1. Nombres complexes en électrotechnique

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "1. Nombres complexes en électrotechnique"

Transcription

1 MAHE E(F. Nombrs complxs n élctrotchniqu. Nombrs complxs n élctrotchniqu. ntroduction condition pour pouvoir résoudr un problèm dns un circuit étit usqu à présnt d pouvoir trcz un digrmm vctoril (dut.: igrdigrmm. ci dvint qusimnt impossibl dns ds circuits plus complxs. Avc ls nombrs complxs on ur un outil qui nous prmttr d tritr ussi cs circuits d'un fçon purmnt lgébriqu (dut.: rchnrisch.. 'unité imginir Essyons d résoudr ls équtions suivnts: x 6 solution: x 3 x N (N st l'nsmbl ds nombrs ntir positifs x -6 ps d solution dns N mis dns. x -3 ( st l'nsmbl ds nombrs ntir positifs t négtifs. N. 3x 5 ps d solution dns mis dns Q. (Q st l'nsmbl ds frctions. Q. 5 x 3 x 5 ps d solution dns Q mis dns. x 5 ou x 5 ( st l'nsmbl ds nombrs réls. Q. x - ps d solution dns mis dns. x ou x ( st l'nsmbl ds nombrs complxs.. st n 777 qu l mthémticin onhrd Eulr u l idé d invntr l nouvu nombr vc l propriété suivnt: lud oullingn

2 MAHE E(F. Nombrs complxs n élctrotchniqu On put donc notr qu:.3 s nombrs complxs On ppll nombr complx tout nombr z qui st d l form suivnt: z b où t b sont ds nombrs rélls On ppll l nombr l prti rél d z. On écrit: (z On ppll l nombr b l prti imginir d z. On écrit: b m(z Exmpl d'un nombr complx: z -3 4,5 Qustion: A quoi srt l'invntion ds nombrs complxs? épons: Voir p.x. l'exrcic : Exrcic : ésolvz ls équtions suivnts: z -4 b z -4z50 solution: z - z c z -8z50 solution: z 4-6 z 46 Qustion: Qu'st c qu ç nous pport n élctrotchniqu? épons: Jusqu'à présnt rin. lud oullingn

3 MAHE E(F. Nombrs complxs n élctrotchniqu n'st qu pr l'idé d rl Fridrich Guß d rprésntr un nombr complx pr un point dns un pln à dux dimnsions qu ls nombrs complxs trouvnt ussi un ppliction n élctrotchniqu..4 présnttion grphiqu ds nombrs complxs n nombr complx put êtr rprésnté pr un point dns l pln ds nombrs complxs. Exmpl: Exrcic : rcz ls nombrs complxs suivnts dns un pln: z -3 z - -3 z 3 lud oullingn 3

4 MAHE E(F. Nombrs complxs n élctrotchniqu.5 Nottions (dut. Schribwisn ds nombrs complxs z st l distnc ntr l'origin O t l point z..5. Nottion lgébriqu z x y.5. Nottion polir omm x z cos(α t y z sin(α on put ussi écrir z sous l form: z z cos( α z sin( α En mttnt z n évidnc on obtint l nottion polir. z [ cos( α sin( α ] z vc z x y.5.3 Nottion xponntill On put montr qu: α z cos( α z sin( α z où,788 On put donc ussi écrir un nombr complx sous l form: z z α tt nottion s'ppll nottion xponntill. lud oullingn 4

5 MAHE E(F. Nombrs complxs n élctrotchniqu Exrcic 3: rcz ls nombrs complxs suivnts dns un pln: z 3 60 z 6 (-45 Exrcic 4: onvrtissz lgébriqumnt (dut.: rchnrisch l nottion ds nombrs complxs suivnts comm dmndé. 60 z 3 n nottion lgébriqu b z 3 n nottion xponntill c z ( 60 3 n nottion lgébriqu d z 3 n nottion xponntill lud oullingn 5

6 MAHE E(F. Nombrs complxs n élctrotchniqu.6 ègls d clcul dns out l thémtiqu d l rprésnttion grphiqu t d l nottion ds nombrs complxs dvrit nous fir fortmnt pnsr ux vcturs. s nombrs complxs on pourtnt un grnd vntg pr rpport ux vcturs, c'st qu'on put ussi ls multiplir t divisr. tt propriété st très importnt n élctrotchniqu comm p.x. P t. Avnt d s lncr définitivmnt dns l'ppliction ds nombrs complxs n élctrotchniqu il fudr tritr ls règls d clcul sur ls nombrs complxs..6. Addition d nombrs complxs ddition n nottion clssiqu: Soit x y ; x y t lors: x y ( x x ( y y x y xmpl: Soit 3 5 t 3 lors: lud oullingn 6

7 MAHE E(F. Nombrs complxs n élctrotchniqu rprésnttion grphiqu d l'xmpl précédnt: ym(z y y y O x x x(z x 'ddition n nottion clssiqu st ssz intuitiv. Si ls dux nombrs complxs sont n nottion xponntill il fut pssr pr l nottion polir pour résoudr l problèm. ddition n nottion xponntill: α α Soit ; t lors: cos( α sin( α cos( α sin( α [ cos( α cos( α ] [ sin( α sin( α ] α α Exrcic 5: Additionnz z 3 60 t z 6 ( Soustrction d nombrs complxs soustrction d nombrs complxs s fit nlogu (dut.: ntsprchnd à l'ddition. lud oullingn 7

8 MAHE E(F. Nombrs complxs n élctrotchniqu lud oullingn Multipliction t division d nombrs complxs multipliction t division n nottion xponntill: ppl sur ls puissncs: m n m n m n m n Soit α t β lors: ( β α β α β α β α ( β α β α β α multipliction t division n nottion clssiqu: Exrcic 6: Démontrz l règl suivnt n dévloppnt: bc (d bd (c d (c b ( Exrcic 7: Démontrz l règl suivnt n utilisnt votr svoir fir du chpitr "rndr rtionnl l dénomintur": d c d bc d c bd c d c b

9 MAHE E(F. Nombrs complxs n élctrotchniqu Exrcic 8: Appliquz ls dux formuls démontrés ux xrcics précédnts sur ls xmpls suivnts: (3 (45 b Exrcic 9: Démontrz qu: Exrcic 0: Démontrz l'églité suivnt n pssnt pr l nottion polir: 90 ppl sur sin t cos: α sin α 0 0 cos α lud oullingn 9

