AMUSEMENTS MATHÉMATIQUES

Dimension: px
Commencer à balayer dès la page:

Download "AMUSEMENTS MATHÉMATIQUES"

Transcription

1 AMUSEMENTS MATHÉMATIQUES Christian HESS Début de la rédaction : août

2 AMUSEMENTS MATHÉMATIQUES SOMMAIRE Contents 1 ÉNONCÉS Le nénuphar extraordinaire Les billes et les sacs Énigme chez le boulanger Le cycliste courageux Le problème des neuf points Comment construire quatre triangles équilatéraux avec six allumettes? Les deux mèches et le briquet Va te faire cuire un oeuf L escalier mécanique La nymphe et le satyre Chercher la boule, mais ne pas la perdre La fourmi et l élastique Les trois chasse-neige Les trois fusils Les moines maudits

3 1 ÉNONCÉS Les problèmes sont classés, plus ou moins, par ordre de difficulté. 1.1 Le nénuphar extraordinaire Dans un étang, un nénuphar très particulier a une croissance très rapide. Il double de surface chaque jour. Sachant qu il a rempli la totalité de la surface de l étang en 16 jours, en combien de jours en a-t-il rempli la moitié? 1.2 Les billes et les sacs On dispose de 5 sacs et de 30 billes. Est-il possible de répartir les billes dans les sacs de façon à avoir un nombre impair de billes dans chaque sac? 1.3 Énigme chez le boulanger Lors de sa première tournée dans un village, le nouveau facteur (F) bavarde avec le boulanger (B). Ils sont tous deux amateurs d énigmes mathématiques. F - Combien avez-vous d enfants? B - J en ai trois. F - Quel âge ont-ils? B - Le produits de leurs âges est égal à 36 et la somme est égale au numéro de la rue de la boutique. (Le facteur sort, va regarder le numéro puis revient dans la boutique) F - Cela ne me suffit pas. B - Pour vous aider, je peux vous dire que mon aîné raffole des pains au chocolat. Pouvez-vous déterminer les âges des enfants du boulanger (sachant qu il s agit d entiers positifs)? 1.4 Le cycliste courageux Un cycliste vient de gravir un col à une vitesse moyenne de 20 km/h. Il se demande à quelle vitesse il doit rouler pour rejoindre son point de départ et avoir une vitesse moyenne de 40 km/h sur l ensemble du trajet. Le cycliste reprend bien sûr la même route au retour. Que peut-on lui conseiller? 1.5 Le problème des neuf points On considère la figure suivante composée de neuf points. On demande de relier tous les points de cette figure en n utilisant que quatre segments de droite consécutifs formant une ligne brisée continue, donc sans lever le crayon. 1.6 Comment construire quatre triangles équilatéraux avec six allumettes? 1.7 Les deux mèches et le briquet On dispose de deux mèches, et d un briquet. Chaque mèche brûle en une heure. Comment peut-on mesurer 45 minutes en utilisant uniquement les mèches et le briquet? 3

4 1.8 Va te faire cuire un oeuf... On souhaite cuire un oeuf pendant 15 minutes exactement. Pour mesurer le temps, on dispose de deux sabliers. L un se vide en 7 minutes et l autre en 11 minutes. Indiquer comment procéder pour arriver quand même à mesurer les 15 minutes demandées. Il y a deux solutions : l une donne 15 minutes exactement, l autre nécessite un temps d attente avant le démarrage de la cuisson. 1.9 L escalier mécanique Un escalier mécanique est en fonctionnement dans le sens de la montée. Une personne emprunte cet escalier et monte les marches à une certaine vitesse. Elle gravit alors 15 marches avant de rejoindre le haut de l escalier. Une deuxième personne, très pressée, emprunte l escalier en marchant deux fois plus vite que la première; elle monte alors 20 marches jusqu à l arrivée. On demande combien de marches sont visibles lorsque l escalier est à l arrêt La nymphe et le satyre Une jeune et jolie nymphe est surprise dans le plus simple appareil par un satyre barbichu et empressé. Elle se trouve au centre d un bassin rempli d eau, de forme circulaire, autour duquel tourne son indésirable prétendant qui la couve d un regard avide et lubrique, et qui regrette ne pas savoir nager. On sait que la nymphe est nettement plus rapide que le satyre à la course, mais qu elle nage quatre fois moins vite qu il ne court. Quelle tactique doit-elle adopter pour échapper au satyre? Le problème serait plus facile si la nymphe était en présence d un satyre un peu moins rapide, courant seulement trois fois plus vite qu elle ne nage. On pourra commencer par traiter ce cas Chercher la boule, mais ne pas la perdre... On dispose de douze boules identiques en apparence. Toutefois, l une d elles est d un poids légèrement différent des autres (mais on ne sait pas si elle est plus légère ou plus lourde). À l aide d une balance de type Roberval, c est-à-dire, à deux plateaux, proposer une méthode permettant de déterminer, en trois pesées au plus, la boule de poids différent et de préciser si elle est plus légère ou plus lourde La fourmi et l élastique Une fourmi se trouve à l une des extrémités d un élastique d un mètre de longueur. À un instant donné, elle part vers l autre extrémité à la vitesse de 1cm/sec. Dans le même temps l élastique est étiré de sorte que sa longueur est augmentée d un mètre. La fourmi parviendra-t-elle à l autre extrémité de l élastique et, si oui, en combien de temps? 1.13 Les trois chasse-neige Nous sommes au cœur de l hiver dans un pays nordique ou en montagne. À un instant pris pour origine la neige commence à tomber de façon régulière, de sorte que l épaisseur de la couche est proportionnelle au temps. À un instant T un premier chasse-neige part déblayer une route. Une heure après, la neige continuant de tomber, un deuxième chasse-neige suit le premier, puis une heure après un troisième chasse-neige part à la suite des deux autres sur la même route. On suppose que la vitesse d un chasse-neige est inversement proportionnelle à l épaisseur de la couche de neige et que les trois chasse-neige finissent par se rejoindre au même endroit. Dans ces conditions déterminer la valeur de T, instant de départ du premier chasse-neige Les trois fusils Au Far-West, trois aventuriers vont s affronter dans un combat au fusil. C est une lutte chacun pour soi (comme à la fin du film Le Bon, la Brute et le Truand ). Les trois fusils qu ils vont utiliser sont chargés avec des balles dont certaines sont bonnes et d autres sont à blanc. Par ailleurs, chaque combattant tirera à son tour une balle et une seule, en visant qui il veut. On dispose des informations suivantes. - toutes les balles du premier fusil sont bonnes, - 80% des balles du deuxième fusil sont bonnes, - 50% des balles du troisième fusil sont bonnes. Vous êtes l un des protagonistes et vous avez la possibilité de choisir en premier votre fusil parmi les trois. Lequel prendrez-vous? Noter que les trois combattants connaissent le type de fusil dont disposera chacun de ses deux adversaires. 4

