Étude des fonctions polynômes du second degré

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Étude des fonctions polynômes du second degré"

Transcription

1 Étude des fonctions polynômes du second degré Définitions Définition d une fonction polynôme de degré 2 Une fonction, définie sur est une fonction polynôme de degré 2 lorsqu il existe trois réels et avec tels que, pour tout réel :. Les réels et sont les coefficients du polynôme. Remarque Une fonction polynôme de degré 2 est aussi appelée trinôme du second degré. s. Les coefficients de ce trinôme sont.. Les coefficients de ce trinôme sont. Exercice Dire si les fonctions suivantes sont des polynômes de degré 2. Dans ce cas, préciser leurs coefficients. a) c) e) b) d) f) Théorème et définition - Forme réduite et degré Toute fonction polynôme de degré 2, s écrit de manière unique sous forme réduite (ou développée) avec. Le terme est le terme de degré 2, le terme est le terme de degré 1 et le terme est le coefficient constant ou le terme de degré. s est un polynôme de degré 2 présenté sous forme réduite. est un polynôme de degré 2, présenté sous forme factorisée. Sa forme réduite est. Son terme de degré est. Son coefficient Exercice Déterminer les différents termes et coefficients du trinôme N. Duceux - LFIB Année 2014/15 Page 1

2 Propriété Deux polynômes et de degré 2 sont égaux si et seulement si les coefficients des formes réduites sont égaux deux à deux. Soit les deux trinômes et Montrer que et sont égaux. Définition et proposition- Racine On appelle racine d un polynôme tout nombre réel tel que. Une racine du polynôme est une solution de l équation. Soit le polynôme défini par. Montrer que est une racine de. Déterminer et tels que En déduire la deuxième racine de. Forme canonique Propriété et définition Forme canonique Toute fonction polynôme de degré 2 peut s écrire sous la forme avec. Cette forme est appelée forme canonique de. Soit la fonction définie sur par On remarque que est le début du développement de. Donc et ] En développant, on obtient Cette expression est la forme canonique de Dans ce cas et. N. Duceux - LFIB Année 2014/15 Page 2

3 Exercice Déterminer la forme canonique de la fonction définie sur par. Démonstration de la propriété Soit le trinôme, avec. Transformation de l écriture de : [ ] [ ] On a donc l égalité : [ ] pour tout réel. On pose et et on obtient pour tout réel : avec Propriété Soit le trinôme, avec et sa forme canonique. Alors et. Déterminer la forme canonique du trinôme définie sur par. La forme canonique est Maximum et minimum On peut déduire de la forme canonique d un trinôme de degré 2 son maximum (si ) ou son minimum (si ) Si alors et donc. De plus est le minimum de. Il est atteint en. N. Duceux - LFIB Année 2014/15 Page 3

4 Quelque soit réel,. D où. Le minimum est donc. Il est atteint lorsque c està-dire lorsque. Si alors et donc. De plus est le maximum de. Il est atteint en. Quelque soit réel,. D où. Le maximum est donc. Il est atteint lorsque c està-dire lorsque. Savoir-faire Déterminer la forme canonique et l extremum Soit la fonction définie sur par. a) Donner la forme canonique de. b) Démontrer, en utilisant cette forme canonique, que la fonction admet un maximum et déterminer la valeur de ce maximum. N. Duceux - LFIB Année 2014/15 Page 4

5 Variations Propriété Soit une fonction polynôme de degré 2 définie sur par, avec de forme canonique. Les variations de sont données par les tableaux suivants en fonction de et : admet un minimum en admet un maximum en Les variations de sont données par les tableaux suivants en fonction de et : admet un minimum en admet un maximum en Exercice On donne le tableau de variations d un trinôme du second degré : A l aide des données du tableau, déterminer les coefficients et de. N. Duceux - LFIB Année 2014/15 Page 5

6 Courbe représentative Proposition On se donne un repère orthonormal ( ) du plan. La courbe représentative de la fonction avec, et, est une parabole. Cette parabole a pour équation Le point est le sommet de la parabole. La droite d équation est axe de symétrie de. Soit la fonction définie sur par. La forme canonique de est avec et. Soit La courbe représentative de est une parabole de sommet. Le coefficient donc la parabole admet un minimum. La droite d équation, est l axe de symétrie de la parabole. Les racines du polynôme sont équidistantes de l axe de symétrie. Savoir-faire Représenter une fonction polynôme de degré 2 Soit la fonction définie sur par Construire la représentation graphique de le repère ci-contre. dans N. Duceux - LFIB Année 2014/15 Page 6

7 Exercice On a représenté ci-dessous dans des repères orthogonaux, trois courbes et d équations : ; ; Déterminer à quelle courbe correspond chaque figure puis retrouver les graduations du repère pour chaque graphique en justifiant votre démarche. Figure a Figure b Figure c N. Duceux - LFIB Année 2014/15 Page 7

Exercices supplémentaires Second degré

Exercices supplémentaires Second degré Exercices supplémentaires Second degré Partie A : Forme canonique, équations, inéquations, factorisation Mettre sous forme canonique les trinômes suivants 8 ; 3 1 ; 5 ; 3 4 Exercice On considère : 5 6

Plus en détail

Chapitre II : Fonctions polynômes du second degré

Chapitre II : Fonctions polynômes du second degré Chapitre II : Fonctions polynômes du second degré Extrait du programme : I. Forme canonique d un polynôme du second degré Définition : Dire qu une fonction f définie sur est une fonction polynôme de degré