10 MAHE E(F. Nombrs complxs n élctrotchniqu lud oullingn 0.7 Appliction ds nombrs complxs n élctrotchniqu.7. mpédnc t dmittnc (dut.: Schinlitwrt complx d résistncs ohmiqus, bobins t condnsturs 'impédnc complx st défini comm suit: On sit qu sur un résistnc ohmiqu l tnsion t l cournt sont n phs. tnsion t l cournt complx puvnt donc êtr notés com suit: 0 0 l n suit qu: 0 0 'impédnc complx d'un résistnc ohmiqu st donc purmnt réll. Y Y

11 MAHE E(F. Nombrs complxs n élctrotchniqu On sit qu sur un bobin l cournt st 90 n rtrd pr rpport à l tnsion. m O tnsion t l cournt complx puvnt donc êtr notés com suit: 0 ( 90 l n suit qu: X X X 0 ( 90 (0 ( 'impédnc complx d'un bobin st donc purmnt imginir. mrqu: l vut ncor qu X ω. Y Y X X lud oullingn

12 MAHE E(F. Nombrs complxs n élctrotchniqu lud oullingn On sit qu sur un condnstur l tnsion st 90 n rtrd pr rpport u cournt. m tnsion t l cournt complxs puvnt donc êtr notés com suit: 90 ( 0 l n suit qu: X X X X 90 ( 0 90 ( 0 90 ( 'impédnc complx d'un condnstur st donc purmnt imginir. mrqu: l vut ncor qu X ω. X Y X Y

13 MAHE E(F. Nombrs complxs n élctrotchniqu.7. ésolution d problèms élctrotchniqus à l'id ds nombrs complxs Exrcics sur l'ppliction ds nombrs complxs n élctrotchniqu:. Soit un circuit n séri vc 0V 0 ; fkhz; 50Ω; 0mH. Détrminz à l'id ds nombrs complxs sns trcr un digrmm vctoril: cournt complx totl n nottion xponntill. b vlur fficc (dut.: Effktivwrt du cournt. c déphsg ntr l tnsion totl t l cournt totl. d ommnt st-c qu'on voit dns l résultt du point c qu l cournt st n rtrd prt rpport à l tnsion?. Soit un circuit n séri vc 0V 0 ; fkhz; 50Ω; µf. Détrminz à l'id ds nombrs complxs sns trcr un digrmm vctoril: cournt complx totl n nottion xponntill. b vlur fficc (dut.: Effktivwrt du cournt. c déphsg ntr l tnsion totl t l cournt totl. 3. Détrminz l'impédnc complx totl du circuit suivnt: 4. Détrminz l'impédnc complx totl du circuit suivnt: lud oullingn 3

14 MAHE E(F. Nombrs complxs n élctrotchniqu 5. lculz ls vlurs d S t S d fçon à c qu ls dux circuits s comportnt d l mêm fçon ( P S à un fréqunc d khz. 6. lculz ls vlurs d S t S d fçon à c qu ls dux circuits s comportnt d l mêm fçon ( P S à un fréqunc d khz. lud oullingn 4

Chapitre 5 La fonction exponentielle

Chapitre 5 La fonction exponentielle Cours d Mthémtiqus Trminl STI Chpitr 5 - L fonction ponntill Chpitr 5 L fonction ponntill A) Définition ) Rppl t définition L fonction logrithm népérin ln() st un fonction strictmnt croissnt, défini sur

Plus en détail

Chapitre 7 La fonction exponentielle

Chapitre 7 La fonction exponentielle Cours d Mthémtiqus Trminl STI Chpitr 7 - L fonction ponntill Chpitr 7 L fonction ponntill A) Définition ) Rppl t définition L fonction logrithm népérin ln() st un fonction strictmnt croissnt, défini sur

Plus en détail

UV Commande numérique. Transformée en Z. Limites du continu, besoin du discret. Plan du cours

UV Commande numérique. Transformée en Z. Limites du continu, besoin du discret. Plan du cours UV cours sur l trnsformé n Z (E. Chnthry) Ds sur l trnsformé n Z (L. Hdji) 8 cours/ds sur MALAB (V. Mhout) cours d présnttion ds Ps (V. Mhout) 5 Ps vc MALAB t XPC rgt xmn rnsformé n Z 3 èm nné MIC E. Chnthry

Plus en détail

Introduction à la fonction exponentielle

Introduction à la fonction exponentielle CHAPITRE 6 FONCTIONS EXPONENTIELLES ET PUISSANCES Introduction à l fonction ponntill. Éqution différntill On ppll éqution différntill un églité dns lqull figurnt un fonction t ss dérivés succssivs. Ls

Plus en détail

Chapitre 6 : Calcul littéral

Chapitre 6 : Calcul littéral Chpitr 6 : Clul littérl 1. Propriétés d l ddition t d l soustrtion Définition. L ddition st l opértion qui fit orrspondr à dux nomrs t lur somm +. t sont ls trms d tt somm. Définition. L soustrtion st

Plus en détail

a, b et c étant trois nombres relatifs avec b et c non nuls, b : c = 2.5 ( 2 )

a, b et c étant trois nombres relatifs avec b et c non nuls, b : c = 2.5 ( 2 ) I) Quotients égux. ) Propriété de bse. Prop: Le quotient de deux nombres reltifs ne chnge ps si on multiplie ( ou si l'on divise ) ces deux nombres pr un même nombre reltif différent de zéro., b c étnt

Plus en détail

INTÉGRALES. I Définition. Définition. Remarques. Exemple. Exercice 01

INTÉGRALES. I Définition. Définition. Remarques. Exemple. Exercice 01 INTÉGRALES I Définition Définition Soit f un fonction continu t positiv sur un intrvll [ ; ]. Soit (C) s cour rprésnttiv dns un rpèr orthogonl (O ; i, j). On ppll intégrl d à d l fonction f, t on not l'ir,

Plus en détail

Rappels sur le calcul Littéral

Rappels sur le calcul Littéral Première prtie Rppels sur le clcul Littérl I Clculer vec les frctions, les puissnces, les rdicux I.1 les frctions I.1.1 générlités Bon, il est temps que je rppelle quelques règles de bse concernnt le clcul

Plus en détail

Chapitre 5 Transformée de Laplace

Chapitre 5 Transformée de Laplace MVA Anlys clcul mricil Cours n 7 Jcqus Vélu CNAM Cpir 5 Trnsformé d Lplc Inégrls générlisés i Soin f, défini sur un inrvll du yp ]m, + [. Si lim convrg, on écri : f d lim f d A + Il s pu qu l inégrl convrg

Plus en détail

Chapitre 2 : Equilibres acido-basiques en solution aqueuse.

