Programme de mathématiques TSI1

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Programme de mathématiques TSI1"

Transcription

1 Programme de mathématiques TSI1 1. PROGRAMME DE DÉBUT D ANNÉE I. Nombres complexes et géométrie élémentaire 1. Nombres complexes 1 2. Géométrie élémentaire du plan 3 3. Géométrie élémentaire de l espace 5 II. Fonctions usuelles et équations différentielles linéaires 1. Fonctions usuelles 2 2. Équations différentielles linéaires 4 3. Courbe paramétrées, coniques 6 2. ANALYSE ET GÉOMÉTRIE DIFFÉRENTIELLE I. Nombres réels, suites et fonctions 1. Suites de nombres réels 7 2. Fonctions d une variable réelle à valeurs réelles 9 II. Calcul différentiel et intégral 1. Dérivation des fonctions à valeurs réelles Relations de comparaison, développements limités Intégration Approximation... III. Notions sur les fonctions de deux variables 1. Calcul différentiel Calcul intégral ALGÈBRE I. Nombres et structures algébriques usuelles 1. Vocabulaire relatif aux ensembles et aux applications Ensembles finis, ensembles de nombres 8 4. Polynômes 10 II. Algèbre linéaire 1. Espaces vectoriels Dimension des espaces vectoriels Calcul matriciel Complément de calcul matriciel : systèmes linéaires et déterminants 18

2 Progression de mathématiques Année scolaire 2011 / / 4 Chapitre 1 : Nombres complexes (2s) Ensemble des nombres complexes : formes algébrique et trigonométrique, conjugaison. Groupe U et applications : trigonométrie, racines n-ièmes. Compléments : équations du second degré, exponentielle complexe. Nombres complexes et géométrie plane : distance, angle, barycentre, transformations usuelles. Annexes : construction du corps C (loi de composition interne, associativité, commutativité, élément neutre, éléments inversibles pour une loi associative admettant un élément neutre, structure de groupe, de corps), trigonométrie. Chapitre 2 : Fonctions usuelles (2s) Fonctions polynômiales et rationnelles : racines, méthode d identification, limites. Fonctions exponentielles, logarithmes et puissances : propriétés, exponentielle complexe, fonctions exponentielles et logarithmes en base a, croissances comparées. Fonctions circulaires et réciproques : propriétés analytiques (dérivabilité). Fonctions circulaires hyperboliques et réciproques : propriétés, relations ch 2 t sh 2 t = 1 et e t = ch t + sh t. Annexe : vocabulaire relatif aux fonctions et aux applications (image directe et réciproque d un ensemble, injection, surjection, bijection, restriction d une application). Chapitre 3 : Géométrie élémentaire du plan (2s) Repérages du plan : coordonnées cartésiennes, polaires, changement de repères. Produit scalaire et déterminant : définition, propriétés, applications. Déterminant : définition, propriétés, applications aux alignements. Droites et cercles : équations normales de droites, représentations paramétriques de droites. Distance d un point à une droite. Équations de cercles (par un diamètre ou par centre et rayon). Intersections. Similitudes du plan : définition, écriture complexe, cas des isométries usuelles. Annexe : notion d espace vectoriel. Chapitre 4 : Équations différentielles Rappels sur les primitives et intégrales : définitions, propriété. Équations différentielles linéaires du premier ordre : définitions, caractérisations de t e at, résolution de l équation différentielle linéaire du premier ordre, principe de superposition. Équations différentielles linéaires du second ordre : définitions, résolution de l équation différentielle linéaire du second ordre sans second membre, avec second membre, principe de superposition. Annexes : continuité, dérivabilité, classe C k, primitives usuelles, complément au vocabulaire relatif aux applications (composition, application identité, prolongement). Vacances de Toussaint Chapitre 5 : Géométrie élémentaire de l espace (2s) Généralités : orientation de l espace, coordonnées cartésiennes, cylindriques, sphériques. Produit scalaire, produit vectoriel, déterminant : définition, propriétés. Droites et plans : représentation paramétrique d une droite, équation cartésienne de plan, intersection de droites et plans, distance d un point à un plan, à une droite, perpendiculaire commune à deux droites. Sphères : équation cartésienne, intersection d une sphère et d une droite, d une sphère et d un plan. Annexes : Applications affines et linéaires de l espace, vocabulaire élémentaire relatif aux ensembles (inclusion, réunion, intersection, complémentaire). Chapitre 6 : Courbes paramétrées, coniques (2s) Courbes planes paramétrées : définitions (fonction vectorielle, courbe paramétrée), continuité, dérivation, classe C k d une fonction vectorielle, tangente, interprétation cinématique, dérivation d un produit scalaire, d une norme, d un déterminant, étude des branches infinies. Coniques : définitions, étude de la parabole, coniques à centre (définition bifocale), étude de l hyperbole (équation réduite, représentation paramétrique, asymptotes), étude de l ellipse (équation réduite, représentation paramétrique, cercle principal, projection orthogonale d un cercle dans l espace). Annexe : formulaire relatif aux coniques à centre, équations des tangentes (règle du dédoublement).