Plus en détail

1.1 Définition. 1.2 Déterminer la forme canonique. 1.3 Remarques importantes

1.1 Définition. 1.2 Déterminer la forme canonique. 1.3 Remarques importantes 1. Fonction du second degré 1.1 Définition Une fonction f définie sur R dont l expression peut se mettre sous la forme = ax 2 +bx +c (où a, b et c sont des réels avec a non nul) est une fonction du second

Plus en détail

Exercice corrigé application de la dérivée. 1 er décembre 2010

Exercice corrigé application de la dérivée. 1 er décembre 2010 application de la dérivée 1 er décembre 2010 Enoncé On considère la fonction f définie sur R par : f : x 6x 3 3x 2 + 1 2 x + 24 1 Étudier les variations de f. 2 Justifier que l équation f(x) = 0 admet

Plus en détail

Fonctions polynômes Définition et factorisation Exercices corrigés

Fonctions polynômes Définition et factorisation Exercices corrigés Fonctions polynômes Définition et factorisation Exercices corrigés Exercice 1 (1 question) Niveau : facile Les fonctions numériques suivantes sont-elles des fonctions polynômes? Correction de l exercice

Plus en détail

Polynômes du second degré et fonctions homographiques 2nde

Polynômes du second degré et fonctions homographiques 2nde Fonctions de référence Polynômes du second degré et fonctions homographiques 2nde Table des matières I. Fonctions homographiques...1 A. La star de la famille : La fonction inverse (Normalement vous connaissez

Plus en détail

Polynômes et fractions rationnelles Trinômes du second degré

Polynômes et fractions rationnelles Trinômes du second degré Polynômes et fractions rationnelles Trinômes du second degré 1 Rappels 1. Carré d une somme : 2. Carré d une différence : 3. Différence de deux carrés : Pour tous réels a et b, a + b) 2 =........ Pour

Plus en détail

TRAVAIL D ÉTÉ OBLIGATOIRE EN MATHÉMATIQUES. Classe de Seconde Année scolaire : Passage en 1 re ES

TRAVAIL D ÉTÉ OBLIGATOIRE EN MATHÉMATIQUES. Classe de Seconde Année scolaire : Passage en 1 re ES TRAVAIL D ÉTÉ OBLIGATOIRE EN MATHÉMATIQUES Classe de Seconde Année scolaire : 015-016 Passage en 1 re ES Exercice 1 Les quatre parties sont indépendantes I) Résoudre les inéquations suivantes: ( x 4)(

Plus en détail

TRINÔME DU SECOND DEGRÉ

TRINÔME DU SECOND DEGRÉ TRINÔME DU SECOND DEGRÉ On appelle fonction polynôme, toute fonction f définie sur IR pour laquelle, il existe un entier naturel n et des réels a 0 ; a ; a 2 ;... ; a n avec a n 0 tels que : f(x) = a 0

Plus en détail

LES FONCTIONS. Une fonction est une application qui pour tout «x» appartenant à I associe un unique «y» appartenant à J tel que f(x)=y.

LES FONCTIONS. Une fonction est une application qui pour tout «x» appartenant à I associe un unique «y» appartenant à J tel que f(x)=y. LES FONCTIONS I - RAPPELS I-1 - Définition Une fonction est une application qui pour tout «x» appartenant à I associe un unique «y» appartenant à J tel que f(x)=y. L ensemble des point tel f(x)=y est représenté

Plus en détail

CHAPITRE 01 LES FONCTIONS POLYNÔMES DU SECOND DEGRÉ

CHAPITRE 01 LES FONCTIONS POLYNÔMES DU SECOND DEGRÉ CHAPITRE 01 LES FONCTIONS POLYNÔMES DU SECOND DEGRÉ I OBJECTIFS L objectif de ce chapitre est de maîtriser parfaitement les fonctions polynômes du second degré, différentes formes, racines du polynôme,

Plus en détail

D. CRESSON. 15 octobre D. CRESSON () Cours Première STL 15 octobre / 8

D. CRESSON. 15 octobre D. CRESSON () Cours Première STL 15 octobre / 8 Polynômes D. CRESSON 15 octobre 2008 D. CRESSON () Cours Première STL 15 octobre 2008 1 / 8 I fonction polynôme On appelle monôme, une expression du type ax n, où n est un entier naturel, a une constante

Plus en détail

FONCTIONS. représente une fonction. ne représente pas une fonction

FONCTIONS. représente une fonction. ne représente pas une fonction FONCTIONS Activité de recherche : Stratégie d entreprise Une entreprise fabrique des ballons de rugby. Sa production quotidienne peut varier de à 000 ballons. Le coût total, en centaines d euros, pour

Plus en détail

Les polynômes du second degré. Niveau : Première S. Vincent OBATON, Enseignant de mathématiques au lycée Stendhal de Grenoble

Les polynômes du second degré. Niveau : Première S. Vincent OBATON, Enseignant de mathématiques au lycée Stendhal de Grenoble Les polynômes du second degré Niveau : Première S Vincent OBATON, Enseignant de mathématiques au lycée Stendhal de Grenoble 1 I. Les trinômes du second degré 1. Grille d'auto-évaluation AN01 AN0 AN03 A

Plus en détail

La fonction carrée et la fonction inverse

La fonction carrée et la fonction inverse 5 février 205 La fonction carrée et la fonction inverse Fonction carrée EXERCICE f est la fonction carrée. Calculer les images par f des nombres suivants : a) 4 b) 00 c) 0 d) 3 4 e) 0, EXERCICE 2 f est

Plus en détail

Les nombres complexes

Les nombres complexes Les nombres complexes Christophe ROSSIGNOL Année scolaire 015/016 Table des matières 1 Généralités 1.1 Définitions................................................. 1. Règles de calcul dans C.........................................

