Corrigé : EM Lyon 2005

Dimension: px
Commencer à balayer dès la page:

Download "Corrigé : EM Lyon 2005"

Transcription

1 Corrigé : EM Lyo 5 Optio écoomique Eercice :. Par défiitio de E, la famille (I,J,K) est ue famille géératrice de E. Cette famille est-elle libre? O cherche tous les réels a, b et c tels que : ai +bj +ck a b c a b a b c a La famille (I,J,K) est doc libre. Aisi (I,J,K) est ue base de E et doc dime 3.. O a J K, JK, KJ et K. 3. a) Motros par récurrece que la propriété P() : L I +J + ( ) K est vraie pour tout etier aturel : Rag : o a I +J + ( ) K I et de plus L I doc P() est vraie. Soit u etier fié. Supposos P() vraie. Alors o a : ( L + L L I +J + ( ) K I +J +J +J + ( ) I +(+)J + (+) K ) (I +J) K + ( ) KJ Doc P(+) est alors vraie. Grâce au pricipe de récurrece o a motré que pour tout etier aturel, L I +J + ( ) K. b) O remarque que L est ue matrice triagulaire sas sur sa diagoale doc L est iversible. O viet de motrer que la formule est vraie pour Pour, o va utiliser le fait que L est l iverse de L. Lorsque, o a doc L I J + ( ) K. Vérifios que I +J + ( ) K est bie l iverse de L. O a ( L I +J + ( ) ) K I +J + ( ) + (+) I + ( ) I K J J ( ) KJ + ( )(+) K K K + (+) K Doc pour tout etier égatif, L est iversible et so iverse est I +J + ( ) K. O a doc bie pour, L I +J + ( ) K. Doc pour tout etier relatif : L I +J + ( ) K. c) Tout d abord calculos L (I +J) I +J +J I +J +K. Il ous faut ici eprimer J et K e foctio de I, L et L. O a immédiatemet, J L I et doc o e déduit que K L I J I L+L. JK + (+) K EM Lyo 5 Page Corrigé

2 Grâce à la questio précédete o a doc L I +J + ( ) K I +(L I)+ ( ) ( + ( ) ( )( ) ) (I L+L ) I +( ( ))L+ ( ) L I +( )L+ ( ) L Pour tout etier relatif, L ( )( ) I +( )L+ ( ) L 4. O recherche les valeurs propres de f, doc de A. O cherche tous les réels λ tels que A λi est pas iversible : A λi λ λ 3 3 λ 3 3 λ λ L λ L λ λ 3 λ L L L 3λ+4 λ +3λ L 3 λl +L λ λ +3λ 3λ+4 λ L +3λ 3L +L λ λ +3λ 6λ 3 8λ +8λ 6 L 3 ( 3λ+4)L +L 3 Doc λ est ue valeur propre de A (et doc de f) si et seulemet si 6λ 3 8λ +8λ 6. Or 6λ 3 8λ +8λ 6 6(λ ) 3 doc f admet qu ue seule valeur propre qui est. Sous-espace propre associé à : f(,y,z) (,y,z) A y 3y +z y y z z { z y Doc E vect((,, )). Comme ((,, )) est ue base de E, o a E qui est de dimesio. La somme des dimesios des sous-espaces propres est pas égale à doc f est pas diagoalisable. (O peut aussi résoer par l absurde : si f est diagoalisable alors sa matrice das ue base de vecteurs propres est I (car la diagoale e cotiet que les valeurs propres) et la formule de chagemet de base doe alors, avec P la matrice de passage de la base caoique das la base de vecteurs propres : A P IP I ce qui est pas vrai.) 5. a) Pour calculer v et u o passe par le calcul matriciel. O a (A I) doc v (,,) 3 De plus (A I) doc u (,, ) 3 O cherche tous les réels a, b et c tels que : a b+c au+bv +cw (,,) b a b c a+b La famille (u,v,w) est doc libre. La famille (u,v,w) est ue famille libre de 3 vecteurs de R 3 qui est u espace vectoriel de dimesio 3 doc (u,v,w) est ue base de R 3. EM Lyo 5 Page Corrigé

3 b) O détermie les coordoées des images : Comme u est u vecteur propre associé à la valeur propre, o a f (u) u Comme (f e)(v) u o a f (v) u+v Comme (f e)(w) v o a f (w) v +w Doc la matrice de f das la base (u,v,w) et I +J L c) Comme est pas valeur propre de f, f est u edomorphisme bijectif c est-à-dire u automorphisme de R 3. Sa matrice das la base (u,v,w) est L doc la matrice de f est L 3+ I + ( ) L+ ( ) L O a doc f 3+ e+ ( ) f + ( ) f Eercice :. f est dérivable sur ],+ [ et f (t) 3 <. f est doc strictemet décroissate sur ];+ [. (+t) O a lim f (t) et lim f (t) doc la courbe représetative de f a ue demi-tagete à droite e de pete t + t +. E + o a lim f (t) t + y. (i) f est ulle sur R et strictemet positive sur ];+ [. Doc f est positive ou ulle sur R. (ii) f est cotiue sur R car costate et f est cotiue sur ];+ [ car +t e aule pas sur cet itervalle. Doc f est cotiue sur R. (iii) Étudios la covergece de f(t) dt. O a f(t) dt dt. f est cotiue sur ];+ [ et admet ue limite fiie e + dot Or lim A + Doc + doc +A A (+t) dt f(t) dt coverge et vaut + Doc f est bie ue desité de probabilité. 3. Comme f est ue desité, Pour : Pour : f(t)dt f(t)dt f(t)dt coverge. dt dt+ [ ] A +t +A + f(t) dt est covergete et vaut. (+t) dt [ ] +t Pour α, α f(t)dt α +α α +α α α vérifie α f(t)dt f(t) dt est impropre e +. Soit A > : EM Lyo 5 Page 3 Corrigé

4 5. a) O a ϕ () Et comme + +u u f(t)dt f (t)dt u f (t)dt f (t)dt+ lim ϕ (u) u + Doc ϕ () et lim u + ϕ (u) +u f (t)dt et que f (t)dt+ f (t)dt f(t) dt coverge alors f(t) dt b) Soiet < u < v alors v < u < +u < +v doc o peut découper ϕ (v) : ϕ (v) ϕ (u) u v u v f (t) dt+ f (t)dt+ et comme v < u et que f alors u v +u u +v +u f (t) dt+ f (t)dt f (t)dt. Doc, (u,v) [,+ [, u < v ϕ (v) ϕ (u) +v +u f(t)dt. +v Comme o a alors +v > +u > et f (t) > sur [+u;+v] alors +u f (t) dt +v +u +u u f(t)dt > f (t)dt Doc, (u,v) [,+ [, v > u ϕ (v) > ϕ (u) ce qui est la défiitio d ue foctio strictemet croissate sur [;+ [. ϕ est strictemet croissate sur [;+ [ c) ϕ est doc strictemet croissate et cotiue sur [,+ [. D après le théorème de bijectio mootoe ϕ réalise doc ue bijectio de [;+ [ sur [ [ ϕ ();lim ϕ [,[ + Comme [,[alors il admet u uique atécédetpar ϕ das [;+ [ et doc l équatioϕ (u), d icoue u, admet ue solutio et ue seule das [;+ [. [ 6. a) Soit ; [ O calcule +( ) ( ) f(t)dt Et comme alors +( ) f(t)dt f(t)dt dt+ (+t) dt Doc f(t)dt ( ) (+t) dt grâce à la questio 4. [ Doc pour tout ; [, U() est bie ue solutio. C est doc la boe. [ [ b) Pour tout ;+, grâce à la questio 3. ϕ () + f(t)dt (+t) dt + Si alors + doc + et doc ϕ (). O a doc ϕ () ϕ (U ()) et comme ϕ est strictemet croissate sur [,[ (même ses de variatio que ϕ ) alors U() et doc U() Efi, comme U(), alors f (t) sur tout l itervalle [ U (),+U ()] et doc (+t) EM Lyo 5 Page 4 Corrigé

