Annexe : Leçon 10 - Échantillonnage

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Annexe : Leçon 10 - Échantillonnage"

Transcription

1 Aexe : Leço 10 - Échatilloage Clémet BOULONNE pour la sessio 01 I Niveau, prérequis, référeces Niveau BTS Prérequis Probabilités, lois discrètes et cotiues Référeces [1,,, 4, 5] II Coteu de la leço 1 Approximatio de la loi biomiale Propriétés 1 Pour assez grad et p «proche» de 0 tels que p(1 p) e soit «pas trop grad» (c est-à-dire > 0, p 0,1 et p(1 p) 10), o peut approcher la loi biomiale Bi(, p) par la loi de Poisso Pois(λ) où λ = p. Exemple. Das ue chaîe de fabricatio, 5% des pièces sot défectueuses ; o prélève ue pièce, o examie si elle est défectueuse et o la remplace parmi les autres. O répète 10 fois cette expériece. O désige par X la variable aléatoire qui à chaque tirage de 10 pièces associe le ombre de pièces défectueuse. 1. O justifie que X suit ue loi biomiale. Pour chaque tirage, o a deux résultats possibles : ou bie la pièce est défectueuse avec ue probabilité de p = 0,05 ; ou bie elle e l est pas avec ue probabilité de q = 1 p = 0,95. O effectue 10 tirages de maière idépedate. O peut doc coclure que X suit la loi biomiale Bi(10, 0.05).. O calcule P(X = 5). P(X = 5) = C ,055 0, = 0,164.. O motre qu ue approximatio de la loi biomiale par ue loi de Poisso coviet. O a > 0, p < 0,1 et p(1 p) = 5,7 < 10. O peut doc faire ue approximatio grâce à la loi de Poisso Pois(10 0,05) = Pois(6). 4. O calcule P(X = 5) à l aide de cette approximatio. O obtiet : 5 65 P(X = 5) = e 5! = 0, La loi de Poisso doe la même valeur à 10 près, ce qui est ue boe approximatio. Propriété Pour «assez grabd» et pour p «i proche de 0 i de 1» tels que (1 p) e soit «pas trop grad (o coviet de faire cette approximatio pour 50, 0 < p < 1 et p(1 p) > 10), o peut approcher la loi biomiale Bi(,p) par la loi ormale (m,σ) où m = p et σ = p(1 p). 1. Niveau, prérequis, référeces 1

2 Exemple. O lace 00 fois ue pièce de moaie truquée ce qui costitue ue partie. La probabilité d obteir «face» est. O désige X la variable aléatoire qui à chaque partie associe le ombre de «face» obteus. 1. O justifie que X est ue loi biomiale. Pour chaque jet, il y a deux résultats possibles : ou bie o obtiet «face» avec ue probabiltié de p =, ou o obtiet «pile» avec ue probabilité de q = 1 p = 1. O lace 00 fois la pièce de maière idépedate. O peut doc coclure que X suit la loi biomiale Bi(00; ).. P(X > 10) = 00 I=11 C i 00 i 1 00 i. La calculatrice e peut pas toujours effectuer u tel calcul.. O motre qu ue approximatio de la loi biomiale par ue loi ormale se justifie. O a 50 et p = et p(1 p) = 66,66 > 1. O peut doc faire ue approximatio par la loi ormale : 00 ; 00 1 = (00, 8.16). 4. O calcule P(X > 10) à l aide de cette approximatio. O utilise le chagemet de variable T = X 00. T suit la loi ormale (0, 1). 8,16 P(X > 10) = P(8,16T + 00 > 10) = P(T > 1,) = 1 P(T 1,) = 1 0,8888 = 0,111. Lois limites a) Loi faible des grads ombres Propriété Soit X 1, X,..., X variables aléatoires idépedates ayat même espérace m et même écart-type σ et soit X = X1+X+ +X, alors : ɛ > 0, lim + P X m < ɛ = 1. Cocrètemet, ce théorème sigifie que plus est grad plus la variable aléatoire X se rapproche de l espérace mathématique m. Exemple. O lace u dé. Si o obtiet 6, c est gagé et o marque 1 poit. Sio, c est perdu et o marque 0 poit. Soit X i la variable aléatoire correspodat au ombre de poit obteur lors du i e lacer. O a doc : P(X = 0) = 5 6, P(X = 1) = 1 6 et E(X) = 1 6. O répète fois cette même expériece, les variables aléatoires X 1, X,..., X ot la même loi de probabilité. Pour coaître le ombre de succès, o étudie la variable aléatoire X : «Fréquece des succès» avec Nombre de succès X = Nombre d expérieces aléatoires = X 1 + X + + X. Normalemet, o devrait trouver X = 1 6. Pour =, par exemple, il y a peu de chace pour que l o trouve X = 1 6. Pour = 0, la probabilité de trouver X 0 = 1 augmete sas être très forte. 6 Pour = 1000, o se rapproche de cette valeur de 1. 6 Le théorème dit que plus est grad, plus X se rapproche de la valeur théorique 1 6. ANNEXE : LEÇON 10 - ÉCHANTILLONNAGE

3 b) Théorème de la limite cetrée Propriété 4 Soit X 1, X,..., X variables aléatoires idépedates ayat même espérace m et même écart-type σ et soit X = X1+X+ +X alors pour suffisammet grad, X suit approximativemet la loi ormale m, σ. Remarque. Das la plupart des cas, o cosidère que est «suffisammet grad» lorsque atteit quelques dizaies, par exemple lorsque, mais cela déped de la ature, de la populatio et du cotexte de l étude. Applicatio : lois d échatilloage E statistiques, il est e gééral impossible d étudier u caractère sur toute ue populatio de taille N élevée. La théorie d échatilloage se pose la questio suivate : «E supposat cous les paramètres statistiques de la populatio, que peut-o e déduire sur les échatillos prélevés das la populatio? O suppose que ces échatillos sot prélevés au hasard et que le tirage de ces échatillos est effectué avec remise. L esemble de ces échatillos de taille est appelé échatilloage de taille. O peut étudier das ces coditios : 1. la loi d échatilloage des moyees ;. la loi d échatilloage des fréqueces. a) Loi d échatilloage des moyees État doé ue populatio de taille N et X ue variable aléatoire telle que ɛ(x) = m et σ(x) = σ. Pour prélever les échatillos de taille, o a procédé à épréuves idéepdates de variables aléatoires X 1, X,..., X de même loi que X. La variable aléatoire X = X1+X+ +X associe à tout échatillo de taille sa moyee. D après le théorème de la limite cetrée, pour assez grad, o a : Propriété 5 La loi d échatilloage de taille de la moyee X, quad 0, peut être approchée par la loi ormale m, σ. Exemple. Ue machie fabrique des pièces e grade série. À chaque pièce tirée au hasard, o associe sa logueur exprimée e millimètres ; o défiit aisi ue variable aléatoire X. O suppose que X suit la loi ormale (8.0; 0.07). Soit M la variable aléatoire qui à tout échatillo de taille associe la moyee des logueurs des pièces de l échatillo. La propriété ous dit alors que pour assez grad : M 8.0, 0.07 Supposos que les échatillos soiet de taille 100, alors M 100 suit la loi (8.0, 0.007). b) Loi d échatilloage des fréqueces O étudie, das ue populatio de taille N, u caractère X suivat ue loi de Berouilli Ber(p), c est-à-dire que les élémets possèdet ue certaie propriété de fréquece p. Das u échatillo de taille, o répète fois la même épreuve de faço idépedate. O obtiet variables aléatoires X 1, X,..., X de même loi que X. La variable aléatoire f = X1+X+ +X associe à tout échatillo de taille la fréquece de succès sur cet échatillo.. Coteu de la leço