3 Progression de mathématiques Année scolaire 2011 / / 4 Chapitre 7 : Suites de nombres réels Nombres entiers naturels : propriétés fondamentales de N. Corps R des nombres réels : relation d ordre (compatibilité avec + et ), majorant, minorant, borne supérieure, inférieure, intervalle, valeur absolue, inégalité triangulaire. Suites de nombres réels : définitions, suites majorées, minorées, bornées, monotones, récurrence, symboles et, suites arithmétiques et géométriques. Limite d une suite : définitions, convergence et divergence, espace vectoriel des suites convergeant vers 0, opérations algébriques, passage à la limite, théorèmes de comparaison, des gendarmes. Convergence d une suite croissante majorée, suites adjacentes, suites extraites. Relations de comparaison : définitions (o, O et ), propriétés, comparaison des suites de référence. Extension au cas complexe : convergence et divergence de suites complexes, opérations algébriques et limites. Annexe : Exemples simples d algorithmes itératifs et récursifs. Fonctions d une variable réelle à valeurs réelles : définition, opérations, relation d ordre, fonctions majorées, minorées, bornées, extremum, fonctions croissantes, décroissantes. Espaces vectoriels des fonctions paires, impaires, T -périodiques. Étude locale d une fonction : voisinage, limite (limites à gauche, à droite), espace vectoriel des fonctions tendant vers 0 en a, produit par une fonction bornée. Opérations algébriques et limites, composition. Relation d ordre et limite (théorèmes de comparaison, des gendarmes). Limite d une fonction monotone. Fonctions continues sur un intervalle : définition, cas des fonctions usuelles, opérations algébriques et continuité (composition). Espace vectoriel C(I). Restriction, prolongement par continuité. Image d un intervalle, d un segment par une fonction continue, théorème des valeurs intermédiaires. Fonction réciproque. définition, parties réelles et imaginaires, module, conjugué, fonction bornée, limite d une fonction à valeurs complexes. Opérations algébriques et limites, continuité. Annexes : calcul approché des zéros d une fonction par dichotomie, par la méthode de Newton. Vacances de Noël Chapitre 8 : Ensembles finis, ensembles de nombres (2s) Ensembles finis : définitions, opérations élémentaires sur les ensembles (union, produit). Dénombrements : dénombrement des applications de E dans F, des parties de E, des permutations de E, combinaison (nombre de combinaisons, propriétés, triangle de Pascal). Vocabulaire relatif aux groupes et aux ensembles de nombres : groupe (exemples), sousgroupe, morphisme, ensemble Q (opérations). Arithmétique dans Z : ensemble Z (structure de groupe et propriété de la multiplication), multiples et diviseurs, division euclidienne, nombre premier, décomposition en produit de nombres premiers. Ensemble Q : définition, développement décimal d un nombre réel. Calculs dans R ou C : formule du binôme, factorisation de x n y n. Annexe : valeur approchée rationnelle de réels remarquables (e, π, 2,... ). Chapitre 9 : Fonctions d une variable réelle à valeurs réelles (2s) Chapitre 10 : Polynômes (2s) Ensemble K[X] des polynômes à une indéterminée : définitions (degré, polynôme unitaire, espace vectoriel K p [X]), opérations algébriques, composition, multiples et diviseurs, division euclidienne. Fonctions polynômiales : définitions, racine, ordre de multiplicité, identification P et P. Polynômes dérivés : définitions, propriétés (linéarité, dérivation d un produit), dérivées successives, formule de Leibniz, lien avec l ordre de multiplicité. Polynômes scindés : définitions, somme et produit des racines d un polynôme scindé, théorème de d Alembert-Gauss, polynôme irréductible, décomposition d un polynôme dans C[X], R[X]. Vacances de Février Chapitre 11 : Dérivation des fonctions à valeurs réelles (2s) Dérivée en un point, fonction dérivée : dérivabilité en un point (interprétations), dérivabilité sur un intervalle, opérations algébriques, dérivée d une composée, fonctions réciproques. Dérivées successives (formule de Leibniz). Étude globale des fonctions dérivables : théorème de Rolle, égalité et inégalité des accroissements finis, théorèmes limite de la dérivée. Caractérisations des fonctions constantes, monotones, strictement monotones parmi les fonctions dérivables.

4 Progression de mathématiques Année scolaire 2011 / / 4 dérivabilité en un point, opérations algébriques, caractérisation des fonctions constantes (contre-exemple concernant le théorème de Rolle dans le cas complexe), dérivées successives (formule de Leibniz). Annexes : dérivées des fonctions usuelles, règles de dérivation, application du théorème des accroissements finis au calcul approché du point fixe d une fonction par utilisation d une suite définie par récurrence. Chapitre 12 : Espaces vectoriels (2s) Espaces vectoriels : espaces vectoriels sur K et sousespaces vectoriels (exemples usuels), combinaisons linéaires, intersection de sous-espaces vectoriels (sousespace engendré), somme de deux sous-espaces vectoriels (sous-espaces supplémentaires). Applications linéaires : définitions, opérations algébriques (structure de L(E, F ), composition, réciproque, isomorphisme, automorphisme, groupe linéaire GL(E, F )), équation linéaire (noyau et image), projecteurs et symétries. Annexe : exemples d endomorphismes de #» P et #» E. Chapitre 13 : Relations de comparaison, développements limités Relations de comparaison : définitions (prépondérance, domination, équivalence), opérations relatives à la prépondérance, la domination, opérations relatives à l équivalence, comparaison des fonctions de référence. Développements limités : définition, propriétés (unicité, parité), formule de Taylor-Young, opérations algébriques (somme, produit, composition, inverse), dérivation et primitive. Applications aux calculs de limites, à l étude des points singuliers. Annexe : Développements limités usuels. Chapitre 14 : Dimension des espaces vectoriels (2s) Famille de vecteurs : rappel sur les combinaisons linéaires, image par une application linéaire, familles génératrices, familles libres, liées, bases, bases canoniques. Dimension d un espace vectoriel : espace vectoriel de dimension finie, théorème de la base incomplète (existence de bases), théorie de la dimension, espaces vectoriels isomorphes. Dimension d un sous-espace vectoriel : propriétés de la dimension d un sev d un ev de dimension finie (cas d égalité), rang d une famille de vecteurs, sous-espace vectoriel supplémentaire, formule de Grassmann. Rang d une application linéaire : définition, théorème du rang, caractérisation des isomorphismes, automorphismes, des hyperplans. Vacances de Pâques Chapitre 15 : Intégration (2s) Fonctions en escalier, fonctions continues par morceaux : défintions, espaces vectoriels des fonctions en escalier, continues par morceaux, approximation des fonctions continues par morceaux par des fonctions en escalier. Intégrale d une fonction en escalier : définition (intéprétation géométrique), propriétés (linéarité, croissance, relation de Chasles). Intégrale d une fonction continue par morceaux : définition (intéprétation), propriétés (linéarité, relation de Chasles), invariance par translation, propriétés liées à la croissance, inégalité de la moyenne, valeur moyenne, cas où l intégrale d une fonction continue positive est nulle. définitions, propriétés. Primitives et intégrale d une fonction continue : définition d une primitive (cas où la fonction est continue par morceaux), lien entre primitive et intégrale, intégration par parties, changement de variables. Formules de Taylor : formule de Taylor avec reste intégral, inégalité de Taylor-Lagrange. Annexes : calcul approché d une intégrale par la méthode des rectangles et des trapèzes (subdivisions dichotomiques), démonstration de la formule de Taylor- Young, méthodes usuelles de recherche de primitives. Chapitre 16 : Calcul matriciel (2s) Opérations sur les matrices : définitions, espace vectoriel M n,p (K), multiplication matriciel, matrices particulières (nulle, ligne, colonne, diagonale, triangulaire), transposition. Matrices et applications linéaires : matrice associée à une application linéaire, matrice et formes linéaires, isomorphisme entre L(E, F ) et M n,p (K), écriture matriciel de l image d un vecteur par une application linéaire, d une composition, matrices associées à l identité. Matrices carrées remarquables : groupe GL n (K), matrice de passage (formules de changement de bases), matrices symétriques et antisymétiques. Rang d une matrice : définition, invariance par transposition.

5 Progression de mathématiques Année scolaire 2011 / / 4 Annexe : notion d algèbre et de morphisme d algèbres, matrices des endomorphismes usuels de P #» et #» E. Chapitre 17 : Calcul différentiel Notion de continuité : définition (limite nulle, continuité), interprétation graphique. Dérivées partielles premières : définitions (dérivées partielles, gradient, classe C 1 ), composition (avec une fonction de I dans R 2 ), recherche d extremums. Dérivées partielles d ordre 2 : théorème de Schwarz, exemples. Annexe : exemple d équation aux dérivées partielles (équation des cordes vibrantes). Chapitre 18 : Complément de calcul matriciel : systèmes et déterminants Systèmes d équations linéaires : définition (système homogène associé), ensemble des solutions, rang d un système, systèmes de Cramer, exemples de résolutions de systèmes. Déterminants d ordre 2 et 3 : déterminant en dimension 2 et 3, caractérisation des bases, systèmes de Cramer d ordre 2 ou 3, calcul d un déterminant par développement selon une rangée. Déterminants et endomorphismes : définition, composition, caractérisation des automorphismes, application à l orientation du plan et de l espace. Annexe : méthode du pivot de Gauss. Chapitre 19 : Calcul intégral Généralités : définition d une intégrale double, propriétés (positivité, linéarité, additivité), interprétation. Calculs d intégrales doubles : description hierarchisée, calcul par intégrations successives, théorème de Fubini, applications (masses, centres et moments d inertie).