5 +U() U() f(t)dt +U() (+t) dt U() ] +U() [ +t U() ++U () + + U () (+ U ())+(++U ()) (++U ())(+ U ()) U () (+) U () Doc ϕ (U ()) U () (+) U () U () +4U () (+) équatio du secod degré e U () qui a pour discrimiat 6+4(+) 4 (4+(+) ) et pour racies U () 4± 4+(+) ± 4+(+) et comme 4+(+) < et que U () alors U () + 4+(+) 7. a) Pour [ [ o a 4+(+) doc U est cotiue sur,+ [ De plus elle est cotiue sur, [ (foctio affie) Efi lim U () ( ) (/) lim U () U (/) + Doc U est cotiue e Doc U est cotiue sur [,+ [ [ [ b) De même, U est dérivable sur,+ (4+(+) > ) et sur si < De plus U () + si >. 4+(+) [, [. E il faut tester si les dérivée à droite et à gauche sot égales : U() U(/) / lim lim lim (/) / (/) / (/) U() U(/) 4+(+) 5/ lim lim (/) + / (/) + / lim (/) + 4+(+) 5/4 ( /)( 4+(+) +5/) lim (/) + (+) 9/4 ( /)( 4+(+) +5/) lim (/) + lim (/) + ( /)(+5/) ( /)( 4+(+) +5/) (+5/) ( 4+(+) +5/) 3 5 Doc U est dérivable à droite et à gauche e mais les dérivées à droite et à gauche e sot pas égales doc U est pas dérivable e. EM Lyo 5 Page 5 Corrigé

6 c) Il suffit ici de calculer la limite e + de 4+(+) ( ). C est pour l istat ue forme idétermiée doc o va trasformer cette epressio e se servat de l epressio cojuguée : 4+(+) ( ) 4+(+) (+) ( 4+(+) (+))( 4+(+) +(+)) 4+(+) +(+) 4 4+(+) d) Or lim 4+(+) +(+) + doc lim U() ( ) et aisi + + la droite d équatio y est asymptote à la courbe représetative de U e + y 8. a) Motros par récurrece que la propriété P() : a est vraie pour tout etier. a doc P() est vraie. Soit fié. Supposos que P() est vraie. O a doc a, ce qui ous doe ( + a ) 9 4, doc 4+(+a ) 5 et doc U(a ). O a doc bie a + et doc P(+) est vraie. Grâce au pricipe de récurrece o a doc motré que N, a. b) Das la questio 6. b) o a démotré que si alors U() doc o a a U(a ) a +. La suite (a ) est doc décroissate. c) La suite est décroissate et miorée par doc elle coverge vers ue limite l Comme U est cotiue sur [,+ [ elle est cotiue e l. Doc e passat à la limite das l égalité a + U(a ) o a U (l) l. Pour o a : U() 4+(+) + 4+(+) (+) car + > Doc U () et doc lim a + d) O calcule a et tat que a > 6 : Program premier; var :iteger;a:real; begi a:;:; while abs(a-.5) >. do begi a:-+sqrt(4+sqr(+a)); :+; ed; writel(); ed. EM Lyo 5 Page 6 Corrigé

7 Eercice 3:. a) Après le ( )-ième succès, o recommece à faire ue successio d épreuves idépedates das l attete d u succès (qui est de probabilité ) et T est le rag d apparitio de ce succès doc T suit ue loi géométrique de paramètre ( ). T (Ω) N et k N, P(T k) k ( ) O a doc E(T ), V(T ) ( ) b) Soit et (k k,,k ) (N ). O cherche à calculer P([T k ] [T k ] [T k ]). Notos E i l évéemet la i-ième épreuve est u échec. O a alors : [T k ] [T k ] E E E k E k E k+ E k+k E k+k Et comme les épreuves sot idépedates : E k+k + E k+ +k E k+ +k P([T k ] [T k ] [T k ]) k ( ) k ( ) k ( ) Doc les variables T, T,, T sot idépedates. P(T k ) P(T k ) c) O sait que S T + + T et comme tous les T i admettet ue espérace, S admet ue espérace et o a E(S ) E(T )+ +E(T ). U somme de variable aléatoire admettat ue variace, admet ue variace doc S admet ue variace et comme les (T i ) sot idépedates o a V(S ) V(T )+ +V(T ) ( ) d) Le -ième succès peut arriver au mieu à la -ième épreuve doc S (Ω) [;+ [. Soit k S (Ω). L évéemet [S k] sigifie qu au cours des k premières épreuves ous avos obteu succès et que la k-ième épreuve était u succès. Cela sigifie doc qu au cours des k première épreuves ous avos obteus succès (( ) ) et k échecs ( k ). De plus, o peut placer ces succès où l o veut et il y a ( ) k faços de placer succès parmi k épreuves. O a doc : ( ) k P(S k) k ( ) ( ) Les évéemets ([S k]) k formet u système complet d évéemets doc e) D après la questio précédete o a : k P(S k) k ( ) k ( )) k ( ) k k ( ) k k ( ) k k P(S k). ( ). a) X correspod au rag d apparitio du premier succès lors d ue successio d épreuves réalisées das des coditios idetiques. La probabilité de succès état à chaque fois égale à p, X suit ue loi géométrique de paramètre p. X(Ω) N et k N, P(X k) ( p) k p Lorsqu o sait que [X k] est réalisé,y compte le ombre de réalisatiosde l évéemet obteir pile au cours de la réalisatio de k réalisatio de la même épreuve où la probabilité de succès est égale à p. La loi coditioelle de Y à l évéemet [X k] est doc ue loi biomiale de paramètres k et p. Pour tout j [;k], P [Xk] (Y j) ( k j) p j ( p) k j et si j > k, P [Xk] (Y j) b) O a Y(Ω) N car X peut predre toutes les valeurs etières o ulles. c) La famille ([X k]) k N est u système complet d évéemets doc d après la formule des probabilités totales : P(Y ) p q k k P(X k)p [Xk] (Y ) pq k p q k (q ) k k q q pq ( q)(+q) q +q pq k q k EM Lyo 5 Page 7 Corrigé

8 d) De même que das la questio précédete : P(Y ) P(X k)p [Xk] (Y ) k k ( ) k pq k p q k k ( ) k p + q k O a doc P(Y ) p+ q + k p+ q + k+ ( ) k (q ) k ( k p+ q + q (q ) + ( q ) + p + q ( q) + (+q) + q (+q) + (+q) ) (q ) k ( ) q +q EM Lyo 5 Page 8 Corrigé

ANNALES. OFFICIELLES 2013 concours. ecricome. prepa. ÉPREUVE ÉCRITE ÉPREUVE spécifique. option technologique. z Mathématiques.

