Exemple 1 La distance parcourue par une automobile en un temps donné varie en fonction de sa vitesse. Faire deux phrases utilisant les mots suivants.

Plus en détail

Devoir surveillé n 1 : correction

Devoir surveillé n 1 : correction E1A-E1B 013-01 Devoir surveillé n 1 : correction Samedi 8 septembre Durée : 3 heures. La calculatrice est interdite. On attachera une grande importance à la qualité de la rédaction. Les questions du début

Plus en détail

Cours de Mathématiques Seconde. Généralités sur les fonctions

Cours de Mathématiques Seconde. Généralités sur les fonctions Cours de Mathématiques Seconde Frédéric Demoulin 1 Dernière révision : 16 avril 007 Document diffusé via le site www.bacamaths.net de Gilles Costantini 1 frederic.demoulin (chez) voila.fr gilles.costantini

Plus en détail

Fonction polynôme du second degré : Forme canonique

Fonction polynôme du second degré : Forme canonique Fonction polynôme du second degré : Forme canonique I) Introduction. Soit g(x) = a(x - s)²+h. Toute fonction polynôme du second degré peut s écrire sous cette forme. Le passage de la forme développée à

Plus en détail

FctsAffines.nb 1. Mathématiques, 1-ère année Edition 2007-2008. Fonctions affines

FctsAffines.nb 1. Mathématiques, 1-ère année Edition 2007-2008. Fonctions affines FctsAffines.nb 1 Mathématiques, 1-ère année Edition 2007-2008 Fonctions affines Supports de cours de mathématiques de degré secondaire II, lien hpertete vers la page mère http://www.deleze.name/marcel/sec2/inde.html

Plus en détail

Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures)

Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures) Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures) Eercice 1 (5 points) pour les candidats n ayant pas choisi la spécialité MATH Le tableau suivant donne l évolution du chiffre

Plus en détail

Les supports de cours suivants font référence au cours de Mr SOL et à son livre : "Accès à l'université" chez DUNOD

Les supports de cours suivants font référence au cours de Mr SOL et à son livre : Accès à l'université chez DUNOD Les supports de cours suivants font référence au cours de Mr SOL et à son livre : "Accès à l'université" chez DUNOD Les supports de cours ne sont pas complets, ils ne contiennent ni les démonstrations,

Plus en détail

212 année 2013/2014 DM de synthèse 2

212 année 2013/2014 DM de synthèse 2 22 année 20/204 DM de synthèse 2 Exercice Soit f la fonction représentée cicontre.. Donner l'ensemble de définition de la fonction f. 2. Donner l'image de 4 par f.. a. Donner un nombre qui n'a qu'un seul

Plus en détail

Mini Dictionnaire Encyclopédique Mathématiques. Fonction affine

Mini Dictionnaire Encyclopédique Mathématiques. Fonction affine Fonction affine ) Définition et Propriété caractéristique a) Activité introductive Une agence de location de voiture propose la formule de location suivante : forfait de 50 et 0,80 le km. Quel est le prix

Plus en détail

I Exercices I-1 1... I-1 2... I-1 3... I-2 4... I-2 5... I-2 6... I-2 7... I-3 8... I-3 9... I-4

I Exercices I-1 1... I-1 2... I-1 3... I-2 4... I-2 5... I-2 6... I-2 7... I-3 8... I-3 9... I-4 Chapitre Convexité TABLE DES MATIÈRES page -1 Chapitre Convexité Table des matières I Exercices I-1 1................................................ I-1................................................

Plus en détail

Devoir commun de seconde, mars 2006

Devoir commun de seconde, mars 2006 Devoir commun de seconde, mars 006 calculatrices autorisées On rappelle que le soin et la qualité de rédaction entrent pour une part non négligeable dans l appréciation de la copie. Eercice (7 points).