Programme de Mathématique Préparation Maths-Physique. Analyse et Géométrie Différentielle. Première Année

Programme de Mathématique Préparation Maths-Physique. Analyse et Géométrie Différentielle. Première Année Programme de Mathématique Préparation Maths-Physique Analyse et Géométrie Différentielle Première Année I NOMBRES REELS ET COMPLEXES, SUITES ET FONCTIONS 1 Nombres réels et complexes 2 Suites de nombres

Plus en détail

Cahier de textes Page 1 sur 9. Cahier de textes

Cahier de textes Page 1 sur 9. Cahier de textes Cahier de textes Page 1 sur 9 Cahier de textes Jeudi 04/09/2014 9h-12h et 13h30-16h30 : Cours sur la logique : - Conjonction, disjonction, implication, équivalence - Quelques formules. - Quantificateurs

Plus en détail

Cahier de textes Mathématiques

Cahier de textes Mathématiques Cahier de textes Mathématiques Mercredi 6 janvier : cours 2h Début du chapitre 12 - Convergence de suites réelles : 12.1 Convergence de suites : suites convergentes, limites de suites convergentes, unicité

Plus en détail

Formulaire de maths Algèbre linéaire et multilinéaire

Formulaire de maths Algèbre linéaire et multilinéaire Formulaire de maths Algèbre linéaire et multilinéaire Nom Formule Espaces vectoriels Famille libre On dit que la famille est libre si Famille liée On dit que la famille est liée si Théorème de la base

Plus en détail

Programme de la classe de première année MPSI

Programme de la classe de première année MPSI Objectifs Programme de la classe de première année MPSI I - Introduction à l analyse L objectif de cette partie est d amener les étudiants vers des problèmes effectifs d analyse élémentaire, d introduire

Plus en détail

Liste complète des sujets d oral (SESSION 2004) servant pour 2004-2005. Leçons d Algèbre et de Géométrie

Liste complète des sujets d oral (SESSION 2004) servant pour 2004-2005. Leçons d Algèbre et de Géométrie http://perso.wanadoo.fr/gilles.costantini/agreg.htm Liste complète des sujets d oral (SESSION 2004) servant pour 2004-2005 Légende : En italique : leçons dont le libellé a changé ou évolué par rapport

Plus en détail

PROGRAMME DE I. NOMBRES COMPLEXES ET GÉOMÉTRIE ÉLÉMENTAIRE CLASSE DE PREMIÈRE ANNÉE MPSI

PROGRAMME DE I. NOMBRES COMPLEXES ET GÉOMÉTRIE ÉLÉMENTAIRE CLASSE DE PREMIÈRE ANNÉE MPSI CLASSE DE PREMIÈRE ANNÉE MPSI Le programme de première année MPSI est organisé en trois parties. Dans une première partie figurent les notions et les objets qui doivent être étudiés dès le début de l année

Plus en détail

Mathématiques MPSI. Pierron Théo. ENS Ker Lann

Mathématiques MPSI. Pierron Théo. ENS Ker Lann Mathématiques MPSI Pierron Théo ENS Ker Lann 2 Table des matières I Algèbre 1 1 Ensembles 3 1.1 Vocabulaire général........................ 3 1.2 Opérations sur les parties d un ensemble............ 4

Plus en détail

HENRI ROUDIER ALGEBRE LINEAIRE COURS & EXERCICES CAPES &AGRÉGATION INTERNES & EXTERNES DEUXIÈME ÉDITION REVUE &.AUGMENTÉE VUIBERT

HENRI ROUDIER ALGEBRE LINEAIRE COURS & EXERCICES CAPES &AGRÉGATION INTERNES & EXTERNES DEUXIÈME ÉDITION REVUE &.AUGMENTÉE VUIBERT HENRI ROUDIER ALGEBRE LINEAIRE COURS & EXERCICES CAPES &AGRÉGATION INTERNES & EXTERNES DEUXIÈME ÉDITION REVUE &.AUGMENTÉE VUIBERT Table analytique des matières 1. La structure d'espace vectoriel 1. Espaces

Plus en détail

Licence 1ère année Mention Mathématiques

Licence 1ère année Mention Mathématiques Licence 1ère année Mention Mathématiques Semestre 1 Anglais (2 ECTS) Préparation du C2i (3 ECTS) Méthodologie du Travail Universitaire Scientifique (2 ECTS) Expression Orale et Écrite (3 ECTS) Outils Mathématiques

Plus en détail

Remerciements. Partie 1 Algèbre linéaire 1

Remerciements. Partie 1 Algèbre linéaire 1 Table des matières Préface Remerciements xix xxi Partie 1 Algèbre linéaire 1 1 Compléments d algèbre linéaire 3 I Rappels du cours de première année.......................... 3 I.1 Famille dans un espace

Plus en détail

MATIÈRE DU COURS D'ALGÈBRE ET D'ANALYSE

MATIÈRE DU COURS D'ALGÈBRE ET D'ANALYSE MATIÈRE DU COURS D'ALGÈBRE ET D'ANALYSE Titulaire : A.M. Tilkin 8h/semaine 1) MATIERE DE 4 e ANNEE a) ALGEBRE - Rappels algébriques concernant la résolution d équations et d inéquations (fractionnaires

Plus en détail

MPSI 3 - Cahier de vacances... MPSI 3-2004/2005

MPSI 3 - Cahier de vacances... MPSI 3-2004/2005 MPSI 3 - Cahier de vacances... MPSI 3-2004/2005 Voici une fiche contenant 100 exercices de difficulté raisonable, plutôt techniques, qui recouvrent l ensemble du programme étudié cette année. A raison

Plus en détail

Utiliser les propriétés Savoir réduire un radical savoir +,-,x,: Utiliser les propriétés des puissances Calculer avec des puissances

Utiliser les propriétés Savoir réduire un radical savoir +,-,x,: Utiliser les propriétés des puissances Calculer avec des puissances ARITHMETIQUE 1 C B A Numération Ecrire en lettres et en chiffres Poser des questions fermées autour d un document simple (message, consigne, planning ) Connaître le système décimal Déterminer la position

Plus en détail

1 Notion d espace vectoriel

1 Notion d espace vectoriel Arnaud de Saint Julien - MPSI Lycée La Merci 2014-2015 1 Résumé de cours sur les espaces vectoriels et les applications linéaires Les vecteurs du plan, les nombres réels, et les polynômes à coefficients

Plus en détail

La Licence Mathématiques et Economie-MASS Université de Sciences Sociales de Toulouse 1