4 Propriété 6 La loi d échatilloage de taille de la fréquece f pour «assez grad» peut être approchée par la loi ormale p(1 p) p ;. O coviet de dire que est «assez grad» lorsque 50. Remarque. Ce résultat est u cas particulier du précédet e l appliquat à m = p et σ = p(1 p). Exemple. Ue ure cotiet 100 boules umérotées de 1 à 100, idiscerables au toucher. Lors d u tirage aléatoire d ue boule, la probabilité d obteir u ombre iférieur ou égal à 7 est p = 0,7. O appelle succès l évéemet qui cosiste à tirer ue des boules umérotées de 1 à 7. U échatillo de taille 50 est obteu par u tirage aléatoire, avec remise, de 50 boules. O s itéresse à la fréquece d apparitio d u succès lors du tirage de ces 50 boules. Soit f 50 la variable aléatoire qui à chaque échatillo de taille 50 associe sa fréquece de succès. X i est la variable aléatoire qui à chaque échatillo associe 1 si la i e boule apporte u succès, 0 sio. Les X i sot des variables aléatoires idépedates et suivet la même loi de Beroulli de paramètre p = 0,7 d espérace E(X i ) = 0,7 et d écart-type σ(x) = p(1 p) = 0,48. O a : f 50 = X 1 + X + + X qui a pour espérace mathématique p = 0,7 et pour écart-type 0,7 0,6 = 0, Exemple. Ue électio a eu lieu et u cadidat a eu 40% des voix. O prélève u échatillo de 100 bulletis de vote. Quelle est la probabilité que, das l échatillo, le cadidat ait etre 5% et 45% des voix? Ici, ous avos = 100 et p = 0,4. La variable aléatoire F correspodat à la fréquece des votes pour le cadidat das l échatillo vérifie doc : F 0.4, = 0.4; O pose T = 10(F 0.4) 0.4 aisi T (0, 1). O obtiet alors par cetrage et réductio : P(0,5 F 0,45) = P( 1,0 T 1,0) = Φ(1,0) 1. Et par lecture directe de la table de loi ormale cetrée-réduite Φ(1, 0) = 0,8461. D où : P(0,5 F 0,45) = 0,69. Il y a doc eviro 69% de chace que, das u échatillo de taille = 100, le cadidat ait etre 5% et 45% des voix. Remarque. Das l exemple précédet, o costate que l o dispose des iformatios sur la populatio (ici, l esemble des votes) parce que l éléctio a déjà eu lieu. O e déduit des iformatios sur l échatillo. Mais, das la pratique, c est souvet le phéomèe réciproque que l o étudie. 4 ANNEXE : LEÇON 10 - ÉCHANTILLONNAGE

5 III Complémets 1 Démostratio de la covergece vers la loi Poisso Or O décompose : C k p k q k = C k p k (1 p) k. C k p k (1 p) k ( 1) ( k 1) = p k (1 p) k k! = (p)k k 1 (1 p) k. k! O se place das la situatio où p reste costat et où ted vers l ifii (par coséquet p ted vers 0). Lorsque ted vers l ifii, les termes 1 1, 1,..., 1 k 1 tedet vers 1. le produit des termes ted égalemet vers 1 puisqu ils sot e ombre fii. O a (1 p) k = (1 p) (1 p) k. Or lim p 0 (1 p) k = 1 ; de plus, (1 p) = 1 p. O trouve doc C k p k (1 p) k (p)k k! e p. Il s agit de loi de probabilité d ue loi de Poisso de paramètre λ = p. Ue démostratio du théorème de De Moivre-Laplace Soit S ue variable aléatoire de loi Bi(,p) où 0 < p < 1. O ote S la variable ormalisée de S : S = S E(S ) = S p. σ(s ) pq De Moivre-Laplace Soit S ue variable aléatoire de loi Bi(,p) et S défiie plus e haut. Pour tous réels c < d fixés : Théorème 1 lim P(c + S d ) = Φ(d ) Φ(c) = d c 1 dt, π exp t où Φ est la foctio de répartitio de la loi (0, 1). Comme das le cas de l approximatio par ue loi de Poisso, ce theorème permet l approximatio de P(a < S b) pour les grades valeurs de. Pour cela, il suffit de remarquer que la foctio x (x p)/ pq état croissate, o a l équivalece : a < S (ω) b a p < S (ω) p = S b p pq pq (ω). pq O e déduit que pour tout 1 a p P(a < S b) = P < S pq < b p. pq. Complémets 5

6 Lorsque est «grad», le théorème de De Moivre-Laplace ous dit que le secod membre peut être approché par : a p P < S pq < b p b p a p Φ Φ. pq pq pq Soit X ue suite de variables biomiales et p. La foctio caractéristique de X est : celle de Z = X p pq est : ϕ X (t ) = (p e + q), O calcule le logarithme de cette foctio : lϕ Z = l (p e (it )/ pq + q) ϕ Z (t ) = p e (it )/ pq + q e ( it p)/ pq. O développe l expoetielle au secod ordre, il viet it p = l (p(e (it )/pq 1) + 1) it p. pq pq p it lϕ Z pt pq pq + p t it p = t pq pq q + pt q = t t (p 1) = q. O a démotré que : et o e déduit que lϕ Z t ϕ ZN e t /. C est la foctio caractéristique de la loi ormale cetrée réduite (0, 1). Ue autre démostratio plus facile et plus «istructive» peut être lu das [4, Sectio 7.4]. 6 ANNEXE : LEÇON 10 - ÉCHANTILLONNAGE

7 Bibliographie [1] N. DAVAL, Échatilloage, BTS Domotique. URL : http ://mathematiques.daval.free.fr [] Cotributeurs de Wikipédia, Loi biomiale, Wikipédia. [] G. COSTANTINI, Échatilloage - Estimatio, BTS ème aée. URL : http ://bacamaths.et. [4] C. SUQUET, Itroductio au Calcul des Probabilités, L [5] Cotributeurs de Wikipédia, Théorème de Moivre-Laplace, Wikipédia. 7

Échantillonnage. I Rappels sur les lois usuelles 2

Échantillonnage. I Rappels sur les lois usuelles 2 BTS DOMOTIQUE Échatilloage 2008-2010 Échatilloage Table des matières I Rappels sur les lois usuelles 2 II Approximatios de la loi biomiale 2 II.1 Approximatio par la loi de poisso................................