Plus en détail

Si f est décroissante sur un intervalle, alors f (x 0 ) <0 sur cet intervalle. ) = 0 et f change de signe en x 0

Si f est décroissante sur un intervalle, alors f (x 0 ) <0 sur cet intervalle. ) = 0 et f change de signe en x 0 Théorème : Soit f une fonction définie sur un intervalle de IR, C la courbe représentative de f et x un élément de I. Si f est croissante sur un intervalle, alors f (x )> sur cet intervalle. Si f est décroissante

Plus en détail

Racine carrée d un nombre positif ou nul

Racine carrée d un nombre positif ou nul Racine carrée d un nombre positif ou nul Introduction (Sésamath) 1) Quelques racines carrées simples a) Trouver tous les nombres dont le carré est 16 b) Même question avec 0,81 c) Donner la mesure du côté

Plus en détail

FONCTIONS. I Généralités sur les fonctions. Définitions. Remarque. Exercice 01 (voir réponses et correction) Remarque

FONCTIONS. I Généralités sur les fonctions. Définitions. Remarque. Exercice 01 (voir réponses et correction) Remarque FNCTINS I Généralités sur les fonctions Définitions Soit D une partie de l'ensemble IR. n définit une fonction f de D dans IR, en associant à chaque réel de D, un réel et un seul noté f() et que l'on appelle

Plus en détail

Sujets de bac : Exponentielle

Sujets de bac : Exponentielle Sujets de bac : Exponentielle Sujet : Polynésie septembre 2002 On considère la fonction définie sur par ) Etudier la parité de. 2) Montrer que pour tout,. 3) Déterminer les ites de en et en. Donner l interprétation

Plus en détail

Mathématiques Positionnements niveau Lycée

Mathématiques Positionnements niveau Lycée Mathématiques Positionnements niveau Lycée NOM : Prénom : Matériel nécessaire : feuille quadrillée, règle et calculatrice scientifique. L'usage de la calculatrice est autorisé pour tout le positionnement

Plus en détail

SECOND DEGRE ACTIVITES

SECOND DEGRE ACTIVITES SECOND DEGRE ACTIVITES Activité 1 : Forme canonique d un polynôme de degré 2. Définition : f est une fonction polynôme de degré 2 définie sur par : f ( x) ax² bx c ( a 0 ). Nous montrerons à la fin de

Plus en détail

FONCTONS USUELLES - INTRODUCTION

FONCTONS USUELLES - INTRODUCTION FONCTONS USUELLES - INTRODUCTION Ce document totalement gratuit (disponible parmi bien d'autres sur la page perso JGCUAZ.FR rubrique mathématiques) a été conçu pour aider les élèves de seconde générale

Plus en détail

Fonction exponentielle 1

Fonction exponentielle 1 Fonction eponentielle 1 Unicité de la solution de l équation différentielle Conséquences 1. Si f est une solution de l équation différentielle y = y, y(0) = 1, alors, pour tout réel, f( )f() = 1 et f()

Plus en détail

NOM : SECOND DEGRE 1ère S

NOM : SECOND DEGRE 1ère S Exercice 1 Dans un triangle ABC rectangle en A, on place les points D et E respectivement sur [AC] et [AB] tels que AD = BE = x. Déterminer x pour que l aire du triangle ADE soit égale à la moitié de celle

Plus en détail

Méthode : on peut raisonner en utilisant le sens de variation de la fonction carré ou en s'aidant d'un dessin.

Méthode : on peut raisonner en utilisant le sens de variation de la fonction carré ou en s'aidant d'un dessin. Fonction carré Exercice 1 Les images par la fonction carré des nombres : sont, dans l'ordre :. Exercice 2 a. Les solutions de l'équation sont 4 et 4. b. Les solutions de l'équation sont et. c. L'équation

Plus en détail

Dérivation Continuité

Dérivation Continuité Dérivation Continuité Christophe ROSSIGNOL Année scolaire 2009/2010 Table des matières 1 Nombre dérivé Fonction dérivé 2 1.1 Nombre dérivé.......................................... 2 1.2 Fonction dérivée.........................................

Plus en détail

Leçon 6 Les fonctions numériques, généralités

Leçon 6 Les fonctions numériques, généralités Leçon 6 Les fonctions numériques, généralités Il faut revoir les fonctions de référence car ce cours prolonge évidemment ce qui a été vu en seconde. Il y a en premier lieu les fonctions affines par morceaux.

Plus en détail

Exercices corrigés pour améliorer ses techniques

Exercices corrigés pour améliorer ses techniques Exercices corrigés pour améliorer ses techniques Fonction carré Exercices 1 à 9 Fonction inverse Exercices 10 à 16 Un peu de logique Exercice 17 Fonctions polynômes de degré 2 Exercices 18 à 24 Fonctions

Plus en détail

CH V Le second degré :

CH V Le second degré : CH V Le second degré : I) Les fonctions polynômes (Rappels) : 1) Développer, factoriser : Rappels : Pour tout réels a, b et c a( b + c) = ab + ac On dit que l on lorsque l on passe de a( b + c) à ab +

Plus en détail

Fonction carrée Problèmes du second degré

Fonction carrée Problèmes du second degré Fonction carrée Problèmes du second degré Année scolaire 2015/2016 Table des matières 1 Quelques rappels 2 1.1 Les identités remarquables........................................ 2 1.2 Développement..............................................

