Expérience 1 Théorie des probabilités

Dimension: px
Commencer à balayer dès la page:

Download "Expérience 1 Théorie des probabilités"

Transcription

1 Expérience 1 Théorie des probabilités Introduction Procédures Effectuez les commandes suivantes: >> xhost nat >> rlogin nat >> setenv DISPLAY machine:0 >> setenv MATLABPATH /gel/usr/telecom/comm_tbx >> matlab Procédez a l initialisation de l expérience 1: >> start A. Variables aléatoires discrètes A.1 En utilisant la fonction dice, générez des échantillons aléatoires représentant le résultat d une expérience où un dé équilibré est lancé 2000 fois: >> x = dice (2000, 4, fair ); A.2 Calculez et affichez la fonction de densité de probabilité (pdf, probabily density function) des échantillons ainsi générés et la fonction de distribution de probabilité (cdf, cumulative distribution function) de la séquence x: >> subplot(211), pdf(x) >> subplot(212), cdf(x) Les événements échantillonnés représentent le résultat d une expérience où le dé est lancé une fois et sont de la forme {Valeur d un coté = k, k = 1,..., 4}. Observez la relation entre la pdf et la cdf qui donnent l information au sujet de la probabilité d un événement de différentes manières. Q1.1 Pourquoi les probabilités des événements échantillonnés dans cette expérience ne sont pas égaux? Est-ce que ce résultat était attendu? Qu est-ce qui devrait être fait dans l étape A.1 pour améliorer les résultats? A.3 En utilisant la fonction dice, générez une séquence représentant le résultat d une expérience où un dé pipé est lancé 2000 fois: >> y = dice(2000, 4, biased ); A.4 Effacer le graphique et affichez la pdf de la séquence aléatoire y: >> pdf(y) Calculez la cdf et dessinez-la. Indiquez la fréquence des points de discontinuité. Vous pouvez vérifier votre réponse avec: GEL Théorie des communications 1

2 >> cdf(y) Q1.2 Étant donné la pfd de l étape A.4, basée sur 2000 événements, estimez le nombre d occurrences de chacune des faces. B. Variables aléatoires continues B.1 En utilisant les fonctions unif_pdf et unif_cdf, affichez la pdf et la cdf d une variable aléatoire uniforme U (2,6). Ensuite, tracez-les: >> subplot(121), unif_pdf(2,6), axis([0, 8, -0.2, 1.2]); >> subplot(122), unif_cdf(2,6), axis([0, 8, -0.2, 1.2]); B.2 Si U ~ U (2,6), déterminer les probabilités suivantes en utilisant soit la pdf ou la cdf. P(O < U 3) P(3 < U 5) P(U = 3) Q1.3 Pourquoi P(U = 3) est différente de P(X = 3) de l étape A.4? B.3 Générez 500 échantillons d une distribution U (2,6): >> u = uniform(2,6,500); Calculez la moyenne et la variance de cette séquence aléatoire: >> mean_u = mean(u), var_u = var(u) Comparez ces résultats avec les résultats théoriques que vous calculerez à la main. Commentez les différences. Pouvez-vous prédire les algorithmes de MATLAB pour les fonctions mean et var? Affichez le contenu des fichiers contenant le code de ces fonctions en utilisant la commande MATLAB type. Utilisez ces deux commandes pour déterminez E[U 2 ]. Vérifiez votre résultat avec la fonction MATLAB meansq. Variable aléatoire gaussienne (normale) B.4 En utilisant les fonctions MATLAB gaus_pdf et gaus_cdf, affichez la pdf et la cdf d une variable aléatoire G ~ N (µ,σ 2 ) avec µ = mean_u et σ 2 = var_u de l étape B.3. Tracez la pdf et la cdf., subplot(121), gaus_pdf(mean_u, var_u) >> subplot(122), gaus_cdf(mean_u, var_u) Indiquez les valeurs de l axe horizontal où la pdf est à son maximum et où la cdf vaut 0.5. Comparez ces valeurs avec la moyenne d un distribution gaussienne. GEL Théorie des communications 2