Plus en détail

Chapitre 6 Théorèmes de convergence

Chapitre 6 Théorèmes de convergence Chapitre 6 Théorèmes de covergece 1. La covergece e loi O a déjà recotré ue covergece e loi lors de l approximatio d ue loi biomiale par ue loi de Poisso. Ce problème se place das u cadre plus gééral où

Plus en détail

1 Lois des grands nombres. 2 Théorème central-limite. 3 Estimation ponctuelle à partir d échantillons. 4 Biais dans les estimations

1 Lois des grands nombres. 2 Théorème central-limite. 3 Estimation ponctuelle à partir d échantillons. 4 Biais dans les estimations Pla du cours 2 RFIDEC cours 2 : Échatillos, estimatios poctuelles Christophe Gozales LIP6 Uiversité Paris 6, Frace 1 Lois des grads ombres 2 Théorème cetral-limite 3 Estimatio poctuelle à partir d échatillos

Plus en détail

Autour de la loi de Poisson

Autour de la loi de Poisson Agrégatio Itere de Mathématiques Thierry Champio séace du 25 ovembre 2016 Autour de la loi de Poisso Notatios - Itroductio Das tout ce problème, (Ω, T, P) est u espace probabilisé. Toutes les variables

Plus en détail

Loi binomiale. Loi de Bernoulli

Loi binomiale. Loi de Bernoulli Loi biomiale Loi de Beroulli O s itéresse ici à la réalisatio ou o d u évéemet. Autremet dit, o étudie les expérieces aléatoires qui ot que deux issues possibles : Obteir Pile ou Face Doer aissace à u

Plus en détail

est la fréquence empirique des succès lors des 10 premières expériences.

est la fréquence empirique des succès lors des 10 premières expériences. Pierre Veuillez Statistiques iféretielle Sources, et pour e savoir plus : http://www.math-ifo.uiv-paris5.fr/smel 1 Problématique : Exemple ue ure cotiet des boules rouges et blaches dot o e coaît pas la

Plus en détail

3.1 Loi de Bernouilli Loi Binomiale Loi géométrique Loi de Pascal (loi négative binomiale)...3

3.1 Loi de Bernouilli Loi Binomiale Loi géométrique Loi de Pascal (loi négative binomiale)...3 3- Lois de distributio discrètes -1 Chapitre 3 : Lois de distributio discrètes 3.1 Loi de Berouilli...1 3. Loi Biomiale...1 3.3 Loi géométrique... 3.4 Loi de Pascal (loi égative biomiale)...3 3.5 Loi hypergéométrique...4

Plus en détail

Exercices sur le chapitre «Variables aléatoires»

Exercices sur le chapitre «Variables aléatoires» Araud de Sait Julie - MPSI Lycée La Merci 2015-2016 1 Pour démarrer Exercices sur le chapitre «Variables aléatoires» Exercice 1 (Recostitutio de paires) O fixe deux etiers aturels 1 r. U placard cotiet

Plus en détail

IREM Martine Quinio. 5 février 2013

IREM Martine Quinio. 5 février 2013 : 1 IREM 2013 Martie Quiio 5 février 2013 1 La loi de Gauss, ou loi ormale Itroductio : Lire court article C.Villai das Le Mode du 14-15/12 : il compare le traitemet médiatique boso de Higgs et rats OGM

Plus en détail

X 1 = { X si X est impair 0 sinon

X 1 = { X si X est impair 0 sinon Corrigé ECRICOME 998 par Pierre Veuillez Das tout le problème, X désige ue variable aléatoire défiie sur u espace probabilisé (Ω, A, P et à valeurs das N et E(X l espérace de X si elle eiste. O ote A l

Plus en détail

Probabilités, MATH 424 Feuille de travaux dirigés 2. Solutions.

Probabilités, MATH 424 Feuille de travaux dirigés 2. Solutions. Probabilités, MATH 44 Feuille de travaux dirigés. Solutios. 1 Exercices Exercice 1. O jette trois dés o pipés. 1. Calculer la probabilité d obteir au mois u 1.. Que vaut la probabilité d obteir au mois

Plus en détail

ESTIMATION Exercices

ESTIMATION Exercices ESTIMATION Exercices EERCICE : Les variables aléatoires cosidérées das cet exercice sot défiies sur u espace probabilisable, AP, Soit a u réel strictemet positif et ue variable aléatoire de loi uiforme

Plus en détail

PROBABILITES. TD n 1. Bg sachant que PA

PROBABILITES. TD n 1. Bg sachant que PA TD 1 1. Quel est l uivers Ω pour l'expériece : o lace 2 fois de suite u dé (o truqué). A quelles parties de Ω correspodet les évéemets suivats : a) A : o obtiet pas d as au cours des 2 lacers ; b) B :

Plus en détail

Intervalles de fluctuations et intervalles de confiance

Intervalles de fluctuations et intervalles de confiance Complémets e statistique. Préparatio au Capes. Uiversité de Rees 1. 2015. Complémets e Statistique Préparatio au Capes Uiversité de Rees 1 Itervalles de fluctuatios et itervalles de cofiace Table des matières

Plus en détail

Éléments de probabilité.

Éléments de probabilité. Élémets de probabilité.. Gééralités Les probabilités s'occupet de phéomèes aléatoires, c'est à dire qui sot liés au hasard. Défiitio : O appelle expériece aléatoire, ue expériece dot les résultats, o tous

Plus en détail

Chapitre 4 Lois discrètes

Chapitre 4 Lois discrètes Chapitre 4 Lois discrètes 1. Loi de Beroulli Ue variable aléatoire X est ue variable de Beroulli si elle e pred que les valeurs 0 et 1 avec des probabilités o ulles. P(X = 1) = p, P(X = 0) = 1 p = q, avec

Plus en détail

TD1. Dénombrements, opérations sur les ensembles.