La Licence Mathématiques et Economie-MASS Université de Sciences Sociales de Toulouse 1 La Licence Mathématiques et Economie-MASS Université de Sciences Sociales de Toulouse 1 La licence Mathématiques et Economie-MASS de l Université des Sciences Sociales de Toulouse propose sur les trois

Plus en détail

PROGRAMME DE MATHEMATIQUES

PROGRAMME DE MATHEMATIQUES MINISTERE DE L EDUCATION NATIONALE -------------- DIRECTION DE LA PEDAGOGIE ET DE LA FORMATION CONTINUE -------------- COORDINATION NATIONALE DE MATHEMATIQUES REPUBLIQUE DE COTE D IVOIRE UNION-DISCIPLINE-TRAVAIL

Plus en détail

OBJECTIFS DE FORMATION ET PROGRAMME DE MATHÉMATIQUES

OBJECTIFS DE FORMATION ET PROGRAMME DE MATHÉMATIQUES CLASSE PRÉPARATOIRE ATS OBJECTIFS DE FORMATION ET PROGRAMME DE MATHÉMATIQUES I. OBJECTIFS DE FORMATION 1- Mission de la filière et acquis des étudiants Les classes préparatoires ATS sont destinées aux

Plus en détail

LISTE DE QUESTIONS DE COURS

LISTE DE QUESTIONS DE COURS LISTE DE QUESTIONS DE COURS sur le polycopié d Algèbre de 2008/2009 Chapitre 1 1. Définition 1.1 : Espace vectoriel. 2. Proposition 1.3 : Espace vectoriel produit. 3. Définition 1.2 : Sous-espaces vectoriels.

Plus en détail

Table des matières. I Mise à niveau 11. Préface

Table des matières. I Mise à niveau 11. Préface Table des matières Préface v I Mise à niveau 11 1 Bases du calcul commercial 13 1.1 Alphabet grec...................................... 13 1.2 Symboles mathématiques............................... 14 1.3

Plus en détail

AGRÉGATION INTERNE: RÉDUCTION DES ENDOMORPHISMES

AGRÉGATION INTERNE: RÉDUCTION DES ENDOMORPHISMES AGRÉGATION INTERNE: RÉDUCTION DES ENDOMORPHISMES VINCENT GUEDJ 1. Notions fondamentales 1.1. Noyau, Image. On se donne E un K-espace vectoriel de dimension finie (K = R, C principalement) et f L(E) un

Plus en détail

Révisions Maths Terminale S - Cours

Révisions Maths Terminale S - Cours Révisions Maths Terminale S - Cours M. CHATEAU David 24/09/2009 Résumé Les résultats demandés ici sont à connaître parfaitement. Le nombre de réponses attendues est parfois indiqué entre parenthèses. Les

Plus en détail

PAD - Notes de cours. S. Rigal, D. Ruiz, et J. C. Satgé

PAD - Notes de cours. S. Rigal, D. Ruiz, et J. C. Satgé ALGÈBRE PAD - Notes de cours S. Rigal, D. Ruiz, et J. C. Satgé November 23, 2006 Table des Matières Espaces vectoriels Applications linéaires - Espaces vectoriels............................... 3 -. Approche

Plus en détail

Fonctions de plusieurs variables

Fonctions de plusieurs variables Module : Analyse 03 Chapitre 00 : Fonctions de plusieurs variables Généralités et Rappels des notions topologiques dans : Qu est- ce que?: Mathématiquement, n étant un entier non nul, on définit comme

Plus en détail

Applications des nombres complexes à la géométrie

Applications des nombres complexes à la géométrie Chapitre 6 Applications des nombres complexes à la géométrie 6.1 Le plan complexe Le corps C des nombres complexes est un espace vectoriel de dimension 2 sur R. Il est donc muni d une structure naturelle

Plus en détail

EXTRAIT DE L ARRETE NO: 00/0063/MINESUP/DDES DU 05 DECEMBRE 2000

EXTRAIT DE L ARRETE NO: 00/0063/MINESUP/DDES DU 05 DECEMBRE 2000 REPUBLIQUE DU CAMEROUN Paix Travail - Patrie UNIVERSITE DE YAOUNDE 1 FACULTE DES SCIENCES BP 812 Yaoundé Tel/Fax : (237) 223 53 86 Telex UY4243KN REPUBLIC OF CAMEROON Peace-Work- Fatherland UNIVERSITY

Plus en détail

I. Polynômes de Tchebychev

I. Polynômes de Tchebychev Première épreuve CCP filière MP I. Polynômes de Tchebychev ( ) 1.a) Tout réel θ vérifie cos(nθ) = Re ((cos θ + i sin θ) n ) = Re Cn k (cos θ) n k i k (sin θ) k Or i k est réel quand k est pair et imaginaire

Plus en détail

Cahier de vacances. Exercices PCSI - PC, Lycée Dupuy de Lôme

Cahier de vacances. Exercices PCSI - PC, Lycée Dupuy de Lôme Cahier de vacances Exercices PCSI - PC, Lycée Dupuy de Lôme Votre année de PCSI a été bien remplie et il est peu probable que l année de PC qui arrive vous paraisse plus facile. C est pourquoi, je vous

Plus en détail

Programme mat231, 2009 2010

Programme mat231, 2009 2010 Programme mat231, 2009 2010 (2 septembre 2009) Pierre Bérard Université Joseph Fourier Pierre.Berard@ujf-grenoble.fr Le programme de l ue mat231 a été recentré. Il portera cette année uniquement sur l

Plus en détail

Les astuces de Maths. par Isabelle Blejean C OLLECTION LES MÉMENTOS DE L INSEEC MÉMENTO N 9

Les astuces de Maths. par Isabelle Blejean C OLLECTION LES MÉMENTOS DE L INSEEC MÉMENTO N 9 C OLLECTION LES MÉMENTOS DE L INSEEC CAHIERS MÉTHODOLOGIQUES POUR LES CLASSES PRÉPARATOIRES AUX GRANDES ÉCOLES DE COMMERCE Les astuces de Maths par Isabelle Blejean MÉMENTO N 9 Les Mémentos de l INSEEC

Plus en détail

MATHÉMATIQUES EN PREMIER CYCLE PRÉSENTATION DU PROGRAMME

MATHÉMATIQUES EN PREMIER CYCLE PRÉSENTATION DU PROGRAMME Notre cadre de réflexion MATHÉMATIQUES EN PREMIER CYCLE PRÉSENTATION DU PROGRAMME La proposition de programme qui suit est bien sûr issue d une demande du Premier Cycle : demande de rénovation des contenus

Plus en détail

Table des matières. Applications linéaires.