Plus en détail

LES FONCTIONS DE REFERENCE

LES FONCTIONS DE REFERENCE L équipe des professeurs de mathématiques Lycée Stendhal J'aimais et j'aime encore les mathématiques pour elles-mêmes comme n'admettant pas l'hypocrisie et le vague, mes deux bêtes d'aversion. Stendhal

Plus en détail

Etude de la fonction bénéfice B telle que B(x) = -9x² + 450x 4050 pour un prix des places x variant de 0 à 50 : x [0 ; 50]

Etude de la fonction bénéfice B telle que B(x) = -9x² + 450x 4050 pour un prix des places x variant de 0 à 50 : x [0 ; 50] Fonctions du second degré - Exemple d étude d un problème. Activité. La recette R(x) d un spectacle dépend du prix x de la place suivant la relation R(x) = 450x 9x². Pour chaque spectacle, les frais fixes

Plus en détail

=!# = #! = " Les coordonnées du sommet S :: $=4;5= ;9 On en déduit aussi le tableau de variation de f, sachant que a = -3 <

=!# = #! =  Les coordonnées du sommet S :: $=4;5= ;9 On en déduit aussi le tableau de variation de f, sachant que a = -3 < La qualité de la rédaction, la clarté et la précision des raisonnements interviendront dans l appréciation des copies. Toute trace de recerce, même incomplète ou non fructueuse, sera prise en compte et

Plus en détail

Nouvelles fonctions de référence

Nouvelles fonctions de référence Nouvelles fonctions de référence I. Fonction valeur absolue Abs : x 1. Valeur absolue et distance Soit un axe (O ; ) et soient les points A et A d abscisses respectives 3 et 3 sur cet axe. Les distances

Plus en détail

I- DÉRIVÉE ET SENS DE VARIATION. 1) Du sens de variation au signe de la dérivée

I- DÉRIVÉE ET SENS DE VARIATION. 1) Du sens de variation au signe de la dérivée I- DÉRIVÉE ET SENS DE VARIATION 1) Du sens de variation au signe de la dérivée Théorème (admis) : soit f une fonction définie et dérivable sur un intervalle I. o Si f est une fonction croissante sur I,

Plus en détail

Concours externe pour le recrutement de contrôleurs stagiaires de l INSEE

Concours externe pour le recrutement de contrôleurs stagiaires de l INSEE Concours externe pour le recrutement de contrôleurs stagiaires de l INSEE Exercice 1 Partie A Correction (non officielle) de l épreuve de Mathématiques et de Statistiques du 29/01/2013 Nicolas ZERR 1)

Plus en détail

NOM : DERIVATION 1ère S

NOM : DERIVATION 1ère S Exercice Dériver les fonctions suivantes : f(x) = x g(x) = 3x x 3 + 5x h(x) = ( x ) x k(x) = x + 5 x + D. LE FUR /?? Exercice Dériver les fonctions suivantes : f(x) = x 3x + g(x) = (x + 3)(3x 7) h(x) =

Plus en détail

On factorise par a : et on remarque que x 2 + b a x = x2 + 2 b. EXERCICE N O 2 Donner la forme canonique des expressions suivantes :

On factorise par a : et on remarque que x 2 + b a x = x2 + 2 b. EXERCICE N O 2 Donner la forme canonique des expressions suivantes : CAL1 1 DU CÔTÉ DU SECND DEGRÉ TRAVAILLER AVEC DES PLYNÔMES DE DEGRÉ 2 U 3 CADRE DE TRAVAIL ET/U NTATINS) UTILISÉES) Dans tout ce chapitre, sauf mention contraire, a, b c désigneront trois réels avec notamment

Plus en détail

LA FONCTION " CARRÉ " et LE SECOND DEGRÉ

LA FONCTION  CARRÉ  et LE SECOND DEGRÉ Index I- Définition... 1 I-1 Rappel... 1 I-2 Définition:... 2 II- Une propriété de la fonction carré:... 2 II-1 Observation... 2 Remarque et définition:... 2 II-2 Interprétation graphique de cette propriété...

Plus en détail

SECOND DEGRÉ 1 POURQUOI CE CHAPITRE? 2 FONCTION POLYNÔME DU SECOND DEGRÉ

SECOND DEGRÉ 1 POURQUOI CE CHAPITRE? 2 FONCTION POLYNÔME DU SECOND DEGRÉ Chapitre 1 SECOND DEGRÉ 1 POURQUOI CE CHAPITRE? Une motivation parmi tant d'autres : lorsqu'on lance un objet, sa trajectoire est parabolique ; elle a une équation de la forme y = a 2 + b + c On peut alors

Plus en détail

Bac S Polynésie juin 2010

Bac S Polynésie juin 2010 Bac S Polynésie juin 2010 EXERCICE 1 (5 points) Le plan complexe est rapporté à un repère orthonormal direct O u v. Partie A - Restitution organisée de connaissances Prérequis Soit z un nombre complexe

Plus en détail

Sujets de bac : Ln. Partie C Dans le plan rapporté à un repère orthonormé ; ;, on note : Γ la courbe représentative de la fonction ;

Sujets de bac : Ln. Partie C Dans le plan rapporté à un repère orthonormé ; ;, on note : Γ la courbe représentative de la fonction ; Sujets de bac : Ln Sujet n 1 : extrait de Liban juin 2004 Partie A Soit la fonction définie sur 0; par 2 ln. 1) Etudier les variations de sur 0; et préciser ses ites en 0 et en. a. Montrer que l équation

Plus en détail

Formulaire des fonctions usuelles

Formulaire des fonctions usuelles Université d Orléans Formulaire des fonctions usuelles Licence 1 de Mathématiques Groupe 2 Baptiste Morelle 29/09/2008 Page 1 sur 28 Page 2 sur 28 Table des matières Fonctions particulières... 4 Fonction

Plus en détail

CHAPITRE II : FONCTIONS DE RÉFÉRENCE ET ÉTUDE DE FONCTIONS

CHAPITRE II : FONCTIONS DE RÉFÉRENCE ET ÉTUDE DE FONCTIONS CHAPITRE II : FONCTIONS DE RÉFÉRENCE ET ÉTUDE DE FONCTIONS Premières fonctions de référence Les fonctions linéaires, qui traduisent la proportionnalité des grandeurs, et les fonctions affines, qui traduisent

Plus en détail

Exemple : déterminer la dérivée f de la fonction f définie sur [1 ; + [ par : f(x) = 5x 2.