TD1. Dénombrements, opérations sur les ensembles. Uiversité Pierre & Marie Curie Licece de Mathématiques L3 UE LM345 Probabilités élémetaires Aée 2014 15 TD1. Déombremets, opératios sur les esembles. 1. Combie de faços y a-t-il de classer 10 persoes à

Plus en détail

Distributions d échantillonage

Distributions d échantillonage Chapitre 3 Distributios d échatilloage 3.1 Gééralités sur la otio d échatilloage 3.1.1 Populatio et échatillo O appelle populatio la totalité des uités de importe quel gere prises e cosidératio par le

Plus en détail

Éléments de probabilités

Éléments de probabilités Chapitre 1 Élémets de probabilités 1.1 Notio d expériece aléatoire Défiitio 1 Ue expériece, dot o coait les issues possibles, est appelé expériece aléatoire s il est impossible de savoir à l avace quelle

Plus en détail

Corrigé du baccalauréat ES Asie 23 juin 2016

Corrigé du baccalauréat ES Asie 23 juin 2016 Corrigé du baccalauréat ES Asie jui 16 A.. M. E.. EXERCICE 1 Commu à tous les cadidats 6 poits Das u repère orthoormé du pla, o doe la courbe représetative C f d ue foctio f défiie et dérivable sur l itervalle

Plus en détail

Correction du devoir Surveillé 6 : Probabilités

Correction du devoir Surveillé 6 : Probabilités S www.wicky-math.fr.f DS - Probabilités Correctio du devoir Surveillé : Probabilités Exercice. ROC Démotrer le théorème suivat : ( poits) Théorème : La probabilité de la réuio de deux évéemetsaetb est

Plus en détail

Corrigé : EM Lyon 2005

Corrigé : EM Lyon 2005 Corrigé : EM Lyo 5 Optio écoomique Eercice :. Par défiitio de E, la famille (I,J,K) est ue famille géératrice de E. Cette famille est-elle libre? O cherche tous les réels a, b et c tels que : ai +bj +ck

Plus en détail

Suites de variables aléatoires.

Suites de variables aléatoires. Uiversité Pierre et Marie Curie 200-20 Probabilités et statistiques - LM345 Feuille 8 Suites de variables aléatoires.. Soit Ω, F, P u espace de probabilités. Détermier pour chacue des covergeces suivates

Plus en détail

Séance 2 : Estimateurs convergents, non biaisés et exhaustifs.

Séance 2 : Estimateurs convergents, non biaisés et exhaustifs. Exercice Séace 2 : Estimateurs covergets, o biaisés et exhaustifs. Soiet les variables aléatoires X i i =,..., i.i.d. Motrez que S 2 = X i X 2 est u estimateur o biaisé de σ 2, où σ 2 = V ar[x ]. O utilise

Plus en détail

Variables aléatoires. Exercices

Variables aléatoires. Exercices Variables aléatoires Exercices 04-05 Les idispesables Loi d ue variable aléatoire, espérace et variace O répète idéfiimet le lacer d u dé équilibré à 6 faces Soit la variable aléatoire doat la valeur du

Plus en détail

C.1- Lois discrètes- Loi uniforme

C.1- Lois discrètes- Loi uniforme C- Lois usuelles C.1- Lois discrètes- Loi uiforme Loi d ue variable aléatoire X preat ses valeurs das {1,,} avec la même probabilité: 1 P ( X = x ) = x {1,,... } Ex : E=«lacer d u dé régulier» X=uméro

Plus en détail

Statistiques inférentielles

Statistiques inférentielles Statistiques iféretielles LI323 Hugues Richard (otes de cours: Pierre-Heri Wuillemi) Uiversité Pierre et Marie Curie (UPMC) Laboratoire géomique des microorgaismes (LGM) Itroductio Soit ue populatio de

Plus en détail

MVA101 - Analyse et calcul matriciel T. Horsin

MVA101 - Analyse et calcul matriciel T. Horsin MVA101 - Aalyse et calcul matriciel 2012 2013 T. Horsi (thierry.horsi@cam.fr) Attetio: Ce documet est ue base de travail qui peut coteir des coquilles. Les zoes e bleus sot, de loi, hors programme, et

Plus en détail

Master 1 Métiers de l Enseignement, Mathématiques - ULCO, La Mi-Voix, 2012/2013

Master 1 Métiers de l Enseignement, Mathématiques - ULCO, La Mi-Voix, 2012/2013 Master Métiers de l Eseigemet, Mathématiques - ULCO, La Mi-Voix, 202/203 ANALYSE 2 Fiche de Mathématiques 4 - Séries umériques Soit E u espace vectoriel sur le corps K = R ou C Pour toute famille fiie

Plus en détail

Séance 5 : Exercices récapitulatifs sur l estimation ponctuelle

Séance 5 : Exercices récapitulatifs sur l estimation ponctuelle Math-F-207 Corrigé Séace 5 Exercice 1 Séace 5 : Exercices récapitulatifs sur l estimatio poctuelle Les élémets d ue populatio possèdet u caractère X qui suit ue loi de desité f (x e x2 /2 2π où > 0. Pour

Plus en détail

Master Eseec Statistique pour l expertise - partie2

Master Eseec Statistique pour l expertise - partie2 Master Eseec Statistique pour l expertise - partie2 Christia Laverge Uiversité Paul Valéry - Motpellier 3 http://moodle-miap.uiv-motp3.fr http://www.uiv-motp3.fr/miap/es (UPV) Eseec 1 / 57 Lois limites

Plus en détail

Estimation paramétrique

Estimation paramétrique Retour au pla du cours Soit Ω, A, P u espace probabilisé et X ue v.a. de Ω, A das E, E. La doée d u modèle statistique c est la doée d ue famille de probabilités sur E, E, {P θ, θ Θ}. Le modèle état doé,

Plus en détail

Loi binomiale. Niveau : Première S + SUP (Convergence) Prérequis : Variable aléatoire, espérance, variance, théorème limite central, loi de Poisson

Loi binomiale. Niveau : Première S + SUP (Convergence) Prérequis : Variable aléatoire, espérance, variance, théorème limite central, loi de Poisson 4 L E Ç O N Loi biomiale Niveau : Première S + SUP (Covergece) Prérequis : Variable aléatoire, espérace, variace, théorème limite cetral, loi de Poisso 1 Loi de Beroulli Défiitio 41 Loi de Beroulli Soit

Plus en détail

Estimations. Les Moyennes des échantillons suivent une loi normale : = m et d' écart - type σ X

Estimations. Les Moyennes des échantillons suivent une loi normale : = m et d' écart - type σ X Estimatios Problématique. A partir d'observatios faites sur u échatillo, o se propose de tirer des coclusios sur la populatio toute etière. Aisi cotrairemet à la logique déductive, qui va du gééral au

Plus en détail

ECOLE DES HAUTES ETUDES COMMERCIALES E.S.C.P.-E.A.P. ECOLE SUPERIEURE DE COMMERCE DE LYON MATHEMATIQUES I

ECOLE DES HAUTES ETUDES COMMERCIALES E.S.C.P.-E.A.P. ECOLE SUPERIEURE DE COMMERCE DE LYON MATHEMATIQUES I CHAMBRE DE COMMERCE ET D INDUSTRIE DE PARIS DIRECTION DE L ENSEIGNEMENT Directio des Admissios et cocours ECOLE DES HAUTES ETUDES COMMERCIALES E.S.C.P.-E.A.P. ECOLE SUPERIEURE DE COMMERCE DE LYON CONCOURS

Plus en détail

SUITES et SERIES DE FONCTIONS

SUITES et SERIES DE FONCTIONS UE7 - MA5 : Aalyse SUITES et SERIES DE FONCTIONS I Suites de foctios à valeurs das È ou  Etat doé u esemble E, ue suite de foctios umériques défiies sur E est la doée, pour tout etier, d'ue applicatio