3 B.5 Déterminez les probabilités suivantes: P(O < G 3) P(3 < G 5) P(G = 3) Comparez ces résultats avec ceux de l étape B.2. La densité gaussienne utilise pour générer ces résultats la même moyenne et la même variance que celles utilisées dans la densité uniforme de l étape B.2. Pourtant les résultats sont différents. Pouvez-vous expliquer? B.6 Vous avez X ~ N (µ,σ 2 ). Supposez que la valeur moyenne de X est fixé à µ = 1 et σ 2 {0.5, 1, 2, 5, 10}. Pour observer les effets du changement de la valeur σ 2 sur la densité d une variable aléatoire gaussienne, faites les étapes suivantes: >> m = 1; gaus_pdf(m, 0.5) >> axis([ ]), hold on >> gaus_pdf(m, 1)... >> gaus_pdf(m, 10) Q1.4 Considérez l événement A = {0 < X < 2} où X ~ N (1, σ 2 ) avec σ 2 {0.5, 1, 2, 5, 10}. Déterminez la valeur de σ 2 pour laquelle P(A) est maximale. Maintenant, considérez les changements sur la cdf: >> m = 1; gaus_cdf(m, 10) >> axis([ ]), hold on >> gaus_cdf(m, 5)... >> gaus_cdf(m, 0.5) Pouvez-vous prédire la cdf si σ 2 devient plus petit? Essayez: >> gaus_cdf(m, ) Qu est-ce qu une très petite variance, pour une distribution de probabilité, veut dire? La pdf correspondante pourrait vous aider à illustrer ce point: >> gaus_pdf(m, ) >> axis([ ]) Où, dans cette expérience avez-vous observé une pdf similaire? Si dans la dernière étape vous aviez une distribution uniforme avec une moyenne µ et une variance de , au lieu d une variable aléatoire gaussienne, est-ce que vous auriez obtenu une pdf différente? B.7 Maintenant, fixez la variance de la distribution gaussienne à σ 2 = 1 et changez la moyenne µ de telle sorte que µ {-4, -1, 2, 5}. >> s = 1; gaus_pdf(-4, s) >> axis([ ]), hold on GEL Théorie des communications 3

4 >> gaus_pdf(-1,s)... >> gaus_pdf(5,s) Quel est effet de changer la valeur moyenne µ? Si X(µ,σ 2 ) représente une variable aléatoire telle que X(µ,σ 2 ) ~ N(µ,σ 2 ), comparez P(-5 < X(-4, 1) < -3) et P(4< X(5,1) <6). Quelles conclusions pouvez-vous tirer sur les effets de changer µ sur la cdf. Premièrement, ôtez les graphiques à l écran et ensuite pour les valeurs de µ et σ 2, effectuez les calculs avec les axes [-8, 8, 0, 1]. C. Moyenne, variance et puissance C.1 Générez la séquences suivantes avec différentes valeurs de moyenne: >> x = gauss(-5, 1, 100); >> y = gauss( 0, 1, 100); >> z = gauss( 5, 1, 100); >> plot(x) >> axis([ ]), grid on, hold on >> plot(y) >> plot(z) Selon la terminologie propre à l ingénierie, vous pouvez affirmez que la valeur de la moyenne fixe le niveau dc du signal. C.2 Générez des séquences aléatoires de densité gaussienne avec des valeurs de variance différentes: >> a = gauss(0, 4, 100); >> b = gauss(0, 1.0, 100); >> c = gauss(0, 0.5, 100); >> d = gauss(0, 0.01, 100); >> subplot(221), plot(a), axis([ ]) >> subplot(222), plot(b), axis([ ]) >> subplot(223), plot(c), axis([ ]) >> subplot(224), plot(d), axis([ ]) En utilisant les fonctions MATLAB mean et var, déterminez la moyenne et la variance de chaque séquence et entrez votre réponse dans le tableau suivant: Séquence Moyenne Variance Moyenne des carrés a b c d Déterminez la moyenne des carrés de chacune des séquences en utilisant la moyenne et la variance. Vérifiez votre résultat en utilisant la fonction MATLAB meansq. GEL Théorie des communications 4