ANNALES. OFFICIELLES 2013 concours. ecricome. prepa. ÉPREUVE ÉCRITE ÉPREUVE spécifique. option technologique. z Mathématiques. ANNALES OFFICIELLES 3 cocours ÉPREUVE ÉCRITE ÉPREUVE spécifique optio techologique z www..org cocours Esprit de l épreuve Vérifier ches les cadidats l eistece des bases écessaires pour des études supérieures

Plus en détail

x + (2 α) y = 0 3 L donc P

x + (2 α) y = 0 3 L donc P 1 Corrigé ESC 009 par Pierre Veuillez Exercice 1 O cosidère les matrices A, B, D, P, E de M (R) suivates : ( ) 5 1 4 ( ) A B 3 3 1 3 0 7 D P 3 3 ( ) { x (1 α) x y 0 1) a: (A αi) 0 y x + ( α) y 0 ( 1 )

Plus en détail

Corrigé de l'épreuve de maths 2 - e3a - MP

Corrigé de l'épreuve de maths 2 - e3a - MP Corrigé de l'épreuve de maths 2 - e3a - MP - 207 Partie I L'applicatio ϕ est liéaire et P R [X], ϕ(p R [X] doc ϕ iduit sur R [X] u edomorphisme 2 ϕ( = et i, ϕ(x i = X i ix i O e déduit la matrice de ϕ

Plus en détail

AVRIL 2013 CONCOURS INGÉNIEURS DES TRAVAUX STATISTIQUES. ITS Voie A

AVRIL 2013 CONCOURS INGÉNIEURS DES TRAVAUX STATISTIQUES. ITS Voie A AVRIL CONCOURS INGÉNIEURS DES TRAVAUX STATISTIQUES ITS Voie A CORRIGE DE LA ère COMPOSITION DE MATHEMATIQUES Eercice. Calculer, e, la dérivée de : Arc ta( ) Soit f ( ) Arc ta( ), alors f ( ) Arc ta( )

Plus en détail

Correction de l exercice 1

Correction de l exercice 1 IUT Orsa Iformatique S3 Correctio de l exercice. Ω est l esemble des résultats possibles de l experiece aléatoire lacer u dé à faces : Ω {,, 3,,, }, et Ω.. Si k Ω sort, le gai du jeu est k euros. Doc la

Plus en détail

X 1 = { X si X est impair 0 sinon

X 1 = { X si X est impair 0 sinon Corrigé ECRICOME 998 par Pierre Veuillez Das tout le problème, X désige ue variable aléatoire défiie sur u espace probabilisé (Ω, A, P et à valeurs das N et E(X l espérace de X si elle eiste. O ote A l

Plus en détail

Exercices - Variables aléatoires discrètes : corrigé. Variables discrètes finies - Exercices pratiques

Exercices - Variables aléatoires discrètes : corrigé. Variables discrètes finies - Exercices pratiques Variables discrètes fiies - Exercices pratiques Exercice 1 - Loi d u dé truqué - Deuxième aée - 1. X pred ses valeurs das {1,..., 6}. Par hypothèse, il existe u réel a tel que P (X k) ka. Maiteat, puisque

Plus en détail

DS 2 Correction. (question de cours 2 points) Énoncer le théorème de Rolle. 1 n n n. lim u n = 1.

DS 2 Correction. (question de cours 2 points) Énoncer le théorème de Rolle. 1 n n n. lim u n = 1. icolas.laillet@imj-prg.fr DS 2 Aalyse Exercice 1 (questio de cours 2 poits Éocer le théorème de Rolle. Soiet a, b deux réels avec a < b, soit f ue foctio à valeurs réelles, cotiue sur [a, b] et dérivable

Plus en détail

Partie I : Résultats généraux sur les matrices stochastiques - Illustrations

Partie I : Résultats généraux sur les matrices stochastiques - Illustrations 8-8- JFC p EM LYON S JF COSSUTTA Lycée Marceli BERTHELOT SAINT-MAUR jea-fracoiscossutta@waadoofr PROBLÈME Partie I : Résultats gééraux sur les matrices stochastiques - Illustratios Remarque Das la suite

Plus en détail

C.B. Analyse : solutions

C.B. Analyse : solutions l( ) ) La foctio f C.B. Aalyse : solutios Partie I : Etude de la foctio L a) Par théorème géérau, f est de classe C sur ], [ {}. E, o motre simultaémet les deu propriétés e obteat u D.L. de f e. O sait

Plus en détail

x 0 h a (x) ln (2 a ) h a 2 a Justifier, par le calcul, le signe de h' a (x) pour x appartenant à ] 0 ; + [. b. Rappeler la limite de ln x x

x 0 h a (x) ln (2 a ) h a 2 a Justifier, par le calcul, le signe de h' a (x) pour x appartenant à ] 0 ; + [. b. Rappeler la limite de ln x x EXERCICE (6 poits) Commu à tous les cadidats Soit f la foctio défiie sur l itervalle ] ; + [ par f () = l Pour tout réel a strictemet positif, o défiit sur ] ; + [ la foctio g a par g a () = a O ote C

Plus en détail

b) Par définition, ln 1 est le nombre dont l'exponentielle est 1. Or e = 1. Donc ln 1 = 0 2) Traduction de la définition.

b) Par définition, ln 1 est le nombre dont l'exponentielle est 1. Or e = 1. Donc ln 1 = 0 2) Traduction de la définition. Termiale S Chapitre 7 «Foctios logarithmes» Page sur 2 I) Défiitio et propriétés algébriques : ) La foctio : Défiitio : La foctio logarithme épérie, otée, est la foctio défiie sur ;+ qui, à tout réel >

Plus en détail

4 ème aée Maths Limites Cotiuité et dérivabilité Octobre 9 A LAATAOUI Eercice : La figure ci cotre est la représetatio graphique d ue foctio f défiie et cotiue sur IR O ote que (ζf) admet au voisiage de

Plus en détail

Concours commun Mines-Ponts 2000 Corrigé de la seconde épreuve de mathématiques

Concours commun Mines-Ponts 2000 Corrigé de la seconde épreuve de mathématiques Cocours commu Mies-Pots Corrigé de la secode épreuve de mathématiques a Nous pouvos appliquer le critère de d Alembert : doc le rayo R est égal à /4 C+ + + + C = + 4, + b O sait que h est de classe C avec

Plus en détail

TS Devoir Commun de Mathématiques N 3 Lundi17/11/2014

TS Devoir Commun de Mathématiques N 3 Lundi17/11/2014 TS Devoir Commu de Mathématiques N Ludi7//04 La présetatio, la rédactio et la rigueur des résultats etrerot pour ue part sigificative das l évaluatio de la copie Le sujet est composé de 4 eercices idépedats

Plus en détail

Convergences et approximations

Convergences et approximations Covergeces et approximatios Probabilités : Chapitre 5 Das tout ce chapitre, les démostratios serot faites das le cas des variables discrètes et des variables à desité. I Iégalité de Bieaymé-Tchebychev

Plus en détail

Bac Blanc Terminale L - Février 2017 Correction de l Épreuve de Spécialité Mathématiques (durée 3 heures)

Bac Blanc Terminale L - Février 2017 Correction de l Épreuve de Spécialité Mathématiques (durée 3 heures) Bac Blac Termiale L - Février 2017 Correctio de l Épreuve de Spécialité Mathématiques (durée 3 heures) Exercice 1 (5 poits) 1. Depuis le 28 jui 2007, la ville de Bordeaux a été classée au patrimoie modial

Plus en détail

Révisions d analyse (corrigé des indispensables).