Plus en détail

Amérique du Sud EXERCICE 1 6 points Commun à tous les candidats Les trois parties suivantes sont indépendantes Partie A Partie B Partie C

Amérique du Sud EXERCICE 1 6 points Commun à tous les candidats Les trois parties suivantes sont indépendantes Partie A Partie B Partie C Amérique du Sud EXERCICE 6 poits Commu à tous les cadidats Ue etreprise est spécialisée das la fabricatio de ballos de football. Cette etreprise propose deux tailles de ballos : ue petite taille, ue taille

Plus en détail

question-type-bac.fr

question-type-bac.fr BAC S 4 Mathématiques - Frace métropole Eseigemet spécifique et de spécialité Ce documet est bie plus qu u simple corrigé de sujet de baccalauréat. Grâce aux solutios claires et détaillées, aux démarches

Plus en détail

Résumé 10 : Probabilités I

Résumé 10 : Probabilités I http://mpbertholletwordpresscom Résumé 10 : Probabilités I Ω sera u esemble abstrait, c est-à-dire sas structure particulière P(Ω désige l esemble de tous les sous-esembles de Ω, y compris le sous-esemble

Plus en détail

donc sont-ils colinéaires : ne sont pas colinéaires donc les points A, B et C ne sont pas alignés.

donc sont-ils colinéaires : ne sont pas colinéaires donc les points A, B et C ne sont pas alignés. 1 Exercice 1 ( poits) L espace est mui d u repère orthoormal (O ; i, j, k ). Les poits A, B et C ot pour coordoées respectives A (1 ; ; ), B ( ; 6 ; 5), C( ; ; 3). 1 a) Démotrer que les poits A, B et C

Plus en détail

Partie I : Résultats généraux sur les matrices stochastiques - Illustrations

Partie I : Résultats généraux sur les matrices stochastiques - Illustrations 8-8- JFC p EM LYON S JF COSSUTTA Lycée Marceli BERTHELOT SAINT-MAUR jea-fracoiscossutta@waadoofr PROBLÈME Partie I : Résultats gééraux sur les matrices stochastiques - Illustratios Remarque Das la suite

Plus en détail

Introduction aux tests statistiques

Introduction aux tests statistiques Itroductio aux tests statistiques Philippe Boeau 27 septembre 2006 Chapitre 1 Élémets de probabilités Exercice 1 O ote E l esemble des etiers aturels iférieurs ou égaux à 12 et A (respectivemet B et C)

Plus en détail

EXERCICES de Statistiques

EXERCICES de Statistiques EXERCICES de Statistiques Aette Corpart lycée Jea Zay de Thiers EXERCICES sur la LOI NORMALE La variable aléatoire X suit la loi ormale N ( 12 ; 4 ). Calculer les probabilités suivates : P ( X 15 ) ; P

Plus en détail

Résumé de statistique inductive

Résumé de statistique inductive Uiversité de Bourgoge Faculté de Médecie et de Pharmacie Résumé de statistique iductive NB : les iformatios coteues das ce polycopié e fot e aucu cas office de référece pour le cocours, il s agit uiquemet

Plus en détail

M : Zribi 4 ème Sc Exercices. Série 34

M : Zribi 4 ème Sc Exercices. Série 34 Série ème Sc Exercices Exercice : Ue ure cotiet au départ 0 boules blaches et 0 boules oires idiscerables au toucher. O tire au hasard ue boule de l'ure : - si la boule tirée est blache, o la remet das

Plus en détail

Chapitre Rappels sur les suites

Chapitre Rappels sur les suites Chapitre Séries umériques. Rappels sur les suites Défiitio.. (i) Ue suite (a ) N de réels (ou de complexes) est covergete vers ue limite a si pour tout ε > 0, il existe 0 N tel que pour tout 0, o a a a

Plus en détail

Variables aléatoires finies Présentation

Variables aléatoires finies Présentation Variables aléatoires fiies Présetatio. Défiitio élémetaire (tombola).... Le prix de vete d'u billet de la tombola... 3 3. Espérace mathématique d ue variable aléatoire fiie... 4 4. Variace et écart type

Plus en détail

Correction de la question de cours 1

Correction de la question de cours 1 Math I Aalyse Exame du 9 décembre 2007 Durée 2 heures Aucu documet est autorisé. Les calculatrices, téléphoes portables et autres appareils électroiques sot iterdits. Il est iutile de recopier les éocés.

Plus en détail

Intervalles de confiance

Intervalles de confiance Itervalles de cofiace H4 H4 Itervalles de cofiace Vocabulaire : u correspod à ue fiabilité (ou cofiace) de 95 %, u correspod à ue fiabilité (ou cofiace) de 99 % 0 ) Echatillo o exhaustif La théorie des

Plus en détail

Partie B u. 4 Soit (u n ) la suite définie par : pour tout entier naturel n 0, u

Partie B u. 4 Soit (u n ) la suite définie par : pour tout entier naturel n 0, u Exercice 1 (6 poits) Commu à tous les cadidats O cosidère la foctio f défiie et dérivable sur l itervalle [ 0 ; + [ par : f (x) = 5 l ( x ± 3 ) x. 1. a. O appelle f ' la foctio dérivée de la foctio f sur

Plus en détail

DT - CONSTRUCTION DE L EXPONENTIELLE ET DU LOGARITHME NEPERIEN

DT - CONSTRUCTION DE L EXPONENTIELLE ET DU LOGARITHME NEPERIEN DT - CONSTRUCTION DE L EXPONENTIELLE ET DU LOGARITHME NEPERIEN Das ce qui suit, o utilisera des argumets élémetaires et o e suppose aucue coaissace des foctios exp et l Ce qui suit sert à les défiir comme

Plus en détail

Sup Galilée - Maths pour l Ingénieur Corrigé du Partiel du 19 Novembre 2008

Sup Galilée - Maths pour l Ingénieur Corrigé du Partiel du 19 Novembre 2008 Sup Galilée - Maths pour l Igéieur Corrigé du Partiel du 9 Novembre 008 Étude d ue suite récurrete Soit u 0 ]0, [ O cosidère la suite (u ) défiie par u + u 3 u ) Justifier que la suite u est borée O motre

Plus en détail

SUITES NUMERIQUES. q n. pour q. n + Une suite numérique est une fonction associant à tout nombre entier naturel n, un nombre réel u(n) : u :

SUITES NUMERIQUES. q n. pour q. n + Une suite numérique est une fonction associant à tout nombre entier naturel n, un nombre réel u(n) : u : SUITES NUMERIQUES Coteus : Capacités attedues : Commetaires : Suites Limite d ue suite défiie par so terme gééral Notatio lim u Suites géométriques : - somme de termes cosécutifs d ue suite géométrique

Plus en détail

10ème cours Une variable numérique : indices de localisation

10ème cours Une variable numérique : indices de localisation 10ème cours Ue variable umérique : idices de localisatio Das ce cours, o fait u rappel sur les idices de localisatio, médiae, quatiles et moyee, et o étudie la faço de les utiliser pour comparer les distributios

Plus en détail

I- Rappel I-1. Types de tirages : Soit un ensemble fini E contenant n éléments. On considère l'épreuve suivante : " tirer p éléments de E ".

