Chapitre II : Limites de fonctions et continuité

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Chapitre II : Limites de fonctions et continuité"

Transcription

1 Chapitre II : Limites de fonctions et continuité Cité Scolaire Gambetta Année scolaire 0-03 I Limite à l infini : ) Limite finie en Définition : Dire qu une fonction f a pour limite le réel l en signifie que tout intervalle ouvert contenant l contient toutes les valeurs f( ) pour suffisamment grand ( c est-à-dire pour tous les d un certain intervalle ]A ; [ ). On note lim f ( ) l. Interprétation graphique : Quel que soit l intervalle ouvert contenant l, et aussi petit soit-il, il eiste un nombre A tel que la courbe C restreinte à l intervalle ]A ; [ soit située dans la partie colorée ci-dessus. f On dit que la droite d équation y = l est asymptote horizontale à la courbe Cf en +. Remarque : On définit de façon analogue une limite réelle en. Limite à l infini de fonctions de référence : lim 0 ; lim 0 ; lim 0 ( n ) de même en. n L ae des abscisses est asymptote horizontale de la courbe représentative de ces fonctions en et en. On a aussi lim 0. L ae des abscisses est asymptote horizontale de la courbe représentative de cette fonction en.

2 ) Limite infinie en Définition : Dire qu une fonction f a pour limite en signifie que tout intervalle ouvert M; contient toutes les valeurs f( ) pour suffisamment grand ( c est-à-dire pour tous les d un certain intervalle ]A ; [ ) On note lim f( ). Interprétation graphique : Quel que soit le nombre M, on peut trouver un nombre A tel que pour tout A, f ( ) M : la courbe C f restreinte à l intervalle ]A ; [ est dans la partie colorée cidessus. Limite à l infini de fonctions de référence : lim n ( n ) ; lim Si n entier pair lim n et si n entier impair lim n II Limite infinie en un réel a : Définition : f est une fonction définie sur un intervalle ouvert I et le nombre a est une borne de I. Dire qu une fonction f a pour limite en a signifie que tout intervalle ouvert M; contient toutes les valeurs f( ) pour tous les nombres de l intervalle I suffisamment proches de a, c est-à-dire pour tous les nombres de I dans un certain intervalle a ; a ou a; a. On note lim f ( ). a Remarque : On définit de façon analogue lim f ( ). a

3 En pratique, on est parfois amené à étudier séparément les limites de f pour aet pour a. On parle alors de «limite de f à droite en a» notée lim f ( ) ou lim f ( ) a a a et de «limite de f à gauche en a» notée lim f ( ) ou lim f ( ) a a a Interprétation graphique : La courbe C peut être «aussi proche que l on veut» de la droite d équation a. f Lorsqu une fonction f admet une limite infinie en un réel a (ou à droite en a ou à gauche de a), on dit que la droite d équation a est asymptote verticale à la courbec f. Limite de fonctions de référence : lim ; 0 lim 0 et lim 0 n * ( n ) lim et 0 lim 0 n si n est pair si n est impair L ae des ordonnées est asymptote verticale de la courbe représentative de ces fonctions.

4 III Théorèmes sur les limites : ) Limites et opérations Les théorèmes du chapitre sur la limite d une somme, d un produit et d un quotient de suites sont encore valables dans le cas des calculs de limites de fonctions. somme Limite de f Limite de g Limite de f + g l l' l + l' l + + l FI produit quotient Limite de f Limite de g Limite de f. g l l' l l' l > l > 0 l < 0 + l < FI Limite de f Limite de g Limite de f / g l l' 0 l l l ou + 0 l' > 0 l' < 0 l' > 0 l' < 0 ou + ou + FI l > 0 ou l > 0 ou + 0 l < 0 ou 0 + l < 0 ou FI

5 Eemples : Déterminer FI mais Et 3 lim 4 lim et 3 3 Donc lim 4 lim et lim 0 d où lim 3 3 A retenir : De façon plus générale, la limite d une fonction polynôme en ou en est égale à la limite de son terme de plus haut degré. lim 3 4 lim 3

6 Déterminer FI donc 9 lim 3 A retenir : De façon plus générale, la limite d une fonction rationnnelle en ou en est égale à la limite du quotient de ses termes de plus haut degré. Remarque : Pour déterminer une limite On commence par conjecturer la limite cherchée (tableur, courbe, ) On utilise les opérations sur les limites Si on a une forme indéterminée du type, on met en facteur le terme dominant. Si on a une forme indéterminée du type «termes dominants, puis on simplifie.», on factorise au numérateur et au dénominateur les ) Limite d une fonction composée : Définition : Soit une fonction f définie sur un intervalle I à valeurs dans J et g définie sur J. On appelle fonction composée de f suivie de g, notée gof, la fonction qui, à tout réel g f ( ) de I, associe Eemple : soit les fonctions f définies sur f g f ( ) g f ( ) par 4 f ( ) 3 5 et g( ) Alors, pour tout réel, gof ( ) g f ( ) g

7 Théorème ( ADMIS ) : a, b et c représentent 3 réels ou éventuellement + ou, et f et g sont des fonctions. Si lim ( ) a f b et lim g ( ) c b lim ( ) a gof c alors Eemple : Déterminer la limite 4 en ) Limites et comparaison : On dispose des théorèmes analogues à ceu déjà vus pour les suites Théorème : f et g sont deu fonctions définies sur un intervalle I = a; ( ou I = pour tout réel de I, f ( ) g( ) : ) telles que si lim g ( ) alors lim f( ) (Théorème de minoration) si lim f( ) alors lim g ( ) (Théorème de majoration) Remarque : ce théorème s adapte au comparaisons en Démo ( à titre indicatif) Démontrons ce résultat au voisinage de +. On suppose que lim g ( ) et f ( ) g( ) pour suffisamment grand. Soit B un réel positif fié. lim g ( ) soit d après la définition des limites il eiste un réel A tel que pour tout A; implique que g( ) B Donc pour tout réel A on a g( ) B f ( ) g( ) soit f ( ) B Ceci étant prouvé pour tout réel B positif et fié, on en déduit, d après la définition, que : lim f( )