Révisions d analyse (corrigé des indispensables). Révisios d aalyse (corrigé des idispesables). Limites des foctios de variable réelle à valeurs das ou.. a. La foctio f est le produit d e foctio borée sur ( a si ) et d e foctio qui ted vers 0 e 0 ( a

Plus en détail

Terminale S Chapitre 2 : Fonctions, continuité et TVI Page 1 sur 5 ( ) = ( )

Terminale S Chapitre 2 : Fonctions, continuité et TVI Page 1 sur 5 ( ) = ( ) Termiale S Chapitre : Foctios, cotiuité et TVI Page sur 5 Ce que dit le programme : Défiitio Soiet f ue foctio défiie sur u itervalle I de R et a = O dit que f est cotiue e a si lim f x f a O dit que f

Plus en détail

France métropolitaine Juin 2010 Série S Exercice 1. Restitution organisée de connaissances

France métropolitaine Juin 2010 Série S Exercice 1. Restitution organisée de connaissances Frace métropolitaie Jui 200 Série S Exercice Restitutio orgaisée de coaissaces Démotrer, à l aide de la défiitio et des deux propriétés cidessous que si ( u ) et ( v ) sot deux suites adjacetes, alors

Plus en détail

SESSION Concours ENSAM - ESTP - EUCLIDE - ARCHIMEDE. Epreuve de Mathématiques B PSI. Exercice I

SESSION Concours ENSAM - ESTP - EUCLIDE - ARCHIMEDE. Epreuve de Mathématiques B PSI. Exercice I SESSION 9 Cocours ENSAM - ESTP - EUCLIDE - ARCHIMEDE E3A Epreuve de Mathématiques B PSI Exercice I ) rga) 3 < 4 et doc A / GL 4 R) Par suite, est valeur propre de A ) Soit U Puisque la somme des coefficiets

Plus en détail

Suites numériques 1 / 12 A Chevalley

Suites numériques 1 / 12 A Chevalley MT8 A 03 Suites umériques Aleth Chevalley. Rappels.. Défiitio O appelle suite umérique réelle, toute applicatio f : ϒ qui à tout etier aturel, fait correspodre le ombre réel f() et o désige la suite par

Plus en détail

( 2) e x. x + d x. Donner une interprétation graphique de cette intégrale.

( 2) e x. x + d x. Donner une interprétation graphique de cette intégrale. EXERCICE : (6 poits) Commu à tous les cadidats Les deux parties de cet exercice sot idépedates. Partie A O cosidère l équatio différetielle (E) : y ' + y e x. ) Motrer que la foctio u défiie sur l esemble

Plus en détail

Chapitre 1. Les suites numériques Principe de récurrence Limite d une suite

Chapitre 1. Les suites numériques Principe de récurrence Limite d une suite Eseigemet spécifique Chapitre 1. Les suites umériques Pricipe de récurrece Limite d ue suite I. Rappels sur les suites umériques 1. géérale Ue suite umérique est ue foctio défiie de N vers R, elle peut

Plus en détail

Concours PT2004 Maths I-B. partie A

Concours PT2004 Maths I-B. partie A ocours PT2 Maths I-B Même si le suet e l a pas posé o utilisera : 8 2 M r (R) = I r partie a b x y ax + bz. Si = 2 S c d 2 et B = 2 S z t 2 o a B = cx + dz ay + bt cy + dt Les coe ciets de B sot sommes

Plus en détail

Convergence de suites réelles

Convergence de suites réelles DOMAINE : No olympique AUTEUR : Nicolas SÉGARRA NIVEAU : Itermédiaire STAGE : Motpellier 2014 CONTENU : Cours et exercices Covergece de suites réelles I) Rappels et otios de base. Défiitio 1. Ue suite

Plus en détail

Fiche Diagonalisation des Matrices 2x2

Fiche Diagonalisation des Matrices 2x2 Fiche Diagoalisatio des Matrices x MOSE 1003 4 Septembre 014 Table des matières Motivatio, puissaces d ue matrice 1 Diagoalisatio Vérificatio avec Scilab 3 Puissace 4 Motivatio, puissaces d ue matrice

Plus en détail

Autour de la loi de Poisson

Autour de la loi de Poisson Agrégatio Itere de Mathématiques Thierry Champio séace du 25 ovembre 2016 Autour de la loi de Poisso Notatios - Itroductio Das tout ce problème, (Ω, T, P) est u espace probabilisé. Toutes les variables

Plus en détail

CORRIGÉ : MATH 2 ; MP ; Mines-ponts_2015

CORRIGÉ : MATH 2 ; MP ; Mines-ponts_2015 CORRIGÉ : MATH ; MP ; Mies-pots_05 A Norme d opérateur d ue matrice ) est u espace vectoriel ormé de dimesio fiie et S est u fermé boré de, c est doc u compact de L applicatio x Mx est u edomorphisme de

Plus en détail

Terminale S mai Exercice 2. On considère les complexes z 1 de. = est la droite d équation y = x. Exercice 3. On considère le point A d affixe

Terminale S mai Exercice 2. On considère les complexes z 1 de. = est la droite d équation y = x. Exercice 3. On considère le point A d affixe Termiale S mai 6 Cocours Fesic Calculatrice iterdite ; traiter eercices sur les 6 e h ; répodre par Vrai ou Fau sas justificatio + si boe répose, si mauvaise répose, si pas de répose, bous d poit pour

Plus en détail

ème aée Maths Problème de révisio Décembre 009 A. LAATAOUI I- Soit la octio déiie sur par : ( ) ta - a) Motrer que est cotiue sur et dérivable sur. b) Calculer '( ) pour élémet de et motrer que est pas

Plus en détail

Exercices. Exercice 1 (Suites adjacentes) On considère les suites (u n ) n N et (v n ) n N définies par: 1 k u n = n 3, v n = u n + 1 n 1 2n 2

Exercices. Exercice 1 (Suites adjacentes) On considère les suites (u n ) n N et (v n ) n N définies par: 1 k u n = n 3, v n = u n + 1 n 1 2n 2 Exercices Exercice (Suites adjacetes) O cosidère les suites (u ) N et (v ) N défiies par: u 3, k3 k 2 + v u + 2 2 Motrer que (u ) N et (v ) N sot adjacetes. Exercice 2 Soiet les deux suites (u ) et (v

Plus en détail

Fonction logarithme népérien Corrigés d exercices / Version de décembre 2012

Fonction logarithme népérien Corrigés d exercices / Version de décembre 2012 Corrigés d eercices / Versio de décembre 0 Les eercices du livre corrigés das ce documet sot les suivats : Page 9 : N, 6 Page 9 : N Page 9 : N 7, 9 Page 98 : N 9,,, 6, 7, 9 Page 99 : N 4, 47, 49, Page

Plus en détail

Z = 1 4i. z = On multiplie par le conjugué du dénominateur S = 5. = b + i. z 2 = z 1. 2 = 3 i 2. = 6 + 2i 4. { 3 + i. 2 ; 3 i }

Z = 1 4i. z = On multiplie par le conjugué du dénominateur S = 5. = b + i. z 2 = z 1. 2 = 3 i 2. = 6 + 2i 4. { 3 + i. 2 ; 3 i } Nom :........................ DS Préom :..................... Devoir o 7 Mars 6.../... Le soi et la rédactio serot pris e compte das la otatio. Faites des phrases claires et précises. Le barème est approximatif.

