( ) dx t dt. ( ) B( t) Le principe de la résolution se base sur la diagonalisation de la matrice A ou à défaut sa trigonalisation.

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "( ) dx t dt. ( ) B( t) Le principe de la résolution se base sur la diagonalisation de la matrice A ou à défaut sa trigonalisation."

Transcription

1 Equations différentielles linéaires du premier ordre à coefficients constants (ou système d équation différentielles linéaires scalaire à coefficients constants du premier ordre) dx t dt B( t) + AX t x ( t ),x ( t ),,x n ( t ) dans une base ( e, e,, en ) X t est un vecteur dans un espace vectoriel E de dimension fini n Il a pour composante B de E Les composantes de X sont des fonctions de t R à valeurs réelles ou complexes à déterminer A est une matrice carrée de dimension n n à coefficients constants dans la base B et B( t ) un vecteur de E dont les composantes sont des fonctions de t R à valeurs réelles ou complexes La solution de l équation est complètement définie par la X t X d après le théorème de Cauchy-Lipschitz condition initiale 0 0 Le principe de la résolution se base sur la diagonalisation de la matrice A ou à défaut sa trigonalisation Diagonalisation : si A est diagonalisable, il existe une matrice de passage P dont les colonnes sont les composantes dans B des vecteurs propres associés à chaque valeur propre de A, et une matrice diagonale D dans la base des vecteurs propres, formée par les valeurs propres λ k ( k,,n ) de A, tel que P AP D On peut donc écrire : P X + P AP P X P B Et en posant Q P X, on a à résoudre l équation :, Q + D Q P B Les équations de ce système sont découplées, et il suffit de résoudre les n équations différentielles linéaires scalaire du premier ordre sur les composantes q k de Q : pour en déduire X k k k ( ) q + λ q P B, k,,n, PQ Condition nécessaire et suffisante de diagonalisation k Une matrice carrée A à coefficients dans R (ou C ) est diagonalisable sur R (ou C ) si et seulement si : Toutes les valeurs propres de A sont dans R (ou C ) Le sous espace propre de chaque valeur propre est de dimension égal à l ordre de multiplicité de la valeur propre Trigonalisation : si A n est pas diagonalisable car toutes les conditions précédentes de diagonalisation ne sont pas remplies, elle peut quand même parfois être trigonalisée Condition nécessaire et suffisante de trigonalisation ThC

2 Une matrice carrée A à coefficients dans R (ou C ) est trigonalisable sur R (ou C ) si et seulement si : Toutes les valeurs propres de A sont dans R (ou C ) Dans ce cas il existe une matrice de passage P inversible et une matrice triangulaire supérieure T tel que P AP T La matrice de passage P est formée par des vecteurs propres de A mais aussi par d autres vecteurs qui ne sont pas des vecteurs propres de A Il faut donc vérifier que l ensemble de ces vecteurs forment bien une base de E car cette propriété n est plus automatique comme dans le cas d une matrice diagonalisable (en pratique en montrant l existence de P ) Tous les éléments de la matrice triangulaire supérieure T situés sous la diagonale principale, sont nuls ( t i, j si i > j ) et sur la diagonale principale ce sont les valeurs propres T peut être prise sous la forme d une matrice réduite de Jordan où les seuls éléments non nuls sont les valeurs propres sur la diagonale principale et des 0 ou sur la diagonale juste au dessus Les éléments sont nuls dans les colonnes qui correspondent aux vecteurs propres et valent dans les autres colonnes En dimension on a par exemple pour une trigonalisation sur R : λ 0 0 T λ 0 0 λ Dans ce cas, le sous espace propre associé à la valeur propre double λ est de dimension et la diagonalisation impossible P est formé par les composantes de trois vecteurs V, V, V et AV λ V, AV λ V, AV V + λ V V et V sont vecteurs propres mais pas V Comme pour la diagonalisation on écrit Q + T Q P B mais ici les équations ne sont pas complètement découplées On résout d abord les équations différentielles linéaires scalaire en q k, ce qui permet ensuite de trouver la solution des autres équations et la solution générale X PQ Exemple : le système d équations différentielles est : x + x + x t, x + x + x Avec les conditions initiales x ( t ) x et 0 x t x Ici : 0 A Recherche des valeurs propres de A : On note λ les valeurs propres et V les vecteurs propres Ainsi AV λ V et ( A λ Id ) V V est non nul si A λ Id n est pas inversible, c'est-à-dire si P( λ ) det ( A λ Id ) P( λ ) est le polynôme caractéristique de A et les valeurs propres sont les racines de ce polynôme Ici : λ P( λ ) λ 4λ + ( λ )( λ ) λ Il y a donc deux valeurs propres réelles distinctes λ et λ La matrice A est donc diagonalisable sur R ThC

3 Recherche des vecteurs propres : Pour λ ; on cherche le vecteur propre x + y x + y V x, y Puisque AV V, on a : Le sous espace propre associé à λ est de dimension (c est une droite) On peut donc choisir : Pour V λ ; on cherche le vecteur propre x + y x y V x, y Puisque AV V, on a : Le sous espace propre associé à λ est de dimension On peut donc choisir : V La matrice de passage P de la base de E dans laquelle s exprime la matrice A à la base des vecteurs propres dans laquelle s exprime D est : P ( V V ) L ordre des vecteurs propres est donné par l ordre des valeurs propres dans D, mais on peut intervertir les deux colonnes de P en échangeant les deux valeurs propres dans D Il reste à déterminer l inverse de P pour calculer P B P det P t ComP ComP est la comatrice de P et t ComP sa transposée i + j ( n ComP det A i, j ) i, j, n où A i, j est la matrice carrée d ordre n- obtenue à partir de A en supprimant la ligne i et la colonne j Dans notre cas, det P et : ComP, d où P On vérifie facilement que On déduit : PP et 0 P AP D 0 ThC

4 P B, t t Les équations découplées à résoudre sont + c'est-à-dire : Q D Q P B q + q t q + q t Solution de q + q t La solution de l équation homogène est q t k e La méthode de la variation de la constante permet de trouver la solution de l équation complète On suppose k k ( t) t Après une intégration par partie t complète on obtient k t e donc : t q A e + t et en reportant dans l équation k t e + A ( A une constante) et Solution de q + q t La solution de l équation homogène est q permet de trouver la solution de l équation complète On suppose k k ( t) et en reportant dans t l équation complète on obtient k t e Après une intégration par partie : t k e La méthode de la variation de la constante donc : k t e + A t + t q Ae t Finalement, la solution X PQ s écrit : x q q + q, x q q + q Donc : t t 5 x Ae + Ae + t t t 4 x Ae + Ae + t + Les constantes A et A sont fixées par les conditions initiales A t 0 on a : 0 x0 A + A 9, donc 8 x 0 A + A + 9 x x x + x A A + D où : 4 ThC