Chapitre 2 : Equilibres acido-basiques en solution aqueuse. Chpitr Equilibrs cido-bsiqus n solution quus Trminl S Chpitr Equilibrs cido-bsiqus n solution quus. Objctifs Svoir qu st l constnt d uilibr ssocié à l ution d l réction d utoprotolys d l u. Connissnt l

Plus en détail

Boîte à outils : fractions

Boîte à outils : fractions I - Églité de quotients Boîte à outils : frctions A - Simplifction de quotient Si on multiplie ou si on divise le numérteur et le dénominteur d'un quotient pr un même nombre non nul lors on obtient un

Plus en détail

Chapitre III : nombres en écriture fractionnaire

Chapitre III : nombres en écriture fractionnaire Chpitre III : nombres en écriture frctionnire I - Églité de quotients A - Simplifiction de quotient ex 1 Si on multiplie ou si on divise le numérteur et le dénominteur d'un quotient pr un même nombre non

Plus en détail

I - Égalité de quotients

I - Égalité de quotients I - Églité de quotients A - Simplifiction de quotient Si on multiplie ou si on divise le numérteur et le dénominteur d'un quotient pr un même nombre non nul lors on obtient un quotient égl. Pour tous nombres,

Plus en détail

Calculs d aires, encadrements

Calculs d aires, encadrements Clculs d irs, ncdrmnts pg d 5 Clculs d irs, ncdrmnts I Clculs d irs. Soit f( = t g( =. On not A l ir d l région R du pln compris ntr l courb d f t l ds bscisss sur [; ]. Clculr g( d n fonction d A. On

Plus en détail

LE CALCUL ALGEBRIQUE

LE CALCUL ALGEBRIQUE I. Clculs vec des frctions : ce fcteur : ) Rppels : LE CALCUL ALGEBRIQUE b = b = b = b Exemple : 3 x = x 3 = 3x ( b ) c = ( bc ) = bc Exemple : ( 3x ) 5 = 3 ( 5x ) = 15x 1 = 1 = b) Signe moins dns une

Plus en détail

Fonctionnement et Stratégies de commande des Machines à courant continu

Fonctionnement et Stratégies de commande des Machines à courant continu Fonctionnmnt t Strtégis d commnd Pln du cours L motur à cournt continu Trction : Fonctionnmnt motur n xcittion séri Fring : Fonctionnmnt n génértur Couplg multimchins Assoction rdrssur Mcc Assoction hchur

Plus en détail

TS1 - Contrôle n 7 de mathématiques

TS1 - Contrôle n 7 de mathématiques Ercic TS - Contrôl n 7 d mthémtiqus Un réprtur d vélos chté 0 % d son stock d pnus à un prmir fournissur, 0 % à un duièm t l rst à un troisièm. L prmir fournissur produit 80 % d pnus sns défut, l duièm

Plus en détail

Fiche N 7 : Fonctions usuelles

Fiche N 7 : Fonctions usuelles Lycé Pul Guguin CPGE-EC Anné 04/05 Fich N 7 : Fonctions usulls Fonction ponntill : p Fich7p.ggb Définition : En trminl, on prolongé à l nsmbl fich7c.sqn l suit géométriqu d trm générl un. n q vc q 0 L

Plus en détail

TD 1 Rappels mathématiques et expressions rationnelles

TD 1 Rappels mathématiques et expressions rationnelles L Informtiqu Lyon- 0 08 LifLF Théori ds lnggs formls Exrcics d TD TD Rppls mthémtiqus t xprssions rtionnlls A. Notions mthémtiqus d s. Prouvz l prmièr loi d D Morgn : A (B C) = (A B) (A C). Ls nsmls suivnts

Plus en détail

Racines carrées 20 = 4,

Racines carrées 20 = 4, Clsse de 3ème 08/11/010 Chpitre Rcines crrées I. Activité n 1. ABCD est un crré de coté c et d ire. (1 ) Choisir des vleurs de c puis clculer. ( ) Choisir des vleurs de puis clculer c. c = 3 cm c = cm

Plus en détail

Les équations du premier et du second degré à la règle et au compas

Les équations du premier et du second degré à la règle et au compas Les équtions du premier et du second degré à l règle et u comps Scienceinfuse - ntenne de formtion et de promotion du secteur sciences & technologies rue des Wllons 72 L6.02.01-1348 Louvin-l-Neuve Les

Plus en détail

Baccalauréat S Antilles-Guyane 22 juin 2015 Corrigé

Baccalauréat S Antilles-Guyane 22 juin 2015 Corrigé Baccalauréat S Antills-Guyan juin 05 Corrigé A. P. M. E. P. EXERCICE Commun à tous ls candidats 6 POINTS. On put calculr par xmpl ls ordonnés ds points d absciss d cs différnts courbs : f ()=ln =0< g 0,05

Plus en détail

Addition, multiplication, inverse et quotient de deux nombres relatifs écrits sous forme fractionnaire Puissance d'un nombre relatif.

Addition, multiplication, inverse et quotient de deux nombres relatifs écrits sous forme fractionnaire Puissance d'un nombre relatif. Addition, multipliction, inverse et quotient de deux nombres reltifs écrits sous forme frctionnire Puissnce d'un nombre reltif Addition de deux nombres reltifs écrits sous forme frctionnire.rppel On obtient

Plus en détail

IMPÉDANCES D ENTRÉE ET DE SORTIE

IMPÉDANCES D ENTRÉE ET DE SORTIE MPÉDNCE D ENTÉE ET DE OTE. DÉFNTON On s plac n régim sinusoïdal forcé. oit Q un quadripôl. Nous allons modélisr c quadripôl n utilisant ls impédancs d ntré t d sorti. quadripôl Q V V. Point d vu du génératur

Plus en détail

Chapitre 4: Graphes connexes

Chapitre 4: Graphes connexes CHAPITRE 4 GRAPHES CONNEXES 23 Chpitr 4: Grphs onnxs Introution À qul momnt un résu inormtiqu stisit-il à l propriété qu tous ls orinturs u résu, pris ux à ux, puissnt prtgr l'inormtion? Ds mssgs puvnt-ils