5 Q1.5 Si les signaux affichés dans cette partie représentent un signal bruité, lequel préféreriez-vous dans votre système de communications? S ils représentent des signaux sans bruit, lequel préféreriez-vous D. Partie de fléchettes D.1 Pour illustrer la signification de la moyenne et de la variance, utilisez la fonction MATLAB dart, laquelle simule une expérience où une fléchette est lancée sur une cible ayant comme centre le point (0,0) d un plan en coordonnées polaires. L utilisateur peut spécifier la moyenne et la variance en coordonnées x et y lesquelles, en retour, déterminent le point d impact sur la cible. Un bon point de départ à l expérimentation est d essayer ceci: >> mean_x = 0.2; mean_y = 0.2; >> var_x = 0.1; var_y = 0.1; >> no_dart = 20; >> dart([mean_x mean_y], [var_x var_y], no_dart) Si vous voulez avoir plus d informations à propos de cette simulation, utilisez la commande d aide en tapant help dart. Essayer la fonction dart avec différentes valeurs de moyenne et de variance. En particulier, il est intéressant de regarder les résultats de simulation lorsque la valeur de la moyenne ou de la variance ou les deux sont mis à zéro. Essayer de mettre en corrélation vos observations avec les autres parties de l expérience. Q1.6 Considérez 2 joueurs avec les performances correspondant aux statistiques suivantes: Joueur 1: [µ x, µ y ] = [0, 0], [σ x 2, σy 2 ] = [0.5, 0.5]; Joueur 2: [µ x, µ y ] = [0.5, 0.5], [σ x 2, σy 2 ]= [0.01, 0.01]; Qu est-ce que vous pouvez dire à propos de l habileté de ces joueurs? E. Intégration par une simulation de Monte-Carlo Dans cette partie de l expérience, vous démontrerez l utilisation du concept de la fréquence relative pour intégrer une fonction d une variable. Considérez un carré unitaire dans le plan x-y et la fonction f(x) = x. GEL Théorie des communications 5

6 1 Lorsque le menu est affiché, choisissez la fonction représentant f X (x), la pdf d une variable aléatoire standard. Qu est-ce que la réponse confirme à propos de la pdf? Si vous intégrez sur l interf(x) = x AIRE = 0.5 Pour calculer 1 0 f 0 ( x) dx 0 1, l algorithme suivant peut être utilisé: i. Générez N échantillons d une distribution uniforme U(0, 1): séquence X. ii. Générez N échantillons d une distribution uniforme U(0, 1): séquence Y. iii. Combinez les séquences X et Y pour former N points aléatoires sur le carré unitaire, chacun représenté par une paire (X, Y). iv. Pour chaque point (X, Y) déterminez sa position selon la courbe y = x, i.e. le point est-il au-dessus ou au-dessous de la courbe? v. Si le nombre de point sous la courbe y = x est K, estimez la valeur de l intégrale en calculant K/N. Utilisez la fonction MATLAB integral pour réaliser cet algorithme avec points échantillonnés: >> integral( x, [0,1], 20000) Le même algorithme peut être utilisé pour intégrer une fonction arbitraire f(x) sur un intervalle [a, b]. Les points limites (a, f(a)) et (b, f(b)) déterminent les paramètres des distributions uniformes à partir desquelles les séquences X et Y sont générées. Donc, cet algorithme décrit une méthode simple pour évaluer l intégrale définie d une fonction. Utilisez la fonction MATLAB integral comme suit: >> integral( f(x), [x_min, x_max], N) pour évaluer l intégrale de quelques fonctions. La commande ci-dessus affiche un menu de fonctions parmi lesquelles vous pouvez faire une sélection. Une des sélections possibles du menu est la pdf d une variable aléatoire normale standard (i.e. N (0,1)). Vous devriez vous rappeler qu il n y a pas de solution théorique à cet intégrale pour un intervalle donné - sinon, vous ne seriez pas obligé d avoir recourt à une table des valeurs de la fonction d erreur (erf (x)). E.1 Intégrez numériquement la pdf d une variable aléatoire normale standard sur l intervalle [-4, 4]: >> integral( f(x), [-4, 4], 20000) GEL Théorie des communications 6

7 valle (, ), quelle devrait être la réponse? E.2 Intégrez f X (x) sur l intervalle [0, 1] et confirmez votre réponse en utilisant une table de la fonction d erreur. E.3 Vous pouvez aussi intégrer n importe quelle fonction de votre choix. Par exemple, pour intégrer cosh(x) sur l intervalle [-π, π] entrez: >> integral( cosh(x), [-pi, pi], 20000); Cette méthode n est pas tellement précise avec seulement points, mais elle est robuste. Cet algorithme peut facilement être adapté pour calculer un volume de n dimensions sur une surface fermée de la forme f(x 1,..., x n ) = K. GEL Théorie des communications 7