5 x0 x0 t x0 + x 0 t 5 x + e e t x0 x 0 t x0 + x 0 t 4 x + e + + e + t + 9 Exemple : le système d équations différentielles est : x + x + x + x x + x + x + x x + x + x + x avec les conditions initiales x ( t ) x et x ( t ) x et A 0 0 x t x Ici la matrice A est : 0 Recherche des valeurs propres de A : Le polynôme caractéristique de A est P( λ ) λ ( λ ) Il y a trois valeurs propres réelles dont une double Pour savoir si A est diagonalisable sur R, cherchons les vecteurs propres Recherche des vecteurs propres : Pour λ on cherche le vecteur propre x + y + z x y + z x + y z V x, y, z Puisque AV V, on a : Le sous espace propre associé à λ est de dimension On peut choisir : V Pour λ et λ on cherche les vecteurs propres V( x, y, z ) Puisque AV, on a : x + y + z x + y + z x + y + z Le sous espace propre associé à la valeur propre double nulle est de dimension De ce fait la matrice A est diagonalisable sur R On peut choisir deux vecteurs propres : V 0 0 et V 5 ThC

6 La matrice de passage P et la matrice diagonale D s écrivent : 0 P, D Les équations découplées à résoudre sont Q + D Q c'est-à-dire : q + q q q La résolution donne q t Ae, q A, q A Et de X PQ on déduit : x A e + A x A e A A x A e A t t + t Les constantes A, A et A sont fixées par les conditions initiales A t 0 on a : x0 A + A x0 A A + A, donc x0 A A x0 + x0 + x0 A x x x A x + x x A D où : x + x + x x x x x e + x + x + x x + x x x e + x + x + x x x + x x e t t t Exemple : le système d équations différentielles est : x + x + x, x x + x Avec les conditions initiales x ( t ) x et 0 A Recherche des valeurs propres de A : x t x Ici : 0 6 ThC

7 le polynôme caractéristique est P( λ ) ( λ ) Il y a une racine double réelle λ Pour savoir si A est diagonalisable sur R, cherchons les vecteurs propres Recherche des vecteurs propres : On cherche le vecteur propre V( x, y ) Puisque AV x + y x y V, on a : Le sous espace propre associé à λ est de dimension A n est donc pas diagonalisable On peut choisir comme unique vecteur propre : V A est quand même trigonalisable sur R et on veut qu elle soit semblable à une matrice réduite de Jordan T que l on écrit : T 0 On peut alors chercher un vecteur Connaissant V on déduit : x + y x y V x, y qui n est pas vecteur propre tel que AV V + V Choisissons : V 0 La matrice de passage P s écrit : P 0 On obtient ensuite : ComP, d où P On vérifie facilement que PP et P AP T Les équations à résoudre sont Q + T Q c'est-à-dire : 7 ThC

8 q + q + q q + q Solution de q + q On obtient immédiatement q t Solution de q + q Ae La solution de l équation homogène est t A e et on reporte ce résultat dans la première équation q t A e La méthode de la variation de la constante permet de trouver la solution de l équation complète On suppose A A ( t) l équation complète on obtient : A et A A A t + C et en reportant dans Donc : t q A t + C e Finalement, la solution X PQ s écrit : x q q + q, x 0 q q Donc : t x At + C e + A e t x At C e t Les constantes C et A sont fixées par les conditions initiales A t 0 on a : x C + A x0 C 0, donc C x0 A x + x 0 0 D où : x x0 x0 + x0 t e x x0 + x0 + x0 t e t t 8 ThC

Module Complémentaire Poursuites études

Module Complémentaire Poursuites études 1/39 Diagonalisation Suites numériques Series Intégrales curvilignes Intégrales de surface Module Complémentaire Poursuites études Michel Fournié michel.fournie@iut-tlse3.fr http://www.math.univ-toulouse.fr/

Plus en détail

Chapitre 8. Réduction des matrices. 8.1 Valeurs propres, vecteurs propres

Chapitre 8. Réduction des matrices. 8.1 Valeurs propres, vecteurs propres Chapitre 8 Réduction des matrices La réduction des matrices constitue le premier pas de ce que l on appelle la théorie spectrale, vaste sujet. Ses applications pratiques sont nombreuses : modélisation

Plus en détail

Calculer l inverse d une matrice

Calculer l inverse d une matrice Méthodes et techniques des exercices Calculer l inverse d une matrice Définition. On dit qu une matrice A carrée n n à cœfficients dans un corps K est inversible si il existe une matrice carrée n n, B

Plus en détail

Cours de Mathématiques Équations différentielles linéaires Sommaire. I Systèmes différentiels linéaires d ordre

Cours de Mathématiques Équations différentielles linéaires Sommaire. I Systèmes différentiels linéaires d ordre Sommaire Sommaire I Systèmes différentiels linéaires d ordre 1............... 2 I.1 Généralités................................. 2 I.2 Systèmes homogènes à coefficients constants............... 3 I.3 Exponentielles

Plus en détail

Exercices du chapitre 6 avec corrigé succinct

Exercices du chapitre 6 avec corrigé succinct Eercices du chapitre 6 avec corrigé succinct Eercice VI Ch6-Eercice On veut résoudre t + bt t + ctt =, b et c étant des fonctions réelles Transformer cette équation différentielle du second ordre en un

Plus en détail

Chapitre 2 : Les matrices

Chapitre 2 : Les matrices Chapitre 2 : Les matrices I. Définitions On appelle matrice à lignes et colonnes N, N à coefficients dans =R C un tableau à lignes et colonnes contenant un élément de à l intersection de chaque ligne et

Plus en détail

Comme pour toutes les autres questions, d autres méthodes ou options sont évidemment possibles à condition d être justifiées.