I- Rappel I-1. Types de tirages : Soit un ensemble fini E contenant n éléments. On considère l'épreuve suivante :  tirer p éléments de E . Cours de termiales Probabilités sur u esemble fii Mr ABIDI F I- Rappel I- Types de tirages : Soit u esemble fii E coteat élémets O cosidère l'épreuve suivate : " tirer p élémets de E " Type de tirages

Plus en détail

I] VARIABLE ALEATOIRE DISCRETE (A NOMBRE FINI DE VALEURS) : Une variable aléatoire X est une fonction définie sur Ω à valeurs dans R.

I] VARIABLE ALEATOIRE DISCRETE (A NOMBRE FINI DE VALEURS) : Une variable aléatoire X est une fonction définie sur Ω à valeurs dans R. Chapitre 5 VARIABLES ALEATOIRES LOIS FONDAMENTALES Objectifs : o o o Défiir la otio de variable aléatoire das les différets cas d uivers. Détermier la loi de probabilité d ue variable aléatoire et calculer

Plus en détail

1 ère S Exercices sur le schéma de Bernoulli (1)

1 ère S Exercices sur le schéma de Bernoulli (1) ère Exercices sur le schéma de Beroulli () 8 Le chevalier de Méré, philosophe et homme de lettres, pose le problème suivat au mathématicie Blaise ascal : «Qu est-ce qui est le plus probable : obteir au

Plus en détail

Partie A : z x. z =( z ) = 4 = - 4 donc z est aussi solution de (E) Partie C :

Partie A : z x. z =( z ) = 4 = - 4 donc z est aussi solution de (E) Partie C : Corrigé baccalauréat S Polyésie 200 (raiateabac.blogspot.com) EXERCICE (5 poits) Pré-requis : z a + bi et _ z a bi Partie A : a ) E posat z a + bi et z a + b i o obtiet : z x z (a + bi) ( a + b i) aa bb

Plus en détail

Baccalauréat S Centres étrangers 10 juin 2016

Baccalauréat S Centres étrangers 10 juin 2016 Baccalauréat S Cetres étragers 0 jui 206 Exercice I (4 poits) Pour chacue des quatre affirmatios suivates, idiquer si elle est vraie ou fausse, e justifiat la répose. il est attribué u poit par répose

Plus en détail

P(n) : quelque soit n entier naturel : n 3 = ( n) 2. P(n 0 ) est vraie (initialisation).

P(n) : quelque soit n entier naturel : n 3 = ( n) 2. P(n 0 ) est vraie (initialisation). T ale S Chapitre. Résumé page 3.. Pricipe de récurrece. a. Exemple. 3 + 3 = + 8 = 9 = ( + ) 3 + 3 + 3 3 = + 8 + 7 = 36 = ( + + 3) O voudrait démotrer la propriété géérale : P() : quelque soit etier aturel

Plus en détail

EXERCICES PROBABILITES

EXERCICES PROBABILITES EXERCICE : Calculer, pour EXERCICES PROBABILITES Soit,,3, 4,5,6, ( ) x, l itégrale I dx. 0 x ; détermier le réel pour que l o défiisse ue probabilité p sur * e posat, pour tout etier,6 p I Quelle est la

Plus en détail

1 Dénombrement. 1.1 Principe. Définition : 1.2 Combinaisons. Définition :

1 Dénombrement. 1.1 Principe. Définition : 1.2 Combinaisons. Définition : Probabilités : coditioemet et idéedace Termiale S Déombremet. Pricie O raelle que le cardial d u esemble fii E, oté Card(E), rerésete so ombre d élémets. Si E 0,0 alors Card(E). Notre but est de détermier

Plus en détail

i. En déduire une mesure de l angle ( BD, PΩ ).

i. En déduire une mesure de l angle ( BD, PΩ ). Polyésie septembre EXERCICE Pour chacue des propositios suivates, idiquer si elle est vraie ou fausse et doer ue démostratio de la répose choisie Ue répose o démotrée e rapporte aucu poit O cosidère la

Plus en détail

Équirépartition presque sûre pour f (x) = 2x modulo 1 Jean-Baptiste Bardet 26 mai 2005

Équirépartition presque sûre pour f (x) = 2x modulo 1 Jean-Baptiste Bardet 26 mai 2005 Équirépartitio presque sûre pour f (x) = x modulo 1 Jea-Baptiste Bardet 6 mai 005 O étudie le comportemet des suites défiies par récurrece x = f (x 1 ) = f (x), où x 0 = x [0;1) et f (x) = x mod 1, et

Plus en détail

Terminales S Devoir maison n 3 -A faire pour le jeudi 6 novembre 2014

Terminales S Devoir maison n 3 -A faire pour le jeudi 6 novembre 2014 Termiales S Devoir maiso -A faire pour le jeudi 6 ovembre 0 eercice : probabilités coditioelles et suite Alice débute au jeu de fléchettes. Elle effectue des lacers successifs d ue fléchette. Lorsqu elle

Plus en détail

TD Modélisation Statistique

TD Modélisation Statistique Licece 3 Mathématiques TD Modélisatio Statistique Ex 1. Soit X ue variable aléatoire réelle de desité f cotiue et de foctio répartitio F. 1. Calculer la foctio de répartitio de Y = αx + β pour α, β R,

Plus en détail

[M. Gubinelli - Processus discrets - M1 MMD 2009/ v.6] IV Martingales

[M. Gubinelli - Processus discrets - M1 MMD 2009/ v.6] IV Martingales Filtratios et martigales 1 [M. Gubielli - Processus discrets - M1 MMD 2009/2010-20100113 - v.6] IV Martigales 1 Filtratios et martigales O cosidère u espace probabilisé (Ω, F, P). Défiitio 1. Ue filtratio

Plus en détail

Terminale S. Lycée Desfontaines Melle Chapitre 11 Probabilité Conditionnement et indépendance

Terminale S. Lycée Desfontaines Melle Chapitre 11 Probabilité Conditionnement et indépendance Termiale S. Lycée Desfotaies Melle Chapitre 11 Probabilité Coditioemet et idépedace I. Probabilité coditioelle 1- Exemple Das u lycée coteat N élèves, 4% des élèves sot des filles, % des garços. Parmi

Plus en détail

Chapitre 1. Les suites numériques Principe de récurrence Limite d une suite

Chapitre 1. Les suites numériques Principe de récurrence Limite d une suite Eseigemet spécifique Chapitre 1. Les suites umériques Pricipe de récurrece Limite d ue suite I. Rappels sur les suites umériques 1. géérale Ue suite umérique est ue foctio défiie de N vers R, elle peut