8 Théorème d encadrement dit «des gendarmes» f, g et h sont trois fonctions définies sur un intervalle I = a; ( ou I = ) et l est un réel. Si, pour tout réel de I, g( ) f ( ) h( ) et si lim g( ) l et lim h( ) l, Alors lim f ( ) l Remarque : ce théorème s adapte à l encadrement en IV Rappel sur la dérivation : Nombre dérivé, fonction dérivée : Tangente à la courbe d une fonction :

9 Signe de la dérivée et sens de variation : Théorème: Soit f une fonction dérivable sur un intervalle I. Si pour tout de I, f ( ) 0, alors f est croissante sur I. Si pour tout de I, f ( ) = 0, alors f est constante sur I. Si pour tout de I, f ( ) 0, alors f est décroissante sur I. Dérivée et etremum local : Théorème : Soit f une fonction dérivable sur un intervalle ouvert I et 0 I. Si f admet un etremum local en 0, alors f '( 0 ) 0. Si f s annule en 0 en changeant de signe, alors f admet un etremum local 0. Dérivées usuelles et opérations : Fonction f Fonction dérivée f f ( ) k f '( ) 0 f est dérivable sur l intervalle Théorème : f ( ) m p f '( ) m f ( ) f ( ) n f ( ), f( ) f ( ) '( ) 3 n * f f '( ) 3 f '( ) n n f '( ) f '( ) ;0 0; 0; Soient u et v deu fonctions dérivables sur un intervalle I et un réel, alors les fonctions u, u + v et uv sont dérivables sur I et : ( u ) = u ( u + v ) = u + v ( u v ) = u v + u v Si pour tout réel a de I, v ( a ) 0 les fonctions v et u ' ' v sont dérivables sur I et : v' v v, u u ' v uv' v v

10 V Continuité : ) Continuité sur un intervalle : Définitions : f est une fonction définie sur un intervalle I et a est un réel de I On dit que la fonction f est continue en a lorsque lim f ( ) f ( a ) ou a lim f ( a h) f ( a) h0 Eemples : On dit que la fonction est continue sur un intervalle lorsqu elle st continue en tout réel a de cet intervalle Graphiquement, la continuité d une fonction f sur un intervalle I se traduit par le fait que sa courbe représentative peut être tracée sans lever le crayon. Les fonctions usuelles (affine, carré, cube, racine carrée, inverse, valeur absolue, cosinus et sinus) sont continues sur tout intervalle où elles sont définies. Les fonctions construites à partir de ces fonctions par somme, produit ou compositions sont continues sur tout intervalle où elles sont définies (en particulier les fonctions polynômes continues sur et rationnelles où elles sont définies) Eercice : On considère la fonction f définie sur par f( ) k 3 5 si 0. si 0 Pour quelle valeur de k, la fonction f est-elle continue sur? Eemples de fonctions non continues : La fonction partie entière : Pour tout réel, il eiste un unique entier n tel que n n. On appelle fonction partie entière la fonction notée E qui au réel de l intervalle nn ; associe l entier n ; on note E( ) n E(4) = 4 E(6, ) = 6 E( ) = E( 4, 3) = 5-0 La fonction partie entière n'est pas continue en mais est continue sur 0;.

11 ) Continuité et dérivabilité : Propriété : f est une fonction définie sur un intervalle I et a est un réel de I. Si f est dérivable en a, alors cette fonction est continue en a. Si f est dérivable sur I, alors cette fonction est continue sur I. Remarques : Cette propriété nous donne un moyen pour démontrer qu une fonction est continue sur un intervalle I : il suffit en effet de démontrer que cette fonction est dérivable sur I. La réciproque est fausse. Par eemple, la fonction valeur absolue est continue en 0 mais n est pas dérivable en 0.

12 VI Résolution d équations : ) Théorème des valeurs intermédiaires : Théorème ( ADMIS ) : Si la fonction f est définie et continue sur un intervalle ab ; et k un réel tel que f ( a) k f ( b), alors il eiste au moins un réel c compris entre a et b tel que f () c k ) Théorème de bijection : Théorème de bijection : Si la fonction f est continue et strictement monotone sur l intervalle ab ;, alors pour tout réel k compris entre f( a) et f() b l équation f ( ) k a une solution unique dans ab ;. Démo : Eistence : Théorème des valeurs intermédiaires Convention : Remarques : Unicité : Démontrons ceci à l aide d un raisonnement par l absurde On suppose qu il y a réels distincts c et c ( c < c ) tel que f ( c) f ( c') k or il y a une contradiction avec le fait que f soit strictement monotone, donc la solution est unique. Dans un tableau de variation, les flèches obliques traduisent la continuité et la stricte monotonie de la fonction sur l intervalle considéré. Ce théorème s applique au intervalles ; ;b a, a;, ab ;, ab ;, ab ;, ;b, ou encore, il convient alors d étudier la limite de f au bornes de l intervalle de départ. Si on doit résoudre l équation ( ) 0 f, on montre que f est monotone sur ; f ( a) f ( b) 0 alors l équation f( ) 0 admet une solution unique. Eercice : 3 La fonction f est définie sur par f ( ) 4 4. a) Dresser le tableau de variations de f. b) Démontrer que l équation f( ) admet eactement 3 solutions dans. ab et que Avec la calculatrice, donner la valeur eacte ou l arrondi au centième de chaque solution. (,6 ;- ;-0 ;38)

TS Limites de fonctions Cours

TS Limites de fonctions Cours TS Limites de fonctions Cours I. Limites à l infini. Limite infinie en + ( 3 ) Définition Une fonction f a pour limite + en + si pour toute valeur réelle A, on a f() > A pour assez grand c est à dire pour

Plus en détail

I. Limite en et en 1. Limites finie et infine Dans ce paragraphe, nous considèrerons des fonctions définies sur un intervalle de la forme [ a; [

I. Limite en et en 1. Limites finie et infine Dans ce paragraphe, nous considèrerons des fonctions définies sur un intervalle de la forme [ a; [ A. Limites d'une fonction I. Limite en et en. Limites finie et infine Dans ce paragraphe, nous considèrerons des fonctions définies sur un intervalle de la forme [ a; [ où a R. DÉFINITIONS Soit l un réel.