5 1.15 Les moines maudits L histoire se déroule dans un monastère dont les moines ont un esprit très logique. Le dimanche soir, le père supérieur fait une annonce à tous les moines et les informe qu une malédiction a frappé le monastère. Certains moines sont maudits : ils portent sur le front une marque rouge très visible. Or, dans ce monastère, il n y a pas le moindre miroir, et les moines n ont pas le droit de communiquer entre eux de quelque manière que ce soit. Une prière en commun a lieu simplement tous les jours. Chaque moine peut voir si ses collègues sont maudits ou non, mais il ne peut voir si lui-même porte la marque fatidique. Tout moine qui est certain d être maudit se suicide le soir du jour où il le découvre. Du lundi au samedi, rien ne se passe. Le dimanche soir suivant l annonce de la malédiction, tous les moines maudits se suicident. Dans ces conditions, combien y avait-il de moines maudits? 5

Les tableaux de proportionnalité

Les tableaux de proportionnalité Les tableaux de proportionnalité I) On sait que 1 yaourt à la vanille coûte 0,5. Compléter le tableau suivant : Nombre de yaourts 1 2 3 4 6 Prix à payer en 4 5,5 Si on achète deux fois plus de yaourts,

Plus en détail

Le jeu-concours international Le kangourou des mathématiques Canada, 2007

Le jeu-concours international Le kangourou des mathématiques Canada, 2007 Le jeu-concours international Le kangourou des mathématiques Canada, 007 9 e et 10 e année Partie A: Chaque réponse correcte vaut 3 points. 1. Anh, Ben et Chen ont ensemble 30 balles. Si Ben donne 5 balles

Plus en détail

Ce document regroupe les 6 devoirs à la maison proposés dans la progression.

Ce document regroupe les 6 devoirs à la maison proposés dans la progression. Ce document regroupe les 6 devoirs à la maison proposés dans la progression. Le document a été paginé de façon à ce que chaque devoir corresponde à une page pour en faciliter l impression. Page 2... Devoir

Plus en détail

BREVET BLANC DE MAI 2012

BREVET BLANC DE MAI 2012 COLLEGE GASPARD DES MONTAGNES BREVET BLANC DE MAI 2012 Ce sujet comporte 8 pages numérotées de 1/8 à 8/8, dont une feuille annexe à remettre avec la copie. L usage de la calculatrice est autorisé. Notation

Plus en détail

Fiche de révision sur les lois continues

Fiche de révision sur les lois continues Exercice 1 Voir la correction Le laboratoire de physique d un lycée dispose d un parc d oscilloscopes identiques. La durée de vie en années d un oscilloscope est une variable aléatoire notée X qui suit

Plus en détail

6.1.1: Lance les dés numérotés pour construire des triangles.

6.1.1: Lance les dés numérotés pour construire des triangles. 6.1.1: Lance les dés numérotés pour construire des triangles. Nom: 1. Lance 3 dés numérotés 30 fois. Soit c, le nombre le plus grand; les autres nombres sont les longueurs des côtés a et b. 2. Construis

Plus en détail

FRLT Page 1 27/07/2014 http://frlt.pagesperso-orange.fr/

FRLT Page 1 27/07/2014 http://frlt.pagesperso-orange.fr/ PROGRAMMES / NOMBRES 1C Je choisis un nombre ; je le multiplie par ; puis je divise le produit obtenu par ; je trouve ainsi,9. Quel nombre ai-je choisi? C Un nombre est le double d un autre. Le produit

Plus en détail

Exercices de dénombrement

Exercices de dénombrement Exercices de dénombrement Exercice En turbo Pascal, un entier relatif (type integer) est codé sur 6 bits. Cela signifie que l'on réserve 6 cases mémoires contenant des "0" ou des "" pour écrire un entier.

Plus en détail

Dispositif d évaluation. Mathématiques. Livret de l élève

Dispositif d évaluation. Mathématiques. Livret de l élève Dispositif d évaluation 6 ème EGPA Mathématiques Livret de l élève NOM : Prénom : Date de naissance :.... Année scolaire :. Etablissement :.... Etablissement :.... Académie de Lille - 2015 Sommaire Passation

Plus en détail

Nom de l institution : Adresse : Ville : Province : Code postal : Adresse de livraison : (si autre que ci-dessus) Ville :

Nom de l institution : Adresse : Ville : Province : Code postal : Adresse de livraison : (si autre que ci-dessus) Ville : Insérez votre logo 4.2.2 Vérification des espaces et des services Note : Le formulaire «Vérification des espaces et des services» est un rapport standard d installation simplifié. Il fournit des données

Plus en détail

B = A = B = A = B = A = B = A = Recopier sur la copie chaque expression numérique et la réponse exacte. Réponse A Réponse B Réponse C Solution

B = A = B = A = B = A = B = A = Recopier sur la copie chaque expression numérique et la réponse exacte. Réponse A Réponse B Réponse C Solution Q.C.M. Recopier sur la copie chaque expression numérique et la réponse exacte. Réponse A Réponse B Réponse C Solution Exercice 1 On considère les trois nombres A, B et C : 2 x (60 5 x 4 ²) (8 15) Calculer

Plus en détail

Les repères de temps familiers

Les repères de temps familiers séquence 1 2 3 4 5 6 7 8 9 10 Les repères de temps familiers Je me repère dans le temps séance 1 A. Observe bien chacune de ces séries de deux photographies. À chaque fois, indique dans quel ordre elles