Plus en détail

Le raccordement parabolique

Le raccordement parabolique Le rccordement prbolique. Définition de l prbole L prbole est une courbe à une brnche dont tous les points sont équidistnts d'un point fie F et d'une droite fie (D). Le point fie est le foyer et l droite

Plus en détail

Chapitre 1 Équations et Inéquations du 2nd degré

Chapitre 1 Équations et Inéquations du 2nd degré Cours de Mthémtiques Première S Chpitre 1 : équtions et inéqutions du second degré Chpitre 1 Équtions et Inéqutions du nd degré A) Les Polynômes 1) Définitions On ppelle monôme une expression de l forme

Plus en détail

DIFFÉRENTES TECHNIQUES GÉOMÉTRIQUES UTILES

DIFFÉRENTES TECHNIQUES GÉOMÉTRIQUES UTILES 11- géométrie -- 1 DIFFÉRENTES TECHNIQUES GÉOMÉTRIQUES UTILES 1- Détermintion de l direction et du pendge d'un pln à prtir de trois points quelconques du pln. Soit: x y z A 300 2000 1000 B 600 2200 800

Plus en détail

TD d électrocinétique n o 4 Circuits linéaires en régime sinusoïdal forcé

TD d électrocinétique n o 4 Circuits linéaires en régime sinusoïdal forcé ycé François Arago Prpignan M.P.S.I. 2012-2013 TD d élctrocinétiqu n o 4 ircuits linéairs n régim sinusoïdal forcé Exrcic 1 - Détrmination ds modèls d Thévnin t d Norton. A Détrminr l modèl d Thévnin t

Plus en détail

LES RADICAUX D INDICE n

LES RADICAUX D INDICE n Chpitre 1 LES RADICAUX D INDICE n 1 Nomres réels et puissnces (rppels) Exercice 1 Démontrer que l ddition et l multipliction confèrent à l ensemle des réels une structure de chmps ( corps commuttif) Exercice

Plus en détail

Les nombres. C est quand on simplifie au maximum une fraction : elle est dite irréductible car on ne peut plus la simplifier plus.

Les nombres. C est quand on simplifie au maximum une fraction : elle est dite irréductible car on ne peut plus la simplifier plus. Les nomres Notes Première lecture 2016 Nomres rtionnels Nomre rtionnel : c est un nomre exprimé pr un rpport de proportion entre deux nomres entiers. Il peut être écrit sous forme de frction. étnt le numérteur

Plus en détail

Fractions. 1 Propriété des quotients égaux 1. 2 Addition, soustraction de deux fractions 3. 3 Produit de deux fractions 5

Fractions. 1 Propriété des quotients égaux 1. 2 Addition, soustraction de deux fractions 3. 3 Produit de deux fractions 5 Tle des mtières Frctions 1 Propriété des quotients égux 1 Addition, soustrction de deux frctions Produit de deux frctions Comprison de deux frctions Produit en croix 10 6 Quotient de deux frctions. Inverse

Plus en détail

Terminale ES Exercices sur les fonctions exponentielles Fiche 1 - Corrigés

Terminale ES Exercices sur les fonctions exponentielles Fiche 1 - Corrigés Trminal ES Exrcics sur ls fonctions xponntills Fich - Corrigés Exrcic : x+ x+ x = x+ ( x+)+ x = x+ x +x = x+ Exrcic : ) Résolvons l'inéuation x+ < x+. On sait u >, donc la fonction xponntill d bas st strictmnt

Plus en détail

Limite d une fonction à l infini

Limite d une fonction à l infini CHAPITRE 3 LIMITES DE FONCTIONS ET DE SUITES Limite d une fonction à l infini et s courbe repré-. Limite finie d une fonction à l infini Soit f une fonction définie sur un intervlle [ ; + [ senttive. L

Plus en détail

Chapitre Premier exemple

Chapitre Premier exemple Cpitr 6 Prsptiv vlièr Un rprésnttion n prsptiv un soli l sp (à trois imnsions) sur un pln (ux imnsions) n st ps évint. Il xist plusiurs typs rprésnttions n prsptiv. Dns l suit, nous étuirons l prsptiv

Plus en détail

Chapitre 1 Le Second Degré

Chapitre 1 Le Second Degré Cours de Mthémtiques Première STID Chpitre 1 : Le second degré Chpitre 1 Le Second Degré A) Résolution de l'éqution du second degré 1) Définitions On ppelle polynôme de second degré l expression x² x c

Plus en détail

Calculs de base (Rappels)

Calculs de base (Rappels) Chpitre I Clculs de bse (Rppels) I.1 Diviseurs et multiples I.1.1 Définitions On : 12=3 4. On dit que 3 et 4 sont des diviseurs de 12, ou que 12 est un multiple de 3 et de 4. DÉFINITION I.1.1 Soit et b

Plus en détail

Possibilité pratique du concept

Possibilité pratique du concept Possblté prtqu du concpt Consdérons un crcut d bobns nduts onté sur un crcss sblbl à un énértur élctrqu clssqu vc l prtculrté qu ls xs édns ds bobns nt ntr ux un nl α d 72 (360 / 5 = 72 ), donc 5 bobns

Plus en détail

Relations métriques dans le triangle

Relations métriques dans le triangle 1 1994-95 Reltions métriques dns le tringle Titre de l leçon (n 42 en 1994): Reltions métriques et trigonométriques fondmentles dns le tringle. Applictions L donnée est un tringle ABC, on désigne pr,b,c

Plus en détail

1. Les fonctions affines.

1. Les fonctions affines. L E S F O N C T I O N S U S U E L L E S. Les fonctions ffines.. Définition. Une fonction ffine est une fonction f définie sur R pr : f ( x) = x+ b.2 Représenttion grphique. o o Si b =, l fonction est linéire.

Plus en détail

Racines carrées. 1. Généralités : 2. Propriétés. 3. Exercices de bases corrigés. 4. Exercices non corrigés. 5. Approfondissement.