Plus en détail

Fiche d exercices 3 : Continuité, Dérivabilité et Etude de fonctions Continuité

Fiche d exercices 3 : Continuité, Dérivabilité et Etude de fonctions Continuité Fiche d eercices : Continuité, Dérivabilité et Etude de fonctions Continuité Eercice On considère la fonction f définie sur [ ; + [ par : f() E() pour [ ; 4[ f() 4 + 4 pour [ 4 ; + [ a. Tracer la représentation

Plus en détail

Soutien illimité 7j/7 en maths: Coach, profs, exercices & annales, cours. Sujet de Bac 2013 Maths S Obligatoire & Spécialité - Liban

Soutien illimité 7j/7 en maths: Coach, profs, exercices & annales, cours. Sujet de Bac 2013 Maths S Obligatoire & Spécialité - Liban Sujet de Bac 2013 Maths S Obligatoire & Spécialité - Liban EXERCICE 1 : 4 Points Cet exercice est un questionnaire à choix multiples. Aucune justification n est demandée. Pour chacune des questions, une

Plus en détail

Nombre dérivé et tangente

Nombre dérivé et tangente Nombre dérivé et tangente I) Interprétation graphique 1) Taux de variation d une fonction en un point. Soit une fonction définie sur un intervalle I contenant le nombre réel a, soit (C) sa courbe représentative

Plus en détail

FONCTION EXPONENTIELLE ( ) 2 = 0.

FONCTION EXPONENTIELLE ( ) 2 = 0. FONCTION EXPONENTIELLE I. Définition Théorème : Il eiste une unique fonction f dérivable sur R telle que f ' = f et f (0) =. Démonstration de l'unicité (eigible BAC) : L'eistence est admise - Démontrons

Plus en détail

Cours de mathématiques

Cours de mathématiques Cours de mathématiques Thomas Rey classe de première ES ii Table des matières 1 Les pourcentages 1 1.1 Variation en pourcentage............................... 1 1.1.1 Calcul d une variation............................

Plus en détail

MATHÉMATIQUES TERMINALE ES A. YALLOUZ. Ce polycopié conforme au programme 2002, regroupe les documents distribués aux élèves en cours d année.

MATHÉMATIQUES TERMINALE ES A. YALLOUZ. Ce polycopié conforme au programme 2002, regroupe les documents distribués aux élèves en cours d année. MATHÉMATIQUES TERMINALE ES A. YALLOUZ Ce polcopié conforme au programme 00, regroupe les documents distribués au élèves en cours d année. Année 0-0 Année 0-0 T le ES A. YALLOUZ (MATH@ES) TABLE DES MATIÈRES

Plus en détail

CH1 : Langages de la continuité Limites

CH1 : Langages de la continuité Limites CH : Langages de la continuité Limites I. Continuité- Théorème des valeurs intermédiaires. Définition : Soit f une fonction définie sur un intervalle I de R. Lorsque la courbe représentative de f ne présente

Plus en détail

ADMISSION AU COLLEGE UNIVERSITAIRE Samedi 1 mars 2014 MATHEMATIQUES durée de l épreuve : 3h coefficient 2

ADMISSION AU COLLEGE UNIVERSITAIRE Samedi 1 mars 2014 MATHEMATIQUES durée de l épreuve : 3h coefficient 2 ADMISSION AU COLLEGE UNIVERSITAIRE Samedi 1 mars 2014 MATHEMATIQUES durée de l épreuve : 3h coefficient 2 Le sujet est numéroté de 1 à 5. L annexe 1 est à rendre avec la copie. L exercice Vrai-Faux est

Plus en détail

Fonctions affines. exercices corrigés. 8 janvier 2012. Fonctions affines

Fonctions affines. exercices corrigés. 8 janvier 2012. Fonctions affines eercices corrigés 8 janvier 2012 Eercice 1 Eercice 2 Eercice Eercice 4 Eercice 5 Eercice 6 Eercice 7 Eercice 1 Enoncé Soit la fonction f : + 1 Représenter graphiquement la fonction f. 2 Donner le sens

Plus en détail

FONCTIONS. représente une fonction. ne représente pas une fonction

FONCTIONS. représente une fonction. ne représente pas une fonction FONCTIONS Activité de recherche : Stratégie d entreprise Une entreprise fabrique des ballons de rugby. Sa production quotidienne peut varier de à 000 ballons. Le coût total, en centaines d euros, pour

Plus en détail

Corrigé, bac S, mathématiques

Corrigé, bac S, mathématiques Corrigé, bac S, mathématiques jeudi juin 0 Eercice 4 points Le plan est muni d un repère orthonormé (O; ı ; j) On considère une fonction f dérivable sur l intervalle [ 3; ] On dispose des informations

Plus en détail

EXERCICES. Exercice 3 : Soit f la fonction définie sur ]0; + [ par f (x) = 1 5 ln(x). 1. Déterminer les limites suivantes : lim f (x) et lim f (x)