Comme pour toutes les autres questions, d autres méthodes ou options sont évidemment possibles à condition d être justifiées. 0 0 3 3 EXERCICE Soit les matrices A = et B = 2 3 0 0. Calculer le déterminant de A. En déduire le rang de cette matrice. 0 0 0 Dét(A) = dét = dét 0 0 car (propriété P ) le déterminant d une matrice ne

Plus en détail

MT23-Algèbre linéaire

MT23-Algèbre linéaire MT23-Algèbre linéaire Chapitre 4 : Valeurs propres - Vecteurs propres ÉQUIPE DE MATHÉMATIQUES APPLIQUÉES UTC juillet 2014 suivant Chapitre 4 Valeurs propres - Vecteurs propres 4.1 Vecteurs propres - Valeurs

Plus en détail

1. Réduction d un endomorphisme en dimension finie, d une matrice

1. Réduction d un endomorphisme en dimension finie, d une matrice Réduction des endomorphismes en dimension finie 4-1 Sommaire 1 Réduction en dimension finie 1 11 Polynôme caractéristique 1 12 Ordre de multiplicité 2 2 Diagonalisation en dimension finie 2 21 Diagonalisibilité

Plus en détail

MT23-Algèbre linéaire

MT23-Algèbre linéaire MT23-Algèbre linéaire Chapitre 6 : Equations différentielles ÉQUIPE DE MATHÉMATIQUES APPLIQUÉES UTC juillet 2014 suivant Chapitre 6 Equations différentielles 6.1 Rappels........................................

Plus en détail

Lycée Dominique Villars ECE 1 CALCUL MATRICIEL

Lycée Dominique Villars ECE 1 CALCUL MATRICIEL Lycée Dominique Villars ECE 1 COURS CALCUL MATRICIEL 1 Définitions et Notations Soit n N et m N On appelle matrice à n lignes et m colonnes tout tableau de la forme suivant : a 1,1 a 1,2 a 1,m a 2,1 a

Plus en détail

11. Valeurs propres et diagonalisation

11. Valeurs propres et diagonalisation 11. Valeurs propres et diagonalisation Sections 6.1 et 6.2 MTH1007 J. Guérin, N. Lahrichi, S. Le Digabel École Polytechnique de Montréal A2017 (v1) MTH1007: algèbre linéaire 1/19 Plan 1. Valeurs et vecteurs

Plus en détail

Vecteurs et applications linéaires

Vecteurs et applications linéaires Vecteurs et applications linéaires (1) (1) () Vecteurs et applications linéaires 1 / 41 1 Familles de vecteurs de R n 2 Sous-espace vectoriels dans R n 3 Base d un sous-espace vectoriel (1) () Vecteurs

Plus en détail

Diagonalisation. Chapitre 4. 1 Valeurs propres et vecteurs propres

Diagonalisation. Chapitre 4. 1 Valeurs propres et vecteurs propres Chapitre 4 Diagonalisation Cette présentation résume le contenu des section 41, 42 et 44 des notes de cours On se concentre sur la notion de la diagonalisation 1 Valeurs propres et vecteurs propres Définition

Plus en détail

L équation caractéristique Algèbre linéaire I MATH 1057 F

L équation caractéristique Algèbre linéaire I MATH 1057 F L équation caractéristique Algèbre linéaire I MATH 1057 F Marie-Gabrielle Vallet Département de mathématiques et d informatique Université Laurentienne Sudbury, 25 mars 2012 Comment trouver les valeurs

Plus en détail

Exercices Corrigés Matrices 1 2 A = 2 1

Exercices Corrigés Matrices 1 2 A = 2 1 Exercices Corrigés Matrices Exercice Considérons les matrices à coefficients réels : A =, B = 4 C =, D = 0, E = Si elles ont un sens, calculer les matrices AB, BA, CD, DC, AE, CE Exercice extrait partiel

Plus en détail

2 Un cas particulier : valeurs propres d une matrice triangulaire.

2 Un cas particulier : valeurs propres d une matrice triangulaire. F. HECHNER, ÉCÉ, Collège Épiscopal Saint Étienne Année 04-05 Fiche Méthode : Trouver les valeurs propres de A (ou de f) On commence par rappeler les définitions du cours. On donne ensuite les principales

Plus en détail

Algèbre linéaire pour GM Jeudi 28 novembre 2013 Prof. A. Abdulle , , )

Algèbre linéaire pour GM Jeudi 28 novembre 2013 Prof. A. Abdulle , , ) Algèbre linéaire pour GM Jeudi 8 novembre Prof. A. Abdulle EPFL Série (Corrigé) Exercice Parmi les matrices suivantes, indiquer celles qui sont diagonalisables (toujours en justifiant), et le cas échéant

Plus en détail

LFA / Terminale S SPÉCIALITÉ MATHS Mme MAINGUY. Les nombres contenus dans ce tableau sont appelés les coefficients de la matrice.

LFA / Terminale S SPÉCIALITÉ MATHS Mme MAINGUY. Les nombres contenus dans ce tableau sont appelés les coefficients de la matrice. Les matrices chapitre 2 : calcul matriciel I / Définitions Soit n et p deux entiers naturels non nuls Une matrice n p (on dit aussi de format n ; p ( ) est un tableau de nombres réels à n lignes et p colonnes

Plus en détail

Commutant d une matrice

Commutant d une matrice Énoncé On désigne par n un entier naturel supérieur ou égal à 2, et par M n (IK) l algèbre sur IK des matrices carrées d ordre n à coefficients dans IK, avec IK = IR ou lc. La matrice identité de M n (IK)

Plus en détail

Algèbre linéaire pour GM Jeudi 01 décembre 2011 Prof. A. Abdulle. Série 10 (Corrigé)

Algèbre linéaire pour GM Jeudi 01 décembre 2011 Prof. A. Abdulle. Série 10 (Corrigé) Algèbre linéaire pour GM Jeudi décembre Prof. A. Abdulle EPFL Série (Corrigé) Exercice Parmi les matrices suivantes, indiquer celles qui sont diagonalisables (toujours en justifiant), et le cas échéant

Plus en détail

Matrices antisymétriques

Matrices antisymétriques [http://mp.cpgedupuydelome.fr] édité le 24 septembre 2016 Enoncés 1 Matrices antisymétriques Exercice 1 [ 02503 ] [Correction] Soit M M n (R) telle que M + t M soit nilpotente. Montrer que M est antisymétrique.

Plus en détail

N1MA3W01 Algèbre 2 - Examen final En janvier, 3h - 35 points

N1MA3W01 Algèbre 2 - Examen final En janvier, 3h - 35 points N1MA3W01 Algèbre 2 - Examen final En janvier, 3h - 35 points Exercice 0 (sur 6 points) 1. Calculer les valeurs et vecteurs propres des matrices 1 2 0 0 0 0 A = 2 1 0 et B = 1 0 0. 0 0 3 6000 80008 4 2.