Expérience 3 Formats de signalisation binaire

Expérience 3 Formats de signalisation binaire Expérience 3 Formats de signalisation binaire Introduction Procédures Effectuez les commandes suivantes: >> xhost nat >> rlogin nat >> setenv DISPLAY machine:0 >> setenv MATLABPATH /gel/usr/telecom/comm_tbx

Plus en détail

Calculs de probabilités avec la loi normale

Calculs de probabilités avec la loi normale Calculs de probabilités avec la loi normale Olivier Torrès 20 janvier 2012 Rappels pour la licence EMO/IIES Ce document au format PDF est conçu pour être visualisé en mode présentation. Sélectionnez ce

Plus en détail

TSTI 2D CH X : Exemples de lois à densité 1

TSTI 2D CH X : Exemples de lois à densité 1 TSTI 2D CH X : Exemples de lois à densité I Loi uniforme sur ab ; ) Introduction Dans cette activité, on s intéresse à la modélisation du tirage au hasard d un nombre réel de l intervalle [0 ;], chacun

Plus en détail

3.2. Matlab/Simulink. 3.2.1. Généralités

3.2. Matlab/Simulink. 3.2.1. Généralités 3.2. Matlab/Simulink 3.2.1. Généralités Il s agit d un logiciel parfaitement dédié à la résolution de problèmes d'analyse numérique ou de traitement du signal. Il permet d'effectuer des calculs matriciels,

Plus en détail

TP: Représentation des signaux binaires. 1 Simulation d un message binaire - Codage en ligne

TP: Représentation des signaux binaires. 1 Simulation d un message binaire - Codage en ligne Objectifs : Ce TP est relatif aux différentes méthodes de codage d une information binaire, et à la transmission en bande de base de cette information. Les grandes lignes de ce TP sont l étude des méthodes

Plus en détail

Baccalauréat ES Pondichéry 7 avril 2014 Corrigé

Baccalauréat ES Pondichéry 7 avril 2014 Corrigé Baccalauréat ES Pondichéry 7 avril 204 Corrigé EXERCICE 4 points Commun à tous les candidats. Proposition fausse. La tangente T, passant par les points A et B d abscisses distinctes, a pour coefficient

Plus en détail

Baccalauréat ES Polynésie (spécialité) 10 septembre 2014 Corrigé

Baccalauréat ES Polynésie (spécialité) 10 septembre 2014 Corrigé Baccalauréat ES Polynésie (spécialité) 10 septembre 2014 Corrigé A. P. M. E. P. Exercice 1 5 points 1. Réponse d. : 1 e Le coefficient directeur de la tangente est négatif et n est manifestement pas 2e

Plus en détail

Validation probabiliste d un Système de Prévision d Ensemble

Validation probabiliste d un Système de Prévision d Ensemble Validation probabiliste d un Système de Prévision d Ensemble Guillem Candille, janvier 2006 Système de Prévision d Ensemble (EPS) (ECMWF Newsletter 90, 2001) Plan 1 Critères de validation probabiliste

Plus en détail

Annexe commune aux séries ES, L et S : boîtes et quantiles

Annexe commune aux séries ES, L et S : boîtes et quantiles Annexe commune aux séries ES, L et S : boîtes et quantiles Quantiles En statistique, pour toute série numérique de données à valeurs dans un intervalle I, on définit la fonction quantile Q, de [,1] dans

Plus en détail

Quantification Scalaire et Prédictive

Quantification Scalaire et Prédictive Quantification Scalaire et Prédictive Marco Cagnazzo Département Traitement du Signal et des Images TELECOM ParisTech 7 Décembre 2012 M. Cagnazzo Quantification Scalaire et Prédictive 1/64 Plan Introduction

Plus en détail

MÉTHODE DE MONTE CARLO.

MÉTHODE DE MONTE CARLO. MÉTHODE DE MONTE CARLO. Alexandre Popier Université du Maine, Le Mans A. Popier (Le Mans) Méthode de Monte Carlo. 1 / 95 PLAN DU COURS 1 MÉTHODE DE MONTE CARLO 2 PROBLÈME DE SIMULATION Théorème fondamental

Plus en détail

LEÇON N 7 : Schéma de Bernoulli et loi binomiale. Exemples.