Plus en détail

Analyse 5 SUITES REELLES

Analyse 5 SUITES REELLES Aalyse chap 5 /6. GENERALITES SR LES SITES. Défiitios Défiitio : e suite est ue foctio, défiie sur ue partie D de. O ote () =, o lit «idice». O dit que est le terme gééral de la suite, ou terme de rag.

Plus en détail

Partie A : z x. z =( z ) = 4 = - 4 donc z est aussi solution de (E) Partie C :

Partie A : z x. z =( z ) = 4 = - 4 donc z est aussi solution de (E) Partie C : Corrigé baccalauréat S Polyésie 200 (raiateabac.blogspot.com) EXERCICE (5 poits) Pré-requis : z a + bi et _ z a bi Partie A : a ) E posat z a + bi et z a + b i o obtiet : z x z (a + bi) ( a + b i) aa bb

Plus en détail

Centres étrangers Enseignement spécifique. Corrigé

Centres étrangers Enseignement spécifique. Corrigé EXERCICE 1 Partie A Cetres étragers 13. Eseigemet spécifique. Corrigé 1) La durée de vie moyee d ue vae est l espérace de la variable aléatoire T. O sait que l espérace de la loi expoetielle de paramètre

Plus en détail

Suites numériques. Copyright meilleurenmaths.com. Tous droits réservés

Suites numériques. Copyright meilleurenmaths.com. Tous droits réservés Suites umériques. 1. Mode de géératio des suites... p2 4. Le raisoemet par récurrece... p4 2. Relatio de récurrece... p3 5. Ses de variatio des suites... p6 3. Suites arithmétiques, suites géométriques...

Plus en détail

Correction du baccalauréat S Pondichéry 16 avril 2009

Correction du baccalauréat S Pondichéry 16 avril 2009 Correctio du baccalauréat S Podichéry 6 avril 009 EXERCICE 7 poits La foctio f est défiie sur l itervalle [0 ; + [ par : f (x)=xe x. Partie. a. O remarque que, pour tout x> 0, f (x)= x x e. x lim x + x

Plus en détail

CONCOURS BLANC 1 SCI 2

CONCOURS BLANC 1 SCI 2 CONCOURS BLANC SCI Durée : 4 heures Aucu istrumet de calcul est autorisé Aucu documet est autorisé Les étudiats sot ivités à soiger la présetatio de leur copie EXERCICE : CCP 05 CCP : cocours commus polytechiques

Plus en détail

Correction de la question de cours 1

Correction de la question de cours 1 Math I Aalyse Exame du 9 décembre 2007 Durée 2 heures Aucu documet est autorisé. Les calculatrices, téléphoes portables et autres appareils électroiques sot iterdits. Il est iutile de recopier les éocés.

Plus en détail

1 + t = t. a 6 n ln 1 + a. Suite a : On utilise une relation de Chasles (même terme mais sur des ensembles d indices distincts) ! 1 # 1. 1 k.

1 + t = t. a 6 n ln 1 + a. Suite a : On utilise une relation de Chasles (même terme mais sur des ensembles d indices distincts) ! 1 # 1. 1 k. PHEC Correctio feuille d exercices 00-006 correctio de l exercice t. 8t R + ; + t 6 l( + t) 6 t : Pour cela, o itroduit les foctios f : t 7 l( + t) t et g : t 7 t l( + t) + t dé ies sur [0; +[ et o étudie

Plus en détail

L2 - Math4 Exercices corrigés sur les suites numériques

L2 - Math4 Exercices corrigés sur les suites numériques L2 - Math4 Exercices corrigés sur les suites umériques Eocés Exercice Les assertios suivates sot-elles vraies ou fausses? Doer ue démostratio de chaque assertio vraie, et doer u cotre-exemple de chaque

Plus en détail

EXERCICES SUR LES SUITES NUMERIQUES

EXERCICES SUR LES SUITES NUMERIQUES EXERCICES SUR LES SUITES NUMERIQUES 1 Etudier la mootoie des suites a ) 0 défiies par : a) a = b) a = + 1) + ) + ) c) a =! d) a = α + 1) α réel positif) Soit a, la suite de terme gééral a = 3 + 1 3 + Trouver

Plus en détail

PUISSANCES D'EXPOSANTS REELS, FONCTIONS PUISSANCES, CROISSANCES COMPAREES

PUISSANCES D'EXPOSANTS REELS, FONCTIONS PUISSANCES, CROISSANCES COMPAREES PUISSANCES D'EXPOSANTS REELS, FONCTIONS PUISSANCES, CROISSANCES COMPAREES ) PUISSANCES D'EXPOSANTS REELS A ) La otatio a Si est u etier aturel, la otatio a a u ses pour tout réel a Das le cas où est u

Plus en détail

Correction Exercices sur les suites. Correction. un+1 = 0,2u n +0,6 u 0 = 1

Correction Exercices sur les suites. Correction. un+1 = 0,2u n +0,6 u 0 = 1 Correctio Exercice 1 O cosidère la suite (v ) défiie par v 0 = 3 et pour tout 1, v +1 = v 2 3v +4. 1. Démotrer que la suite est croissate. v +1 v = v 2 4v +4 = (v 2) 2 0 quelque soit etier. Doc (v ) est

Plus en détail

CH V : Variables aléatoires - généralités

CH V : Variables aléatoires - généralités CH V : Variables aléatoires - gééralités I. Notio de variable aléatoire réelle Soit (Ω, A ) u espace probabilisable. O dit que X est ue variable aléatoire réelle défiie sur (Ω, A ) si : (i) X est ue applicatio

Plus en détail

pour 1. b) si ( ) converge, alors 567 =l avec l réel,

pour 1. b) si ( ) converge, alors 567 =l avec l réel, Exercices aales corrigés : Suites Sujet atioal septembre 007 ( bac blac 008) La suite u est défiie par : = et = pour tout etier aturel a O a représeté das u repère orthoormé direct du pla doé ci-dessous,

Plus en détail

Calculs de limites, développements limités, développements asymptotiques

Calculs de limites, développements limités, développements asymptotiques Eo7 Calculs de limites, développemets limités, développemets asymptotiques Eercices de Jea-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-fracefr * très facile ** facile *** difficulté moyee ****

Plus en détail

EPREUVE SPECIFIQUE - FILIERE PC MATHEMATIQUES. Mardi 3 mai : 14 h - 18 h. Les calculatrices sont interdites

EPREUVE SPECIFIQUE - FILIERE PC MATHEMATIQUES. Mardi 3 mai : 14 h - 18 h. Les calculatrices sont interdites SESSION 216 PCMA2 EPREUVE SPECIFIQUE - FILIERE PC MATHEMATIQUES Mardi 3 mai : 14 h - 18 h N.B. : le cadidat attachera la plus grade importace à la clarté, à la précisio et à la cocisio de la rédactio.