Exemple : déterminer la dérivée f de la fonction f définie sur [1 ; + [ par : f(x) = 5x 2. Chapitre III : Dérivées de fonctions composées et primitives I. Dérivées de fonctions composées a) Formule Propriété : g est une fonction dérivable sur un intervalle J. u est une fonction dérivable sur

Plus en détail

1) Existe-t-il une position de M telle que l aire de la surface rose pale soit

1) Existe-t-il une position de M telle que l aire de la surface rose pale soit Exercice 1 : On considère un demi-cercle de diamètre AB = 5. M est un point du segment [AB]. On construit les demi-cercles de diamètres [AM] et [MB] comme l indique la figure ci-dessous. 1) Existe-t-il

Plus en détail

Les polynômes. Chapitre Définitions et exemples. Définition. Un monôme de la variable x est une expression de la forme.

Les polynômes. Chapitre Définitions et exemples. Définition. Un monôme de la variable x est une expression de la forme. 1. Définitions et exemples Chapitre 6 Les polynômes Définition. Un monôme de la variable x est une expression de la forme a et n. a est appelé le coefficient et n est appelé le degré du monôme. Exemples

Plus en détail

Correction devoir de mathématiques n 3

Correction devoir de mathématiques n 3 Page1 Correction devoir de mathématiques n 3 Calculatrice autorisée. Le sujet contient 4 pages. Rendre le sujet avec la copie. Le détail des calculs doit figurer pour l attribution des points. Le barème

Plus en détail

Chapitre 7 : Exercices d approfondissement

Chapitre 7 : Exercices d approfondissement Chapitre 7 : Exercices d approfondissement Corrigés des exercices du chapitre 7 Exercice I Dans chaque cas, on va travailler avec la forme la plus adaptée aux données. Ici, on connaît le sommet S (3 ;

Plus en détail

Les polynômes du second degré

Les polynômes du second degré Les polynômes du second degré exercices corrigés 12 septembre 2013 Les polynômes du second degré Exercice 1 Exercice 2 Exercice 3 Les polynômes du second degré Exercice 1 Les polynômes du second degré

Plus en détail

Chapitre : FONCTIONS. Exercice 1

Chapitre : FONCTIONS. Exercice 1 Exercice 1 Dans un repère ( ; i ; j ) orthonormal, on considère les fonctions f et g définies par f(x) = (x )(x + 3) + 5 et g(x) = x + 3 sur l intervalle [ ; ]. 1) Tracer les courbes représentatives de

Plus en détail

j a sa courbe y= f (a) (x a)+ f(a) f définie sur... f(x) f (x) f dérivable sur... Ê x n nx n 1 Ê pour n entier n 2 1 x 2 n x n+1 Ê pour n entier n 1

j a sa courbe y= f (a) (x a)+ f(a) f définie sur... f(x) f (x) f dérivable sur... Ê x n nx n 1 Ê pour n entier n 2 1 x 2 n x n+1 Ê pour n entier n 1 Lcée JNSON DE SILLY 5 septembre 06 DÉRIVTION, ÉTUDE DE FONCTIONS T le STID I TNGENTE À UNE COURBE Soit f une fonction définie sur un intervalle I, dérivable en a où a est un réel de I, et C f sa courbe

Plus en détail

Chapitre 5. Généralités sur les fonctions numériques. 5.1 Généralités

Chapitre 5. Généralités sur les fonctions numériques. 5.1 Généralités Chapitre 5 Généralités sur les fonctions numériques 5.1 Généralités Définition 5.1 Une fonction numérique permet d associer à chaque nombre x d un ensemble D un autre nombre que l on note f(x). On note

Plus en détail

DST 3 Corrigé. b) B : «les 2e et 3e sondages sont négatifs». et d après l énoncé ; D où :

DST 3 Corrigé. b) B : «les 2e et 3e sondages sont négatifs». et d après l énoncé ; D où : DST 3 Corrigé Exercice 1 (4 points) Avant le début des travaux de construction d une autoroute, une équipe d archéologie préventive procède à des sondages successifs en des points régulièrement espacés

Plus en détail

I. Fonction de référence

I. Fonction de référence I. Fonction de référence Fonction x x 2 x x 3 x x x x Nom Domaine de définition x 3 2,5 2,5 0,5 0 0,5,5 2 2,5 3 Tableau de valeurs x² x 3 x /x Graphes Extremum Eléments de symétrie de la courbe Fonctions

Plus en détail

LEÇON N 17 : Équations du second degré à coefficients réels ou complexes.