Plus en détail

Cours sur les limites de fonctions et la continuité M. HARCHY TS 2 -Lycée Agora-2015/2016

Cours sur les limites de fonctions et la continuité M. HARCHY TS 2 -Lycée Agora-2015/2016 Cours sur les limites de fonctions et la continuité M. HARCHY TS 2 -Lycée Agora-205/206 Limite d une fonction. Limite à l infini.. Limite finie d une fonction à l infini Définition Soit f une fonction

Plus en détail

Les fonctions : Limites, Continuité

Les fonctions : Limites, Continuité Les fonctions : Limites, Continuité f désigne une fonction définie sur un intervalle I ; On note C f sa courbe représentative dans un repère du plan I) Limite d une fonction au voisinage de l infini I

Plus en détail

Cours de terminale S - Généralités sur les fonctions

Cours de terminale S - Généralités sur les fonctions les fonctions LPO de Chirongui - Exercices : Savoir Faire (livre)- Déterminer une ite Interprétation graphique Livre Indice BORDAS - Page 45 Exercice 34, 35, 36 et 37 page 56 - Limite finie à l infini

Plus en détail

Chapitre 2 : Dérivation et continuité T-ES2,

Chapitre 2 : Dérivation et continuité T-ES2, Chapitre 2 : Dérivation et continuité T-ES2, 206-207.Rappel sur la dérivation.. Règles de dérivation.. Dérivées des fonctions usuelles Fonction f f Fonction dérivée Domaine de validité f() = k (k R) f

Plus en détail

Chapitre 3 : Limites de fonctions Terminale ES 2, , Y. Angeli

Chapitre 3 : Limites de fonctions Terminale ES 2, , Y. Angeli Chapitre 3 : Limites de fonctions -28-09-- Terminale ES 2, 20-202, Y. Angeli. Notion de ite : les différentes situations. Le plan est muni d un repère orthogonal (; ı, j). Dans ces illustrations, a et

Plus en détail

FONCTIONS : Limites Continuité Dérivée Trigonométrie

FONCTIONS : Limites Continuité Dérivée Trigonométrie FONCTIONS : Limites Continuité Dérivée Trigonométrie I) PRELIMINAIRES Voir activité II) LIMITE D UNE FONCTION EN + et ) Limite infinie en + et Soit f une fonction définie sur un intervalle de la forme

Plus en détail

T.S L 2. Limite d une fonction. Limites de fonctions, continuité et dérivabilité. I.1 Activités. I.2 Définitions

T.S L 2. Limite d une fonction. Limites de fonctions, continuité et dérivabilité. I.1 Activités. I.2 Définitions T.S Limites de fonctions, continuité et dérivabilité. L 2 Le second degré, vu en classe de ère S, est à connaître IMPÉRATIVEMENT : solutions événtuelles d une équation du second degré, signe d une epression

Plus en détail

Cours de Terminale S / Fonctions : limites et continuité. E. Dostal

Cours de Terminale S / Fonctions : limites et continuité. E. Dostal Cours de Terminale S / Fonctions : ites et continuité E. Dostal Août 204 Table des matières 2 Fonctions : ites et continuité 2 2. Limites.............................................. 2 2.2 Théorèmes.............................................

Plus en détail

Limites et continuité

Limites et continuité ANALYSE Limites et continuité Connaissances nécessaires à ce chapitre Déterminer la ite éventuelle d une suite géométrique Étudier la ite d une somme, d un produit ou d un quotient de deu suites Auto-évaluation

Plus en détail

LIMITES DE FONCTIONS

LIMITES DE FONCTIONS T ale S LIMITES DE FONCTIONS Analyse - Chapitre 6 Table des matières I Limite d une fonction à l infini 2 I Limite finie à l infini........................................ 2 I a..........................................

Plus en détail

I. Les fonctions de référence

I. Les fonctions de référence I. Les fonctions de référence. Fonctions affines, affines par morceau Une fonction affine est croissante lorsque., décroissante lorsque... Sa représentation graphique est la droite d équation y = a b,

Plus en détail

Partie A : Limites de fonctions

Partie A : Limites de fonctions Chapitre 2 I Limite d une fonction en ou en A) Limite finie en ou en 1) Activité 1 Partie A : Limites de fonctions On considère la fonction définie pour tout par de courbe représentative a) A l aide d

Plus en détail

Chapitre 2. Compléments sur les fonctions : limites, continuité, dérivabilité

Chapitre 2. Compléments sur les fonctions : limites, continuité, dérivabilité Chapitre. Compléments sur les fonctions : ites, continuité, dérivabilité I. Rappels de cours. Limites d une fonction Soit l R. (i) Limites en + et en On dit que f() tend vers l lorsque tend vers + quand

Plus en détail

Terminale S Chapitre 1 : Fonctions, variations et limites Page 1 sur 11

Terminale S Chapitre 1 : Fonctions, variations et limites Page 1 sur 11 Terminale S Chapitre : Fonctions, variations et ites Page sur I) Dérivation ) Définition et interprétation géométrique : Soient f une fonction définie sur un intervalle I de R et a I. La fonction est dérivable

Plus en détail

FONCTIONS. Fonctions usuelles. I.1 Fonctions affines

FONCTIONS. Fonctions usuelles. I.1 Fonctions affines BTS Fonctions 0-0 FONCTIONS I Fonctions usuelles I. Fonctions affines Définition a et b sont deu réels donnés. La fonction définie sur R par f() = a + b est appelée fonction affine. Sa représentation graphique

Plus en détail

Terminale S Chapitre 1 : Fonctions, variations et limites Page 1 sur 12

Terminale S Chapitre 1 : Fonctions, variations et limites Page 1 sur 12 Terminale S Chapitre : Fonctions, variations et ites Page sur I) Dérivation Ce que dit le programme : Nouveautés par rapport à la première : Dérivée de la composée et écriture différentielle (pour la physique)