LEÇON N 7 : Schéma de Bernoulli et loi binomiale. Exemples. LEÇON N 7 : Schéma de Bernoulli et loi binomiale. Exemples. Pré-requis : Probabilités : définition, calculs et probabilités conditionnelles ; Notion de variables aléatoires, et propriétés associées : espérance,

Plus en détail

Projet de Traitement du Signal Segmentation d images SAR

Projet de Traitement du Signal Segmentation d images SAR Projet de Traitement du Signal Segmentation d images SAR Introduction En analyse d images, la segmentation est une étape essentielle, préliminaire à des traitements de haut niveau tels que la classification,

Plus en détail

Moments des variables aléatoires réelles

Moments des variables aléatoires réelles Chapter 6 Moments des variables aléatoires réelles Sommaire 6.1 Espérance des variables aléatoires réelles................................ 46 6.1.1 Définition et calcul........................................

Plus en détail

Méthodes de Simulation

Méthodes de Simulation Méthodes de Simulation JEAN-YVES TOURNERET Institut de recherche en informatique de Toulouse (IRIT) ENSEEIHT, Toulouse, France Peyresq06 p. 1/41 Remerciements Christian Robert : pour ses excellents transparents

Plus en détail

Simulation de variables aléatoires

Simulation de variables aléatoires Chapter 1 Simulation de variables aléatoires Références: [F] Fishman, A first course in Monte Carlo, chap 3. [B] Bouleau, Probabilités de l ingénieur, chap 4. [R] Rubinstein, Simulation and Monte Carlo

Plus en détail

4 Distributions particulières de probabilités

4 Distributions particulières de probabilités 4 Distributions particulières de probabilités 4.1 Distributions discrètes usuelles Les variables aléatoires discrètes sont réparties en catégories selon le type de leur loi. 4.1.1 Variable de Bernoulli

Plus en détail

Calculs de probabilités

Calculs de probabilités Calculs de probabilités Mathématiques Générales B Université de Genève Sylvain Sardy 13 mars 2008 1. Définitions et notations 1 L origine des probabilités est l analyse de jeux de hasard, tels que pile

Plus en détail

Régression linéaire. Nicolas Turenne INRA nicolas.turenne@jouy.inra.fr

Régression linéaire. Nicolas Turenne INRA nicolas.turenne@jouy.inra.fr Régression linéaire Nicolas Turenne INRA nicolas.turenne@jouy.inra.fr 2005 Plan Régression linéaire simple Régression multiple Compréhension de la sortie de la régression Coefficient de détermination R

Plus en détail

Modèles à Événements Discrets. Réseaux de Petri Stochastiques

Modèles à Événements Discrets. Réseaux de Petri Stochastiques Modèles à Événements Discrets Réseaux de Petri Stochastiques Table des matières 1 Chaînes de Markov Définition formelle Idée générale Discrete Time Markov Chains Continuous Time Markov Chains Propriétés

Plus en détail

L exclusion mutuelle distribuée

L exclusion mutuelle distribuée L exclusion mutuelle distribuée L algorithme de L Amport L algorithme est basé sur 2 concepts : L estampillage des messages La distribution d une file d attente sur l ensemble des sites du système distribué

Plus en détail

Exercices types Algorithmique et simulation numérique Oral Mathématiques et algorithmique Banque PT

Exercices types Algorithmique et simulation numérique Oral Mathématiques et algorithmique Banque PT Exercices types Algorithmique et simulation numérique Oral Mathématiques et algorithmique Banque PT Ces exercices portent sur les items 2, 3 et 5 du programme d informatique des classes préparatoires,

Plus en détail

Capacité d un canal Second Théorème de Shannon. Théorie de l information 1/34

Capacité d un canal Second Théorème de Shannon. Théorie de l information 1/34 Capacité d un canal Second Théorème de Shannon Théorie de l information 1/34 Plan du cours 1. Canaux discrets sans mémoire, exemples ; 2. Capacité ; 3. Canaux symétriques ; 4. Codage de canal ; 5. Second