Plus en détail

Suites Numériques Site MathsTICE de Adama Traoré Lycée Technique Bamako

Suites Numériques Site MathsTICE de Adama Traoré Lycée Technique Bamako Suites Numériques Site MathsTICE de Adama Traoré Lycée Techique Bamako I Gééralité sur les suites: - Pricipe du raisoemet par récurrece : Soit la propriété P() dépedat de l idice Si les propositios ()

Plus en détail

DT - CONSTRUCTION DE L EXPONENTIELLE ET DU LOGARITHME NEPERIEN

DT - CONSTRUCTION DE L EXPONENTIELLE ET DU LOGARITHME NEPERIEN DT - CONSTRUCTION DE L EXPONENTIELLE ET DU LOGARITHME NEPERIEN Das ce qui suit, o utilisera des argumets élémetaires et o e suppose aucue coaissace des foctios exp et l Ce qui suit sert à les défiir comme

Plus en détail

CONCOURS COMMUN 1996 DES ECOLES DES MINES D ALBI, ALES, DOUAI, NANTES Epreuve spécifique de Mathématiques - Corrigé (Patrick BERGEON)

CONCOURS COMMUN 1996 DES ECOLES DES MINES D ALBI, ALES, DOUAI, NANTES Epreuve spécifique de Mathématiques - Corrigé (Patrick BERGEON) CONCOURS COMMUN 1996 DES ECOLES DES MINES D ALBI, ALES, DOUAI, NANTES Epreuve spécifique de Mathématiques - Corrigé (Patrick BERGEON) Problème 1 Première partie 1-) IN * p, +1 = u p +1. Si le produit (p

Plus en détail

Partie B u. 4 Soit (u n ) la suite définie par : pour tout entier naturel n 0, u

Partie B u. 4 Soit (u n ) la suite définie par : pour tout entier naturel n 0, u Exercice 1 (6 poits) Commu à tous les cadidats O cosidère la foctio f défiie et dérivable sur l itervalle [ 0 ; + [ par : f (x) = 5 l ( x ± 3 ) x. 1. a. O appelle f ' la foctio dérivée de la foctio f sur

Plus en détail

Corrigé du Bac blanc du lycée Prévert. Session de janvier Durée 4 h.

Corrigé du Bac blanc du lycée Prévert. Session de janvier Durée 4 h. Corrigé du Bac blac du lycée Prévert. Sessio de javier 015. Durée h. EXERCICE 1 Étude d'ue famille de foctios 6 poits A tout etier aturel o ul o associe la foctio f défiie sur R par f (x)= ex e x +7. O

Plus en détail

Correction Exercices Chapitre 08 - Couples de variables aléatoires réelles discrètes

Correction Exercices Chapitre 08 - Couples de variables aléatoires réelles discrètes 08. O dispose de boîtes umérotées de à. La boîte k cotiet k boules umérotées de à k. O choisit au hasard ue boîte, puis ue boule das cette boîte. Soit X le uméro de la boîte et Y le uméro de la boule..

Plus en détail

Limites de suites et de fonctions

Limites de suites et de fonctions TermS Limites de suites et de foctios I ] Suites ) Défiitio : Ue suite réelle est ue foctio de! das!, défiie à partir d'u certai rag 0. Notatio : u = lire "u idice " = terme d'idice, ou de rag = terme

Plus en détail

I- Nombre dérivé de f en a

I- Nombre dérivé de f en a I- Nombre dérivé de f e a Défiitio 1: Soit f ue foctio défiie sur u itervalle I, a I et h R* tel que a+h I f est dérivable e a I, si, et seulemet si, ( a + h) f ( a) Cette limite est le ombre dérivé de

Plus en détail

Exercice 1 (10 points)

Exercice 1 (10 points) Devoir surveillé 2 L usage de la calculatrice est autorisé La qualité de la présetatio et de la rédactio de la copie sera prise e compte das so évaluatio Sauf metio du cotraire, toute répose doit être

Plus en détail

Terminales S Devoir maison n 3 -A faire pour le jeudi 6 novembre 2014

Terminales S Devoir maison n 3 -A faire pour le jeudi 6 novembre 2014 Termiales S Devoir maiso -A faire pour le jeudi 6 ovembre 0 eercice : probabilités coditioelles et suite Alice débute au jeu de fléchettes. Elle effectue des lacers successifs d ue fléchette. Lorsqu elle

Plus en détail

Chapitre 1 METHODES SUR LES SUITES

Chapitre 1 METHODES SUR LES SUITES Chapitre 1 METHODES SUR LES SUITES Nous allos voir commet : 1) Cojecturer le comportemet d ue suite ) Raisoer par récurrece 3) Utiliser les suites arithmétiques et géométriques 4) Étudier le comportemet

Plus en détail

5 Pour tout entier naturel n, on pose : 6 Démontrer que, pour tout entier naturel n : n k k! = (n + 1)! 1

5 Pour tout entier naturel n, on pose : 6 Démontrer que, pour tout entier naturel n : n k k! = (n + 1)! 1 Exercices 7 SUITES NUMÉRIQUES Récurrece O appelle factorielle et o écrit! le produit des etiers cosécutifs de à : Par covetio : 0! =.! = 3 ) Pour ue foctio f, o ote f ) sa dérivée - ième. Soit f défiie

Plus en détail

Fiche 2 : Les fonctions

Fiche 2 : Les fonctions Nº : 300 Fiche : Les foctios Calculer des limites O commece par aalyser f (). Peut o directemet appliquer l u des théorèmes du cours (limites et opératios, théorèmes de comparaiso)? Das la égative, il

Plus en détail

v 0 = 0 = 3v n 2 pour tout n N

v 0 = 0 = 3v n 2 pour tout n N Termiale S Aée scolaire 07-08 Chapitre Suites umériques Bejami Gausso fermathsfr Rappels et gééralités sur les suites O rappelle que N désige l esemble des etiers aturels : N = {0; ; ; 6} Défiitio Ue suite

Plus en détail

i. En déduire une mesure de l angle ( BD, PΩ ).

i. En déduire une mesure de l angle ( BD, PΩ ). Polyésie septembre EXERCICE Pour chacue des propositios suivates, idiquer si elle est vraie ou fausse et doer ue démostratio de la répose choisie Ue répose o démotrée e rapporte aucu poit O cosidère la

Plus en détail

TD10. Loi des grands nombres, théorème central limite.