Plus en détail

Résumé du cours. Fonction dérivable

Résumé du cours. Fonction dérivable Résumé du cours Fonction dérivable Nombre dérivé et fonction dérivée Soit f une fonction définie sur un intervalle ouvert I contenant a. On dit que f est dérivable en a et de nombre dérivé f (a) si Définition

Plus en détail

Chapitre II : Limite de fonctions

Chapitre II : Limite de fonctions Chapitre II : Limite de fonctions Etrait du programme : I Limite d une fonction en l infini Limite finie en + Définition f () = L si tout intervalle ouvert contenant L contient toutes les valeurs f ()

Plus en détail

Étude de fonctions Limites et continuité

Étude de fonctions Limites et continuité Chapitre 3 Term.S Étude de fonctions Limites et continuité Ce que dit le programme : CONTENUS Limites de fonctions Limite finie ou infinie d une fonction à l infini. Limite infinie d une fonction en un

Plus en détail

LIMITES DE FONCTIONS

LIMITES DE FONCTIONS LIMITES DE FONCTIONS I- Limites à l infini. Limites infinies Définition Soit f une fonction définie sur un intervalle ]A; + [. On dit que f a pour ite + quand x tend vers + lorsque pour tout réel M, fx)

Plus en détail

Chapitre 2 - Continuité et convexité

Chapitre 2 - Continuité et convexité Chapitre 2 - Continuité et convexité I Rappels : sens de variation et dérivée Soit f une fonction définie et dérivable sur un intervalle I. Si la dérivée est strictement positive sur l intervalle I, alors

Plus en détail

1 ère S 2004/2005. Ch.12. Applications de la dérivation. A P P L I C A T I O N S D E L A D É R I V A T I O N.

1 ère S 2004/2005. Ch.12. Applications de la dérivation. A P P L I C A T I O N S D E L A D É R I V A T I O N. 1 ère S 4/5 Ch1 Applications de la dérivation J TAUZIEDE A P P L I C A T I O N S D E L A D É R I V A T I O N I- DERIVEE ET SENS DE VARIATION D UNE FONCTION 1 ) Sens de variation et dérivées Théorème liant

Plus en détail

maîtriser le cours (page 48)

maîtriser le cours (page 48) e) > donc la première inégalité équivaut à - sin N cos et sont strictement positis donc la seconde inégalité équivaut à cos N - sin et donc pour tout de sin cos N - N b) Le téorème d encadrement et le

Plus en détail

Terminale S Chapitre 2 «Fonctions : limites, continuité et dérivabilité» Page 1. si pour tout M > 0, on a f x < M "pour x assez grand"

Terminale S Chapitre 2 «Fonctions : limites, continuité et dérivabilité» Page 1. si pour tout M > 0, on a f x < M pour x assez grand Terminale S Capitre «Fonctions : ites, continuité et dérivabilité» Page I) Limites ) Limites à l infini a) Limite finie Définition : Etant donnée une fonction f et un réel α, on dira quelle tend vers α

Plus en détail

Continuité d une fonction, Théorème des valeurs intermédiaires

Continuité d une fonction, Théorème des valeurs intermédiaires Continuité d une fonction, Théorème des valeurs intermédiaires I) Notion de continuité 1) Définition On dit qu une fonction est continue sur un intervalle I lorsque le tracé de sa courbe représentative

Plus en détail

Continuité, dérivabilité et convexité

Continuité, dérivabilité et convexité Continuité, dérivabilité et conveité A) Fonction dérivée et sens de variation 1 Fonction dérivée Déinition : Soit une onction déinie sur un intervalle I et telle que, en toute valeur dérivée '( eiste La

Plus en détail

TERMINALE S Chapitre 2 : LIMITES DE FONCTIONS

TERMINALE S Chapitre 2 : LIMITES DE FONCTIONS SOMMAIRE LIMITES DE FONCTIONS *. 1. LIMITES D UNE FONCTION... 2 LIMITES A L INFINI... 2 LIMITE REELLE ( OU FINIE) EN + ET -... 2 LIMITE INFINIE EN + ET -... 2 LIMITES EN UN REEL A... 3 LIMITE INFINIE EN

Plus en détail

Dérivation Continuité

Dérivation Continuité Dérivation Continuité Christophe ROSSIGNOL Année scolaire 2009/2010 Table des matières 1 Nombre dérivé Fonction dérivé 2 1.1 Nombre dérivé.......................................... 2 1.2 Fonction dérivée.........................................

Plus en détail

Limites et continuité

Limites et continuité 1 Limites et continuité Table des matières 1 Limites - Rappels de première 2 1.1 Définition................................. 2 1.2 Asymptotes parallèles aux axes..................... 3 1.3 Limites des

Plus en détail

Fonctions d une variable réelle

Fonctions d une variable réelle Fonctions d une variable réelle BTS Table des matières Fonctions usuelles. Fonctions en escalier..................................... Fonctions affines....................................... Fonction logarithme......................................4

Plus en détail

Fonctions d une variable réelle

Fonctions d une variable réelle Fonctions d une variable réelle BTS Table des matières Fonctions usuelles. Fonctions en escalier.......................................... Fonctions affines............................................

Plus en détail

Chapitre 3. Continuité, dérivation et limite d une fonction

Chapitre 3. Continuité, dérivation et limite d une fonction Chapitre 3. Continuité, dérivation et limite d une fonction I. Continuité Définition : Continuité d une fonction Dire que f est continue en a signifie que f a une limite finie en a ; cette limite est alors

Plus en détail

Généralités sur les fonctions

Généralités sur les fonctions Généralités sur les fonctions Limite d une fonction à l infini. Limite finie à l infini Définition : Dire qu une fonction f a pour ite le nombre réel l en + signifie que tout intervalle ouvert contenant

Plus en détail

Limites et asymptotes

Limites et asymptotes Chapitre 3 Limites et asymptotes Sommaire 3. Définitions, propriétés........................... 87 3.. Limite finie en un point........................... 87 3..2 Limite infinie en un point..........................