Table des matières. Applications linéaires. Table des matières Introduction...2 I- s et exemples...3 1-...3 2- Exemples...4 II- Noyaux et images...5 1- Rappels : images directes et images réciproques...5 a- s...5 b- Quelques exemples...5 2- Ker

Plus en détail

Espaces vectoriels et applications

Espaces vectoriels et applications Espaces vectoriels et applications linéaires 1 Définitions On parle d espaces vectoriels sur le corps R ou sur le corps C. Les définitions sont les mêmes en substituant R à C ou vice versa. Définition

Plus en détail

Épreuve pratique de mathématiques Printemps 2009. Descriptifs. (Page vide)

Épreuve pratique de mathématiques Printemps 2009. Descriptifs. (Page vide) Épreuve pratique de mathématiques Printemps 2009 Descriptifs (Page vide) Sujet 001 Épreuve pratique de mathématiques Descriptif Étude d une fonction dépendant d un paramètre Étant donné une fonction dépendant

Plus en détail

FICHE UNITE D ENSEIGNEMENT. Mathématiques. Analyse appliquée. Boris Andreianov. PRESENTIEL EN LIGNE x PRESENTIEL ET EN LIGNE 73 20 35,5 4,5 133

FICHE UNITE D ENSEIGNEMENT. Mathématiques. Analyse appliquée. Boris Andreianov. PRESENTIEL EN LIGNE x PRESENTIEL ET EN LIGNE 73 20 35,5 4,5 133 FICHE UNITE D ENSEIGNEMENT Responsable de l UE Section CNU de l UE Crédits Européens Mode d enseignement Analyse appliquée Boris Andreianov 26 6 PRESENTIEL EN LIGNE x PRESENTIEL ET EN LIGNE Nombre d heures

Plus en détail

Résumé du cours d algèbre de Maths Spé MP

Résumé du cours d algèbre de Maths Spé MP 1 POLYNÔMES Résumé du cours d algèbre de Maths Spé MP 1 Polynômes 1) Formule de Taylor pour les polynômes. Soit P un polynôme non nul de degré n N. a K, P(X) = k=0 P (k) (a) (X a) k et en particulier P(X)

Plus en détail

Les quatre opérations sur les nombres entiers Statistiques et probabilités I. Code Unités Devoirs Code Unités Devoirs

Les quatre opérations sur les nombres entiers Statistiques et probabilités I. Code Unités Devoirs Code Unités Devoirs 1 re secondaire 2 e secondaire Les quatre opérations sur les nombres entiers Statistiques et probabilités I MAT-1005-2 2 3 MAT-2008-2 2 3 (+, -, x, ) dans l ensemble des entiers Z. Ce premier cours portant

Plus en détail

UNIVERSITÉ DE POITIERS

UNIVERSITÉ DE POITIERS UNIVERSITÉ DE POITIERS Faculté des Sciences Fondamentales et Appliquées Mathématiques PREMIÈRE ANNEE DE LA LICENCE DE SCIENCES ET TECHNOLOGIES UE L «algèbre linéaire» Plan du cours Exercices Enoncés des

Plus en détail

Applications linéaires

Applications linéaires Applications linéaires I) Applications linéaires - Généralités 1.1) Introduction L'idée d'application linéaire est intimement liée à celle d'espace vectoriel. Elle traduit la stabilité par combinaison

Plus en détail

Mathématiques pour l informatique. - Soutien - 1 Nombres complexes. 2 Suites. Exercice 1. (Nombres complexes) Soit le nombre complexe z = (2 + 2i) 7.

Mathématiques pour l informatique. - Soutien - 1 Nombres complexes. 2 Suites. Exercice 1. (Nombres complexes) Soit le nombre complexe z = (2 + 2i) 7. Mathématiques pour l informatique IMAC première année - Soutien - Nombres complexes Rappels. Un nombre complexe z admet plusieurs représentations : représentation vectorielle z = (a, b) où a, b R représentation

Plus en détail

Rappels d Algèbre Linéaire de P.C.S.I

Rappels d Algèbre Linéaire de P.C.S.I Rappels d Algèbre Linéaire de PCSI Table des matières 1 Structure d espace vectoriel sur IK 3 11 Définition et règles de calcul 3 12 Exemples de référence 3 13 Espace vectoriel produit 4 14 Sous-espaces

Plus en détail

Problèmes de Mathématiques MPSI. Erwan Biland

Problèmes de Mathématiques MPSI. Erwan Biland Problèmes de Mathématiques MPSI Erwan Biland Lycée Stanislas, classe de MPSI 1, 2009/2010 Ce recueil réunit une partie des problèmes posés aux élèves de PCSI 1 puis MPSI 1, en temps libre ou en temps limité,

Plus en détail

Les supports de cours suivants font référence au cours de Mr SOL et à son livre : "Accès à l'université" chez DUNOD

Les supports de cours suivants font référence au cours de Mr SOL et à son livre : Accès à l'université chez DUNOD Les supports de cours suivants font référence au cours de Mr SOL et à son livre : "Accès à l'université" chez DUNOD Les supports de cours ne sont pas complets, ils ne contiennent ni les démonstrations,

Plus en détail

Catalogue des connaissances de base en mathématiques dispensées dans les gymnases, lycées et collèges romands.

Catalogue des connaissances de base en mathématiques dispensées dans les gymnases, lycées et collèges romands. Catalogue des connaissances de base en mathématiques dispensées dans les gymnases, lycées et collèges romands. Pourquoi un autre catalogue en Suisse romande Historique En 1990, la CRUS (Conférences des

Plus en détail

C) Fiche : Espaces vectoriels.

C) Fiche : Espaces vectoriels. C) Fiche : Espaces vectoriels. 1) Définition d'un espace vectoriel. K= I ou est le corps des scalaires. E est un K-espace I vectoriel si et seulement si : C'est un ensemble non vide muni de deux opérations,

Plus en détail

LYCEE MICHEL-RODANGE LUXEMBOURG PROGRAMMES DE MATHEMATIQUES POUR LE CYCLE INFERIEUR

LYCEE MICHEL-RODANGE LUXEMBOURG PROGRAMMES DE MATHEMATIQUES POUR LE CYCLE INFERIEUR LYCEE MICHEL-RODANGE LUXEMBOURG PROGRAMMES DE MATHEMATIQUES POUR LE CYCLE INFERIEUR Introduction. page 2 Classe de septième.. page 3 Classe de sixième page 7-1 - INTRODUCTION D une manière générale on

Plus en détail

PROGRAMMES DE MATHÉMATIQUES EN VIGUEUR DE L ENSEIGNEMENT SECONDAIRE GÉNÉRAL TECHNIQUE ET PROFESSIONNEL

PROGRAMMES DE MATHÉMATIQUES EN VIGUEUR DE L ENSEIGNEMENT SECONDAIRE GÉNÉRAL TECHNIQUE ET PROFESSIONNEL MINISTÈRE DE L ÉDUCATION DE L ALPHABÉTISATION ET DES LANGUES NATIONALES RÉPUBLIQUE DU MALI Un Peuple Un But Une Foi PROGRAMMES DE MATHÉMATIQUES EN VIGUEUR DE L ENSEIGNEMENT SECONDAIRE GÉNÉRAL TECHNIQUE

Plus en détail

Comparaison des anciens et des nouveaux programmes de PTSI

Comparaison des anciens et des nouveaux programmes de PTSI Comparaison des anciens et des nouveaux programmes de PTSI Les plans des deux programmes étant sensiblement différents, nous avons choisi de présenter les modifications en suivant l ordre du nouveau programme.