TD10. Loi des grands nombres, théorème central limite. Uiversité Pierre & Marie Curie Licece de Mathématiques L3 UE LM345 Probabilités élémetaires Aée 2014 15 TD10. Loi des grads ombres, théorème cetral limite. 1. Soit (U ) 1 ue suite de variables aléatoires

Plus en détail

Chapitre 6 Théorèmes de convergence

Chapitre 6 Théorèmes de convergence Chapitre 6 Théorèmes de covergece 1. La covergece e loi O a déjà recotré ue covergece e loi lors de l approximatio d ue loi biomiale par ue loi de Poisso. Ce problème se place das u cadre plus gééral où

Plus en détail

Exercices d oraux de la banque CCP Corrigés BANQUE PROBABILITÉS

Exercices d oraux de la banque CCP Corrigés BANQUE PROBABILITÉS Exercices d oraux de la baque CCP 204-20 - Corrigés BANQUE PROBABILITÉS EXERCICE 96 (a La variable aléatoire X est régie par ue loi biomiale E effet, expérieces idetiques et idépedates (car les tirages

Plus en détail

FONCTION LOGARITHME NÉPÉRIEN

FONCTION LOGARITHME NÉPÉRIEN FONCTION LOGARITHME NÉPÉRIEN Cours Termiale S La foctio logarithme épérie O a vu das u chapitre précédet que la foctio epoetielle est cotiue et strictemet croissate sur R et que l image de R par cette

Plus en détail

CONCOURS DE RECRUTEMENT D ELEVES PILOTE DE LIGNE. Partie I

CONCOURS DE RECRUTEMENT D ELEVES PILOTE DE LIGNE. Partie I CONCOURS DE RECRUTEMENT D ELEVES PILOTE DE LIGNE ANNEE 14 EPREUVE DE MATHEMATIQUES Partie I Questio 1 : Explicatio 1 : I GL R et I GL R mais I I = / GL R. Doc GL R est pas u sous-espace vectoriel de M,

Plus en détail

Exo7. Les rationnels, les réels. Exercices de Jean-Louis Rouget. Retrouver aussi cette fiche sur

Exo7. Les rationnels, les réels. Exercices de Jean-Louis Rouget. Retrouver aussi cette fiche sur Exo7 Les ratioels, les réels Exercices de Jea-Louis Rouget. Retrouver aussi cette fiche sur www.maths-frace.fr * très facile ** facile *** difficulté moyee **** difficile ***** très difficile I : Icotourable

Plus en détail

Introduction aux théorèmes limites et aux intervalles de confiance

Introduction aux théorèmes limites et aux intervalles de confiance Chapitre 5 Itroductio aux théorèmes limites et aux itervalles de cofiace Objectifs du chapitre. Savoir approcher ue loi biomiale par ue loi de Poisso ou ue loi ormale. 2. Savoir approcher ue loi e appliquat

Plus en détail

Exercices sur les suites de fonctions

Exercices sur les suites de fonctions ercices sur les suites de foctios océs ercice Étudier la covergece simple et uiforme des suites de foctios de R das R suivates : f ) = ), g ) = si, ϕ ) = e si, ψ ) = e cos. ercice 2 Étudier la covergece

Plus en détail

REDUCTION DES ENDOMORPHISMES ET DES MATRICES Exercices

REDUCTION DES ENDOMORPHISMES ET DES MATRICES Exercices REDUCTION DES ENDOMORPHISMES ET DES MATRICES Exercices EXERCICE 1 : Soit E u espace vectoriel et u L(E) tel que u u +u = 0 Motrer que Sp (u) {0, 1, } EXERCICE : 1) Soit A ue matrice carrée telle que A

Plus en détail

Corrigé Epreuve B Agro Véto 2010

Corrigé Epreuve B Agro Véto 2010 Corrigé Epreuve B Agro Véto 21 Corrigé proposé par Martie Giestet BCPST2 Féelo dessis de Bruo Aselme Féelo Partie A Loi gamma 1. a) Par croissaces comparées, lim t!+1 t 1 e t=2 =, doc il existe u réel

Plus en détail

Corrigé feuille d exercices 4

Corrigé feuille d exercices 4 UNIVERSITÉ PIERRE ET MARIE CURIE Aée 008/009 MIME LM5-Suites et Itégrales Groupes Corrigé feuille d exercices Suites Covergece de suites Exercice Ue suite u N est pas croissate, si o N, u + u est vérifiée

Plus en détail

Laurent Garcin MPSI Lycée Jean-Baptiste Corot. u k

Laurent Garcin MPSI Lycée Jean-Baptiste Corot. u k SÉRIES NUMÉRIQUES K désige le corps R ou C. Gééralités. Défiitios Défiitio. Série Soit (u ) 0 ue suite umérique (i.e. à valeurs das K). O appelle série de terme gééral u la suite (S ) 0 où 0, S = u k Cette

Plus en détail

Exo7. Sujets de l année Devoir à la maison. Enoncés et corrections : Sandra Delaunay. Exercice 1 Soit M la matrice réelle 3 3 suivante :

Exo7. Sujets de l année Devoir à la maison. Enoncés et corrections : Sandra Delaunay. Exercice 1 Soit M la matrice réelle 3 3 suivante : Eocés et correctios : Sadra Delauay Exo7 Sujets de l aée 24-25 1 Devoir à la maiso Exercice 1 Soit M la matrice réelle 3 3 suivate : 1 Détermier les valeurs propres de M 2 Motrer que M est diagoalisable

Plus en détail

question-type-bac.fr

question-type-bac.fr BAC S 4 Mathématiques - Frace métropole Eseigemet spécifique et de spécialité Ce documet est bie plus qu u simple corrigé de sujet de baccalauréat. Grâce aux solutios claires et détaillées, aux démarches

Plus en détail

Chapitre 2. Rappels sur les suites arithmétiques et les suites géométriques

Chapitre 2. Rappels sur les suites arithmétiques et les suites géométriques Chapitre Rappels sur les suites arithmétiques et les suites géométriques Nous allos ici rappeler les différets résultats sur les suites de ombres réels qui sot des suites arithmétiques ou des suites géométriques

Plus en détail

Produit de Cauchy de la série alternée par elle-même.

Produit de Cauchy de la série alternée par elle-même. CCP 8. Filière MP. Mathématiques. Corrigé pour serveur UPS par JL. Lamard (jea-louis.lamard@prepas.org I. Gééralités. Pour > la série défiissat F coverge absolumet, pour < elle coverge par le critère spécial

Plus en détail

Exercice 6 [ ] [Correction] Soit (u n ) une suite décroissante de réels telle que

Exercice 6 [ ] [Correction] Soit (u n ) une suite décroissante de réels telle que [http://mpcpgedupuydelomefr] édité le 7 août 07 Eocés Calcul asymptotique Comparaiso de suites umériques Eercice [ 08 ] [Correctio] Trouver u équivalet simple au suites u suivates et doer leur limite :

Plus en détail

Corrigés des exercices.

Corrigés des exercices. DE MIE, Aalyse 1 Octobre 015 Corrigés des exercices. Exercice 1. Exercice. Exercice 3. Exercice 4. Exercice 5. Exercice 6. Exercice 7. 1. Si b est u élémet de B, tout élémet de A est iférieur ou égal à

Plus en détail

Etude asymptotique de suites de solutions d une équation

Etude asymptotique de suites de solutions d une équation [http://mp.cpgedupuydelome.fr] édité le 5 mai 206 Eocés Etude asymptotique de suites de solutios d ue équatio Exercice [ 02289 ] [Correctio] Soit u etier aturel et E l équatio x + l x = d icoue x R +.