Racines carrées. 1. Généralités : 2. Propriétés. 3. Exercices de bases corrigés. 4. Exercices non corrigés. 5. Approfondissement. Rcines crrées. 1. Générlités : ) Déinition : b) Nottion. c) Exemples.. Propriétés. ) Produits de rcines crrées. b) Quotient de rcines crrées. c) Lien vec les puissnces. d) Modiiction d écritures vec des

Plus en détail

CHAUDIERE A BOIS. Échangeur m e, θ e, c e. Chambre de combustion m a, θ a, c a. Bâti de la chaudière m b, θ b, c b

CHAUDIERE A BOIS. Échangeur m e, θ e, c e. Chambre de combustion m a, θ a, c a. Bâti de la chaudière m b, θ b, c b CPGE / Sins Industrills pour l Ingéniur TD34_ CHAUDIERE A BOIS L étud port sur l monté n tmpértur d l u qui srt à huffr ls piès u trvrs d rditurs Ctt tmpértur st otnu à prtir d un puissn lorifiqu fourni

Plus en détail

Chap.9 Les fonctions polynômes du second degré (1)

Chap.9 Les fonctions polynômes du second degré (1) Chp.9 Les fonctions polynômes du second degré () Forme développée Forme cnonique Polynôme du second degré Forme fctorisée Polynôme du second degré f x x x c ( ) Forme développée réduite 3 ) Exemples f

Plus en détail

Identités remarquables. I - Principe : k = k + k a b a b. Aire : k (a+ b) = k a + k b. II - Développements : 1. Développement de base :

Identités remarquables. I - Principe : k = k + k a b a b. Aire : k (a+ b) = k a + k b. II - Développements : 1. Développement de base : Chp 4 Identités remrqules I - Principe : k = k + k Aire : k (+ ) = k + k II - Développements : 1. Développement de se : k( + ) = k + k Exemple : 2( x + ) =... Remrque : x x = x 2 Ex : - x ( x - 2) =...

Plus en détail

Comparons, à la machine, 13 3 et 10 puis 20 6 et 14.

Comparons, à la machine, 13 3 et 10 puis 20 6 et 14. CHAPITRE 6 RACINES CARREES (PARTIE 2 SUR 2) I. LES RACINES CARREES ET LES QUATRE OPERATIONS Essyons de répondre ux questions suivntes : + est-il égl à +? est-il égl à? est-il égl à? est-il égl à? A. RACINES

Plus en détail

Série n 3 d Electrocinétique : Régime sinusoïdal forcé

Série n 3 d Electrocinétique : Régime sinusoïdal forcé Séri n 3 d Elctrocinétiqu : Régim sinusoïdal forcé Exrcic n 1 : Résonanc n tnsion d un circuit RLC parallèl 1.\ Détrminr l équation différntill qui régi l évolution d u(t). 2.\ Exprimr l amplitud complx

Plus en détail

Nombres relatifs en écriture fractionnaire

Nombres relatifs en écriture fractionnaire Nomres reltifs en écriture frctionnire Introduction Déterminons les nomres suivnts insi que leur nture. 2 n 8 n et n est un nomre. 2 d 7,2 d et d est un nomre. r 5 r et r est un nomre.. Écriture frctionnire

Plus en détail

Ordre et comparaisons

Ordre et comparaisons Seconde 0 - Année 2004 2005 ORDRE ET COMPARAISONS Ordre et comprisons. ACTIVITÉ SUR L ORDRE.. nomres positifs et nomres négtifs. Les réels se représentent sur l droite réelle. Dire que x est positif(ou

Plus en détail

CHAPITRE V. Utiliser l écriture fractionnaire comme expression d une proportion Taux de réussite :

CHAPITRE V. Utiliser l écriture fractionnaire comme expression d une proportion Taux de réussite : CHAPITRE V FRACTIONS COMPÉTENCES ÉVALUÉES DANS CE CHAPITRE : (T : compétences trnsversles, N : ctivités numériques, G : ctivités géométriques, F : gestion de données fonctions) Intitulé des compétences

Plus en détail

Exercices sur le calcul algébrique. Petits problèmes

Exercices sur le calcul algébrique. Petits problèmes Exercices sur le clcul lgébrique Les exercices ou questions précédés d un stérisque pourront être trités vec profit à l ide d un logiciel de clcul formel, tel que Xcs, qui ser vu en Trvux Prtiques, ou

Plus en détail

Espaces vectoriels normés ; espaces de Banach

Espaces vectoriels normés ; espaces de Banach Chpitre 7 Espces vectoriels normés ; espces de Bnch Un espce vectoriel normé complet est ppelé un espce de Bnch On note K pour R ou C 71 Exemples d espces vectoriels normés 711 Normes sur K n Sur K n,

Plus en détail

I.1 Reprenez les bases de l arithmétique

I.1 Reprenez les bases de l arithmétique I Cours, svoir-fire et méthodes Avnt de vous lncer dns l résolution des premières questions, il n est ps inutile de conscrer du temps à réviser les connissnces élémentires. Bien évidemment, nous ne pouvons

Plus en détail

ÉQUATIONS INÉQUATIONS SYSTÈMES Site MathsTICE de Adama Traoré Lycée Technique Bamako

ÉQUATIONS INÉQUATIONS SYSTÈMES Site MathsTICE de Adama Traoré Lycée Technique Bamako ÉQUATIONS INÉQUATIONS SYSTÈMES Site MthsTICE de Adm Troré Lycée Technique Bmko I Équtions du second degré : Résolution pr l méthode du discriminnt : Pour résoudre l éqution du second degré b c = ( d inconnu,

Plus en détail

TS Bac blanc n 5 Mai 2016

TS Bac blanc n 5 Mai 2016 TS Bac blanc n 5 Mai 6 Ls raisonnmnts doivnt êtr justifiés t ls calculs détaillés. L barèm st indicatif. La calculatric st autorisé mais ls échangs ntr élèvs sont intrdits. Exrcic 5 pts Parti A : Conditionnmnt

Plus en détail

Protocole de laboratoire n o 5. Circuits électriques en courant alternatif

Protocole de laboratoire n o 5. Circuits électriques en courant alternatif Protocole de lortoire n o 5 ircuits électriques en cournt lterntif BUTS Employer un oscilloscope pour mesurer l tension d'un cournt lterntif et l différence de phse entre deux ondes sinusoïdles. Étudier

Plus en détail

Dividende Diviseur. est une écriture fractionnaire du quotient de 2,5 par 10, donc

Dividende Diviseur. est une écriture fractionnaire du quotient de 2,5 par 10, donc I Ecriture frctionnire 1 Définition et b sont deux nombres, et b 0 Dividende Diviseur Le quotient de pr b se note b, ou b ( écriture frctionnire) 10 numérteur Exemple b dénominteur est une écriture frctionnire

Plus en détail

INTÉGRALES. I Définition. Définition. Remarques. Exemple. Exercice 01 (voir réponses et correction)

INTÉGRALES. I Définition. Définition. Remarques. Exemple. Exercice 01 (voir réponses et correction) INTÉGRALES I Définition Définition Soit f une fonction continue et positive sur un intervlle [; ]. Soit (C) s coure représenttive dns un repère orthogonl (O; i, j). On ppelle intégrle de à de l fonction

Plus en détail

, f(x) est l image de l élément x de E par f.