Plus en détail

Programme de Première

Programme de Première BAC TECHNO STAV 66 I. Algèbre Programme de Première Objectif 1 - Effectuer de manière autonome des calculs numériques ou algébriques, résoudre des équations ou inéquations en vue de résoudre des problèmes

Plus en détail

1.3 Produit matriciel

1.3 Produit matriciel MATRICES Dans tout ce chapitre, K désigne les corps R ou C, p et n des entiers naturels non nuls 1 Matrices à coefficients dans K 11 Définition Définition 11 Matrice On appelle matrice à coefficients dans

Plus en détail

Annexe 1 Programmes des classes préparatoires aux Grandes Ecoles

Annexe 1 Programmes des classes préparatoires aux Grandes Ecoles Annexe 1 Programmes des classes préparatoires aux Grandes Ecoles Filière : économique et commerciale Option : Economique (ECE) Discipline : Mathématiques- Informatique Première année Ministère de l enseignement

Plus en détail

133: endomorphismes remarquables d'un espace vectoriel euclidien de dimension nie

133: endomorphismes remarquables d'un espace vectoriel euclidien de dimension nie 133: endomorphismes remarquables d'un espace vectoriel euclidien de dimension nie Pierre Lissy March 8, 2010 On considère un espace vectoriel euclidien de dimension nie n, le produit scalaire sera noté

Plus en détail

P R O G R A M M E E T I N S T R U C T I O N S O F F I C I E L L E S

P R O G R A M M E E T I N S T R U C T I O N S O F F I C I E L L E S P R O G R A M M E E T I N S T R U C T I O N S O F F I C I E L L E S POUR L ENSEIGNEMENT DE L INFORMATIQUE MPSI première année I. Objectifs de la formation II-1 Développement de compétences et d aptitudes

Plus en détail

Cours de mathématiques ECS 1 ère année. BÉGYN Arnaud

Cours de mathématiques ECS 1 ère année. BÉGYN Arnaud Cours de mathématiques ECS 1 ère année BÉGYN Arnaud 12/11/2012 2 Introduction Ce manuscrit regroupe des notes de cours de mathématiques pour une classe d ECS première année. J ai écris ces notes lors de

Plus en détail

ENSAE - DAKAR BROCHURE D'INFORMATION SUR LE CONCOURS DE RECRUTEMENT D ÉLÈVES INGÉNIEURS STATISTICIENS ÉCONOMISTES (I S E) Option Mathématiques CAPESA

ENSAE - DAKAR BROCHURE D'INFORMATION SUR LE CONCOURS DE RECRUTEMENT D ÉLÈVES INGÉNIEURS STATISTICIENS ÉCONOMISTES (I S E) Option Mathématiques CAPESA ENSEA - ABIDJAN ENSAE - DAKAR ISSEA - YAOUNDÉ BROCHURE D'INFORMATION SUR LE CONCOURS DE RECRUTEMENT D ÉLÈVES INGÉNIEURS STATISTICIENS ÉCONOMISTES (I S E) Option Mathématiques CAPESA CENTRE D APPUI AUX

Plus en détail

Continuité et dérivabilité d une fonction

Continuité et dérivabilité d une fonction DERNIÈRE IMPRESSIN LE 7 novembre 014 à 10:3 Continuité et dérivabilité d une fonction Table des matières 1 Continuité d une fonction 1.1 Limite finie en un point.......................... 1. Continuité

Plus en détail

Examen - septembre 2012. Question de cours Enoncer et démontrer l inégalité de Cauchy-Schwarz dans un espace euclidien. Quel est le cas d égalité?

Examen - septembre 2012. Question de cours Enoncer et démontrer l inégalité de Cauchy-Schwarz dans un espace euclidien. Quel est le cas d égalité? Université Paris Dauphine DEMIE e année Algèbre linéaire 3 Examen - septembre 01 Le sujet comporte pages. L épreuve dure heures. Les documents, calculatrices et téléphones portables sont interdits. Question

Plus en détail

ÉCOLE NATIONALE DE L AVIATION CIVILE Session 2007

ÉCOLE NATIONALE DE L AVIATION CIVILE Session 2007 ÉCOLE NATIONALE DE L AVIATION CIVILE Session 27 CONCOURS DE RECRUTEMENT D ÉLÈVES INGÉNIEURS DU CONTRÔLE DE LA NAVIGATION AÉRIENNE Épreuve commune obligatoire de MATHÉMATIQUES Durée : 4 Heures Coefficient

Plus en détail

22 Cours - Espaces vectoriels.nb 1/8. Espaces vectoriels. I) Généralités II) Applications linéaires III) Sous espaces vectoriels IV) Générateurs

22 Cours - Espaces vectoriels.nb 1/8. Espaces vectoriels. I) Généralités II) Applications linéaires III) Sous espaces vectoriels IV) Générateurs 22 Cours - Espaces vectoriels.nb /8 Espaces vectoriels K -espace vectoriel, loi de composition interne (commutative, associative), élément neutre, symétrique, loi externe, vecteur nul, E, sous espace vectoriel,

Plus en détail

Par contre, lorsque P est finie, l inclusion f(p ) P implique l égalité f(p ) = P car, f

Par contre, lorsque P est finie, l inclusion f(p ) P implique l égalité f(p ) = P car, f Université Lyon 1 Algèbre générale S.P. Groupes III I. Groupe symétrique et géométrie. On se donne un ensemble E (souvent un espace euclidien ou une partie de cet espace) et une bijection f : E E (souvent

Plus en détail

Définition et caractérisations des applications affines, en particulier par le barycentre, et si possible en coordonnées.

Définition et caractérisations des applications affines, en particulier par le barycentre, et si possible en coordonnées. Université Claude Bernard Lyon I Agrégation de Mathématiques : Algèbre & géométrie Année 2006 2007 Applications affines A ne pas rater Définition et caractérisations des applications affines, en particulier

Plus en détail

Formulaire de Maths. par Xavier Chauvet C OLLECTION LES MÉMENTOS DE L INSEEC MÉMENTO N 10

Formulaire de Maths. par Xavier Chauvet C OLLECTION LES MÉMENTOS DE L INSEEC MÉMENTO N 10 C OLLECTION LES MÉMENTOS DE L INSEEC CAHIERS MÉTHODOLOGIQUES POUR LES CLASSES PRÉPARATOIRES AUX GRANDES ÉCOLES DE COMMERCE Formulaire de Maths par Xavier Chauvet MÉMENTO N 10 Les Mémentos de l INSEEC Depuis

Plus en détail

Sites web éducatifs et ressources en mathématiques

Sites web éducatifs et ressources en mathématiques Sites web éducatifs et ressources en mathématiques Exercices en ligne pour le primaire Calcul mental élémentaire : http://www.csaffluents.qc.ca/wlamen/tables-sous.html Problèmes de soustraction/addition

Plus en détail

Section «Maturité fédérale» EXAMENS D'ADMISSION Session de février 2014 RÉCAPITULATIFS DES MATIÈRES EXAMINÉES. Formation visée