Plus en détail

Université Pierre et Marie Curie-Paris 6 - Algèbre linéaire. Réduction M 1 =

Université Pierre et Marie Curie-Paris 6 - Algèbre linéaire. Réduction M 1 = Université Pierre et Marie Curie-Paris 6 - Algèbre linéaire Réduction. Calculs pratiques (a On considère la matrice M = i. Déterminer les valeurs propres de M. ( 2 2 ii. Déterminer les sous-espaces propres

Plus en détail

Représentation de Jordan

Représentation de Jordan Représentation de Jordan Soit M une matrice carrée réelle de dimension n. On suppose dans ce projet que le polynôme caractéristique de M a n racines réelles. Certaines racines sont multiples. 1 Nombre

Plus en détail

Sommaire. 1. Equations Différentielles Linéaires du second ordre Equation différentielle linéaire du second ordre

Sommaire. 1. Equations Différentielles Linéaires du second ordre Equation différentielle linéaire du second ordre Equations et systèmes différentiels 3 - Sommaire Eq Différentielles Linéaires du 2 nd ordre Linéaire du second ordre 2 Existence des solutions 2 3 Recherche des solutions 2 4 Recollement de solutions 4

Plus en détail

Concours d accès au cycle de préparation à l agrégation de Mathématiques

Concours d accès au cycle de préparation à l agrégation de Mathématiques Concours d accès au cycle de préparation à l agrégation de Mathématiques Session Février 2014 Épreuve d algèbre et de géométrie Durée 4 heures Le sujet comporte 5 pages, en plus de cette page de garde.

Plus en détail

Exercices du chapitre 3 avec corrigé succinct

Exercices du chapitre 3 avec corrigé succinct Exercices du chapitre 3 avec corrigé succinct Exercice III.1 Ch3-Exercice1 Calculer les déterminants suivants : a b c d, 3a 3b c d, 4 2 3 0 3 4 0 0 5, 4 2 3 0 1 2 4 1 2, 4 3 2 0 2 1 4 2 1, 1 2 2 3 1 1

Plus en détail

Cours de remise à niveau Maths 2ème année. Réduction d endomorphismes

Cours de remise à niveau Maths 2ème année. Réduction d endomorphismes Cours de remise à niveau Maths 2ème année Réduction d endomorphismes C. Maugis-Rabusseau GMM Bureau 116 cathy.maugis@insa-toulouse.fr C. Maugis-Rabusseau (INSA) 1 / 27 Plan 1 Valeurs propres, vecteurs

Plus en détail

Algèbre linéaire pour GM Jeudi 07 novembre 2013 Prof. A. Abdulle. Exercice 1 Calculer les produits suivants en utilisant la multiplication par bloc :

Algèbre linéaire pour GM Jeudi 07 novembre 2013 Prof. A. Abdulle. Exercice 1 Calculer les produits suivants en utilisant la multiplication par bloc : Algèbre linéaire pour GM Jeudi 07 novembre 2013 Prof A Abdulle EPFL Série 7 Corrigé Exercice 1 Calculer les produits suivants en utilisant la multiplication par bloc : a b c 3 1 0 4 1 2 1 1 2 2 1 1 2 1

Plus en détail

Résolution de problèmes à l aide de matrices

Résolution de problèmes à l aide de matrices 3 Résolution de problèmes à l aide de matrices L E Ç O N Niveau : Terminale ES Prérequis : (définition d une matrice, opérations sur les matrices), fonction dérivée, intégrales, résolution d un système

Plus en détail

Opérations élémentaires et déterminants

Opérations élémentaires et déterminants 10 Opérations élémentaires et déterminants On note toujours K le corps de réels ou des complexes On se donne un entier n 1 et M n (K désigne l espace vectoriel des matrices carrées d ordre n à coefficients

Plus en détail

( ) ( 1 2 ). 2 ) = 2 ( 1. EXERCICE 2 (CHAPITRE 7 I) Déterminer les valeurs propres et les vecteurs propres des matrices suivantes :

( ) ( 1 2 ). 2 ) = 2 ( 1. EXERCICE 2 (CHAPITRE 7 I) Déterminer les valeurs propres et les vecteurs propres des matrices suivantes : CHAPITRE DIAGONALISATION D UNE MATRICE CARREE EXERCICE CHAPITRE 7 I) Effectuez le produit : 0 ) ). Comparez le résultat au vecteur ). Qu en déduisez-vous? CORRECTION 0 ) ) = 0 + ) = 4 ) = ). 0 ) ) = ),

Plus en détail

Eléments de calcul matriciel

Eléments de calcul matriciel Eléments de calcul matriciel Définition et propriétés des matrices Définition Une matrice (l x c) (lire l croix c) est un ensemble de l fois c nombres, réels ou complexes, regroupés sous la forme d un

Plus en détail

Changements de bases.

Changements de bases. Chapitre Changements de bases Changement de coordonnées Matrice de passage Soit E un K espace vectoriel de dimension n Soit (e,, e n ) une base de E, qu on notera B Si u est un vecteur de E on notera en

Plus en détail

Eléments propres d un endomorphisme

Eléments propres d un endomorphisme [http://mp.cpgedupuydelome.fr] édité le 5 mai 16 Enoncés 1 Eléments propres d un endomorphisme Eercice 1 [ 768 ] [Correction] Soient E = C (R, R) et D l endomorphisme de E qui à f associe sa dérivée f.

Plus en détail

Chapitre 3. Matrices. Définition 1.1. Un tableau rectangulaire de la forme ci-dessous est appelé matrice : a 11 a a. 1q a 21 a 22...