, f(x) est l image de l élément x de E par f. I- Rppels : I- 1 Déinition d une onction : Soient E et F deu intervlles de R ou une réunion d intervlles de R Déinition 1: Une onction ssocint un élément de l ensemble E (ensemble de déprt dns l ensemble

Plus en détail

CI 3 CIN : ÉTUDE DU COMPORTEMENT CINÉMATIQUE DES

CI 3 CIN : ÉTUDE DU COMPORTEMENT CINÉMATIQUE DES CI 3 CIN : ÉTUDE DU COMPORTEMENT CINÉMATIQUE DES SYSTÈMES CHAPITRE 4 ÉTUDE DES CHAÎNES FERMÉES : DÉTERMINATION DES LOIS ENTRÉE SORTIE Trainr Solo Sport [1] Modèl CAO d un motur d modélism [2] Modélisation

Plus en détail

Fractions et calculs. Objectifs du chapitre. Énigme du chapitre.

Fractions et calculs. Objectifs du chapitre. Énigme du chapitre. C H A P I T R E Frctions et clculs 2 Énigme du chpitre. Fleur et Florie décident d pporter un pnier rempli de fruits à mémé Hugette. Le pnier contient un tiers de mirbelles, un qurt de prune et des cerises.

Plus en détail

c. une infinité de solutions dont les points images dans le plan complexe sont situés sur une droite.

c. une infinité de solutions dont les points images dans le plan complexe sont situés sur une droite. Trminal S - ACP Révisions Nombrs complxs (Asi 013) Dans ls qustions 1. t., l plan st rapporté au rpèr orthonormal dirct ; ;. On considèr ls points A, B, C, D t E d affixs rspctivs : =+ = 3+ =1+ 3 = 1+

Plus en détail

Introduction aux circuits électriques

Introduction aux circuits électriques Chpitre 1 Introduction ux circuits électriques Ce chpitre sert de rppel ux principes d électricité de se. On y verr les définitions de tension, cournt, résistnce, et puissnce. On verr ussi certins concepts

Plus en détail

Comparaison des fonctions au voisinage d un point

Comparaison des fonctions au voisinage d un point DOCUMENT 29 Comprison des fonctions u voisinge d un point Pour tout 0 R on pose : V 0 = {] 0 η, 0 + η[ η > 0} si 0 R; V 0 = {], + [ R} si 0 = + et V 0 = {], [ R} si 0 =. Un élément de V 0 est ppelé un

Plus en détail

1 L = 1 dm 3. conversion des volumes. règle de l'opération manquante

1 L = 1 dm 3. conversion des volumes. règle de l'opération manquante conversion des volumes 1 L 1 dm 480 cm 0,48 dm 0,48 L crte n 1 règle de simplifiction des signes Lors de l ddition ou l soustrction de nombres reltifs, on peut remplcer deux signes qui se suivent ps un

Plus en détail

Chapitre VII : Les polynômes

Chapitre VII : Les polynômes Chpitre VII : Les polnômes Au terme de ce chpitre, tu sers cple de : Svoir Définir monôme, polnôme et degré d un polnôme Définir inôme et trinôme Enoncer les crctéristiques d un polnôme complet, d un polnôme

Plus en détail

MATHEMATIQUES CARNET DE VACANCES POUR LES ELEVES RENTRANT EN SECONDE

MATHEMATIQUES CARNET DE VACANCES POUR LES ELEVES RENTRANT EN SECONDE MATHEMATIQUES CARNET DE VACANCES POUR LES ELEVES RENTRANT EN SECONDE Rélisé pr les professeurs de mthémtiques du lycée de L Pline de Neuphle 1/20 L'objectif de ce chier est d'ider l'élève qui v rentrer

Plus en détail

Activité 1 : Produit d'un nombre négatif par un nombre positif

Activité 1 : Produit d'un nombre négatif par un nombre positif Activité : Produit d'un nombre négtif pr un nombre positif On considère l'expression B ( ) + ( ) + ( ) + ( ).. Quelle est l vleur de B? On v revenir sur le sens de l multipliction : + + est l somme de

Plus en détail

La loi normale. Chapitre Introduction Motivation à partir de la loi binomiale Notion de variable aléatoire à densité

La loi normale. Chapitre Introduction Motivation à partir de la loi binomiale Notion de variable aléatoire à densité Chpitre 4 L loi normle 4.1 Introduction Dns le chpitre précédent, les probbilités rencontrées se rmenient à lister tous les cs possibles, leur ttribuer l même probbilité, et diviser le nombre de cs fvorbles

Plus en détail

2 Taux de variation et dérivée

2 Taux de variation et dérivée Tu de vrition et dérivée.1 Tu de vrition et dérivée en un point Q..1 Clculer le tu de vrition moyen TVM [;] f) pour les fonctions suivntes. cm cm ) f) = 1 b) f) = c) f) = 5 d) f) = 1 e) f) = + 5 Q.. Soit

Plus en détail

Chapitre 12 Applications du produit scalaire. Table des matières. Chapitre 12 Applications du produit scalaire TABLE DES MATIÈRES page -1

Chapitre 12 Applications du produit scalaire. Table des matières. Chapitre 12 Applications du produit scalaire TABLE DES MATIÈRES page -1 hpitre 12 pplitions du produit slire TLE DES MTIÈRES pge -1 hpitre 12 pplitions du produit slire Tle des mtières I Exeries I-1 1 Théorème d l Kshi.................................... I-1 2................................................