Plus en détail

Correction du TD 3 : Séries numériques

Correction du TD 3 : Séries numériques Mme Marceli - Lycée Clemeceau Séries umériques Correctio du TD : Séries umériques Exercice A chaque fois, puisqu'o demade la covergece et la valeur, o reviet à la somme partielle : esuite, soit o recoaît

Plus en détail

CHAINES DE MARKOV. de variables aléatoires définies sur le même espace probabilisé, TPà, valeurs dans un ensemble fini E telles que, pour tout n tout

CHAINES DE MARKOV. de variables aléatoires définies sur le même espace probabilisé, TPà, valeurs dans un ensemble fini E telles que, pour tout n tout COURS CHAIES DE MARKOV Défiitio O appelle chaîe de Marov toute suite de variables aléatoires défiies sur le même espace probabilisé, TPà, valeurs das u esemble fii E telles que, pour tout tout i, i,, i

Plus en détail

D.S. nº4 : Suites, Probabilités, Complexes, exponentielle. Samedi 15 décembre 2012, 3h, Calculatrices autorisées. Ce sujet est à rendre avec la copie.

D.S. nº4 : Suites, Probabilités, Complexes, exponentielle. Samedi 15 décembre 2012, 3h, Calculatrices autorisées. Ce sujet est à rendre avec la copie. D.S. º4 : Suites, Probabilités, Complexes, expoetielle TS1 Samedi 15 décembre 01, h, Calculatrices autorisées. Ce sujet est à redre avec la copie. Nom :.................... Préom :................. Commuicatio

Plus en détail

Sup Galilée - Maths pour l Ingénieur Corrigé du Partiel du 19 Novembre 2008

Sup Galilée - Maths pour l Ingénieur Corrigé du Partiel du 19 Novembre 2008 Sup Galilée - Maths pour l Igéieur Corrigé du Partiel du 9 Novembre 008 Étude d ue suite récurrete Soit u 0 ]0, [ O cosidère la suite (u ) défiie par u + u 3 u ) Justifier que la suite u est borée O motre

Plus en détail

Exercices sur les limites de suites 1.

Exercices sur les limites de suites 1. Exercices sur les ites de suites. Détermier les ites des suites ci-dessous lorsque ted vers +. Exercice.. u cos. v. w si + 900 Exercice 5. 0, 7. u 0, + 0, 4. v 70 + 000. w 44 4 + 5 Exercice.. u +. v. w

Plus en détail

1 ) si la suite (u n ) diverge, alors la suite ((u n) )... n... n+2

1 ) si la suite (u n ) diverge, alors la suite ((u n) )... n... n+2 Javier 06 ( heures et 30 miutes). a) Défiir: - sous-esemble fermé de IR et sous-esemble ouvert de IR - poit itérieur de A, sous-esemble o vide de IR ( pt.) b) Démotrer que si A est u esemble ouvert, alors

Plus en détail

Vendredi 20 octobre CONTRÔLE DE MATHEMATIQUES N 2 Classe de TERM 07. En salle 206, deux heures de 8 h à 10 h : LES SUITES et PROBABILITES.

Vendredi 20 octobre CONTRÔLE DE MATHEMATIQUES N 2 Classe de TERM 07. En salle 206, deux heures de 8 h à 10 h : LES SUITES et PROBABILITES. Vedredi 0 octobre 07. CONTRÔLE DE MATHEMATIQUES N Classe de TERM 07. E salle 06, deux heures de 8 h à 0 h : LES SUITES et PROBABILITES. La première feuille de ce devoir doit être ue feuille double. Lisez

Plus en détail

Partie I - Suites et intégrales

Partie I - Suites et intégrales SESSION 16 Cocours commu Cetrale MATHÉMATIQUES. FILIERE MP I.A - Étude d ue itégrale à paramètres Partie I - Suites et itégrales I.A - 1 Soit φ : [, + [ ], + [ R de sorte que pour tout réel x, fx = Φx,t.

Plus en détail

Feuille d Exercices : Suites, suite!

Feuille d Exercices : Suites, suite! ECS 1 Dupuy de Lôme Semaie du 6 décembre 004 Feuille d Exercices : Suites, suite! Exercice 1 : Pour tout etier, o défiit u = 1. Motrez que u est mootoe.. Motrez que v est géométrique. k= 3. E déduire l

Plus en détail

Suites Numériques Site MathsTICE de Adama Traoré Lycée Technique Bamako

Suites Numériques Site MathsTICE de Adama Traoré Lycée Technique Bamako Suites Numériques Site MathsTICE de Adama Traoré Lycée Techique Bamako I Gééralité sur les suites: - Pricipe du raisoemet par récurrece : Soit la propositio P() dépedat de l etier () la propositio est

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours Exo7 Valeurs absolues. Partie etière. Iégalités Exercices de Jea-Louis Rouget. Retrouver aussi cette fiche sur www.maths-frace.fr * très facile ** facile *** difficulté moyee **** difficile ***** très

Plus en détail

Corrigé du problème: autour de la fonction zeta alternée de Riemann

Corrigé du problème: autour de la fonction zeta alternée de Riemann Corrigé du problème: autour de la foctio zeta alterée de Riema I Gééralités Pour x >, la suite décroît vers, doc la série coverge par le critère spécial des séries alterées Pour x, e ted pas vers, ce qui

Plus en détail

P(n) : quelque soit n entier naturel : n 3 = ( n) 2. P(n 0 ) est vraie (initialisation).

P(n) : quelque soit n entier naturel : n 3 = ( n) 2. P(n 0 ) est vraie (initialisation). T ale S Chapitre. Résumé page 3.. Pricipe de récurrece. a. Exemple. 3 + 3 = + 8 = 9 = ( + ) 3 + 3 + 3 3 = + 8 + 7 = 36 = ( + + 3) O voudrait démotrer la propriété géérale : P() : quelque soit etier aturel

Plus en détail

Suites de variables aléatoires.

Suites de variables aléatoires. Uiversité Pierre et Marie Curie 200-20 Probabilités et statistiques - LM345 Feuille 8 Suites de variables aléatoires.. Soit Ω, F, P u espace de probabilités. Détermier pour chacue des covergeces suivates

Plus en détail

Baccalauréat S Nouvelle-Calédonie 7 mars 2014 Corrigé

Baccalauréat S Nouvelle-Calédonie 7 mars 2014 Corrigé Baccalauréat S Nouvelle-Calédoie 7 mars 4 Corrigé A. P. M. E. P. EXERCICE 4 poits Commu à tous les cadidats Aucue justificatio était demadée das cet exercice.. Répose b. : 4e i π Le ombre i a pour écriture

Plus en détail

TS DEVOIR n 3 lundi 13 novembre lim x. 1. Lire dans le tableau les limites de f en et en +. En déduire une asymptote à la courbe de f.

TS DEVOIR n 3 lundi 13 novembre lim x. 1. Lire dans le tableau les limites de f en et en +. En déduire une asymptote à la courbe de f. TS DEVOIR 3 ludi 3 ovembre 207 sur 4,5 poits Calculer les trois ites suivates : a) 3x 4 x x 2 x b) 2si( x) x x c) 8x 5 x 2 x 3 2 sur 3,5 poits Soit f ue foctio défiie sur dot o doe ci-dessous le tableau

Plus en détail