EXERCICES. Exercice 3 : Soit f la fonction définie sur ]0; + [ par f (x) = 1 5 ln(x). 1. Déterminer les limites suivantes : lim f (x) et lim f (x) EXERCICES LN Eercice : Soit f la fonction définie sur ]0;+ [ par f ()=+ ln(). On note C sa courbe représentative dans un repère orthogonal.. a. Calculer f () b. Déterminer l équation de la tangente T à

Plus en détail

TRINÔME DU SECOND DEGRÉ

TRINÔME DU SECOND DEGRÉ TRINÔME DU SECOND DEGRÉ Définition On appelle fonction trinôme du second degré, toute fonction f définie sur IR qui, à x associe f(x) = ax 2 + bx + c, a, b et c étant trois réels avec a 0. Exemple Les

Plus en détail

Terminale ES-L Chapitre IV Convexité.

Terminale ES-L Chapitre IV Convexité. Terminale ES-L Chapitre IV Convexité. I- Définition. Rappel : On appelle corde d'une courbe tout segment reliant deux de ses points. Illustration ci-dessous : on a tracé la courbe représentative d'une

Plus en détail

Cours de mathématiques. Chapitre 4 : Dérivabilité. Terminale S1. Année scolaire 2008-2009 mise à jour 22 novembre 2008. Fig.

Cours de mathématiques. Chapitre 4 : Dérivabilité. Terminale S1. Année scolaire 2008-2009 mise à jour 22 novembre 2008. Fig. Cours de matématiques Terminale S1 Capitre 4 : Dérivabilité Année scolaire 008-009 mise à jour novembre 008 Fig. 1 Jean Dausset Fig. alliday Fig. 3 Joann Radon Il y a des gens connus et des gens importants-idée

Plus en détail

1S DS 4 Durée :?mn. 2. La courbe ci-dessous est la représentation graphique de la fonction g, définie sur I = [ 1; 3].

1S DS 4 Durée :?mn. 2. La courbe ci-dessous est la représentation graphique de la fonction g, définie sur I = [ 1; 3]. 1S DS 4 Durée :?mn Exercice 1 ( 5 points ) Les trois questions sont indépendantes. 1. Soit f la fonction définie par f(x) = 3 x. a) Donner son ensemble de définition. Il faut 3 x 0 3 x donc D f =] ; 3]

Plus en détail

t 100. = 8 ; le pourcentage de réduction est : 8 % 1 t Le pourcentage d'évolution (appelé aussi taux d'évolution) est le nombre :

t 100. = 8 ; le pourcentage de réduction est : 8 % 1 t Le pourcentage d'évolution (appelé aussi taux d'évolution) est le nombre : Terminale STSS 2 012 2 013 Pourcentages Synthèse 1) Définition : Calculer t % d'un nombre, c'est multiplier ce nombre par t 100. 2) Exemples de calcul : a) Calcul d un pourcentage : Un article coûtant

Plus en détail

3. La suite ( un)a pour terme général un

3. La suite ( un)a pour terme général un NOM : Terminale ES Devoir n vendredi 9 octobre 0 Eercice : sur.5 points Des questions indépendantes. Résoudre l équation ² + 4 = 0. Calculer la dérivée de f dans chacun des cas suivants : a) f ( ) 4 8

Plus en détail

FICHE DE RÉVISION DU BAC

FICHE DE RÉVISION DU BAC Note liminaire Programme selon les sections : - fonctions de références, représentations graphiques, dérivées, tableau de variations : toutes sections - opérations sur les limites, asymptotes : STI2D,

Plus en détail

O, i, ) ln x. (ln x)2

O, i, ) ln x. (ln x)2 EXERCICE 5 points Commun à tous les candidats Le plan complee est muni d un repère orthonormal O, i, j Étude d une fonction f On considère la fonction f définie sur l intervalle ]0; + [ par : f = ln On

Plus en détail

Étude de fonctions. A. Rappels utiles. 1- Ordre des nombres et opérations

Étude de fonctions. A. Rappels utiles. 1- Ordre des nombres et opérations Étude de fonctions La connaissance des variations de quelques fonctions simples (affines, carré, inverse, racine carrée, valeur absolue) permet d'étudier les variations de fonctions plus complees. A. Rappels

Plus en détail

Lycée Cassini BTS CGO 2014-2015. Test de début d année

Lycée Cassini BTS CGO 2014-2015. Test de début d année Lycée assini BTS GO 4-5 Exercice Test de début d année Pour chaque question, plusieurs réponses sont proposées. Déterminer celles qui sont correctes. On a mesuré, en continu pendant quatre heures, la concentration