Plus en détail

TERMINALE S Chapitre: LIMITES DE FONCTIONS

TERMINALE S Chapitre: LIMITES DE FONCTIONS 1. Limites à l infini Limite réelle ( ou finie) en + et - Dire qu une fonction f a pour limite le nombre l en + signifie que tout intervalle ouvert de centre l contient toutes les valeurs f() prises pour

Plus en détail

Etude de fonction : notion de continuité

Etude de fonction : notion de continuité Etude de fonction : notion de continuité Leur faire lire des rappels sur les fonctions pour le jour en question. Toutes les fonction considérées dans ce chapitre sont définies sur ou une partie de et sont

Plus en détail

Continuité sur un intervalle.

Continuité sur un intervalle. 1. Continuité d'une fonction... p2 2. Le théorème des valeurs intermédiaires... p5 Copyright meilleurenmaths.com. Tous droits réservés 1. Continuité d'une fonction 1.1. Continuité en un point Définition

Plus en détail

2 Fonctions : limites et continuité

2 Fonctions : limites et continuité capitre Fonctions : ites et continuité Activités (page ) ACTIVITÉ Dans le cas, f est continue sur [ ; ] puisqu elle est d un seul morceau. Dans le cas, f est discontinue en, donc n est pas continue sur

Plus en détail

I. Limites d une fonction à l infini

I. Limites d une fonction à l infini T STI SIN Limites de fonctions 6//202 Lycée Don Bosco 202-203 I. Limites d une fonction à l infini Activité a. Limites infinies On considère la fonction f définie sur ]0 ; + [ par : f(x) = x 2 x +, et

Plus en détail

f : I R 2x + x2 x 1 x 2 w : R R x x h un réel non nul tel que a + h I. On considère les points A(a; f(a)) et M(a + h; f(a + h)).

f : I R 2x + x2 x 1 x 2 w : R R x x h un réel non nul tel que a + h I. On considère les points A(a; f(a)) et M(a + h; f(a + h)). 1S1: doc 5 Dérivation 2015-2016 I Pour bien commencer I.1 Limite en 0 d une fonction Soit I un intervalle contenant 0, I = I\ {0} et f : I R D é f i n i t i o n : On dit que f admet une limite finie L

Plus en détail

Exercices : Étude de fonctions

Exercices : Étude de fonctions Eercices : Étude de fonctions Eercice : Calculer les limites suivantes : (. lim 3 2 +(ln) 3 ) 0 + 2. lim 3. lim ln(e +) ln 3 2 + 4. lim 5. lim 6. lim 7. lim e 2 3 2 e 3+ (ln) (e 4 3 ) + e2 ln+ ln+e 8.

Plus en détail

Dérivées et applications

Dérivées et applications Dérivées et applications I) Dérivée d une fonction strictement monotone 1) Exemples graphiques Soit une fonction dérivable sur un intervalle I. Pour tout I, (x) est le coefficient directeur de la tangente

Plus en détail

Table des matières. 1- Limites en l'infini- Asymptotes LIMITES- CONTINUITÉ

Table des matières. 1- Limites en l'infini- Asymptotes LIMITES- CONTINUITÉ Table des matières - Limites en l'infini- Asmptotes... -- Limite finie en l'infini... --- Définition... --2- Interprétation graphique:... 2 --3- Eemple:... 2-2- Limite infinie en l'infini... 2-2-- Définition...

Plus en détail

CHAPITRE 1 : Raisonnement par récurrence, suites et fonctions

CHAPITRE 1 : Raisonnement par récurrence, suites et fonctions CHAPITRE 1 : Raisonnement par récurrence, suites et fonctions 1 Les suites numériques (rappel de première)... 4 1.1 Généralités... 4 1.2 Plusieurs méthodes pour générer une suite... 4 2 Exemples d algorithmes

Plus en détail

Fonctions Numériques Site MathsTICE de Adama Traoré Lycée Technique Bamako

Fonctions Numériques Site MathsTICE de Adama Traoré Lycée Technique Bamako Fonctions Numériques Site MathsTICE de Adama Traoré Lcée Technique Bamako A- / Ensemble de définition d une fonction : - / Définition : Soit f : A B une fonction. On appelle ensemble de définition D f

Plus en détail

2 : LIMITE ET CONTINUITE

2 : LIMITE ET CONTINUITE : LIMITE ET CONTINUITE LISTE DES COMPTENCES CODE L0 L0 L0 L04 L05 L06 L07 L08 L09 L0 DENOMINATION Savoir calculer la ite en un point d un monôme Savoir calculer la ite en l infini d un monôme Savoir calculer

Plus en détail

CHAPITRE 2 : Continuité, dérivabilité et étude de fonctions

CHAPITRE 2 : Continuité, dérivabilité et étude de fonctions CHAPITRE 2 : Continuité, dérivabilité et étude de fonctions 1 Langage de la continuité... 2 1.1 Définition... 2 1.2 Illustration grapique... 2 1.3 Fonctions usuelles... 2 2 Téorème des valeurs intermédiaires...

Plus en détail

Continuité d une fonction et équation

Continuité d une fonction et équation Continuité d une fonction et équation I) Notion de continuité 1) Définition On dit qu une fonction est continue sur un intervalle I lorsque le tracé de sa courbe représentative sur l intervalle I se fait

Plus en détail

Notes de cours : Chapitre II : Limites. 1 Limite d une fonction en + ou. 1.1 Limite infinie en l infini

Notes de cours : Chapitre II : Limites. 1 Limite d une fonction en + ou. 1.1 Limite infinie en l infini 1 UNIVERSITÉ DE CERGY Année 2013-2014 U.F.R. Économie & Gestion Licence d Économie Finance et Gestion L1-S1 : MATH101 : Pratique des Fonctions numériques Notes de cours : Chapitre II : Limites Notations

Plus en détail

Chapitre 2 : Limites et asymptotes

Chapitre 2 : Limites et asymptotes I Eercices 1 Limites sans indétermination Calculer les ites des fonctions suivantes, et préciser lorsque la courbe représentative de f (notée (C f )) admet une asymptote horizontale ou verticale. 1. f()