Plus en détail

6 Les forces mettent les objets en mouvement.

6 Les forces mettent les objets en mouvement. 6 Les forces mettent les objets en mouvement. Tu dois devenir capable de : Savoir expliquer la proportion directe entre la force et l accélération à l aide d un exemple ; expliquer la proportion inverse

Plus en détail

13 Ne confonds pas avec : Hier, j ai mangé au restaurant. 16 Ce livre, je l ai lu l été dernier. Un ou

13 Ne confonds pas avec : Hier, j ai mangé au restaurant. 16 Ce livre, je l ai lu l été dernier. Un ou Un ou 1 le, un, mon, ton, son, ce chien méchant aboie la, une, ma, ta, sa, cette chienne méchante aboie plusieurs 2 les, des, mes, tes, ses, ces chiens méchants aboient quelques, beaucoup de chiennes méchantes

Plus en détail

CORRECTIONS. Consignes pour le déroulement de l épreuve d une durée de 2 heures

CORRECTIONS. Consignes pour le déroulement de l épreuve d une durée de 2 heures Consignes pour le déroulement de l épreuve d une durée de 2 heures * Calculatrice autorisée pour les deux parties mais en précisant les étapes des calculs. A] Nombres et Calculs : Exercice n 1 : Compléter

Plus en détail

Mouvement et vitesse . A A B

Mouvement et vitesse . A A B Chapitre 1 Mouvement et vitesse I/ Caractère relatif d'un mouvement Le mouvement d'un objet est décrit par rapport à un autre objet qui sert de référence ( le référentiel) exemple : assis dans une voiture

Plus en détail

Les problèmes de la finale du 21éme RMT

Les problèmes de la finale du 21éme RMT 21 e RMT Finale mai - juin 2013 armt2013 1 Les problèmes de la finale du 21éme RMT Titre Catégorie Ar Alg Geo Lo/Co Origine 1. La boucle (I) 3 4 x x rc 2. Les verres 3 4 x RZ 3. Les autocollants 3 4 x

Plus en détail

EVALUATION CE2 MARIGOT 2012-2013. Le panda est un grand ours bicolore noir et blanc qui vit dans les montagnes de Chine.

EVALUATION CE2 MARIGOT 2012-2013. Le panda est un grand ours bicolore noir et blanc qui vit dans les montagnes de Chine. FRANCAIS Exercice 1 Lecture Nom : Prénom : Le panda Le panda est un grand ours bicolore noir et blanc qui vit dans les montagnes de Chine. ou grimpe rapidement à un arbre. Le jeune panda est très souple.

Plus en détail

BREVET BLANC de MATHEMATIQUES n 1 Janvier 2012 - durée : 2 heures

BREVET BLANC de MATHEMATIQUES n 1 Janvier 2012 - durée : 2 heures BREVET BLANC de MATHEMATIQUES n 1 Janvier 2012 - durée : 2 heures Les calculatrices sont autorisées. L orthographe, le soin et la présentation sont notés sur 4 points. Activités numériques (12 points)

Plus en détail

Catégorie P1 18 e et 19 e championnats

Catégorie P1 18 e et 19 e championnats Catégorie P1 18 e et 19 e championnats Quart de finale 18 e A03 1 LA COURSE D ESCARGOTS Voici les temps obtenus par sept escargots à une course de rapidité : 47 minutes, une demiheure, 35 minutes, 20 minutes,

Plus en détail

VII Ma montre indique 12 h 10 min. Quelle est la mesure (en degré) de l angle aigu que forment l aiguille des heures et celle des minutes?

VII Ma montre indique 12 h 10 min. Quelle est la mesure (en degré) de l angle aigu que forment l aiguille des heures et celle des minutes? Rallye mathématique de la Sarthe 2001/2002 Finale Atelier N 10 Enigmes Dans cet atelier, vous avez à résoudre dix problèmes, un élève seul (et même un groupe de quatre) peut difficilement résoudre tous

Plus en détail

LIVRET DE MATHEMATIQUES ENTREE EN PREMIERE S Institut Notre-Dame (Saint Germain en Laye) Année 2015-2016

LIVRET DE MATHEMATIQUES ENTREE EN PREMIERE S Institut Notre-Dame (Saint Germain en Laye) Année 2015-2016 LIVRET DE MATHEMATIQUES ENTREE EN PREMIERE S Institut Notre-Dame (Saint Germain en Laye) Année 015-016 Pourquoi ce livret? Afin de mieux préparer cette rentrée, ce livret reprend un ensemble de notions

Plus en détail

Dénombrement, opérations sur les ensembles.

Dénombrement, opérations sur les ensembles. Université Pierre et Marie Curie 2013-2014 Probabilités et statistiques - LM345 Feuille 1 (du 16 au 20 septembre 2013) Dénombrement, opérations sur les ensembles 1 Combien de façons y a-t-il de classer

Plus en détail

Les jours de la semaine

Les jours de la semaine Les jours de la semaine Les jours de la semaine S enfilent un à un Comme les billes d un grand collier Dans un ordre, ils se suivent Chaque jour se ressemble Chaque jour est différent Mais on ne peut les

Plus en détail

BREVET BLANC CORRIGE

BREVET BLANC CORRIGE ACTIVITES NUMERIQUES (12 POINTS) Exercice 1 (2 points) On a relevé le nombre de médailles gagnées par les sportifs calédoniens lors des Jeux du Pacifique. Voici les résultats regroupés à l aide d un tableur

Plus en détail

9 è et 10 è années 2013

9 è et 10 è années 2013 Partie A: Chaque bonne réponse vaut 3 points. Jeu-concours international KANGOUROU DES MATHÉMATIQUES 1. Le nombre n'est pas divisible par (A). (B). (C). (D). (E). 2. Les huit demi-cercles inscrits à l'intérieur

Plus en détail

CHAPITRE. Le mouvement en deux dimensions CORRIGÉ DES EXERCICES

CHAPITRE. Le mouvement en deux dimensions CORRIGÉ DES EXERCICES CHAPITRE Le mouvement en deux dimensions CORRIGÉ DES EXERCICES Exercices. Les vecteurs du mouvement SECTION. 5. Une montgolfière, initialement au repos, se déplace à vitesse constante. En 5 min, elle