LEÇON N 17 : Équations du second degré à coefficients réels ou complexes. LEÇON N 17 : Équations du second degré à coefficients réels ou complexes Pré-requis : Nombres complexes : définition et propriétés ; Notions d anneaux, de corps ; Théorème de Liouville) 171 Équations du

Plus en détail

Ch.8 Fonctions convexes

Ch.8 Fonctions convexes T le ES - programme 2012 mathématiques ch.8 cahier élève Page 1 sur 14 1 NOTIONS DE CONVEXITÉ, DE CONCAVITÉ 1.1 Introduction Ch.8 Fonctions convexes Considérons une fonction f croissante sur [a ; b], on

Plus en détail

Session avril 2015 BACCALAUREAT BLANC. Série : S. Épreuve : Mathématiques ( candidats n ayant pas suivi l enseignement de spécialité )

Session avril 2015 BACCALAUREAT BLANC. Série : S. Épreuve : Mathématiques ( candidats n ayant pas suivi l enseignement de spécialité ) BACCALAUREAT BLANC Session avril 2015 Série : S Épreuve : Mathématiques ( candidats n ayant pas suivi l enseignement de spécialité ) Durée de l'épreuve : 4 heures coefficient : 7 MATERIEL AUTORISE OU NON

Plus en détail

FONCTION EXPONENTIELLE

FONCTION EXPONENTIELLE FONCTION EXPONENTIELLE Ph DEPRESLE 29 juin 205 Table des matières Propriétés algébriques 2 2 Nouvelle notation 2 3 Étude de la fonction exponentielle 2 3. Variations et ites........................................

Plus en détail

Nombres complexes Ecriture algébrique d un complexe Exercices corrigés

Nombres complexes Ecriture algébrique d un complexe Exercices corrigés Nombres complexes Ecriture algébrique d un complexe Exercices corrigés Sont abordés dans cette fiche : Exercice 1 : calculs dans l ensemble des nombres complexes (addition, soustraction, multiplication,

Plus en détail

NOTIONS DE BASE SUR LES FONCTIONS

NOTIONS DE BASE SUR LES FONCTIONS NOTONS DE BASE SUR LES FONCTONS 1. GENERALTES 1. Notations, définitions On dit qu une fonction f est définie sur une partie de un nombre réel et un seul y noté f ( x ). quand, à tout x de on associe est

Plus en détail

Soutien illimité 7j/7 en maths: Coach, profs, exercices & annales, cours. Sujet de Bac 2010 Maths S Obligatoire & Spécialité - Polynésie

Soutien illimité 7j/7 en maths: Coach, profs, exercices & annales, cours. Sujet de Bac 2010 Maths S Obligatoire & Spécialité - Polynésie Sujet de Bac 2010 Maths S Obligatoire & Spécialité - Polynésie EXERCICE 1 : 5 points Le plan complexe est rapporté à un repère orthonormal direct (0; u, v). Partie A : Restitution organisée de connaissances

Plus en détail

Devoir commun de Mathématiques Correction - Premières S

Devoir commun de Mathématiques Correction - Premières S Devoir commun de Mathématiques Correction - Premières S EXERCICE 1 : ( points) Restitution organisée de connaissances Dans un repère, (d) et (d ') sont les droites d'équations cartésiennes respectives

Plus en détail

Fonction logarithme népérien

Fonction logarithme népérien Fonction logarithme népérien Introduction La fonction eponentielle est continue strictement croissante de R à valeurs dans ]0; + [. Le théorème des valeurs intermédiaires permet donc d affirmer que : Pour

Plus en détail

Chapitre 1 Les nombres complexes

Chapitre 1 Les nombres complexes Chapitre 1 Les nombres complexes A) Définition et propriétés de base (rappels) 1) Définition a) On appelle C l'ensemble des nombres complexes. Un nombre complexe s'écrit z a bi, où a et b sont des réels

Plus en détail

Par hasard, par abole. Tâche 1- Vous tenterez de répondre expérimentalement à la question 1 à l aide d un logiciel de géométrie

Par hasard, par abole. Tâche 1- Vous tenterez de répondre expérimentalement à la question 1 à l aide d un logiciel de géométrie Par hasard, par abole Thèmes. Parabole, probabilités continues. Classe. Terminale S. Logiciels. Logiciel de géométrie dynamique. Tableur. Énoncé Soient a et b deux nombres réels distincts de l intervalle

Plus en détail

/1 point n, c est-à-dire que

/1 point n, c est-à-dire que Externat Notre Dame Devoir n Tle S) Samedi 5 octobre 204 Proposition de corrigé Exercice : / point Restitution organisée de connaissances Dans cet exercice n désigne un entier naturel. On définit une suite

Plus en détail

RAPPELS SUR LES FONCTIONS

RAPPELS SUR LES FONCTIONS T ale STI Fonctions : rappels 008/009 RAPPELS SUR LES FONCTIONS Table des matières I Fonctions affines I. Variations............................................... I. Signe deax +b............................................

Plus en détail

Axe de symétrie- Centre de symétrie

Axe de symétrie- Centre de symétrie Index Préliminaires... 1 I- Axe de symétrie d'une courbe... 1 I-1- Définition... 1 Conséquences:... 1 I-- Traduction pour la représentation graphique d'une fonction dans un repère orthogonal... 1 I--1-

Plus en détail

Chapitre 4 : Fonctions de référence (1)

Chapitre 4 : Fonctions de référence (1) La notion de fonction a été vue au chapitre 1. Cette leçon met l'accent sur certaines fonctions que l'on retrouve au lycée : fonction carrée, fonction inverse, fonction racine carrée,... etc. La deuxième

Plus en détail

Les suites numériques

Les suites numériques Les suites numériques chapitre 4 I Premier regard Définition : suite numérique Une suite numérique est une liste de nombres réels, numérotés généralement par des indices, entiers naturels consécutifs 0,