Plus en détail

1. Soit l un nombre réel. On dit que f tend vers l en + si f est aussi proche que l on veut de l dès que x est suffisamment

1. Soit l un nombre réel. On dit que f tend vers l en + si f est aussi proche que l on veut de l dès que x est suffisamment Limites s Soit f une fonction définie sur un intervalle I et 0 un point de I ou une etrémité de I.. Limite réelle en un point Soit l un nombre réel. On dit que f admet l pour limite en 0 si f() est aussi

Plus en détail

Limites : Résumé de cours et méthodes 1 Limite d une fonction en + et en

Limites : Résumé de cours et méthodes 1 Limite d une fonction en + et en - Limite infinie en + et en Limites : Résumé de cours et méthodes Limite d une fonction en + et en Soit f une fonction définie sur un intervalle admettant + comme borne supérieure.on dit que f a pour ite

Plus en détail

Titre du dossier : Calculs de dérivées. Sujet : Etudier les dérivées et le sens de variation d une fonction. Auteur : MAIRONE Yvon, SESE Sandrine

Titre du dossier : Calculs de dérivées. Sujet : Etudier les dérivées et le sens de variation d une fonction. Auteur : MAIRONE Yvon, SESE Sandrine Titre du dossier : Calculs de dérivées Sujet : Etudier les dérivées et le sens de variation d une fonction Auteur : MAIRONE Yvon, SESE Sandrine Société : Ecole de la deuième Chance Marseille Mots clés

Plus en détail

Chap. 2 : Fonctions : limites, continuité, dérivabilité Mathématiques T S

Chap. 2 : Fonctions : limites, continuité, dérivabilité Mathématiques T S I Notion de continuité 1) Fonctions continues Définition 1 : Soit f une fonction définie sur un intervalle I contenant a. Remarques : On dit que f est continue en a si lim f(x) = f(a) On dit que f est

Plus en détail

BTS Maintenance industrielle - Les fonctions

BTS Maintenance industrielle - Les fonctions de référence. en escaliers Une fonction en escaliers est une fonction constante par intervalles. Eemple. la fonction f définie sur [,[ - 5 6 7 8. affines Une fonction affine f est définie sur par où a

Plus en détail

Chapitre V : Limites de fonctions

Chapitre V : Limites de fonctions Chapitre V : Limites de fonctions I : Limite en un infini Eercice Voici une liste de fonctions définies par leurs epressions. Rassemblez ces fonctions par couple ayant un comportement semblable en +. Aucune

Plus en détail

Continuité Compléments de dérivation

Continuité Compléments de dérivation Continuité Compléments de dérivation Christophe ROSSIGNOL Année scolaire 015/016 Table des matières 1 Notion de continuité 1.1 Limite finie en un réel a......................................... 1. Définitions

Plus en détail

j a sa courbe y= f (a) (x a)+ f(a) f définie sur... f(x) f (x) f dérivable sur... Ê x n nx n 1 Ê pour n entier n 2 1 x 2 n x n+1 Ê pour n entier n 1

j a sa courbe y= f (a) (x a)+ f(a) f définie sur... f(x) f (x) f dérivable sur... Ê x n nx n 1 Ê pour n entier n 2 1 x 2 n x n+1 Ê pour n entier n 1 Lcée JNSON DE SILLY I DÉRIVÉES TNGENTE À UNE COURBE Soit f une fonction définie sur un intervalle I, dérivable en a où a est un réel de I, et sa courbe représentative dans un repère du plan. La droite

Plus en détail

4. Etablir le tableau de variations et le tableau de signes du sinus sur l intervalle ;

4. Etablir le tableau de variations et le tableau de signes du sinus sur l intervalle ; Vdouine Terminale S Chapitre Fonctions, limites, continuité, dérivabilité La fonction cosinus Tracer la courbe représentative du cosinus Etablir le tableau de variations et le tableau de signes du cosinus

Plus en détail

La fonction f n est définie sur [1;3] f n est pas continue sur R. = lim(x a) lim

La fonction f n est définie sur [1;3] f n est pas continue sur R. = lim(x a) lim Lcée Camille SEE I CONTINUITÉ D UNE FONCTION DÉFINITION Soit f une fonction définie sur un intervalle I de R et a un réel appartenant à I.. Dire que f est continue en a signifie que lim a f()= f(a). Dire

Plus en détail

Limites de fonctions

Limites de fonctions DERNIÈRE IMPRESSIN LE 9 octobre 204 à 9:32 Limites de fonctions Table des matières Limite finie ou infinie à l infini 2. Limite finie à l infini........................... 2.2 Limite infinie à l infini..........................

Plus en détail

Continuité sur un intervalle

Continuité sur un intervalle Continuité sur un intervalle Christophe ROSSIGNOL Année scolaire 2012/2013 Table des matières 1 Continuité : une approche graphique 2 2 Théorème des valeurs intermédiaires 3 2.1 Cas des fonctions continues.......................................

Plus en détail

Remise à Niveau Mathématiques

Remise à Niveau Mathématiques Mathématiques RAN - Fonctions Remise à Niveau Mathématiques Deuième partie : Fonctions Corrigés des eercices Page sur 0 RAN Fonctions Eercices corrigés - Rev 03 Mathématiques RAN - Fonctions DÉFINITIONS

Plus en détail

Sujets de bac : Exponentielle

Sujets de bac : Exponentielle Sujets de bac : Exponentielle Sujet : Polynésie septembre 2002 On considère la fonction définie sur par ) Etudier la parité de. 2) Montrer que pour tout,. 3) Déterminer les ites de en et en. Donner l interprétation

Plus en détail

LIMITES ET CONTINUITE

LIMITES ET CONTINUITE LIMITES ET CONTINUITE I) LIMITES A L'INFINI ) Limite infinie à l'infini Si tout intervalle ]A;+ [ contient tous les f(x) pour x assez grand, on dit que f a pour ite + en +. on écrit f x = f x = A > 0,