Plus en détail

MATHÉMATIQUES ET SOCLE COMMUN STAGES 2011-12

MATHÉMATIQUES ET SOCLE COMMUN STAGES 2011-12 MATHÉMATIQUES ET SOCLE COMMUN STAGES 2011-12 Atelier 2 Faire évoluer des activités «traditionnelles» Ce document comporte trois parties : 1. Activités de formation (6 pages) 2. A : généralités (1 page)

Plus en détail

Les p tits problèmes pour chercher

Les p tits problèmes pour chercher fiche n Emma danse. Elle fait pas en avant, pas en arrière et pas en avant. A-t-elle avancé ou reculé? Lucas veut fabriquer une tour avec trois cubes de couleurs différentes : jaune, bleu et vert. Dessine

Plus en détail

Activité 1. Compter les points Écriture binaire des nombres. Résumé. Liens pédagogiques. Compétences. Âge. Matériel

Activité 1. Compter les points Écriture binaire des nombres. Résumé. Liens pédagogiques. Compétences. Âge. Matériel Activité 1 Compter les points Écriture binaire des nombres Résumé Les données de l ordinateur sont stockées et transmises sous la forme d une série de 0 et de 1. Comment peut-on représenter des mots et

Plus en détail

1. Combinaison de chiffres. 2. L archéologue futé. 3. L elfe menteur. Quelle est la prochaine ligne?

1. Combinaison de chiffres. 2. L archéologue futé. 3. L elfe menteur. Quelle est la prochaine ligne? Best of énigmes page 1. Combinaison de chiffres...2 2. L archéologue futé...2 3. L elfe menteur...2 4. La condamnation à mort...3 5. Protéger son courrier...3 6. La chèvre, le chou et le loup...3 7. Le

Plus en détail

Mécanique3. Cours. L énergie mécanique. Troisièmes. 3 ème. Qu est-ce que l énergie mécanique?

Mécanique3. Cours. L énergie mécanique. Troisièmes. 3 ème. Qu est-ce que l énergie mécanique? 3 ème Mécanique 3 Qu est-ce que l énergie mécanique? Objectifs 1 Calculer une énergie cinétique 2 Reconnaître une énergie de position 3 Expliquer une conversion d énergie mécanique Mécanique3 Photos Pourquoi

Plus en détail

CHAPITRE. Le mouvement en une dimension CORRIGÉ DES EXERCICES

CHAPITRE. Le mouvement en une dimension CORRIGÉ DES EXERCICES CHAPITRE Le mouvement en une dimension CORRIGÉ DES EXERCICES Exercices. Le mouvement rectiligne uniforme SECTION. 5. Le graphique suivant représente la vitesse d une cycliste en fonction du temps. Quelle

Plus en détail

Programme de calcul et résolution d équation

Programme de calcul et résolution d équation Programme de calcul et résolution d équation On appelle «programme de calcul» tout procédé mathématique qui permet de passer d un nombre à un autre suivant une suite d opérations déterminée. Un programme

Plus en détail

Exercices de mathématiques

Exercices de mathématiques 1) Je mets 4 cartes dans une rangée et 4 rangées de cartes. Combien y a-t-il de cartes? 16 cartes 2) J ai placé 42 cartes dans 6 rangées de cartes. Combien y a-t-il de cartes par rangée? 7 cartes 3) Dans

Plus en détail

SEMAINE DES MATHEMATIQUES

SEMAINE DES MATHEMATIQUES SEMAINE DES MATHEMATIQUES Titre de l'activité Découverte de la suite de Fibonacci ou cinq activités à traiter simultanément : les billes, les escaliers, les étages peints, les fauxbourdons, les lapins

Plus en détail

Chapitre 2: Suites arithmétiques et suites géométriques

Chapitre 2: Suites arithmétiques et suites géométriques CHAPITRE 2 SUITES ARITHMETIQUES ET GEOMETRIQUES 13 Chapitre 2: Suites arithmétiques et suites géométriques 2.1 Suites arithmétiques Introduction : Dans ce chapitre, nous allons étudier deux sortes de suites

Plus en détail

315 et 495 sont dans la table de 5. 5 est un diviseur commun. Leur PGCD n est pas 1. Il ne sont pas premiers entre eux

315 et 495 sont dans la table de 5. 5 est un diviseur commun. Leur PGCD n est pas 1. Il ne sont pas premiers entre eux Exercice 1 : (3 points) Un sac contient 10 boules rouges, 6 boules noires et 4 boules jaunes. Chacune des boules a la même probabilité d'être tirée. On tire une boule au hasard. 1. Calculer la probabilité

Plus en détail

La concordance au passé

La concordance au passé La concordance au passé Ce document présente huit textes. Les premiers exercices exploitent l utilisation du passé composé et de l imparfait. Les autres nécessitent le recours aux trois principaux temps

Plus en détail

Thème N 12: COMPARAISON - OPERATIONS EN ECRITURE FRACTIONNAIRE (2)

Thème N 12: COMPARAISON - OPERATIONS EN ECRITURE FRACTIONNAIRE (2) Thème N : COMPARAISON - OPERATIONS EN ECRITURE FRACTIONNAIRE () Exercice n : 0 00 0 0 0 0 0 0 0 0 00 0 0 0 ACTIVITE : Comparaison de fractions ) Marque Lerouge Levert Lebleu Leblanc Lenoir Quantité en

Plus en détail

DÉCLARATION DE VOL COMPLET

DÉCLARATION DE VOL COMPLET DÉCLARATION DE VOL COMPLET TOUS LES VOLS DOIVENT ÊTRE SIGNALÉS À LA POLICE. IL FAUT RÉPONDRE À TOUTES LES QUESTIONS DE CE FORMULAIRE. RETOURNEZ CETTE DÉCLARATION PAR LA POSTE DANS UN DÉLAI DE CINQ JOURS.

Plus en détail

2x 9 =5 c) 4 2 x 5 1= x 1 x = 1 9

2x 9 =5 c) 4 2 x 5 1= x 1 x = 1 9 Partie #1 : La jonglerie algébrique... 1. Résous les (in)équations suivantes a) 3 2x 8 =x b) Examen maison fonctions SN5 NOM : 2x 9 =5 c) 4 2 x 5 1= x 1 x d) 2 x 1 3 1 e) x 2 5 = 1 9 f) 2 x 6 7 3 2 2.