Chapitre 3. Matrices. Définition 1.1. Un tableau rectangulaire de la forme ci-dessous est appelé matrice : a 11 a a. 1q a 21 a 22... Chapitre 3 Matrices 1 Définitions et généralités Définition 11 Un tableau rectangulaire de la forme ci-dessous est appelé matrice : a 11 a 12 a 1q a 21 a 22 a 2q A a p1 a p2 a ps Les coefficients a ij,

Plus en détail

TD 2 : Réduction des endomorphismes

TD 2 : Réduction des endomorphismes Université Paris-Est Marne-la-Vallée Licence L2 Maths/Info 1er semestre 2012/2013 Algèbre 2 TD 2 : Réduction des endomorphismes Exercice 1 (Projections Soit f un endomorphisme de E tel que f f = f 1 Montrer

Plus en détail

MATH ALGÈBRE

MATH ALGÈBRE L G Prof. Éric J.M.DELHEZ L G MATH13-1 - ALGÈBRE ÉVALUATION FORMATIVE Octobre 212 Ce test vous est proposé pour vous permettre de faire le point sur votre compréhension du cours d Algèbre. Il est purement

Plus en détail

valeur propre associée. Un scalaire λ est une valeur propre de f s il existe un vecteur non-nul v tel que f(v) = λv Définition. Soit λ K.

valeur propre associée. Un scalaire λ est une valeur propre de f s il existe un vecteur non-nul v tel que f(v) = λv Définition. Soit λ K. Réduction des endomorphismes 1 Sommes directes 11 Définition Soit E un espace vectoriel sur K, (K = R ou C) Soit E 1,, E k ses sous-espaces vectoriels La somme E 1 + + E k est le sousespace formé de tous

Plus en détail

Crochet de Lie. [http://mp.cpgedupuydelome.fr] édité le 28 décembre 2016 Enoncés 1

Crochet de Lie. [http://mp.cpgedupuydelome.fr] édité le 28 décembre 2016 Enoncés 1 [http://mp.cpgedupuydelome.fr] édité le 28 décembre 2016 Enoncés 1 Crochet de Lie Exercice 1 [ 00775 ] [Correction] Soient A, B M n (R) vérifiant AB BA = A. (a) Calculer A k B BA k pour k N. (b) À quelle

Plus en détail

Déterminants. Agrégation interne de Mathématiques Département de Mathématiques Université de La Rochelle F. Geoffriau

Déterminants. Agrégation interne de Mathématiques Département de Mathématiques Université de La Rochelle F. Geoffriau Agrégation interne de Mathématiques Département de Mathématiques Université de La Rochelle 2006-2007 Déterminants Définition Déterminant d une matrice On définit par récurrence le déterminant, noté det(a),

Plus en détail

Montrer qu il s agit d un produit scalaire, et trouver une base orthogonale pour ce produit scalaire. (x e k ).e k

Montrer qu il s agit d un produit scalaire, et trouver une base orthogonale pour ce produit scalaire. (x e k ).e k Ex 1 Facile Soit un espace préhilbertien réel E et deux vecteurs x,y E. a) Développer l expression y 2.x (x y).y b) Retrouver l inégalité de Cauchy-Schwarz ainsi que le cas d égalité. Ex 2 Cours, à faire

Plus en détail

Exercices du chapitre 4 avec corrigé succinct

Exercices du chapitre 4 avec corrigé succinct Exercices du chapitre 4 avec corrigé succinct Exercice IV. Ch4-Exercice Quels sont les vecteurs propres de l application identité? Préciser les valeurs propres associées. Tous les vecteurs, sauf le vecteur

Plus en détail

Chapitre 3 : Matrices

Chapitre 3 : Matrices Chapitre 3 : Matrices Sommaire I Notion de matrice et vocabulaire II Opérations de base sur les matrices 3 1 Addition de matrices et multiplication d un réel par une matrice 3 Multiplication matricielle

Plus en détail

Exercice I.1 Montrer que la somme de vecteurs et le produit d un vecteur par un nombre réel donnent à IR 3 une structure d espace vectoriel sur IR.

Exercice I.1 Montrer que la somme de vecteurs et le produit d un vecteur par un nombre réel donnent à IR 3 une structure d espace vectoriel sur IR. Exercices avec corrigé succinct du chapitre 1 (Remarque : les références ne sont pas gérées dans ce document, par contre les quelques?? qui apparaissent dans ce texte sont bien définis dans la version

Plus en détail

Notations et définitions

Notations et définitions Les calculatrices sont interdites L objectif du problème est de définir et d étudier la notion de diagonalisabilité d un couple de matrices A, B dans plusieurs situations Les parties I et V traitent chacune

Plus en détail

Calcul matriciel : rappels et compléments

Calcul matriciel : rappels et compléments CHAPITRE 5 Calcul matriciel : rappels et compléments 5 L ensemble M n,p (K) 5 Structure d espace vectoriel Définition Soit K = R ou C On note M n,p (K) l ensemble des matrices ayant n lignes et p colonnes

Plus en détail

Calcul matriciel. 1.1 Définitions Matrices carrées particulières... 3

Calcul matriciel. 1.1 Définitions Matrices carrées particulières... 3 Chapitre 10 Calcul matriciel 1 Généralités 2 11 Définitions 2 12 Matrices carrées particulières 3 2 Opérations sur les matrices 4 21 L espace vectoriel M np (R 4 22 Produit de deux matrices 5 23 Transposée

Plus en détail

Lorsque la matrice M est de format (2,2), le déterminant s écrit :

Lorsque la matrice M est de format (2,2), le déterminant s écrit : Fiche 6. Le déterminant. Le déterminant Le déterminant est un outil très utile lorsque l on manipule des matrices carrées. Nous allons construire une fonction appelée déterminant qui associe un nombre

Plus en détail

I. Détermination de Rac(A) dans quelques exemples.

I. Détermination de Rac(A) dans quelques exemples. I. Détermination de Rac(A) dans quelques exemples. 1. Les sous espaces propres E λi (A) sont de dimension 1 et en somme directe. Leur somme a donc une dimension au moins égale à n. Comme elle est incluse

Plus en détail

Ceci est une correction partielle d exercices du chapitre 22. Les numéros d exercices devraient être corrects, mais sans garantie!