Plus en détail

1 L = 1 dm 3. conversion des volumes. règle de l'opération manquante

1 L = 1 dm 3. conversion des volumes. règle de l'opération manquante conversion des volumes 1 L 1 dm 80 cm 0,8 dm 0,8 L crte n 1 règle de simplifiction des signes Lors de l ddition ou l soustrction de nombres reltifs, on peut remplcer deux signes qui se suivent ps un seul

Plus en détail

Remise en forme. Chapitre 1

Remise en forme. Chapitre 1 Chpitre 1 Remise en forme 1) Trigonométrie L fonction exponentielle est l réciproque de l fonction logrithme. Elle trnsforme une somme en un produit, lors que le logrithme trnsforme un produit en une somme

Plus en détail

Chapitre 2 Limites et asymptotes

Chapitre 2 Limites et asymptotes Chpitre 2 Limites et symptotes A) Introduction ) Le grenier Je veux monter un toit à une pente en lissnt l plce pour une pièce (grenier) de 3 mètres de long et 2 mètres de hut. OA = 3, OC = 2, OE = x.

Plus en détail

LOIS DE PROBABILITÉS CONTINUES. Dans ce chapitre, on va s'intéresser aux variables aléatoires X qui prennent leurs valeurs dans un intervalle.

LOIS DE PROBABILITÉS CONTINUES. Dans ce chapitre, on va s'intéresser aux variables aléatoires X qui prennent leurs valeurs dans un intervalle. LOS DE PROBABLTÉS CONTNUES Dns c chpitr, on v s'intérssr u vrils létoirs X qui prnnnt lurs vlurs dns un intrvll.. Dnsité t loi d proilité.. Définition Dnsité d proilité Soit un intrvll. On ppll dnsité

Plus en détail

Chapitre 2. Les nombres complexes. 2.1 Définition et propriétés de C

Chapitre 2. Les nombres complexes. 2.1 Définition et propriétés de C Chpitre 2 Les nombres complexes Certines équtions polynomiles à coefficients réels n ont ps de solution dns R ; c est le cs de l éqution du second degré x 2 +1 = 0 puisque tout crré de réel est positif.

Plus en détail

AP 1 : LES BASES DU CALCUL NUMÉRIQUE

AP 1 : LES BASES DU CALCUL NUMÉRIQUE AP 1 : LES BASES DU CALCUL NUMÉRIQUE Les premières sénes d ompgnement personnlisé porte sur le lul et l mnipultion de frtions. On ommene pr donner les règles fondmentles sur les produits, puissnes, frtions

Plus en détail

#5 Calculs fractionnaires 1e partie

#5 Calculs fractionnaires 1e partie # Clculs frctionnires e prtie I Ecriture frctionnire Définition : Le quotient du nombre pr le nombre b est le résultt de l division de pr b. Inversement, c est le nombre qui, multiplié pr b donne. Remrque

Plus en détail

Comparaison de fonctions, développements limités

Comparaison de fonctions, développements limités I Comprison de fonctions Définitions Comprison de fonctions, développements limités Négligeble Définition Soient f et g deu fonctions définies sur un même ensemble D et à vleurs dns R. Soit R tel que f

Plus en détail

Z - Les nombres Entiers rappels, révisions et compléments

Z - Les nombres Entiers rappels, révisions et compléments éléments de cours à découper et à coller dns le chier. Les exercices sont soit dns le document, soit dns ton livre d exercices Actimthàl infini2. Les ciseux t invitent à couper l feuille à cet endroit

Plus en détail

+ + = + (Identité 1) x ax x

+ + = + (Identité 1) x ax x 1. Définition LA COMPLÉTION DU CARRÉ L complétion du crré est un procédé lgébrique qui consiste à trnsformer un polynôme de second degré écrit dns l forme stndrd dns l forme cnonique + b + c, où 0, ( h)

Plus en détail

Chapitre I Equations et inéquations du premier degré

Chapitre I Equations et inéquations du premier degré Chpitre I Equtions et inéqutions du premier degré I Équtions du premier degré 1 Les ensemles de nomres Définition 1 On ppelle ensemle des réels, noté R, l ensemle des nomres connus en clsse de seconde.

Plus en détail

LES REGLES DU CALCUL LITTERAL

LES REGLES DU CALCUL LITTERAL Cours de Mr Jules v1.2 Clsse de Qutrième Contrt 6 pge 1 LES REGLES DU CALCUL LITTERAL «Les Mthémtiques sont des inventions très subtiles et qui peuvent beucoup servir, tnt à contenter les curieux qu'à

Plus en détail

Corrigé du baccalauréat S Nouvelle-Calédonie mars 2017

Corrigé du baccalauréat S Nouvelle-Calédonie mars 2017 Corrigé du baccalauréat S Nouvll-Calédoni mars 7 EXERCICE Commun à tous ls candidats 5 points On considèr la fonction f défini t dérivabl sur [ ; + [ par f (x)= x x. Parti A. On justifi ls informations

Plus en détail

Proposition 1. La probabilité de A est égale à 3 7. Proposition 3 P(B) = 7. Proposition 5. Si P(X = 1) = 8 P(X = 0) alors p = 2 3.

Proposition 1. La probabilité de A est égale à 3 7. Proposition 3 P(B) = 7. Proposition 5. Si P(X = 1) = 8 P(X = 0) alors p = 2 3. Polynési sptmbr 009 EXERCICE points Commun à tous ls candidats On considèr l cub OABCDEFG d'arêt d longuur rprésnté ci-dssous. Il n'st pas dmandé d rndr l graphiqu complété avc la copi. Soint ls points

Plus en détail

CALCULS NUMÉRIQUES CALCUL LITTÉRAL ARITHMÉTIQUE. ( 10 ) m p = 10 m p $ 10 n = 0,00...0!" # $# 1 avec n zéros. 10 m 10 p = 10 m+ p 10 m

CALCULS NUMÉRIQUES CALCUL LITTÉRAL ARITHMÉTIQUE. ( 10 ) m p = 10 m p $ 10 n = 0,00...0! # $# 1 avec n zéros. 10 m 10 p = 10 m+ p 10 m CLCULS NUMÉRIQUES CLCUL LITTÉRL Frctions Distributivité D + b D = + b D Puissnces D b D = b D b c d = c b d b : c d = b d c k ( + b ) = k + kb k ( - b ) = k - kb ( + b ) k = k + bk ( - b ) k = k - bk n

Plus en détail

Exercices sur la notion d impédance

Exercices sur la notion d impédance Exrcics sur la notion d impédanc C documnt st un compilation ds xrcics posés n dvoirs survillés d élctricité au départmnt Géni Elctriqu t nformatiqu ndustrill d l UT d Nants. Cs dvoirs s sont déroulés

Plus en détail

Corrigés des exercices de mathématiques pour les élèves qui entrent en seconde.