Plus en détail

Limite d une suite - Terminale S Exercices corrigés en vidéo avec le cours sur jaicompris.com. v n. lim. lim

Limite d une suite - Terminale S Exercices corrigés en vidéo avec le cours sur jaicompris.com. v n. lim. lim Limite d une suite - Terminale S Exercices corrigés en vidéo avec le cours sur jaicompriscom Reconnaitre les formes indéterminées Dans chaque cas, on donne la ite de et v n Déterminer si possible, ( +

Plus en détail

Seconde Généralités sur les fonctions Exercices. Notion de fonction.

Seconde Généralités sur les fonctions Exercices. Notion de fonction. Seconde Généralités sur les fonctions Exercices Notion de fonction. Exercice. Une fonction définie par une formule. On considère la fonction f définie sur R par = x + x. a) Calculer les images de, 0 et

Plus en détail

Pour tout nombre réel x, la valeur absolue de x est égale à la distance de ce nombre à 0. Elle est notée x. x si x 0. x =

Pour tout nombre réel x, la valeur absolue de x est égale à la distance de ce nombre à 0. Elle est notée x. x si x 0. x = 3 septembre 4 FONCTIONS ASSOCIÉES re STID I VALEUR ABSOLUE FONCTION VALEUR ABSOLUE VALEUR ABSOLUE D UN NOMBRE Pour tout nombre réel, la valeur absolue de est égale à la distance de ce nombre à. Elle est

Plus en détail

Cours fonctions, expressions algébriques

Cours fonctions, expressions algébriques I. Expressions algébriques, équations a) Développement factorisation Développer Développer un produit, c est l écrire sous forme d une somme. Réduire une somme, c est l écrire avec le moins de termes possibles.

Plus en détail

DEVOIR COMMUN DE MATHÉMATIQUES

DEVOIR COMMUN DE MATHÉMATIQUES Classe de Seconde DEVOIR COMMUN DE MATHÉMATIQUES Vendredi 14 février 2014 Durée de l épreuve : 2 H 00 Ce sujet comporte 6 pages numérotées de 1 à 6. Dès que ce sujet vous est remis, assurez-vous qu il

Plus en détail

Séquence 6. Fonctions dérivées. Sommaire

Séquence 6. Fonctions dérivées. Sommaire Séquence 6 Fonctions dérivées Sommaire Pré-requis Définition Dérivées des fonctions usuelles Dérivation et opérations algébriques Applications de la dérivation Synthèse de la séquence Eercices d approfondissement

Plus en détail

LIMITES EXERCICES CORRIGES

LIMITES EXERCICES CORRIGES ours et eercices de mathématiques LIMITES EXERIES ORRIGES M UAZ, http://mathscyrreer Eercice n Déterminer la ite éventuelle en de chacune des onctions suivantes : ) ) ) 4 ( ) Déterminer la ite éventuelle

Plus en détail

T ES DEVOIR SURVEILLE 2 28 NOVEMBRE 2014

T ES DEVOIR SURVEILLE 2 28 NOVEMBRE 2014 T ES DEVOIR SURVEILLE 2 28 NOVEMBRE 2014 Durée : 3h Calculatrice autorisée NOM : Prénom : Sauf mention du contraire, tous les résultats doivent être soigneusement justifiés. La précision et la clarté de

Plus en détail

Chapitre 7. Les fonctions de références

Chapitre 7. Les fonctions de références Chapitre 7 Les fonctions de références I Rappels sur les fonctions I1 Domaine de définition I2 Les variations I3 Parité II Les fonctions de référence II1 Fonctions affines II2 Fonction carré II3 Fonction

Plus en détail

+ 1. Qu est ce que cela donne pour notre calcul de 1,01? On pose x = 1,01 donc f (x) 1 + 1 0,01

+ 1. Qu est ce que cela donne pour notre calcul de 1,01? On pose x = 1,01 donc f (x) 1 + 1 0,01 Eo7 Dérivée d une fonction Vidéo partie. Définition Vidéo partie. Calculs Vidéo partie 3. Etremum local, théorème de Rolle Vidéo partie 4. Théorème des accroissements finis Eercices Fonctions dérivables