Ceci est une correction partielle d exercices du chapitre 22. Les numéros d exercices devraient être corrects, mais sans garantie! Ceci est une correction partielle d exercices du chapitre. Les numéros d exercices devraient être corrects, mais sans garantie!.. Ecrire les matrices représentant les opérateurs linéaires suivants dans

Plus en détail

CHAPITRE 2 MATRICES ET RÉSOLUTION DE SYSTÈMES D ÉQUATIONS LINÉAIRES EXERCICE 1 (CHAPITRE 2-I) 1

CHAPITRE 2 MATRICES ET RÉSOLUTION DE SYSTÈMES D ÉQUATIONS LINÉAIRES EXERCICE 1 (CHAPITRE 2-I) 1 CHAPITRE 2 MATRICES ET RÉSOLUTION DE SYSTÈMES D ÉQUATIONS LINÉAIRES EXERCICE 1 (CHAPITRE 2-I) 1 Déterminer les matrices élargies des systèmes S1, S2, S5 et S6 du chapitre précédent. La matrice élargie

Plus en détail

Correction Maths Epreuve B 2017, Banque PT. Questions de cours. n X k (1 X ) n k k. = (X + (1 X )) n

Correction Maths Epreuve B 2017, Banque PT. Questions de cours. n X k (1 X ) n k k. = (X + (1 X )) n Correction Maths Epreuve B 7, Banque PT Questions de cours. On a d après la formule du binôme de Newton B k,n X = k= k= n X k X n k k = X + X n =.. a D après le cours cette loi s appelle loi binomiale

Plus en détail

Matrices. 1 Matrices rectangulaires. 1.2 L espace vectoriel M n,p (K) Dans tout ce chapitre, K désigne R ou C.

Matrices. 1 Matrices rectangulaires. 1.2 L espace vectoriel M n,p (K) Dans tout ce chapitre, K désigne R ou C. Matrices Dans tout ce chapitre, K désigne R ou C Matrices rectangulaires Soient n, p deux nombres entiers non-nuls On appelle matrice à n lignes et p colonnes à coefficients dans K tout tableau rectangulaire

Plus en détail

Réduction d endomorphismes

Réduction d endomorphismes Réduction d endomorphismes Ce document n est pas un cours mais présente seulement quelques notions à connaître sur le sujet. Soit E un K espace vectoriel, K = R ou C 1 Sous espaces stables 1.1 Définitions

Plus en détail

Chapitre 4 : Applications linéaires

Chapitre 4 : Applications linéaires Chapitre 4 : Applications linéaires I. Applications Dans ce paragraphe, on s intéresse à des applications allant d un ensemble à un autre (sans aucune structure d espace vectoriel). Un ensemble est un

Plus en détail

Matrices symétriques réelles. Exercice 2 Le produit de deux matrices symétriques réelles est-il symétrique? R n = ker (u) Im (u)

Matrices symétriques réelles. Exercice 2 Le produit de deux matrices symétriques réelles est-il symétrique? R n = ker (u) Im (u) Matrices symétriques réelles 1 Préliminaires On se place dans (R n, ) euclidien, le produit scalaire canonique étant défini par : (x, y) R n R n, x y = t x y = x k y k On note : M n (R) l algèbres des

Plus en détail

1. Familles de vecteurs

1. Familles de vecteurs Compléments d algèbre linéaire 1-1 Sommaire 1 Familles de vecteurs 1 11 Famille libre 1 1 Famille génératrice 1 13 Base 14 Propriétés Sous-espaces vectoriels 1 Somme de sous-espaces vectoriels Base adaptée

Plus en détail

Polynômes, endomorphismes et matrices Exercices

Polynômes, endomorphismes et matrices Exercices Polynômes, endomorphismes et matrices Exercices O. Simon, Université de Rennes I 16 janvier 2006 Exercice 1. Soit u un endomorphisme d un espace vectoriel sur un corps K et P un polynôme annulateur de

Plus en détail

1. Déterminant d une matrice carrée

1. Déterminant d une matrice carrée Déterminants 2-1 Sommaire 1. Déterminant d une matrice carrée 1 1.1. Déterminant d une matrice carrée A.. 1 1.2. Interprétation en dimensions 2 et 3... 2 1.3. Propriétés élémentaires.......... 2 1.4. Déterminant

Plus en détail

Chapitre 18 : équations différentielles linéaires

Chapitre 18 : équations différentielles linéaires Math Spé MP Chapitre 18 : équations différentielles linéaires 13/3/2012 1 Rappels de 1 re année Résolution d une équation différentielle linéaire de la forme de (E) (E) : y = a(x) y +b(x), a,b C(I,R) L

Plus en détail

j=1 ( 1) 1+j a 1j deta j On dit qu on développe le déterminant ( ) suivant la première ligne de A. a11, a En particulier, si n = 2, dét 12

j=1 ( 1) 1+j a 1j deta j On dit qu on développe le déterminant ( ) suivant la première ligne de A. a11, a En particulier, si n = 2, dét 12 Déterminants 1 Définition Soit A = (a ij ) 1 i,j n une matrice carrée d ordre n Le déterminant est une application dét: Mat n (K) K défini par récurrence sur n de façon suivante: - Si n = 1, det(a 11 )

Plus en détail

Agrégation Interne Le groupe linéaire

Agrégation Interne Le groupe linéaire On pourra consulter les ouvrages suivants. Agrégation Interne Le groupe linéaire M. Alessandri. Thèmes de géométrie. Groupes en situation géométrique.. Dunod. 1999. S. Francinou, H. Gianella, S. Nicolas.

Plus en détail

Matrices. 6 On appelle matrice triangulaire inférieure toute matrice carrée d ordre n telle que, si

Matrices. 6 On appelle matrice triangulaire inférieure toute matrice carrée d ordre n telle que, si Agrégation interne UFR MATHÉMATIQUES Matrices On note K un corps commutatif. n et p représentent deux entiers naturels non nuls. 1. Notion de matrice 1.1. Définitions Définition 1 On appelle matrice d

Plus en détail

PUISSANCE DE MATRICES

PUISSANCE DE MATRICES Adel HEDDID Mohamed YOUSSEF Jonathan LAWSON Didier DUSZA Hadi ALI 08 Le calcul de puissances de matrices est un exercice classique proche de la diagonalisation. Des résultats généraux en facilitent l approche.