Section «Maturité fédérale» EXAMENS D'ADMISSION Session de février 2014 RÉCAPITULATIFS DES MATIÈRES EXAMINÉES. Formation visée EXAMENS D'ADMISSION Admission RÉCAPITULATIFS DES MATIÈRES EXAMINÉES MATIÈRES Préparation en 3 ou 4 semestres Formation visée Préparation complète en 1 an 2 ème partiel (semestriel) Niveau Durée de l examen

Plus en détail

Mathématique - Cours Filière STAV 2014-2015 Centre de Formation aux Métier de la Montagne Marine Estorge

Mathématique - Cours Filière STAV 2014-2015 Centre de Formation aux Métier de la Montagne Marine Estorge Mathématique - Cours Filière STAV 2014-2015 Centre de Formation aux Métier de la Montagne Marine Estorge Le programme se compose ainsi : Rappels collège/seconde Partie STAV 1/3 Partie STAV 2/3 Partie STAV

Plus en détail

Espaces vectoriels 2006-2007. Agrégation interne de Mathématiques Département de Mathématiques Université de La Rochelle F.

Espaces vectoriels 2006-2007. Agrégation interne de Mathématiques Département de Mathématiques Université de La Rochelle F. Agrégation interne de Mathématiques Département de Mathématiques Université de La Rochelle 2006-2007 Espaces vectoriels Convention 1. Dans toute la suite, k désignera un corps quelconque. Définition 2.

Plus en détail

Mathématiques. Résumé du cours en fiches. MPsi MP. Daniel Fredon. Ancien maître de conférences à l université de Limoges

Mathématiques. Résumé du cours en fiches. MPsi MP. Daniel Fredon. Ancien maître de conférences à l université de Limoges Mathématiques Résumé du cours en fiches MPsi MP Daniel Fredon Ancien maître de conférences à l université de Limoges Dunod, Paris, 2010. ISBN 978-2-10-055590-1 Table des matières Partie 1 Analyse dans

Plus en détail

Développement décimal d un réel

Développement décimal d un réel 4 Développement décimal d un réel On rappelle que le corps R des nombres réels est archimédien, ce qui permet d y définir la fonction partie entière. En utilisant cette partie entière on verra dans ce

Plus en détail

- Mobiliser les résultats sur le second degré dans le cadre de la résolution d un problème.

- Mobiliser les résultats sur le second degré dans le cadre de la résolution d un problème. Mathématiques - classe de 1ère des séries STI2D et STL. 1. Analyse On dote les élèves d outils mathématiques permettant de traiter des problèmes relevant de la modélisation de phénomènes continus ou discrets.

Plus en détail

Les Interros Corrigées de Sup MPSI-PCSI en Mathématiques

Les Interros Corrigées de Sup MPSI-PCSI en Mathématiques Les Interros Corrigées de Sup MPSI-PCSI en Mathématiques Vandana BHANDARI Marc-Olivier CZARNECKI P R E P AMA TH Collection dirigée par Éric MAURETTE Sommaire Algèbre Notionsdebase... 1,2 Arithmétique...

Plus en détail

Séance de soutien PCSI2 numéro 10 : Espaces vectoriels et applications linéaires

Séance de soutien PCSI2 numéro 10 : Espaces vectoriels et applications linéaires Séance de soutien PCSI2 numéro 10 : Espaces vectoriels et applications linéaires Tatiana Labopin-Richard Mercredi 18 mars 2015 L algèbre linéaire est une très grosse partie du programme de Maths. Il est

Plus en détail

-1 Goupes, Anneaux, Corps, Algèbres. Qu est-ce? 5 1 Groupes... 5 2 Anneaux... 5 3 Corps... 6 4 Algèbre... 6

-1 Goupes, Anneaux, Corps, Algèbres. Qu est-ce? 5 1 Groupes... 5 2 Anneaux... 5 3 Corps... 6 4 Algèbre... 6 Table des matières -1 Goupes, Anneaux, Corps, Algèbres. Qu est-ce? 5 1 Groupes.......................................... 5 2 Anneaux.......................................... 5 3 Corps...........................................

Plus en détail

Espaces vectoriels euclidiens. Groupe orthogonal

Espaces vectoriels euclidiens. Groupe orthogonal 19 Espaces vectoriels euclidiens. Groupe orthogonal Dans un premier temps, E est un espace vectoriel réel de dimension n 1. 19.1 Espaces vectoriels euclidiens Dénition 19.1 On dit qu'une forme bilinéaire

Plus en détail

Théorème du point fixe - Théorème de l inversion locale

Théorème du point fixe - Théorème de l inversion locale Chapitre 7 Théorème du point fixe - Théorème de l inversion locale Dans ce chapitre et le suivant, on montre deux applications importantes de la notion de différentiabilité : le théorème de l inversion

Plus en détail

Cours d Analyse. Fonctions de plusieurs variables

Cours d Analyse. Fonctions de plusieurs variables Cours d Analyse Fonctions de plusieurs variables Licence 1ère année 2007/2008 Nicolas Prioux Université de Marne-la-Vallée Table des matières 1 Notions de géométrie dans l espace et fonctions à deux variables........

Plus en détail

1 Programme de Colles : Espaces vectoriels.

1 Programme de Colles : Espaces vectoriels. Lycée Louis le grand Année scolaire 2007/2008 Mathématiques Supérieure MPSI Semaine 12 11 mai 2009 1 Programme de Colles : Espaces vectoriels. On note K le corps R ou C. 1.1 Axiomes d espace vectoriel.

Plus en détail

IV.1 Dual d un espace vectoriel... 77

IV.1 Dual d un espace vectoriel... 77 76 IV FORMES LINÉAIRES, DUALITÉ IV Formes linéaires, dualité Sommaire IV.1 Dual d un espace vectoriel.......... 77 IV.1.a Rappels sur les e.v................... 77 IV.1.b Rappels sur les applications linéaires........

Plus en détail

Cours de mathématiques pour la Terminale S

Cours de mathématiques pour la Terminale S Cours de mathématiques pour la Terminale S Savoir-Faire par chapitre Florent Girod 1 Année scolaire 2015 / 2016 1. Externat Notre Dame - Grenoble Table des matières 1) Suites numériques.................................

Plus en détail

Cours Diagonalisation

Cours Diagonalisation Cours Diagonalisation par Pierre Veuillez 1 Objectif Pour une matrice A donnée, déterminer une matrice D diagonale et une matrice P inversible telle que A = P D P 1. Interprètation : Quelle relation reconnaît-on?

Plus en détail

Applications Bilinéaires et Formes Quadratiques

Applications Bilinéaires et Formes Quadratiques Ce cours peut être librement copié et distribué. Il est recommandé d en télécharger la version la plus récente à partir de : http://www.math.jussieu.fr/~alp. Toute remarque, correction ou suggestion doit

Plus en détail

Nature des épreuves et programmes

Nature des épreuves et programmes Le concours comporte : Nature des épreuves et programmes - 4 épreuves écrites obligatoires : composition d'ordre général, mathématiques, statistique (étude d'une documentation statistique) et économie

Plus en détail

Cours de mathématiques

Cours de mathématiques Cours de mathématiques Thomas Rey classe de première ES ii Table des matières 1 Les pourcentages 1 1.1 Variation en pourcentage............................... 1 1.1.1 Calcul d une variation............................