Plus en détail

Les phrases de condition

Les phrases de condition Les phrases de condition Rappel! La langue française propose plusieurs modèles de phrases de condition. Toutefois, les 3 modèles qui suivent s utilisent couramment. 1. Lorsque nous sommes incertains, nous

Plus en détail

Sciences et technologie

Sciences et technologie Sciences et technologie 4 e année Jean-Yves D Amour Marcel Thouin Paul Trudel Centre franco-ontarien de ressources pédagogiques Table des matières Introduction... 5 Systèmes vivants... 7 Activité 1 : Comment

Plus en détail

UNIVERSITÉ DE CERGY. LICENCE d ÉCONOMIE et FINANCE LICENCE de GESTION. Seconde année - Semestre 3 PROBABILITÉS. Cours de M. J.

UNIVERSITÉ DE CERGY. LICENCE d ÉCONOMIE et FINANCE LICENCE de GESTION. Seconde année - Semestre 3 PROBABILITÉS. Cours de M. J. Année 2013-2014 UNIVERSIÉ DE CERGY LICENCE d ÉCONOMIE et FINANCE LICENCE de GESION Seconde année - Semestre 3 PROBABILIÉS Cours de M. J. Stéphan ravaux Dirigés de Mme M. Barrié, M. J-M. Chauvet et M. J.

Plus en détail

MATHÉMATIQUES. Révision d items. Colloque de l AEFNB Août 2012. Lynn Marotte Agente en mesure et évaluation

MATHÉMATIQUES. Révision d items. Colloque de l AEFNB Août 2012. Lynn Marotte Agente en mesure et évaluation MATHÉMATIQUES Révision d items Colloque de l AEFNB Août 2012 Agente en mesure et évaluation Critères à respecter pour la rédaction d un bon item Critère Précision/Exemple La mise en situation est concise,

Plus en détail

BACCALAUREAT GENERAL MATHÉMATIQUES

BACCALAUREAT GENERAL MATHÉMATIQUES BACCALAUREAT GENERAL FEVRIER 2014 MATHÉMATIQUES SERIE : ES Durée de l épreuve : 3 heures Coefficient : 5 (ES), 4 (L) 7(spe ES) Les calculatrices électroniques de poche sont autorisées, conformement à la

Plus en détail

EVALUATIONS FIN CM1. Mathématiques. Livret élève

EVALUATIONS FIN CM1. Mathématiques. Livret élève Les enseignants de CM1 de la circonscription de METZ-SUD proposent EVALUATIONS FIN CM1 Mathématiques Livret élève Circonscription de METZ-SUD page 1 NOMBRES ET CALCUL Exercice 1 : Écris en chiffres les

Plus en détail

ÉVALUATION EN FIN DE CM1. Année scolaire 2014 2015 LIVRET DE L'ÉLÈVE MATHÉMATIQUES

ÉVALUATION EN FIN DE CM1. Année scolaire 2014 2015 LIVRET DE L'ÉLÈVE MATHÉMATIQUES ÉVALUATION EN FIN DE CM1 Année scolaire 2014 2015 LIVRET DE L'ÉLÈVE MATHÉMATIQUES NOM :....... Prénom :....... Né le :./../ École :............ Classe : Domaine Score de réussite NOMBRES ET CALCUL GÉOMÉTRIE

Plus en détail

Items étudiés dans le CHAPITRE N5. 7 et 9 p 129 D14 Déterminer par le calcul l'antécédent d'un nombre par une fonction linéaire

Items étudiés dans le CHAPITRE N5. 7 et 9 p 129 D14 Déterminer par le calcul l'antécédent d'un nombre par une fonction linéaire CHAPITRE N5 FONCTIONS LINEAIRES NOTION DE FONCTION FONCTIONS LINEAIRES NOTION DE FONCTION FONCTIONS LINEAIRES NOTION DE FONCTION Code item D0 D2 N30[S] Items étudiés dans le CHAPITRE N5 Déterminer l'image

Plus en détail

IUT de Laval Année Universitaire 2008/2009. Fiche 1. - Logique -

IUT de Laval Année Universitaire 2008/2009. Fiche 1. - Logique - IUT de Laval Année Universitaire 2008/2009 Département Informatique, 1ère année Mathématiques Discrètes Fiche 1 - Logique - 1 Logique Propositionnelle 1.1 Introduction Exercice 1 : Le professeur Leblond

Plus en détail

A agrafer à la fiche d enquête impérativement. Logement dans une concession avec cour et plusieurs logements

A agrafer à la fiche d enquête impérativement. Logement dans une concession avec cour et plusieurs logements 62 Numéro questionnaire (par équipe) Numéro échantillon Date de l enquête: Nom de la famille déplacée Ville/Commune Latitude (GPS) - si applicable 1. SITUATION ABRI 1. Comment définiriez-vous l abri actuel?

Plus en détail

Probabilités. Une urne contient 3 billes vertes et 5 billes rouges toutes indiscernables au toucher.

Probabilités. Une urne contient 3 billes vertes et 5 billes rouges toutes indiscernables au toucher. Lycée Jean Bart PCSI Année 2013-2014 17 février 2014 Probabilités Probabilités basiques Exercice 1. Vous savez bien qu un octet est une suite de huit chiffres pris dans l ensemble {0; 1}. Par exemple 01001110

Plus en détail

Concours canadien Kangourou des mathématiques

Concours canadien Kangourou des mathématiques Concours canadien Kangourou des mathématiques Partie A: Chaque bonne réponse vaut 3 points 1. Parmi les figures suivantes, laquelle a exactement la moitié de l aire dans la partie ombragée? (A) (B) (C)

Plus en détail

Savoir son cours. COMP.9 Energie mécanique exercices. Quel frimeur! Comparer voiture et camion : Julie sur sa balançoire : Le bon choix :

Savoir son cours. COMP.9 Energie mécanique exercices. Quel frimeur! Comparer voiture et camion : Julie sur sa balançoire : Le bon choix : COMP.9 Energie mécanique exercices Savoir son cours Quel frimeur! Quelle est leur masse? E c = ½ m v m = E c/v Attention! La vitesse doit être en m/s! v = 45 km/h = 45/ 3,6 m/s = 1,5 m/s. Ainsi, m = 18

Plus en détail

Correction du deuxième Brevet Blanc mai 2013 Lycée International Victor Hugo de Florence.