Plus en détail

Soutien illimité 7j/7 en maths: Coach, profs, exercices & annales, cours. Sujet de Bac 2013 Maths S Obligatoire & Spécialité - Amérique du Nord

Soutien illimité 7j/7 en maths: Coach, profs, exercices & annales, cours. Sujet de Bac 2013 Maths S Obligatoire & Spécialité - Amérique du Nord Sujet de Bac 2013 Maths S Obligatoire & Spécialité - Amérique du Nord EXERCICE 1 : 5 points On se place dans l espace muni d un repère orthonormé. On considère les points,, et. 1. Démontrer que les points,

Plus en détail

Notion de fonction. Résolution graphique Fonction affine

Notion de fonction. Résolution graphique Fonction affine Eercices 6 décembre 0 Notion de fonction. Résolution graphique Fonction affine Eercice Représentation d une fonction Parmi les courbe suivantes, quelles sont celles qui ne sont pas des représentations

Plus en détail

LES FONCTIONS : GENERALITES ET VARIATIONS

LES FONCTIONS : GENERALITES ET VARIATIONS 1 sur 10 LES FONCTIONS : GENERALITES ET VARIATIONS Activité conseillée p42 n 1 : Évolution du climat Activité conseillée p22 n 1 : Évolution du climat p61 n 5 p74 n 82 p61 n 7 p43 n 19 p44 n 20 p44 n 21

Plus en détail

( x )= 2 3 ( x 1) f 3 ( x)=( x+1)2 ( x 1) ( x+1) f 4. ( x )=5 x 2 1. ( x)=3 2 x f 2. 212 nom: DS ( 1h) : Sujet A fonctions affines droites

( x )= 2 3 ( x 1) f 3 ( x)=( x+1)2 ( x 1) ( x+1) f 4. ( x )=5 x 2 1. ( x)=3 2 x f 2. 212 nom: DS ( 1h) : Sujet A fonctions affines droites 212 nom: DS ( 1h) : Sujet A fonctions affines droites Exercice 1: 1 ) Dans chacun des cas suivants,: Dire si la fonction est affine ou non. Préciser si elle est linéaire. Si la fonction est affine, donner

Plus en détail

LE PROCESSUS ( la machine) la fonction f. ( On lit : «fonction f qui à x associe f (x)» )

LE PROCESSUS ( la machine) la fonction f. ( On lit : «fonction f qui à x associe f (x)» ) SYNTHESE ( THEME ) FONCTIONS () : NOTIONS de FONCTIONS FONCTION LINEAIRE () : REPRESENTATIONS GRAPHIQUES * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

Plus en détail

Continuité et dérivabilité d une fonction

Continuité et dérivabilité d une fonction DERNIÈRE IMPRESSIN LE 7 novembre 014 à 10:3 Continuité et dérivabilité d une fonction Table des matières 1 Continuité d une fonction 1.1 Limite finie en un point.......................... 1. Continuité

Plus en détail

CHAPITRE 5 : LIMITE ET ORDRE ASYMPTOTES

CHAPITRE 5 : LIMITE ET ORDRE ASYMPTOTES CHAPITRE 5 : LIMITE ET ORDRE ASYMPTOTES La lettre grecque α désigne soit, soit, soit a un réel fini ( a R ) Le plan est muni d un repère ( O; i ; j), et on note C f la courbe représentative de la fonction

Plus en détail

T ES DEVOIR N 1 SEPTEMBRE 2013

T ES DEVOIR N 1 SEPTEMBRE 2013 T ES DEVOIR N 1 SEPTEMBRE 2013 Durée : 2h NOM : Prénom : Calculatrice autorisée «Le candidat est invité à faire figurer sur la copie toute trace de recherche, même incomplète ou non fructueuse, qu il aura

Plus en détail

Les polynômes du second degré

Les polynômes du second degré Les polynômes du second degré exercices corrigés 12 septembre 2013 Les polynômes du second degré Exercice 1 Exercice 2 Exercice 3 Les polynômes du second degré Exercice 1 Les polynômes du second degré

Plus en détail

Fonctions homographiques

Fonctions homographiques Fonctions homographiques On donne ci-dessous deux définitions des fonctions homographiques, et on montre que ces deux définitions sont équivalentes. On décrit la courbe représentative d une fonction homographique.