Plus en détail

LIMITES et CONTINUITE

LIMITES et CONTINUITE LIMITES et CONTINUITE I. LIMITES EN L INFINI a) Limite infinie Par exemple, considérons la fonction f dont la courbe représentative est : Lorsque x s'en va vers +, f(x) devient de plus en plus grand. il

Plus en détail

Dérivation et fonctions trigonométriques

Dérivation et fonctions trigonométriques Dérivation et fonctions trigonométriques 1. Compléments sur la dérivation Théorème. Soit une fonction à valeurs positives dérivable sur un intervalle. Alors est dérivable sur et. Soit. La fonction est

Plus en détail

Chapitre 2 CONTINUITE - CONVEXITE TES

Chapitre 2 CONTINUITE - CONVEXITE TES Chapitre 2 CONTINUITE - CONVEXITE TES I Quelques rappels Définition Soit a et (a + h) appartenant à I. Dire que f est dérivable en a signifie que le taux d'accroissement entre a et a + h, τ a,h, tend vers

Plus en détail

Fonction continue sur un intervalle Continuité Exercices corrigés

Fonction continue sur un intervalle Continuité Exercices corrigés Fonction continue sur un intervalle Continuité Exercices corrigés Sont abordés dans cette fiche : (cliquez sur l exercice pour un accès direct) Exercice 1 : montrer qu une fonction est continue en un point

Plus en détail

FONCTIONS D UNE VARIABLE RÉELLE

FONCTIONS D UNE VARIABLE RÉELLE FONCTIONS D UNE VARIABLE RÉELLE Toutes les fonctions considérées dans ce chapitre seront des d une variable réelle (i.e. l ensemble de départ est R) à valeurs dans R ou C. 1 Généralités 1.1 Ensemble de

Plus en détail

soit confondu avec son cercle circonscrit C (par définition un polygone est un polygone et non pas un cercle). Or, si l on trace P

soit confondu avec son cercle circonscrit C (par définition un polygone est un polygone et non pas un cercle). Or, si l on trace P Limite d une fonction Approche intuitive de la notion de limite Dans ce chapitre, nous avons besoin d un outil mathématique appelé «Limite» qui est une notion fort nécessaire pour la compréhension et la

Plus en détail

Cours d analyse Brevet de Technicien Supérieur Conception et Réalisation en. Chaudronnerie Industrielle

Cours d analyse Brevet de Technicien Supérieur Conception et Réalisation en. Chaudronnerie Industrielle Cours d analyse Brevet de Technicien Supérieur Conception et Réalisation en Chaudronnerie Industrielle Chapitre 1 Fonctions de référence...2 I Fonctions affines...2 a) Signe d'une fonction affine...2 II

Plus en détail

CONCOURS BLANC PCSI MATHÉMATIQUES 1 - Correction

CONCOURS BLANC PCSI MATHÉMATIQUES 1 - Correction CONCOURS BLANC PCSI MATHÉMATIQUES - Correction Eercice. Calculs d intégrales Les trois questions sont indépendantes. t. Par I.P.P., arctan t dt = t arctan + t dt = t arctan t ln( + t + C.. Il faut se ramener

Plus en détail

Etude de fonctions. lim x = + lim x = Opérations sur les limites

Etude de fonctions. lim x = + lim x = Opérations sur les limites Etude de fonctions I Limites 1) Rappels Limites de fonctions monômes k = k avec k constante x 2 = + x = + x = x 2= + x 3 = x 3 = + Photocopie du livre 1 ère ES page 98 Opérations sur les ites 2) Des nouveaux

Plus en détail

LIMITES ET CONTINUITÉ

LIMITES ET CONTINUITÉ LIMITES ET CONTINUITÉ Ph DEPRESLE septembre 05 Table des matières Limites à l infini. Limites infinies............................................ Limites finies-asymptotes horizontales.............................

Plus en détail

ÉTUDE DE FONCTIONS, FONCTIONS CONTINUES

ÉTUDE DE FONCTIONS, FONCTIONS CONTINUES I. La continuité : Définition : ÉTUDE DE FONCTIONS, FONCTIONS CONTINUES 1 ) Définition : Soit f une fonction définie sur un intervalle I. Graphiquement, on reconnaît qu'une fonction est continue sur un

Plus en détail

GÉNÉRALITÉS. f étant définie sur un intervalle de borne, f(x) = L si tout intervalle ouvert contenant L contient toutes les

GÉNÉRALITÉS. f étant définie sur un intervalle de borne, f(x) = L si tout intervalle ouvert contenant L contient toutes les 1 Limites GÉNÉRALITÉS Définitions Dans les énoncés suivants, L et a sont deux réels. f étant définie sur un intervalle de borne +, f(x) = L si tout intervalle ouvert contenant L contient toutes les valeurs

Plus en détail

Cours d analyse Brevet de Technicien Supérieur Conception et Réalisation en. Chaudronnerie Industrielle

Cours d analyse Brevet de Technicien Supérieur Conception et Réalisation en. Chaudronnerie Industrielle Cours d analyse Brevet de Technicien Supérieur Conception et Réalisation en Chaudronnerie Industrielle Chapitre Fonctions de référence...3 I Fonctions affines...3 a) Signe d'une fonction affine...3 II

Plus en détail

Continuité d une fonction

Continuité d une fonction Continuité d une fonction Sur un intervalle Pour démontrer qu une fonction est continue sur un intervalle, il suffit de dire qu elle est composée de fonctions continues sur cet intervalle. Les fonctions

Plus en détail

Chapitre 2 Fonctions, continuité et dérivées. Table des matières. Chapitre 2 Fonctions, continuité et dérivées TABLE DES MATIÈRES page -1

Chapitre 2 Fonctions, continuité et dérivées. Table des matières. Chapitre 2 Fonctions, continuité et dérivées TABLE DES MATIÈRES page -1 Chapitre Fonctions, continuité et dérivées TABLE DES MATIÈRES page -1 Chapitre Fonctions, continuité et dérivées Table des matières I Exercices I-1 1................................................ I-1................................................