Plus en détail

Fiche d exercices 2 : Limites de fonctions

Fiche d exercices 2 : Limites de fonctions Fiche d eercices : Limites de fonctions Notion de ite et asymptotes Eercice Dans chacun des cas suivants, on donne la représentation graphique d une fonction f ainsi que les éventuelles asymptotes. En

Plus en détail

1 S DEVOIR DE MATHEMATIQUES N 4 SUJET A 5/04/ H

1 S DEVOIR DE MATHEMATIQUES N 4 SUJET A 5/04/ H S DEVOIR DE MATHEMATIQUES N SUJET A 5/0/0 H Nom prénom Exercice : Soit q un réel différent de,prouver l égalité : points + q + q + q 3 +...q n = qn+ q Exercice :. Calculer la somme des 00 premiers multiples

Plus en détail

Fonctions de référence 1

Fonctions de référence 1 Fonctions de référence Les fonctions sinus et cosinus. Définitions Le plan étant muni d un repère orthonormé (O; I, J), on peut associer à tout réel x un unique point M sur le cercle trigonométrique. (voir

Plus en détail

Les nombres complexes

Les nombres complexes Les nombres complexes 8 novembre 009 Table des matières Définitions Forme algébrique Représentation graphique Opérations sur les nombres complexes Addition et multiplication Inverse d un nombre complexe

Plus en détail

Etude des fonctions usuelles

Etude des fonctions usuelles Etude des fonctions usuelles 1. Introduction Soit f une fonction réelle de la variable réelle, on a vu que ces fonctions sont souvent définies par des formules, c est-à-dire définies par des epressions

Plus en détail

CORRIGÉ DU DEVOIR COMMUN N 3 DE MATHÉMATIQUES DES CLASSES DE SECONDES EXERCICE

CORRIGÉ DU DEVOIR COMMUN N 3 DE MATHÉMATIQUES DES CLASSES DE SECONDES EXERCICE Lycée Jacques Prévert. Saint-Christol-les-Alès Mercredi 0 mai 01 CORRIGÉ DU DEVOIR COMMUN N DE MATHÉMATIQUES DES CLASSES DE SECONDES EXERCICE 1 : ( 6 points). Une fonction et sa courbe représentative.

Plus en détail

La fonction carré est la fonction définie pour tout réel x par f(x)=x 2

La fonction carré est la fonction définie pour tout réel x par f(x)=x 2 Lcée JANSON DE SAILLY I FONCTION CARRÉ DÉFINITION La fonction carré est la fonction définie pour tout réel par f)= 2 PROPRIÉTÉS Un carré est toujours positif ou nul. Pour tout réel, on a 2 0. Un nombre

Plus en détail

Exercices supplémentaires : Application de la dérivation

Exercices supplémentaires : Application de la dérivation Exercices supplémentaires : Application la dérivation Partie A : On donne les courbes quatre fonctions en rouge et celles leurs dérivées en bleu. Associer chaque fonction à sa dérivée. Justifier. Dans

Plus en détail

Exercice 3 (pour tous)

Exercice 3 (pour tous) le vendredi février (ÉPREUVES GROUPÉES HEURES) Exercice ( pour tous ) / points La production d une entreprise pour l année est de pièces Chaque année sa production augmente de % Quelle est la production

Plus en détail

I- LE RADIAN. Activité d introduction : enroulement de la droite numérique sur le cercle trigo.

I- LE RADIAN. Activité d introduction : enroulement de la droite numérique sur le cercle trigo. Activité d introduction : enroulement de la droite numérique sur le cercle trigo. I- LE RADIAN Le radian est, comme le degré ou le grade, une unité de mesure d angles. Sur un cercle de centre O, l angle

Plus en détail

Correction Composition de mathématiques n 1

Correction Composition de mathématiques n 1 Page1 Correction Composition de mathématiques n 1 Exercice 1 Soit la fonction f définie sur [ 10 ; 7] par f(x) = x² + 2x + 3 1. Trouver la forme factorisée de f(x). a = 1 ; b = 2 ; c = 3 = 2² 4 ( 1) 3

Plus en détail

Chapitre 5 : Fonctions de référence. 1 Fonction carré. 1.1 Définition et représentation graphique. 1.2 Symétrie. 1.3 Variations et extrémum

Chapitre 5 : Fonctions de référence. 1 Fonction carré. 1.1 Définition et représentation graphique. 1.2 Symétrie. 1.3 Variations et extrémum Chapitre 5 : Fonctions de référence 1 Fonction carré 1.1 Définition et représentation graphique Définition 1 La fonction définie sur R par f(x) = x est la fonction carré. Dans la suite de cette partie,

Plus en détail

Troisième - Objectifs de l année en mathématique

Troisième - Objectifs de l année en mathématique Troisième - Objectifs de l année en mathématique Chapitre 0 : Les nombres réels *Document téléchargeable sur http://www.cspu.be/~termollem dans «Documents» 1. Nommer les ensembles de nombres et donner

Plus en détail

EXERCICES CONTINUITÉ

EXERCICES CONTINUITÉ EXERCICES CONTINUITÉ On sait déjà calculer l aire de polygone, mais qu en est-il de figure dont les côtés ne sont pas des segments? Exercice 1. On cherche l aire A de la figure délimitée, sur l intervalle

Plus en détail

Pour démarrer la classe de terminale S. Tout ce qu il faut savoir de la 1 re S. Paul Milan

Pour démarrer la classe de terminale S. Tout ce qu il faut savoir de la 1 re S. Paul Milan Pour démarrer la classe de terminale S Tout ce qu il faut savoir de la 1 re S Paul Milan 8 novembre 015 Table des matières 1 Second degré 7 1 Forme canonique............................. 7 Racines du

Plus en détail

LOGARITHME. Ph DEPRESLE. 29 juin Fonction logarithme népérien Définition Conséquences Propriétés algébriques 3

LOGARITHME. Ph DEPRESLE. 29 juin Fonction logarithme népérien Définition Conséquences Propriétés algébriques 3 LOGARITHME Ph DEPRESLE 9 juin 5 Table des matières Fonction logarithme népérien. Définition............................................... Conséquences............................................ 3 Propriétés

Plus en détail

DÉRIVÉES. lorsque h devient très proche de zéro?