Correction du deuxième Brevet Blanc mai 2013 Lycée International Victor Hugo de Florence. Exercice 1 (4 points) d après Amérique du Sud, novembre 2010. et donc les nombres semblent égaux, mais il faut le démontrer. Je sais que si alors. Je cherche à savoir si Alors j aurai si je trouve. Conclusion

Plus en détail

Chapitre 10 La relativité du temps

Chapitre 10 La relativité du temps DERNIÈRE IMPRESSION LE 1 er août 2013 à 11:30 Chapitre 10 La relativité du temps Table des matières 1 L invariance de la vitesse de la lumière 2 2 La relativité du temps 2 3 La dilatation des temps 3 4

Plus en détail

Evaluation bilan de 4 ème 2 ème trimestre

Evaluation bilan de 4 ème 2 ème trimestre Evaluation bilan de 4 ème 2 ème trimestre Durée : 1 heure Toutes les réponses devront être justifiées et tous les calculs doivent apparaitre, sauf indication contraire. Exercice I (4 points) Clara veut

Plus en détail

Analyse Combinatoire

Analyse Combinatoire Analyse Combinatoire 1) Équipes On dispose d un groupe de cinq personnes. a) Combien d équipes de trois personnes peut-on former? b) Combien d équipes avec un chef, un sous-chef et un adjoint? c) Combien

Plus en détail

Le marteau et l enclume

Le marteau et l enclume Sophie Ricoul Le marteau et l enclume Chroniques d une accidentée de la route 2 2 Les aires d accueils pour les gens du voyage ou Le marteau et l enclume Gérer des aires d accueils pour les gens du voyage

Plus en détail

Prétest A QUESTIONNAIRE

Prétest A QUESTIONNAIRE MATHÉMATIQUES MAT5103 Probabilités II Prétest A QUESTIONNAIRE NE PAS ÉCRIRE SUR CE DOCUMENT Version du 16 décembre 2004 Rédigé par Denise Martin (martindenise@csdgsqcca) Centre L Envol 1 Un jeu consiste

Plus en détail

EQUATIONS ET INEQUATIONS Exercices 1/8

EQUATIONS ET INEQUATIONS Exercices 1/8 EQUATIONS ET INEQUATIONS Exercices 1/8 01 Résoudre les équation suivantes : x + 7 = 0 x 1 = 0 x + 4 = 0 3x 9 = 0 9x + 1 = 0 - x + 4 = 0-6x + = 0-5x 15 = 0-1 + 8x = 0-4 - 3x = 0-5x 3 + 7x = 0 + 6x 4 = 0

Plus en détail

EXAMEN D ADMISSION DE L ECOLE DE MATURITE 1 ère ANNEE MATHEMATIQUES

EXAMEN D ADMISSION DE L ECOLE DE MATURITE 1 ère ANNEE MATHEMATIQUES GYMNASE DU BUGNON - LAUSANNE Mai 2008 EXAMEN D ADMISSION DE L ECOLE DE MATURITE 1 ère ANNEE MATHEMATIQUES Date : mai 2008 Durée : 3h Matériel mis à disposition par le gymnase : - Matériel apporté par les

Plus en détail

Mme Ruscitto. Les nombres entiers

Mme Ruscitto. Les nombres entiers Mme Ruscitto Les nombres entiers 0 Les nombres entiers 1. Introduction Emmanuel a placé un thermomètre dans sa cour. Il relève les températures le matin et l après-midi, une fois par saison. Au printemps,

Plus en détail

Les mots repères : questions et calculs. Les mots repères : questions et calculs PRO9 PRO9

Les mots repères : questions et calculs. Les mots repères : questions et calculs PRO9 PRO9 Les mots repères : questions et calculs PRO9 Les mots repères : questions et calculs PRO9 Une fois la (ou les) question(s) repérée(s), il convient de repérer les mots-clés, les mots repères qui vont nous

Plus en détail

Le sujet est à rendre avec la copie.

Le sujet est à rendre avec la copie. NOM : Prénom : Classe : ACADEMIE DE BORDEAUX Collège Jean Moulin, COULOUNIEIX-CHAMIERS Durée : h DIPLOME NATIONAL DU BREET Série Collège Brevet BLANC Du janvier 01 Epreuve : MATHEMATIQUES Les calculatrices

Plus en détail

GUIDE D UTILISATION. Utilisation du logiciel & Création de parcours et d exercices

GUIDE D UTILISATION. Utilisation du logiciel & Création de parcours et d exercices GUIDE D UTILISATION OCAD 9 Utilisation du logiciel & Création de parcours et d exercices Rédigé par Stéphane CLEMENT-AGONI Mise à jour 2010 Distribution : Ligue de Bourgogne de C.O et Talant Sport Orientation

Plus en détail

Exemple DE PLAN DE COURS UNIQUE (un seul cours)

Exemple DE PLAN DE COURS UNIQUE (un seul cours) Exemple DE PLAN DE COURS UNIQUE (un seul cours) Nom : Patrick Parent Titre du cours: La formule 1 Durée : 60 min École : Des-Grands-Rapides Cycle : 2e Niveau : 4 e année Groupe : 401, 402, 403 Date : 8

Plus en détail

Questions typiques d entrevue

Questions typiques d entrevue Questions typiques d entrevue 1- Parlez-moi de vous? Question la plus importante de l entrevue; pourrait être la seule. Soyez bref. Ne tombez pas dans le piège de donner tout en détail. Ne dépassez pas

Plus en détail

Donnez la valeur d un temps, c est dire pourquoi on l emploie.