Plus en détail

Université Paris Dauphine DUMI2E 2e année. Calcul différentiel et optimisation I. Sujets d examen François BOLLEY

Université Paris Dauphine DUMI2E 2e année. Calcul différentiel et optimisation I. Sujets d examen François BOLLEY Université Paris Dauphine DUMI2E 2e année Calcul différentiel et optimisation I Sujets d examen 2006-2007 François BOLLEY Université Paris Dauphine DUMI2E 2e année Calcul différentiel Contrôle continu

Plus en détail

Module 4 : Diagonalisation d une matrice

Module 4 : Diagonalisation d une matrice Math Stat Module : Diagonalisation d une matrice M Module : Diagonalisation d une matrice. Notion d espace vectoriel réel ) Lorsqu un ensemble E est muni d une opération de groupe commutatif (abba) et

Plus en détail

3. SYSTEMES LINEAIRES

3. SYSTEMES LINEAIRES 3 SYSTEMES LINEAIRES 31 Définition Un système linéaire est un ensemble de m équations linéaires à n variables Il a la forme générale suivante : a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x

Plus en détail

1. Familles de vecteurs

1. Familles de vecteurs Compléments d algèbre linéaire 2-1 Sommaire 1. Familles de vecteurs 1 1.1. Famille libre................. 1 1.2. Famille génératrice............. 1 1.3. Propriétés.................. 1 2. Équations linéaires

Plus en détail

RÉDUCTION DES ENDOMORPHISMES

RÉDUCTION DES ENDOMORPHISMES UNIVERSITÉ PARIS 7 D E N I S D I D E R O T MI3 Algèbre et analyse fondamentales I CHAPITRE IV RÉDUCTION DES ENDOMORPHISMES année 28-29 Auteur : Thierry Joly Département de Formation de 1 er Cycle de Sciences

Plus en détail

Trace, formes quadratiques et extensions de corps Yves Coudene 16/10/03

Trace, formes quadratiques et extensions de corps Yves Coudene 16/10/03 Trace, formes quadratiques et extensions de corps Yves Coudene 16/10/03 Ce document porte sur les notions de dimension d espace vectoriel, extensions de corps, trace de matrices, polynôme minimal et caractéristique,

Plus en détail

Chapitre 6. Algèbre matricielle. 6.1 Opérations linéaires sur les matrices

Chapitre 6. Algèbre matricielle. 6.1 Opérations linéaires sur les matrices Chapitre 6 Algèbre matricielle En plus d être des tableaux de nombres susceptibles d être manipulés par des algorithmes pour la résolution des systèmes linéaires et des outils de calcul pour les applications

Plus en détail

Méthodes directes de résolution du système linéaire Ax = b

Méthodes directes de résolution du système linéaire Ax = b Chapitre 3 Méthodes directes de résolution du système linéaire Ax = b 3.1 Introduction Dans ce chapitre, on étudie quelques méthodes directes permettant de résoudre le système Ax = b (3.1) où A M n (R),

Plus en détail

MT23-Algèbre linéaire

MT23-Algèbre linéaire MT23-Algèbre linéaire Chapitre 5 : Espaces euclidiens ÉQUIPE DE MATHÉMATIQUES APPLIQUÉES UTC juillet 2014 suivant Chapitre 5 Espaces Euclidiens et applications 5.1 Produit scalaire, norme, espace euclidien....................

Plus en détail

AR - SUITES RECURRENTES LINEAIRES ET EQUATIONS DIFFERENTIELLES LINEAIRES

AR - SUITES RECURRENTES LINEAIRES ET EQUATIONS DIFFERENTIELLES LINEAIRES AR - SUITES RECURRENTES LINEAIRES ET EQUATIONS DIFFERENTIELLES LINEAIRES Suites de nombres complexes Notons l(c) l espace vectoriel sur C des suites de nombres complexes. Si (s n ) n 0 est un élément de

Plus en détail

Exo7. Sujets de l année Partiel. Enoncés et corrections : Sandra Delaunay. Exercice 1 Soit a R et A la matrice suivante 1 a

Exo7. Sujets de l année Partiel. Enoncés et corrections : Sandra Delaunay. Exercice 1 Soit a R et A la matrice suivante 1 a Enoncés et corrections : Sandra Delaunay Exo7 Sujets de l année 7-8 1 Partiel Exercice 1 Soit a R et A la matrice suivante 1 a A = a 1. 1 a 1. Calculer le déterminant de A et déterminer pour quelles valeurs

Plus en détail

Réduction des endomorphismes et des matrices carrées

Réduction des endomorphismes et des matrices carrées Réduction des endomorphismes et des matrices carrées Table des matières 1 Vecteurs propres et espaces propres d un endomorphisme 2 11 Éléments propres d un endomorphisme 2 12 Obtention d éléments propres

Plus en détail

Calcul matriciel. matrices-ligne et colonne : on appelle matrice-ligne toute matrice n ayant qu une seule ligne. On peut identifier

Calcul matriciel. matrices-ligne et colonne : on appelle matrice-ligne toute matrice n ayant qu une seule ligne. On peut identifier Calcul matriciel Dans ce qui suit, K désigne R ou C. 1 Petite visite au zoo matriciel 1.1 matrices générales notion de matrice : une matrice à coefficients dans K est une liste d éléments de K disposés

Plus en détail

TD de révisions : Calcul matriciel

TD de révisions : Calcul matriciel TD de révisions : Calcul matriciel I. Révisions sur le calcul matriciel a) Remarques générales sur le calcul matriciel Le calcul matriciel n'a pas autant de propriétés que le calcul numérique : - On ne

Plus en détail

Corrigé Feuille 4. et sa matrice dans la base canonique, qui est orthonormée pour le produit scalaire canonique, est. P (x)q(x)dx,

Corrigé Feuille 4. et sa matrice dans la base canonique, qui est orthonormée pour le produit scalaire canonique, est. P (x)q(x)dx, Université Paris Panthéon-Sorbonne L MASS 0/03 Algèbre Corrigé Feuille 4 Exercice. a On remarque que dim F car F R 3 en effet,,, F. D autre part, soient e = 3,,, e =, 0,. On vérifie que {e, e } est une

Plus en détail

Formes bilinéaires et quadratiques

Formes bilinéaires et quadratiques Formes bilinéaires et quadratiques 0 Prolégomènes Caractéristique d un corps Si K, +, est un corps commutatif, alors l application ϕ : n n K, où K est l élément neutre de K pour le produit, est un morphisme

Plus en détail

MATHÉMATIQUES II. Rappels, notations et objectifs du problème

MATHÉMATIQUES II. Rappels, notations et objectifs du problème MATHÉMATIQUES II Rappels, notations et objectifs du problème Dans tout ce problème, n désigne un entier naturel supérieur ou égal à 2 et M n ( IC ) l ensemble des matrices carrées complexes d ordre n De

Plus en détail

4.1 Définitions et notations 1 CHAPITRE 4. Matrices Définitions et notations

4.1 Définitions et notations 1 CHAPITRE 4. Matrices Définitions et notations 4 Définitions et notations CHAPITRE 4 Matrices 4 Définitions et notations On désigne par K un des deux ensembles R ou C et par n et p deux entiers strictement positifs 4 Matrices Définition On appelle

Plus en détail

Fiche Équations différentielles d ordre 1

Fiche Équations différentielles d ordre 1 Fiche Équations différentielles d ordre 1 MOSE 1003 24 Novembre 2014 Table des matières Définitions 1 Résolution de l équation homogène. 2 Méthode de variation de la constante. 3 Structure de l ensemble

Plus en détail

ALGÈBRE LINEAIRE Module 2 Structure Euclidienne PAD - Notes de cours. S. Rigal, D. Ruiz, et J. C. Satgé

ALGÈBRE LINEAIRE Module 2 Structure Euclidienne PAD - Notes de cours. S. Rigal, D. Ruiz, et J. C. Satgé ALGÈBRE LINEAIRE Module 2 Structure Euclidienne PAD - Notes de cours S. Rigal, D. Ruiz, et J. C. Satgé December 5, 2008 Table des Matières Espaces euclidiens Orthogonalité - Espaces euclidiens..............................