Plus en détail

Composition de Mathématiques D (U)

Composition de Mathématiques D (U) École Normale Supérieure Cocours d admissio 205 Filière MP Compositio de Mathématiques D (U) (Durée : 6 heures) L utilisatio des calculatrices est iterdite Sujet saisi par Michel Quercia (michel.quercia@prepas.org)

Plus en détail

Texte Filtre de Kalman-Bucy

Texte Filtre de Kalman-Bucy Page 1. Texte Filtre de Kalma-Bucy 1 e modèle U avio se déplace etre Paris et odres. Il suit ue trajectoire théorique appelée trajectoire omiale dot les coordoées sot coues de tous. a trajectoire de l

Plus en détail

CHAPITRE 2 : Estimation non-paramétrique 1. Estimateurs empiriques

CHAPITRE 2 : Estimation non-paramétrique 1. Estimateurs empiriques CHAPITRE 2 : Estimatio o-paramétrique 1. Estimateurs empiriques Soit u échatillo i.i.d. de durées T i i1,..., de foctio de survie S Défiitio: L estimateur empirique de la foctio de survie est S x 1 i1

Plus en détail

Chapitre 5 : Suites classiques

Chapitre 5 : Suites classiques Chapitre 5 : Suites classiques Objectifs : Révisios sur les suites arithmétiques et géométriques. Révisio du théorème de croissace comparée. Savoir exprimer e foctio de les termes d ue suite récurrete

Plus en détail

On peut représenter la situation par un arbre : On a donc p(b 1 B 2)= p(b 1) p (B ) = 3 4 = 3.

On peut représenter la situation par un arbre : On a donc p(b 1 B 2)= p(b 1) p (B ) = 3 4 = 3. T ale S Correctio Exercices type bac de Probabilités. Mars Exercice : Ue ure cotiet au départ 0 boules blaches et 0 boules oires idiscerables au toucher. O tire au hasard ue boule de l ure : Si la boule

Plus en détail

L2PC et Cycles. Mathématiques: SERIES et INTEGRALES Cours Elisabeth REMM

L2PC et Cycles. Mathématiques: SERIES et INTEGRALES Cours Elisabeth REMM FACULTE DES SCIENCES ET TECHNIQUES. UHA MULHOUSE L2PC et Cycles. Mathématiques: SERIES et INTEGRALES Cours Elisabeth REMM Chapitre 2 Séries etières Cotets. Gééralités sur les séries etières 2.. Défiitio

Plus en détail

Corrigé. Exercice 1 : (5 points)

Corrigé. Exercice 1 : (5 points) Corrigé Exercice : (5 poits) Pour les questios. et. o doera les résultats sous forme de fractios et sous forme décimale par défaut à 0 3 près. U efat joue avec 0 billes, 3 rouges et 7 vertes. Il met 0

Plus en détail

12 Cours - Suites.nb 1/11. Suites

12 Cours - Suites.nb 1/11. Suites 12 Cours - Suites.b 1/11 Suites I) Gééralités 1) Défiitio 2) Notatio 3) Commet peut être défiie ue suite 4) Suites et ordre 5) Propriété vraie à partir d u certai rag 6) Exercice 7) Suites arithmétiques,

Plus en détail

sont égales, alors le produit des «extrêmes» a d est égal au produit des «moyens» c d ; et réciproquement ; la preuve est ici 1.

sont égales, alors le produit des «extrêmes» a d est égal au produit des «moyens» c d ; et réciproquement ; la preuve est ici 1. Cours 5 Idépedace 1 Das le cours précédet, ous avos vu que la variable Y était idépedate de la variable X si ses distributios coditioelles e fréquece sot égales ; das ce cas e effet, la mesure de X sur

Plus en détail

STATISTIQUE : TESTS D HYPOTHESES

STATISTIQUE : TESTS D HYPOTHESES STATISTIQUE : TESTS D HYPOTHESES Préparatio à l Agrégatio Bordeaux Aée 0-03 Jea-Jacques Ruch Table des Matières Chapitre I. Gééralités sur les tests 5. Itroductio 5. Pricipe des tests 6.a. Méthodologie

Plus en détail

Liban 2012 BAC S Correction

Liban 2012 BAC S Correction Liba 0 BAC S Correctio / 8 Exercice Partie A. Les foctios polyomiale et l sot dérivables sur ]0 ;+ [. Par coséquet la foctio g l est aussi. g (x) 6x² + x. Pour tout x >0, 6x² >0 et > 0. Doc g (x) > 0 sur

Plus en détail

Université Denis Diderot (Paris VII) MP 3. Quelques exercices corrigés Suites et séries numériques

Université Denis Diderot (Paris VII) MP 3. Quelques exercices corrigés Suites et séries numériques Uiversité Deis Diderot (Paris VII) 006-007 MP 3 Quelques exercices corrigés Suites et séries umériques Das les pages qui suivet ous proposos la correctios de quelques exercices de la feuille sur les suites

Plus en détail

MÉTHODES STATISTIQUES EXAMEN INTRA HIVER 2009 Date : Dimanche 15 mars 2009 de 14h00 à 17h00

MÉTHODES STATISTIQUES EXAMEN INTRA HIVER 2009 Date : Dimanche 15 mars 2009 de 14h00 à 17h00 MAT 2080 MÉTHODES STATISTIQUES EXAMEN INTRA HIVER 2009 Date : Dimache 15 mars 2009 de 14h00 à 17h00 INSTRUCTIONS 1. Détachez la feuille-réposes à la fi de ce cahier et iscrivez-y immédiatemet votre om,

Plus en détail

1 + t = t. a 6 n ln 1 + a. Suite a : On utilise une relation de Chasles (même terme mais sur des ensembles d indices distincts) ! 1 # 1. 1 k.

1 + t = t. a 6 n ln 1 + a. Suite a : On utilise une relation de Chasles (même terme mais sur des ensembles d indices distincts) ! 1 # 1. 1 k. PHEC Correctio feuille d exercices 00-006 correctio de l exercice t. 8t R + ; + t 6 l( + t) 6 t : Pour cela, o itroduit les foctios f : t 7 l( + t) t et g : t 7 t l( + t) + t dé ies sur [0; +[ et o étudie

Plus en détail

Chapitre 4. Lois de Probabilité. Sommaire. 1. Introduction. 4. 2. Lois discrètes..4

Chapitre 4. Lois de Probabilité. Sommaire. 1. Introduction. 4. 2. Lois discrètes..4 Mathématiques : Outils pour la Biologie Deug SV UCBL D. Mouchiroud (5/0/00) Chapitre 4 Lois de Probabilité Sommaire. Itroductio. 4. Lois discrètes..4.. Loi uiforme..4... Défiitio...4... Espérace et variace..5..