Plus en détail

f(p)= p f(p)= 85 6 k est une fonction linéaire telle que k(4) = 3. Est-il possible que k( 8) = 5? Justifie. 4 ( 2) = 8. Or 3 ( 2) 5.

f(p)= p f(p)= 85 6 k est une fonction linéaire telle que k(4) = 3. Est-il possible que k( 8) = 5? Justifie. 4 ( 2) = 8. Or 3 ( 2) 5. ÉRIE : GÉNÉRALITÉSG ÉNÉRALITÉS SUR LES FONCTIONS LINÉAIRES Complète le tableau en indiquant les fonctions linéaires et leur coefficient. f : k : 7 g : h : j : Fonction linéaire Coefficient l :, m : ( n

Plus en détail

MATHEMATIQUES. Premier Cycle TROISIEME

MATHEMATIQUES. Premier Cycle TROISIEME MATHEMATIQUES Premier Cycle TROISIEME 79 INTRODUCTION Le programme de la classe de troisième, dernier niveau de l enseignement moyen, vise à doter l élève de savoirs faire pratiques par une intégration

Plus en détail

CALCULATRICE AUTORISEE

CALCULATRICE AUTORISEE Lycée F. MISTRAL AVIGNON BAC BLANC 2012 Epreuve de MATHEMATIQUES Série S CALCULATRICE AUTORISEE DUREE : 4 heures Dès que le sujet vous est remis, assurez-vous qu il est complet Ce sujet comporte 3 pages

Plus en détail

2. u 3 = 16, u 7 = 1 et u p = 1 8.

2. u 3 = 16, u 7 = 1 et u p = 1 8. EXERCICE 1 (u n ) est une suite arithmétique de raison a, déterminer l entier k dans chacun des cas suivants : 1. u 21 = 34, a=1,5 et u k = 1 2. u 10 = 64, u 5 = 14 et u k = 114. EXERCICE 2 (u n ) est

Plus en détail

TS. 2012/2013. Lycée Prévert. Corrigé du contrôle n 3. Durée : 3 heures. Mardi 20/11/12

TS. 2012/2013. Lycée Prévert. Corrigé du contrôle n 3. Durée : 3 heures. Mardi 20/11/12 TS. 01/013. Lycée Prévert. Corrigé du contrôle n 3. Durée : 3 heures. Mardi 0/11/1 Exercice 1 : ( 6,5 pts) Première partie : Démonstration à rédiger { Démontrer que si ( ) et (v n ) sont deux suites telles

Plus en détail

Cours de mathématiques (Terminale S)

Cours de mathématiques (Terminale S) Cours de mathématiques (Terminale S) II. Chapitre 00 : La trigonométrie. Les angles orientés A. Les radians DÉFINITION Le radian est une unité de mesure angulaire, notée rad définie par : REMARQUE A partir

Plus en détail

Objectifs: connaître les propriétés des fonctions élémentaires pour pouvoir étudier des fonctions plus complexes.

Objectifs: connaître les propriétés des fonctions élémentaires pour pouvoir étudier des fonctions plus complexes. FONCTIONS DE REFERENCE Objectifs: connaître les propriétés des fonctions élémentaires pour pouvoir étudier des fonctions plus complexes. I. LES FONCTIONS ELEMENTAIRES ce sont les touches «fct» de la calculatrice

Plus en détail

Vous trouverez dans ce dossier les documents correspondants à ce que nous allons travailler aujourd hui :

Vous trouverez dans ce dossier les documents correspondants à ce que nous allons travailler aujourd hui : Sommaire SAMEDI 7 JANVIER 202 Vous trouverez dans ce dossier les documents correspondants à ce que nous allons travailler aujourd hui : Un rappel de cours sur les suites ; Page 2 Deu eercices intitulés

Plus en détail

Bien lire l énoncé 2 fois avant de continuer - Méthodes et/ou Explications Réponses. Antécédents d un nombre par une fonction

Bien lire l énoncé 2 fois avant de continuer - Méthodes et/ou Explications Réponses. Antécédents d un nombre par une fonction Antécédents d un nombre par une fonction 1) Par lecture graphique Méthode / Explications : Pour déterminer le ou les antécédents d un nombre a donné, on trace la droite (d) d équation. On lit les abscisses

Plus en détail

Chapitre 5 : Fonctions de Référence

Chapitre 5 : Fonctions de Référence Cours de de Chapitre 5 : Fonctions de Référence Dans ce chapitre nous allons étudier types de fonctions : les fonctions affines (déjà vu en ème), les fonctions polynôme de degré (dont la fonction carré)