Corrigés des exercices de mathématiques pour les élèves qui entrent en seconde. Exercice : Corrigés des exercices de mthémtiques pour les élèves qui entrent en seconde. ) Clculer (sns clcultrice) : 8 ; 8 ; c 8 ; d 8 ; e ; f ; g ; h. ) Ecrire sous l forme, et entiers vec le plus petit

Plus en détail

AP 1 : LES BASES DU CALCUL NUMÉRIQUE

AP 1 : LES BASES DU CALCUL NUMÉRIQUE ACCOMPAGNEMENT PERSONNALISÉ 1 Lyée Jules Ferry T.S.I 1 AP 1 : LES BASES DU CALCUL NUMÉRIQUE Les premières sénes d ompgnement personnlisé porte sur le lul et l mnipultion de frtions. On ommene pr donner

Plus en détail

Au rayon «image et son» d'un grand magasin, un téléviseur et un lecteur de DVD sont en promotion pendant une semaine.

Au rayon «image et son» d'un grand magasin, un téléviseur et un lecteur de DVD sont en promotion pendant une semaine. EXERCICE 5 points Commun tous ls candidats Au rayon «imag t son» d'un grand magasin, un télévisur t un lctur d DVD sont n promotion pndant un smain. Un prsonn s présnt : T st l'évènmnt : «la prsonn achèt

Plus en détail

Analyse numérique : Intégration numérique

Analyse numérique : Intégration numérique Anlyse numérique : Intégrtion numérique Pgor 1A Chpitre 4 8 février 11 mrs 2013 Anlyse numérique (Pgor 1A) Intégrtion numérique 8/02-11/03/2013 1 / 67 Pln 1 Introduction 2 Intégrtion pr méthode de Monte-Crlo

Plus en détail

Sujet de Bac 2011 Maths S Obligatoire & Spécialité Polynésie

Sujet de Bac 2011 Maths S Obligatoire & Spécialité Polynésie Sujet de Bc 20 Mths S Oligtoire & Spécilité Polynésie Exercice : 5 points Commun à tous les cndidts. Pour chcune des propositions suivntes, indiquer si elle est vrie ou fusse et donner une démonstrtion

Plus en détail

Cours de Mathématiques Seconde. Ordre et valeur absolue

Cours de Mathématiques Seconde. Ordre et valeur absolue Cours de Mthémtiques Seconde Frédéric Demoulin 1 Dernière révision : 16 vril 2007 Document diffusé vi le site www.cmths.net de Gilles Costntini 2 1 frederic.demoulin (chez) voil.fr 2 gilles.costntini (chez)

Plus en détail

Signe de ax + b Premières Applications

Signe de ax + b Premières Applications Signe de + Premières Applictions Ojectifs L étude des fonctions est un point centrl des progrmmes u lycée, quelque soit votre section L ojectif ser, l nnée prochine, de déterminer les vritions d une fonction

Plus en détail

Etude de suites récurrentes

Etude de suites récurrentes [http://mp.cpgedupuydelome.fr] édité le 5 mi 06 Enoncés Etude de suites récurrentes Exercice [ 0304 ] [Correction] u 0 = R et n N, + = u n ) Justifier que l suite ( ) est bien définie et n N, [ ; ] b)

Plus en détail

2.a)Une représentation paramétrique de la droite (d) passant par O et dirigée par n est : y = -t avec t réel z = -t 1 ; 3 1 ) BH = t BC

2.a)Une représentation paramétrique de la droite (d) passant par O et dirigée par n est : y = -t avec t réel z = -t 1 ; 3 1 ) BH = t BC Corrigé baccalauréat S Amériqu du Nord 010 (raiatabac.blogspot.com) Exrcic 1 : On donn A(1 ; - ; ) t B( - ; -6 ; 5) t C(- ; 0 ; -3) 1.a) Ls vcturs AB ( -3 ; - ; 1) t AC ( -5 ; ; -) n sont clairmnt pas

Plus en détail

CHAPITRE 0 : Ce qu'il faut savoir pour commencer

CHAPITRE 0 : Ce qu'il faut savoir pour commencer CHAPITRE 0 : Ce qu'il fut svoir pour commencer 0.1 Les nombres réels Nous llons utiliser les entiers nturels, les entiers reltifs, les nombres rtionnels et irrtionnels. 0, 1, 2 et 1024 sont des des entiers

Plus en détail

MATHEMATIQUES VEDIQUES (Résumé à la fin)

MATHEMATIQUES VEDIQUES (Résumé à la fin) MATHEMATIQUES VEDIQUES (Résumé à l fin) Nottion perso : n n1... 0 n n 1... 0 où sont notés les clculs des i. 5 3 14 1 3 14 1 3 153 où les retenues sont reportées à guche Prtition d un nombre en trnche(s)

Plus en détail

2 = avec a et b entiers. 2 = b c est-à-dire. a pourrait être simplifiée par 2, elle ne serait donc pas une

2 = avec a et b entiers. 2 = b c est-à-dire. a pourrait être simplifiée par 2, elle ne serait donc pas une Chp n : Arithmétique I ] Le point sur les nomres Les nomres entiers reltifs :. ; ; ; ; ; ; ; ; Les nomres entiers positifs sont ussi ppelés les nomres entiers nturels. Les nomres décimux : nomres qui peuvent

Plus en détail

Ch.4èFONCTIONS DE RÉFÉRENCE

Ch.4èFONCTIONS DE RÉFÉRENCE LFA / première S COURS - mthémtiques Mme MAINGUY Ch.4èFONCTIONS DE RÉFÉRENCE ere S Dns tout le chpitre, le pln est muni d'un repère orthonorml ( O ; i! ;! j ) I. Rppels de Seconde Soit f une fonction définie

Plus en détail

Examen de géométrie - Durée : 2h

Examen de géométrie - Durée : 2h Université de Lorrine Fculté des sciences et technologies L2 Mthémtiques 31/05/2016 Exmen de géométrie - Durée : 2h Consigne s ppliqunt à tous les exercices : fire oligtoirement des figures. Elles devront

Plus en détail