Plus en détail

ESSCA(Management - Finances)

ESSCA(Management - Finances) parteaire de PREPAVOGT Yaoudé, 3 mai 04 BP : 765 Yaoudé Tél : 0 63 7 / 96 6 46 86 E-mail : prepavogt@yahoofr wwwprepavogtorg ESSCA(Maagemet - Fiaces) CONCOURS D ADMISSION RAISONNEMENT LOGIQUE ET MATHEMATIQUE

Plus en détail

Externat Notre Dame Bac Blanc n 1 (Tle S) janvier Proposition de corrigé

Externat Notre Dame Bac Blanc n 1 (Tle S) janvier Proposition de corrigé Exterat Notre Dame Bac Blac Tle S) javier 06 durée : 4 h Propositio de corrigé calculatrice autorisée Das tout ce devoir, la qualité de la rédactio et le soi serot pris e compte das la otatio. Les exercices

Plus en détail

Processus de Poisson

Processus de Poisson Processus de Poisso D après «Costructio d u modèle de Poisso» de Michel Hery Das Autour de la modélisatio e probabilités, Presses Uiversitaires Frac-Comtoises, 2001 Rappel des programmes de BTS «La loi

Plus en détail

Correction Baccalauréat STL biotechnologies Polynésie 13 juin 2016

Correction Baccalauréat STL biotechnologies Polynésie 13 juin 2016 Correctio Baccalauréat STL biotechologies Polyésie 13 jui 2016 EXERCICE 1 4 poits Das cet exercice, o s itéresse au taux de cholestérol LDL de la populatio d adultes d u pays. O ote X la variable aléatoire

Plus en détail

Plan du cours. Rappels de probabilité. Axiomes des probabilités. Définition de la probabilité

Plan du cours. Rappels de probabilité. Axiomes des probabilités. Définition de la probabilité Pla du cours Rappels de probabilité Défiitios Axiomes Variable aléatoire Foctio de répartitio Momets R. Flamary, R. Herault, A. Rakotomamojy 9 octobre 4 Exemples de lois Loi uiforme Loi ormale Loi uiforme

Plus en détail

Correction Bac ES Liban juin 2010

Correction Bac ES Liban juin 2010 Correctio Bac ES Liba jui 2010 EXERCICE 1 (4 poits) Commu à tous les cadidats 1) A et B sot deux évéemets idépedats et o sait que p(a) = 0,5 et p(b) = 0,2. La probabilité de l évéemet A B est égale à :

Plus en détail

ECOLE DES HAUTES ETUDES COMMERCIALES E.S.C.P.-E.A.P. ECOLE SUPERIEURE DE COMMERCE DE LYON MATHEMATIQUES II

ECOLE DES HAUTES ETUDES COMMERCIALES E.S.C.P.-E.A.P. ECOLE SUPERIEURE DE COMMERCE DE LYON MATHEMATIQUES II CHAMBRE DE COMMERCE ET D INDUSTRIE DE PARIS DIRECTION DE L ENSEIGNEMENT Directio des Admissios et cocours ECOLE DES HAUTES ETUDES COMMERCIALES E.S.C.P.-E.A.P. ECOLE SUPERIEURE DE COMMERCE DE LYON CONCOURS

Plus en détail

CORRIGE DES EXERCICES : Distributions d'échantillonnage - Intervalles de variation

CORRIGE DES EXERCICES : Distributions d'échantillonnage - Intervalles de variation U.F.R. S.P.S.E. Licece de psychologie L3 PLPSTA0 Bases de la statistique iféretielle UNIVERSITE PARIS X NANTERRE CORRIGE DES EXERCICES : Distributios d'échatilloage - Itervalles de variatio Exercice 1

Plus en détail

Dénombrement. Chapitre 1. Objectifs du chapitre. 1.1 Entiers naturels et raisonnement par récurrence

Dénombrement. Chapitre 1. Objectifs du chapitre. 1.1 Entiers naturels et raisonnement par récurrence Chapitre 1 Déombremet Objectifs du chapitre 1. A travers l axiomatisatio de Peao de N, rappeller les pricipes de récurrece forte et faible. 2. Défiir la otio de cardial et les opératios sur les cardiaux.

Plus en détail

Coïncidences des dates d anniversaires

Coïncidences des dates d anniversaires APMEP o 457 Das os classes 8 Coïcideces des dates d aiversaires Jea Fraçois Ketzel (*) L a derier, j ai fait le pari avec les élèves d ue classe que deux d etre eux fêtaiet leur aiversaire le même jour

Plus en détail

SÉRIES DE FONCTIONS SUITES ET PC*2. 13 octobre octobre octobre 2004

SÉRIES DE FONCTIONS SUITES ET PC*2. 13 octobre octobre octobre 2004 3 octobre 2004 Exemple 2. O se doe a I et q C(I, K). L équatio différetielle liéaire : y (x) q(x) y(x) = 0 avec les coditios y(a) = α, y (a) = β SUITES ET SÉRIES DE FONCTIONS PC*2 3 octobre 2004 Admet

Plus en détail

Séries à termes positifs

Séries à termes positifs Séries à termes positifs Das toute la suite N désigera les etiers aturels positifs 0,,,..., Z tous les etiers aturels...,,, 0,,, 3,... et Q les ombres ratioels. Efi R désigera les réels, et C les complexes.

Plus en détail

1 Séries numériques. 1.1 Généralités. Dans toute cette section, si cela n est pas précisé, E désignera l espace R m, m 1, et la norme euclidienne.

1 Séries numériques. 1.1 Généralités. Dans toute cette section, si cela n est pas précisé, E désignera l espace R m, m 1, et la norme euclidienne. 1 Séries umériques Das toute cette sectio, si cela est pas précisé, E désigera l espace R m, m 1, et la orme euclidiee. 1.1 Gééralités Défiitio 1.1. Soit (x ) N ue suite de E et pour chaque N, o défiit

Plus en détail

MATHEMATIQUES 2. Fonctions de matrices

MATHEMATIQUES 2. Fonctions de matrices SESSION 2004 EPREUVE SPECIFIQUE FILIERE MP MTHEMTIQUES 2 Durée : 4 heures Les calculatrices sot iterdites * * * NB : Le cadidat attachera la plus grade importace à la clarté, à la précisio et à la cocisio

Plus en détail

Corrigé Fiche 6 Septembre 2016

Corrigé Fiche 6 Septembre 2016 Corrigé Fiche 6 Septembre 2016 1. Estimatio de la moyee, variace coue, cas gaussie O dispose d u -échatillo X 1,..., X i.i.d. tel que X i suit ue loi ormale N µ, σ 2 ). L objectif est d estimer µ. Supposos

Plus en détail

Chapitre 2. Rappels sur les suites arithmétiques et les suites géométriques

Chapitre 2. Rappels sur les suites arithmétiques et les suites géométriques Chapitre Rappels sur les suites arithmétiques et les suites géométriques Nous allos ici rappeler les différets résultats sur les suites de ombres réels qui sot des suites arithmétiques ou des suites géométriques

Plus en détail