Plus en détail

APPLICATIONS DE LA DERIVATION

APPLICATIONS DE LA DERIVATION APPLICATIONS DE LA DERIVATION 1 I. Sens de variation d une fonction ; extréma : 1) Cas d une fonction constante : On a vu que si f est une fonction constante définie sur un intervalle I de IR alors f (x)

Plus en détail

Limites Droites asymptotes

Limites Droites asymptotes Limites Droites asymptotes Christophe ROSSIGNOL Année scolaire 2009/200 Table des matières Rappels : Limites des fonctions usuelles 2 2 Opérations sur les ites 2 2. Somme de deux fonctions........................................

Plus en détail

Remarque : une fonction continue sur un intervalle possède une représentation graphique qui

Remarque : une fonction continue sur un intervalle possède une représentation graphique qui Chapitre 6 : CONTINUITE - DERIVATION 1. CONTINUITE 1. 1 Continuité en un point Définition Soit f une fonction numérique définie sur un intervalle I de R, et a un élément de I (distinct des bornes de I)

Plus en détail

Etude des fonctions usuelles

Etude des fonctions usuelles Etude des fonctions usuelles 1. Introduction Soit f une fonction réelle de la variable réelle, on a vu que ces fonctions sont souvent définies par des formules, c est-à-dire définies par des epressions

Plus en détail

Limites Comportement asymptotique

Limites Comportement asymptotique Limites Comportement asymptotique Christophe ROSSIGNOL Année scolaire 2009/200 Table des matières Limite d une fonction en, en 3. Limite infinie en, en...................................... 3.2 Limite

Plus en détail

4 e série Exercices sur les études de fonctions

4 e série Exercices sur les études de fonctions e série Eercices sur les études de fonctions Pour les courbes, on vérifiera sur calculatrice graphique On rappelle également que les tableau de variations (tableau récapitulatifs) doivent comporter les

Plus en détail

Université de Rennes 1, Licence 1 Biologie Parcours Accompagné Soutien Mathématiques. Etude de Fonctions, Feuille 1

Université de Rennes 1, Licence 1 Biologie Parcours Accompagné Soutien Mathématiques. Etude de Fonctions, Feuille 1 Université de Rennes 1, Licence 1 Biologie Parcours Accompagné Soutien Mathématiques Etude de Fonctions, Feuille 1 Calcul de dérivées. Dériver les fonctions suivantes. f 1 () = e f () = ln() f 3 () = log

Plus en détail

La fonction Logarithme Népérien

La fonction Logarithme Népérien Terminale S, Cours La fonction Logarithme Népérien Eistence Théorème: (admis) Soit f une fonction dérivable sur un intervalle I de R, strictement monotone sur I à valeurs dans J. Alors il eiste une fonction

Plus en détail

Sujets de bac : Intégration

Sujets de bac : Intégration Sujets de bac : Intégration Sujet n 1 : Liban juin 2006 Partie A : étude d une fonction Soit la fonction définie sur l intervalle 0; par ln 1 Sa courbe représentative dans un repère orthogonal ; ; est

Plus en détail

PRATIQUE DES FONCTIONS NUMÉRIQUES

PRATIQUE DES FONCTIONS NUMÉRIQUES UNIVERSITÉ DE CERGY U.F.R. Economie et Gestion Licence d Économie et Gestion L1 - S1 PRATIQUE DES FONCTIONS NUMÉRIQUES EXAMEN PREMIÈRE SESSION - Janvier 01 - heures Les exercices sont indépendants et peuvent

Plus en détail

CONTINUITE ET CONVEXITE

CONTINUITE ET CONVEXITE CONTINUITE ET CONVEXITE I. Continuité et théorème des valeurs intermédiaires Le mathématicien allemand Karl Weierstrass (1815 ; 1897) apporte les premières définitions rigoureuses au concept de limite

Plus en détail

Comportement asymptotique

Comportement asymptotique 1 Comportement asymptotique Table des matières 1 Limite infinie en l infini 2 1.1 Limite positive infinie en + l infini................... 2 1.2 Limite négative infinie en + l infini...................

Plus en détail

2 cos x =. 0 ;2π l équation sin x =. Corrigés des exercices de trigonométrie

2 cos x =. 0 ;2π l équation sin x =. Corrigés des exercices de trigonométrie Corrigés des eercices de trigonométrie I. Résoudre algébriquement des équations, des inéquations Pour les eercices suivants, on utilisera le cercle trigonométrique Eercice 1 Résoudre dans l intervalle

Plus en détail

Fonction exponentielle

Fonction exponentielle Fonction exponentielle 1 Fonction exponentielle Définition et variation Théorème Définition Il existe une unique fonction définie et dérivable sur telle que et Cette fonction est appelée fonction exponentielle

Plus en détail

Chapitre 8 : Limites de fonctions, continuité et applications

Chapitre 8 : Limites de fonctions, continuité et applications Chapitre 8 : Limites de fonctions, continuité et applications 1. Introduction On introduit d abord de manière rigoureuse les notion de limites de fonctions définies sur un intervalle de R et de continuité

Plus en détail

LIMITES DE SUITES ET DE FONCTIONS

LIMITES DE SUITES ET DE FONCTIONS LIMITES DE SUITES ET DE FONCTIONS I. Définitions des ites en l infini. - Limite infinie. a) Limite de suites. Définition : On dit que la suite (U n ) tend vers + lorsque pour tout réel A, l intervalle

Plus en détail

FONCTIONS NUMÉRIQUES : DÉRIVATION

FONCTIONS NUMÉRIQUES : DÉRIVATION FONCTIONS NUMÉRIQUES : DÉRIVATION Ph DEPRESLE 30 septembre 05 Table des matières Dérivée en un point Continuité et dérivabilité 3 Fonction dérivée 4 Sens de variation d une fonction dérivable 3 5 Dérivées

Plus en détail

Dérivabilité, dérivée,

Dérivabilité, dérivée, Ai-Marseille Université 2016-2017 Analyse I PLANCHE 3 : DÉRIVATION - DÉVELOPPEMENTS LIMITÉS Dérivabilité, dérivée, Eercice 1 [Opérations sur les dérivées] Soit a < b, ]a, b[ et f, g deu applications de

Plus en détail