Plus en détail

MAT 1200: Introduction à l algèbre linéaire

MAT 1200: Introduction à l algèbre linéaire MAT 1200: Introduction à l algèbre linéaire Saïd EL MORCHID Département de Mathématiques et de Statistique Chapitre 4: Les espaces vectoriels Références Espaces vectoriels s Exemples Théorème Sous-espaces

Plus en détail

EPREUVE SPECIFIQUE FILIERE PC MATHEMATIQUES 1. Durée : 4 heures. Les calculatrices sont interdites. Notations et objectifs

EPREUVE SPECIFIQUE FILIERE PC MATHEMATIQUES 1. Durée : 4 heures. Les calculatrices sont interdites. Notations et objectifs SESSION 2010 PCM1002 EPREUVE SPECIFIQUE FILIERE PC MATHEMATIQUES 1 Durée : 4 heures Les calculatrices sont interdites N.B. : Le candidat attachera la plus grande importance à la clarté, à la précision

Plus en détail

Calcul matriciel Matrices Cours

Calcul matriciel Matrices Cours Calcul matriciel Matrices Cours CHAPITRE 1 : Généralités sur les matrices 1) Notion de matrice 2) Matrices particulières CHAPITRE 2 : Egalité de deux matrices CHAPITRE 3 : Opérations sur les matrices 1)

Plus en détail

ENSI 98 - Filière MP - MATHÉMATIQUES 2. Thème : Pseudo-inverse d une matrice - Méthode des moindres carrés discrets

ENSI 98 - Filière MP - MATHÉMATIQUES 2. Thème : Pseudo-inverse d une matrice - Méthode des moindres carrés discrets ENSI 98 - Filière MP - MATHÉMATIQUES 2 Thème : Pseudo-inverse d une matrice - Méthode des moindres carrés discrets PARTIE I - CONSTRUCTION D UNE MATRICE INVERSE A GAUCHE On suppose dans cette partie que

Plus en détail

Devoir surveillé 5 mathématiques

Devoir surveillé 5 mathématiques Devoir surveillé 5 mathématiques BCPST 205-206 Exercice. Soit t un réel strictement positif. On définit la suite ( n N par la donnée de x 0 = t et la relation de récurrence : n N, + =.. (a Soit g la fonction

Plus en détail

Chapitre 2. Introduction aux matrices

Chapitre 2. Introduction aux matrices L1 2012-2013 Université Paris 13 Algèbre linéaire Chapitre 2 Introduction aux matrices Référence: Liret-Martinais [2], chapitre 4 Nous avons déjà rencontré des tableaux de nombres, ou matrices Nous allons

Plus en détail

Problèmes matriciels

Problèmes matriciels Problèmes matriciels Exercice 1. I + a(x t Y Y t X inversible? Soient X, Y M n,1 (R indépendantes, a R et M la matrice n n telle que m ij x i y j x j y i. A quelle condition I + am est-elle inversible?

Plus en détail

Le pivot de Gauss. La matrice A est équivalente à une matrice triangulaire sans 0 sur la diagonale donc A est inversible.

Le pivot de Gauss. La matrice A est équivalente à une matrice triangulaire sans 0 sur la diagonale donc A est inversible. Le pivot de Gauss I Principe général Le pivot de Gauss est une méthode qui peut s appliquer sur des matrices ou sur des systèmes d équation. Le but de cette méthode est de transformer notre matrice ou

Plus en détail

Distance à un sous-espace vectoriel

Distance à un sous-espace vectoriel [http://mp.cpgedupuydelome.fr] édité le 1 juillet 214 Enoncés 1 Distance à un sous-espace vectoriel Exercice 1 [ 526 ] [correction] [Déterminant de Gram] Soit E un espace préhilbertien réel. Pour (u 1,...,

Plus en détail

M =, N =, P = et Q =. (formule de calcul du déterminant par rapport à la

M =, N =, P = et Q =. (formule de calcul du déterminant par rapport à la Soient les matrices : M =, N =, P = et Q = 1 Calculer le déterminant de la matrice M (1 point) Dét(M) = dét = dét car le déterminant d une matrice ne change pas lorsqu on ajoute à une de ses colonnes une

Plus en détail

Chapitre 2 : Matrices

Chapitre 2 : Matrices Chapitre 2 : Matrices 1 Notion de matrice et vocabulaire Notation 1 Dans tout le chapitre n, p, q sont des entiers naturels non nuls Définition 1 Une matrice A à n lignes et p colonnes est un tableau défini

Plus en détail

Cours 04 : Réduction des endomorphismes

Cours 04 : Réduction des endomorphismes Cours 04 : Réduction des endomorphismes 1 Cours 04 : Réduction des endomorphismes Nous avons vu en première année la simplification, dans l étude des puissances d une matrice M, que procure le fait de

Plus en détail

Espaces vectoriels de dimension finie

Espaces vectoriels de dimension finie Bibliothèque d exercices Énoncés L Feuille n 9 Espaces vectoriels de dimension finie Base Exercice Montrer que les vecteurs {,, 0 } forment une base de R. Calculer les coordonnées respectives des vecteurs

Plus en détail

CONCOURS COMMUNS POLYTECHNIQUES 2008 MP MATHEMATIQUES 2

CONCOURS COMMUNS POLYTECHNIQUES 2008 MP MATHEMATIQUES 2 CONCOURS COMMUNS POLYTECHNIQUES 8 MP MATHEMATIQUES I EXEMPLES Le polynôme caractéristique de M() est P M() (X) = Si on fait C C on voit que se factorise Si on fait L + L on voit que se factorise la trace

Plus en détail