Donnez la valeur d un temps, c est dire pourquoi on l emploie. Les valeurs du présent de l indicatif Donnez la valeur d un temps, c est dire pourquoi on 1. Un avion passe en ce moment dans le ciel. 2. Tous les jours, je me lève à six heures du matin. 3. Il part tous

Plus en détail

Le jeu de Marienbad. 1 Écriture binaire d un entier

Le jeu de Marienbad. 1 Écriture binaire d un entier MPSI Option Informatique Année 2002, Quatrième TP Caml Vcent Simonet (http://cristal.ria.fr/~simonet/) Le jeu de Marienbad Dans le film d Ala Resnais «L année dernière à Marienbad» (1961), l un des personnages,

Plus en détail

POLY-PREPAS ANNEE 2009/2010 Centre de Préparation aux Concours Paramédicaux

POLY-PREPAS ANNEE 2009/2010 Centre de Préparation aux Concours Paramédicaux POLY-PREPAS ANNEE 2009/2010 Centre de Préparation aux Concours Paramédicaux - Section : i-prépa Audioprothésiste (annuel) - MATHEMATIQUES 8 : EQUATIONS DIFFERENTIELLES - COURS + ENONCE EXERCICE - Olivier

Plus en détail

Situations d apprentissage. Mat-2101-3

Situations d apprentissage. Mat-2101-3 Situations d apprentissage Mat-2101-3 Un vendredi au chalet (Activités 1, 2 et 3) Le taxi (Activités 1 et 2) Un entrepôt «sans dessus dessous» (Activités 1, 2, 3 et 4) France Dugal Diane Garneau Commission

Plus en détail

ACTIVITES NUMERIQUES 12 points

ACTIVITES NUMERIQUES 12 points BREVET BLANC Mai 2012 Mathématiques Le corrigé La rédaction et la présentation sont prises en compte pour 4 points. Les calculatrices sont autorisées. Durée de l'épreuve : 2 heures. EXERCICE 1 On donne

Plus en détail

VOITURE A REACTION. Kart à réaction réalisé par un bricoleur «fou» (Bruce Simpson)

VOITURE A REACTION. Kart à réaction réalisé par un bricoleur «fou» (Bruce Simpson) VOITURE A REACTION Kart à réaction réalisé par un bricoleur «fou» (Bruce Simpson) 1 Introduction BUT DE L ACTIVITE Fabriquer une voiture à réaction originale et sans danger Jouer avec et essayer plein

Plus en détail

Chap 8 - TEMPS & RELATIVITE RESTREINTE

Chap 8 - TEMPS & RELATIVITE RESTREINTE Chap 8 - TEMPS & RELATIVITE RESTREINTE Exercice 0 page 9 On considère deux évènements E et E Référentiel propre, R : la Terre. Dans ce référentiel, les deux évènements ont lieu au même endroit. La durée

Plus en détail

Prénom : MATHÉMATIQUES. 120 minutes Compas, règle métrique, rapporteur, équerre, calculatrice non programmable

Prénom : MATHÉMATIQUES. 120 minutes Compas, règle métrique, rapporteur, équerre, calculatrice non programmable Admission en 8 VSG 8 VSB cocher la voie visée MATHÉMATIQUES Durée Matériel à disposition 120 minutes Compas, règle métrique, rapporteur, équerre, calculatrice non programmable Rappel des objectifs fondamentaux

Plus en détail

Diplôme national du brevet. Devoir commun Janvier 2014 MATHEMATIQUES CORRECTION

Diplôme national du brevet. Devoir commun Janvier 2014 MATHEMATIQUES CORRECTION Diplôme national du brevet Devoir commun Janvier 204 MATHEMATIQUES CORRECTION L'usage de la calculatrice est autorisé. L'énoncé du sujet sera rendu avec la copie Durée de l'épreuve : 2 heures. Notation

Plus en détail

FAQ pour CLAUSTROPHOBIA

FAQ pour CLAUSTROPHOBIA FAQ pour CLAUSTROPHOBIA Proposée par Fabien DELMAERE Le joueur humain Cartes de don Des dons en général Q : Une aura peut- elle s'appliquer à un personnage qui n'est pas sur la même tuile que le frère

Plus en détail

LIMITER LA CONSOMMATION DE CARBURANT

LIMITER LA CONSOMMATION DE CARBURANT 30. - LA CONSOMMATION DE CARBURANT LIMITER LA CONSOMMATION DE CARBURANT LA VOITURE EST-ELLE INDISPENSABE? 1. À pied à vélo transports en commun. Les déplacements en voiture ne sont pas seulement chers,

Plus en détail

DURÉE DU JOUR EN FONCTION DE LA DATE ET DE LA LATITUDE

DURÉE DU JOUR EN FONCTION DE LA DATE ET DE LA LATITUDE DURÉE DU JUR E FCTI DE LA DATE ET DE LA LATITUDE ous allons nous intéresser à la durée du jour, prise ici dans le sens de période d éclairement par le Soleil dans une journée de 4 h, en un lieu donné de

Plus en détail

OLYMPIADES ACADÉMIQUES DE MATHÉMATIQUES

OLYMPIADES ACADÉMIQUES DE MATHÉMATIQUES OLYMPIADES ACADÉMIQUES DE MATHÉMATIQUES ACADÉMIE DE RENNES SESSION 2006 CLASSE DE PREMIERE DURÉE : 4 heures Ce sujet s adresse à tous les élèves de première quelle que soit leur série. Il comporte cinq

Plus en détail

TOUR EN VOITURE. Le graphique ci-dessous est un relevé simplifié de la vitesse de la voiture pendant ce tour. Le tour en voiture de Karine.

TOUR EN VOITURE. Le graphique ci-dessous est un relevé simplifié de la vitesse de la voiture pendant ce tour. Le tour en voiture de Karine. TOUR EN VOITURE Karine part faire un tour en voiture. Pendant qu elle roule, un chat surgit devant sa voiture. Karine freine brutalement et évite le chat de justesse. Karine, un peu secouée, décide de

Plus en détail

Activités à faire à la maison pour renforcer le concept de formes géométriques

Activités à faire à la maison pour renforcer le concept de formes géométriques pour renforcer le concept de formes géométriques Une œuvre en figures planes Crée une œuvre qui comprend toutes les figures planes décrites ci-dessous. Un cercle jaune Deux triangles isocèles rouges non

Plus en détail

NOM:.. PRENOM:... CLASSE:.. STAGE EN ENTREPRISE. des élèves de...ème Du../../.. au./../.. Collège...