Plus en détail

Programmes des classes préparatoires aux Grandes Ecoles

Programmes des classes préparatoires aux Grandes Ecoles Programmes des classes préparatoires aux Grandes Ecoles Filière : scientifique Voie : Technologie, physique, chimie (TPC) Discipline : Mathématiques Seconde année Classe préparatoire TPC deuxième année

Plus en détail

Formulaire de Mathématique

Formulaire de Mathématique COLLECTION LES LEXIQUES DE L INSEEC CAHIERS MÉTHODOLOGIQUES POUR LES CLASSES PRÉPARATOIRES AUX GRANDES ÉCOLES DE COMMERCE Formulaire de Mathématique par Xavier Chauvet LEXIQUE N 17 COLLECTION DIRIGÉE PAR

Plus en détail

APPLICATIONS LINÉAIRES

APPLICATIONS LINÉAIRES 21-10- 2007 J.F.C. A.L. p. 1 APPLICATIONS LINÉAIRES I GÉNÉRALITÉS 1. Définition et vocabulaire 2. Conséquences de la définition 3. Caractérisation II OPÉRATIONS SUR LES APPLICATION LINÉAIRES 1. Somme,

Plus en détail

FICHE DE RÉVISION DU BAC

FICHE DE RÉVISION DU BAC Introduction Pré-requis : Etude de fonctions dérivées logarithmes et exponentielles continuité Plan du cours 1. Intégrales 2. Primitives 1. Intégrales A. Aire sous la courbe Méthode des rectangles : Pour

Plus en détail

Programme de mathématiques pour la classe de terminale S. Année scolaire 2011-2012

Programme de mathématiques pour la classe de terminale S. Année scolaire 2011-2012 Programme de mathématiques pour la classe de terminale S Année scolaire 2011-2012 I. INTRODUCTION Le programme de terminale S s inscrit dans la continuité de celui de première et il en reprend de ce fait

Plus en détail

Première partie. Deuxième partie

Première partie. Deuxième partie PC 96-97 correction épreuve X97 Première partie. f étant convexe sur l intervalle [t, t 2 ], sa courbe représentative est en dessous la corde joignant les points (t, f(t )) et (t 2, f(t 2 )). Comme f(t

Plus en détail

Annexe 1 Programmes des classes préparatoires aux Grandes Ecoles

Annexe 1 Programmes des classes préparatoires aux Grandes Ecoles Annexe 1 Programmes des classes préparatoires aux Grandes Ecoles Filière : scientifique Voie : Mathématiques, physique et sciences de l'ingénieur (MPSI) Discipline : Mathématiques Première année Classe

Plus en détail

F1C1/ Analyse. El Hadji Malick DIA

F1C1/ Analyse. El Hadji Malick DIA F1C1/ Analyse Présenté par : El Hadji Malick DIA dia.elmalick1@gmail.com Description sommaire du cours Porte sur l analyse réelle propose des outils de travail sur des éléments de topologie élémentaire

Plus en détail

MINISTERE DE LA COMMUNAUTE FRANCAISE ENSEIGNEMENT DE LA COMMUNAUTE FRANCAISE

MINISTERE DE LA COMMUNAUTE FRANCAISE ENSEIGNEMENT DE LA COMMUNAUTE FRANCAISE MINISTERE DE LA COMMUNAUTE FRANCAISE ENSEIGNEMENT DE LA COMMUNAUTE FRANCAISE Administration Générale de l Enseignement et de la Recherche Scientifique Service général des Affaires pédagogiques, de la Recherche

Plus en détail

Mathématiques mise à niveau - 521

Mathématiques mise à niveau - 521 Mathématiques mise à niveau - 521 Ces trois modules de mathématiques 521 ont été conçus pour préparer le PR1 de l activité SES option Informatique (EV7). Cette formation est néanmoins ouverte aux agents

Plus en détail

Espaces vectoriels de dimension finie

Espaces vectoriels de dimension finie Chapitre 14 Espaces vectoriels de dimension finie Dans tout le chapitre K désigne R ou C. 14.1 Espaces vectoriels de dimension finie 14.1.1 Bases et dimension Ò Ø ÓÒ ½ º½ Espace vectoriel de dimension

Plus en détail

CH1 : Langages de la continuité Limites

CH1 : Langages de la continuité Limites CH : Langages de la continuité Limites I. Continuité- Théorème des valeurs intermédiaires. Définition : Soit f une fonction définie sur un intervalle I de R. Lorsque la courbe représentative de f ne présente

Plus en détail

λ i f( x i ) (doncf(cl( x i ))=cl(f( x i )))

λ i f( x i ) (doncf(cl( x i ))=cl(f( x i ))) A) APPLICATIONS LINÉAIRES REM : dans ce cours,e,f etgdésignent desk-espaces vectoriels. I) GÉNÉRALITÉS. 1) Définition. DEF : Soit f une application de E dans F ; on dit que f est K-linéaire (ou que c est

Plus en détail

Cahier de vacances - Préparation à la Première S

Cahier de vacances - Préparation à la Première S Cahier de vacances - Préparation à la Première S Ce cahier est destiné à vous permettre d aborder le plus sereinement possible la classe de Première S. Je vous conseille de le travailler pendant les 0

Plus en détail

Chapitre 5: Opérateurs dans les espaces de Hilbert. Notions d opérateur adjoint

Chapitre 5: Opérateurs dans les espaces de Hilbert. Notions d opérateur adjoint Chapitre 5: Opérateurs dans les espaces de Hilbert. Notions d opérateur adjoint 18 mars 2008 1 Généralités sur les opérateurs 1.1 Définitions Soient H et H deux espaces de Hilbert sur C. Définition 1.1

Plus en détail

Cours de Mathématiques

Cours de Mathématiques Cours de Mathématiques Lycee Gustave Eiffel PTSI 02/03 Chapitre 3 Fonctions usuelles 3.1 Théorème de la bijection Une fonction dérivable sur un intervalle I, strictement monotone déþnit une bijection.

Plus en détail

Annexe 1 Programmes des classes préparatoires aux Grandes Ecoles

Annexe 1 Programmes des classes préparatoires aux Grandes Ecoles Annexe 1 Programmes des classes préparatoires aux Grandes Ecoles Filière : scientifique Voie : Physique, chimie et sciences de l ingénieur (PCSI) Discipline : Mathématiques Première année Classe préparatoire

Plus en détail

Différentiabilité ; Fonctions de plusieurs variables réelles

Différentiabilité ; Fonctions de plusieurs variables réelles Différentiabilité ; Fonctions de plusieurs variables réelles Denis Vekemans R n est muni de l une des trois normes usuelles. 1,. 2 ou.. x 1 = i i n Toutes les normes de R n sont équivalentes. x i ; x 2

Plus en détail