Plus en détail

La fonction exponentielle

La fonction exponentielle La fonction exponentielle L expression «croissance exponentielle» est passée dans le langage courant et désigne sans distinction toute variation «hyper rapide» d un phénomène. Ce vocabulaire est cependant

Plus en détail

Secondes Devoir commun de mathématiques n 1

Secondes Devoir commun de mathématiques n 1 Classe : Secondes Devoir commun de mathématiques n 1 Janvier 2014 Sujet : A Durée : 2 heures -Calculatrice autorisée Nom : Prénom : Note : Eercice 1 (sur 9 points) y 4 3 2 On donne la représentation graphique

Plus en détail

Généralités sur les fonctions numériques à variables réelles

Généralités sur les fonctions numériques à variables réelles «I» : Définitions 1/ Fonction Généralités sur les fonctions numériques à variables réelles Une fonction numérique à variable réelle f est une «machine mathématique» qui associe à chaque réel, soit un unique

Plus en détail

Vecteurs Géométrie dans le plan Exercices corrigés

Vecteurs Géométrie dans le plan Exercices corrigés Vecteurs Géométrie dans le plan Exercices corrigés Sont abordés dans cette fiche : Exercice 1 : notion de vecteur, transformation de points par translation et vecteurs égaux Exercice 2 : parallélogramme

Plus en détail

Cours de mathématiques Seconde

Cours de mathématiques Seconde Cours de mathématiques Seconde Chapitre Vecteurs et translations...4 I Définitions et premières propriétés...4 a) Rappels sur le parallélogramme...4 b) Translation...4 c) Vecteur...5 d) Vecteurs égaux...5

Plus en détail

«L art de la réussite consiste à s entourer des meilleurs» STAGE INTENSIF OBJECTIF BAC PRIMITIVES, INTEGRALES & CALCUL D AIRES

«L art de la réussite consiste à s entourer des meilleurs» STAGE INTENSIF OBJECTIF BAC PRIMITIVES, INTEGRALES & CALCUL D AIRES «L art de la réussite consiste à s entourer des meilleurs» STAGE INTENSIF OBJECTIF BAC PRIMITIVES, INTEGRALES & CALCUL D AIRES LIBAN 2015 Une entreprise artisanale produit des parasols. Elle en fabrique

Plus en détail

Equations cartésiennes d une droite

Equations cartésiennes d une droite Equations cartésiennes d une droite I) Vecteur directeur d une droite : 1) Définition Soit (d) une droite du plan. Un vecteur directeur d une droite (d) est un vecteur non nul la même direction que la

Plus en détail

Extrait de cours maths 3e. Multiples et diviseurs

Extrait de cours maths 3e. Multiples et diviseurs Extrait de cours maths 3e I) Multiples et diviseurs Multiples et diviseurs Un multiple d'un nombre est un produit dont un des facteurs est ce nombre. Un diviseur du produit est un facteur de ce produit.

Plus en détail

Lycée Alexis de Tocqueville. BACCALAUREAT TECHNOLOGIQUE Blanc Corrigé. Série S.T.M.G. Février 2015 Épreuve de mathématiques.

Lycée Alexis de Tocqueville. BACCALAUREAT TECHNOLOGIQUE Blanc Corrigé. Série S.T.M.G. Février 2015 Épreuve de mathématiques. Lycée Alexis de Tocqueville BACCALAUREAT TECHNOLOGIQUE Blanc Corrigé Série S.T.M.G. Février 2015 Épreuve de mathématiques Durée 3 heures Le candidat traitera obligatoirement les quatre exercices ******

Plus en détail

BACCALAURÉAT LIBANAIS - SG Énoncé

BACCALAURÉAT LIBANAIS - SG Énoncé CONSIGNES À SUIVRE PENDANT L EXAMEN. DURÉE : 4 heures Il y a 6 exercices obligatoires à résoudre. L exercice est noté sur points, l exercice sur points, l exercice 3 sur 3 points, l exercice 4 sur 3 points,

Plus en détail

Première S Exercices d'applications sur la dérivation 2010-2011. Déterminer l'ensemble de définition de f puis étudier ses variations.