NOM:.. PRENOM:... CLASSE:.. STAGE EN ENTREPRISE. des élèves de...ème Du../../.. au./../.. Collège... NOM:.. PRENOM:... CLASSE:.. STAGE EN ENTREPRISE des élèves de...ème Du../../.. au./../.. Collège......... SOMMAIRE Avant le stage Le cahier de stage. 2 Conseil au stagiaire. 3 Fiche d identité de l élève

Plus en détail

M a t h é m a t i q u e s a u

M a t h é m a t i q u e s a u M a t h é m a t i q u e s a u q u o t i d i e n 1 2 e a n n é e ( 4 0 S ) Examen de préparation de mi-session M a t h é m a t i q u e s a u q u o t i d i e n - 1 2 e A n n é e Examen de préparation de

Plus en détail

analyse De La situation

analyse De La situation 66 n Photographier l urbain atelier 3 Faire ViBrer les COUleUrS analyse De La situation Nikon D800 35 mm ƒ/7.1 1/60 s 100 ISO Les couleurs sont présentes partout autour de nous, il suffit parfois de lever

Plus en détail

Baccalauréat STI Génie civil Métropole 16 septembre 2010

Baccalauréat STI Génie civil Métropole 16 septembre 2010 Durée : 4 heures Baccalauréat STI Génie civil Métropole 16 septembre 010 L utilisation d une calculatrice est autorisée pour cette épreuve. Le candidat doit traiter les deux exercices et le problème. EXERCICE

Plus en détail

Une brique dans le cartable. Du Plan à l Ouvrage

Une brique dans le cartable. Du Plan à l Ouvrage Une brique dans le cartable Du Plan à l Ouvrage Une brique dans le cartable Du plan à l ouvrage Visites et rencontres possibles - Rencontre avec un architecte o Voir la création des plans (orientation

Plus en détail

Évaluations diagnostiques - Consignes de passation

Évaluations diagnostiques - Consignes de passation Consignes Page 1/12 Évaluations diagnostiques - Consignes de passation Partie 1 Exercice 1 : La consigne est «Observe les images. Elles appartiennent toutes à un même thème sauf une. Entoure-la.» Tu (vous)

Plus en détail

Je les ai entendus frapper. C était l aube. Les deux gendarmes se tenaient derrière la porte. J ai ouvert et je leur ai proposé d entrer.

Je les ai entendus frapper. C était l aube. Les deux gendarmes se tenaient derrière la porte. J ai ouvert et je leur ai proposé d entrer. Je les ai entendus frapper. C était l aube. Les deux gendarmes se tenaient derrière la porte. J ai ouvert et je leur ai proposé d entrer. Mais je me suis repris : En fait, je préférais les recevoir dans

Plus en détail

Calcul élémentaire des probabilités

Calcul élémentaire des probabilités Myriam Maumy-Bertrand 1 et Thomas Delzant 1 1 IRMA, Université Louis Pasteur Strasbourg, France Licence 1ère Année 16-02-2006 Sommaire Variables aléatoires. Exemple 1. (Jeu d argent) Exemple 2. Loi de

Plus en détail

Entraînement aux tests d'aptitude numérique

Entraînement aux tests d'aptitude numérique Entraînement aux tests d'aptitude numérique Entraînement aux tests d'aptitude numérique Dominique Souder Dunod, Paris, 2014 ISBN 978-2-10-070507-8 Table des matières Entraînement 1 Chapitre 1 QCM de maths

Plus en détail

Episode 9 Longueur 7 17

Episode 9 Longueur 7 17 Episode 9 Longueur 7 17 Allo, oui? Infirmière : Je suis bien chez mademoiselle Chloé Argens? Oui, c est moi. Infirmière : Ici l hôpital Saint-Louis. Je vous passe monsieur Antoine Vincent. C est lui, monsieur

Plus en détail

Les probabilités. Chapitre 18. Tester ses connaissances

Les probabilités. Chapitre 18. Tester ses connaissances Chapitre 18 Les probabilités OBJECTIFS DU CHAPITRE Calculer la probabilité d événements Tester ses connaissances 1. Expériences aléatoires Voici trois expériences : - Expérience (1) : on lance une pièce

Plus en détail

BREVET BLANC 2 SESSION DU 5 MAI 2009

BREVET BLANC 2 SESSION DU 5 MAI 2009 BREVET BLANC 2 SESSION DU 5 MAI 2009 MATHÉMATIQUES SÉRIE COLLÈGE DURÉE DE L'ÉPREUVE : 2 h 00 Le candidat répondra sur une copie différente pour chaque partie. Ce sujet comporte 5 pages, numérotées de 1

Plus en détail

Invariants, Principe des tiroirs

Invariants, Principe des tiroirs DOMAINE : Combinatoire AUTEUR : Pierre BERTIN NIVEAU : Débutants STAGE : Montpellier 2013 CONTENU : Exercices Invariants, Principe des tiroirs - Principe des tiroirs - S il y a (n + 1) chaussettes à ranger

Plus en détail

«La montre du Lapin Blanc» Projet d une mesure alternative de la ponctualite ferroviaire belge par et pour les navetteurs.

«La montre du Lapin Blanc» Projet d une mesure alternative de la ponctualite ferroviaire belge par et pour les navetteurs. «La montre du Lapin Blanc» Projet d une mesure alternative de la ponctualite ferroviaire belge par et pour les navetteurs. De quoi s agit-il? «La montre du Lapin Blanc» est un projet qui a pour but de

Plus en détail

MATHÉMATIQUES APPLIQUÉES S4 Exercices

MATHÉMATIQUES APPLIQUÉES S4 Exercices Unité D Probabilité Exercice 1 : Chemins 1. Aline habite la maison illustrée ci-dessous. Le diagramme illustre les murs et les portes. a) Combien existe-t-il de chemins possibles entre la pièce A et la

Plus en détail

PRÉPARATION AU TEST! CULTURE INTERNATIONAL CLUB

PRÉPARATION AU TEST! CULTURE INTERNATIONAL CLUB Niveau 2 - Mots treize quatorze quinze seize dix-sept dix-huit dix-neuf vingt vingt-et-un vingt-deux vingt-trois vingt-quatre vingt-cinq vingt-six vingt-sept vingt-huit vingt-neuf trente quarante cinquante

Plus en détail