DÉRIVÉES. lorsque h devient très proche de zéro? DÉRIVÉES I Nombre dérivé - Tangente Eercice 0 (voir réponses et correction) Un mobile M se déplace sur un ae gradué. On suppose que sa position sur cet ae à l'instant t ( t ³ 0) est donnée par son abscisse

Plus en détail

La fonction exponentielle de base a Corrigés d exercices

La fonction exponentielle de base a Corrigés d exercices La onction eponentielle de base a Corrigés d eercices Les eercices du livre corrigés dans ce document sont les suivants : Page 7 : N 48, 49, 4, 6 Page 6 : N 7, 9 Page 6 : N 4 Page 64 : N Page 6 : N 7 N

Plus en détail

Méthodes directes de résolution du système linéaire Ax = b

Méthodes directes de résolution du système linéaire Ax = b Chapitre 3 Méthodes directes de résolution du système linéaire Ax = b 3.1 Introduction Dans ce chapitre, on étudie quelques méthodes directes permettant de résoudre le système Ax = b (3.1) où A M n (R),

Plus en détail

[ 9;7 ] et représentée graphiquement. Contrôle du 16 octobre (durée : 2h ) Sujet A /20. Nom : Prénom : Terminale S T08 Appréciation :

[ 9;7 ] et représentée graphiquement. Contrôle du 16 octobre (durée : 2h ) Sujet A /20. Nom : Prénom : Terminale S T08 Appréciation : Nom : Prénom : Terminale S T08 Appréciation : Contrôle du 16 octobre (durée : 2h ) Sujet A /20 Evaluation des compétences : Lecture graphique Limites Lecture graphique Dérivée Tracer une courbe, ses tangentes

Plus en détail

Chapitre 2 Développements limités. Etude locale d une fonction.

Chapitre 2 Développements limités. Etude locale d une fonction. hapitre 2 Développements limités. Etude locale d une fonction. I Introduction : le cas de la fonction eponentielle A Approimation affine de ep au voisinage de 0 n notera f la fonction eponentielle f :

Plus en détail

FONCTIONS NUMÉRIQUES : DÉRIVATION

FONCTIONS NUMÉRIQUES : DÉRIVATION FONCTIONS NUMÉRIQUES : DÉRIVATION Ph DEPRESLE 30 septembre 05 Table des matières Dérivée en un point Continuité et dérivabilité 3 Fonction dérivée 4 Sens de variation d une fonction dérivable 3 5 Dérivées

Plus en détail

Corrigé du Brevet Blanc n 1 Activités Numériques (11 points)

Corrigé du Brevet Blanc n 1 Activités Numériques (11 points) Activités Numériques (11 points) Exercice 1 ( 6 points) : Pour toutes les questions, écrire les différentes étapes du calcul. 1) Calculer et donner une écriture scientifique du résultat, puis une écriture

Plus en détail

TRANSFORMATIONS ET NOMBRES COMPLEXES

TRANSFORMATIONS ET NOMBRES COMPLEXES TRANSFORATIONS ET NOBRES COPLEXES Table des matières Applications géométriques des nombres complexes. Arguments d un nombre complexe........................................... Ensemble de points du plan.

Plus en détail

Fiche d exercices 8 : Nombres complexes

Fiche d exercices 8 : Nombres complexes Fiche d exercices 8 : Nombres complexes Ecriture algébrique Exercice 1 1. Donner l écriture algébrique des nombres complexes ci-dessous : i a. z = 1+ 1 + i 1 b. z = c. z3 = i 1 i + i. On considère les

Plus en détail

Le classeur peut comporter cinq parties, puis au choix de chacun de modifier ce choix. Voici les parties du classeur au lycée :

Le classeur peut comporter cinq parties, puis au choix de chacun de modifier ce choix. Voici les parties du classeur au lycée : Le classeur Comment faire pour consignes Les élèves peuvent se créer un outil mathématiques qui les aide du début du collège jusqu au baccalauréat. Un classeur dans lequel toutes les méthodes de chaque

Plus en détail

BTS Mécanique et Automatismes Industriels. Nombres complexes

BTS Mécanique et Automatismes Industriels. Nombres complexes BTS Mécanique et Automatismes Industriels, Année scolaire 006 007 Table des matières. Les différentes écritures. - Forme algébrique d un nombre complexe. - Représentation géométrique d un nombre complexe.3

Plus en détail

Montrer qu il s agit d un produit scalaire, et trouver une base orthogonale pour ce produit scalaire. (x e k ).e k

Montrer qu il s agit d un produit scalaire, et trouver une base orthogonale pour ce produit scalaire. (x e k ).e k Ex 1 Facile Soit un espace préhilbertien réel E et deux vecteurs x,y E. a) Développer l expression y 2.x (x y).y b) Retrouver l inégalité de Cauchy-Schwarz ainsi que le cas d égalité. Ex 2 Cours, à faire

Plus en détail