Première S Exercices d'applications sur la dérivation 2010-2011. Déterminer l'ensemble de définition de f puis étudier ses variations. Première S Eercices d'applications sur la dérivation 22 Eercice Déterminer l'ensemble de définition de f puis étudier ses variations. ) f() = 2 2 3 2) f() = 2² 8 2 ² 2 3) f() = 2 3 Eercice 2 : équation

Plus en détail

Dérivation CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES

Dérivation CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Capitre 4 Dérivation Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Dérivation Nombre dérivé d une fonction en un point. Tangente à la courbe représentative d une fonction dérivable

Plus en détail

Dérivées et applications. Equation

Dérivées et applications. Equation Dérivées et applications. Equation I) Dérivée d une fonction strictement monotone 1) Exemples graphiques Soit une fonction dérivable sur un intervalle I. Pour tout I, (x) est le coefficient directeur de

Plus en détail

Examen 2 Mathématiques L1S1 TD 1104 2015 2016 Université Paris 1

Examen 2 Mathématiques L1S1 TD 1104 2015 2016 Université Paris 1 Examen Mathématiques LS TD 04 05 06 Université Paris Nom : Prénom : Durée : heure. Calculatrice interdite. Aucun document autorisé. Chaque question de la partie QCM vaut un point. Identifiez toutes les

Plus en détail

Angles orientés et trigonométrie

Angles orientés et trigonométrie Chapitre Angles orientés et trigonométrie Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Trigonométrie Cercle trigonométrique. Radian. Mesure d un angle orienté, mesure principale.

Plus en détail

7 FONCTIONS USUELLES. 1 Parité d une fonction. 2 Fonctions affines

7 FONCTIONS USUELLES. 1 Parité d une fonction. 2 Fonctions affines Cours 7 FONCTIONS USUELLES Parité d une fonction Définition Soit f une fonction définie sur un ensemble D. On dit que f est paire si : { D est symétrique par rapport à 0 Pour tout x D, f ( x) = f (x) On

Plus en détail

En 2005, année de sa création, un club de randonnée pédestre comportait 80 adhérents. Chacune des années suivantes on a constaté que :

En 2005, année de sa création, un club de randonnée pédestre comportait 80 adhérents. Chacune des années suivantes on a constaté que : Il sera tenu compte de la présentation et de la rédaction de la copie lors de l évaluation finale. Les élèves n ayant pas la spécialité mathématique traiteront les exercices 1, 2,3 et 4, les élèves ayant

Plus en détail

FONCTION LINEAIRE & FONCTION AFFINE. fonction linéaire a x

FONCTION LINEAIRE & FONCTION AFFINE. fonction linéaire a x FONCTION LINEAIRE & FONCTION AFFINE 3 e I. Fonction linéaire a désigne un nombre relatif. Définition La fonction qui, à tout nombre x, associe le produit de a par x est appelée fonction linéaire de coefficient

Plus en détail

Cours de mathématiques pour la classe de Seconde

Cours de mathématiques pour la classe de Seconde Cours de mathématiques pour la classe de Seconde Vincent Dujardin - Florent Girod Année scolaire 04 / 05. Externat Notre Dame - Grenoble Table des matières 0 Ensembles de nombres et intervalles de R 3

Plus en détail

MATHÉMATIQUES LIAISON 3 ème / 2 nde. Lycée Notre Dame des Minimes Année scolaire 2015-2016 LIVRET DE VACANCES

MATHÉMATIQUES LIAISON 3 ème / 2 nde. Lycée Notre Dame des Minimes Année scolaire 2015-2016 LIVRET DE VACANCES MATHÉMATIQUES LIAISON ème / 2 nde Lycée Notre Dame des Minimes Année scolaire 205-206 LIVRET DE VACANCES L objet du présent livret de vacances est d aborder le programme de mathématiques de seconde générale

Plus en détail

C k A C. x 5 4 + Signe de f (x) + 0 0 + x 4 2 2 + Variations

C k A C. x 5 4 + Signe de f (x) + 0 0 + x 4 2 2 + Variations nde Eléments de correction du DNS 1 Lectures graphiques Soient f et g deux fonctions définies sur IR. Leurs représentations graphiques, notées respectivement C f et C g, sont tracées dans le repère ci-dessous.

Plus en détail

Première ES DS1 second degré 2014-2015 S1

Première ES DS1 second degré 2014-2015 S1 1 Première ES DS1 second degré 2014-2015 S1 Exercice 1 : (3 points) Soit la parabole d équation y = 25x² - 10x + 1. On considère cette parabole représentée dans un repère (O ;I,J). 1) Déterminer les coordonnées

Plus en détail