Plus en détail

GUIDE ISAN: 7 Création d un ISAN In-Dev 1

GUIDE ISAN: 7 Création d un ISAN In-Dev 1 GUIDE ISAN: 7 Création d un ISAN In-Dev 1 ISAN In-Dev : Un ISAN In-Dev, ou ISAN pour œuvre en Développement, est un ISAN alloué à un déclarant avant que l œuvre puisse être complètement décrite. Il n est

Plus en détail

La classification automatique de données quantitatives

La classification automatique de données quantitatives La classification automatique de données quantitatives 1 Introduction Parmi les méthodes de statistique exploratoire multidimensionnelle, dont l objectif est d extraire d une masse de données des informations

Plus en détail

Calcul Formel et Numérique, Partie I

Calcul Formel et Numérique, Partie I Calcul Formel et Numérique N.Vandenberghe nvdb@irphe.univ-mrs.fr Table des matières 1 Introduction à Matlab 2 1.1 Quelques généralités.......................... 2 2 Où trouver des informations 2 3 Opérations

Plus en détail

Introduction à MATLAB R

Introduction à MATLAB R Introduction à MATLAB R Romain Tavenard 10 septembre 2009 MATLAB R est un environnement de calcul numérique propriétaire orienté vers le calcul matriciel. Il se compose d un langage de programmation, d

Plus en détail

Figure 3.1- Lancement du Gambit

Figure 3.1- Lancement du Gambit 3.1. Introduction Le logiciel Gambit est un mailleur 2D/3D; pré-processeur qui permet de mailler des domaines de géométrie d un problème de CFD (Computational Fluid Dynamics).Il génère des fichiers*.msh

Plus en détail

Cours 7 : Utilisation de modules sous python

Cours 7 : Utilisation de modules sous python Cours 7 : Utilisation de modules sous python 2013/2014 Utilisation d un module Importer un module Exemple : le module random Importer un module Exemple : le module random Importer un module Un module est

Plus en détail

Espérance conditionnelle

Espérance conditionnelle Espérance conditionnelle Samy Tindel Nancy-Université Master 1 - Nancy Samy T. (IECN) M1 - Espérance conditionnelle Nancy-Université 1 / 58 Plan 1 Définition 2 Exemples 3 Propriétés de l espérance conditionnelle

Plus en détail

Cours d algorithmique pour la classe de 2nde

Cours d algorithmique pour la classe de 2nde Cours d algorithmique pour la classe de 2nde F.Gaudon 10 août 2009 Table des matières 1 Avant la programmation 2 1.1 Qu est ce qu un algorithme?................................. 2 1.2 Qu est ce qu un langage

Plus en détail

Chapitre 7. Statistique des échantillons gaussiens. 7.1 Projection de vecteurs gaussiens

Chapitre 7. Statistique des échantillons gaussiens. 7.1 Projection de vecteurs gaussiens Chapitre 7 Statistique des échantillons gaussiens Le théorème central limite met en évidence le rôle majeur tenu par la loi gaussienne en modélisation stochastique. De ce fait, les modèles statistiques

Plus en détail

Économetrie non paramétrique I. Estimation d une densité

Économetrie non paramétrique I. Estimation d une densité Économetrie non paramétrique I. Estimation d une densité Stéphane Adjemian Université d Évry Janvier 2004 1 1 Introduction 1.1 Pourquoi estimer une densité? Étudier la distribution des richesses... Proposer

Plus en détail

ACTUARIAT 1, ACT 2121, AUTOMNE 2013 #12

ACTUARIAT 1, ACT 2121, AUTOMNE 2013 #12 ACTUARIAT 1, ACT 2121, AUTOMNE 2013 #12 ARTHUR CHARPENTIER 1 Une compagnie d assurance modélise le montant de la perte lors d un accident par la variable aléatoire continue X uniforme sur l intervalle

Plus en détail

Probabilités et Statistiques. Feuille 2 : variables aléatoires discrètes

Probabilités et Statistiques. Feuille 2 : variables aléatoires discrètes IUT HSE Probabilités et Statistiques Feuille : variables aléatoires discrètes 1 Exercices Dénombrements Exercice 1. On souhaite ranger sur une étagère 4 livres de mathématiques (distincts), 6 livres de

Plus en détail

Représentation d une distribution

Représentation d une distribution 5 Représentation d une distribution VARIABLE DISCRÈTE : FRÉQUENCES RELATIVES DES CLASSES Si dans un graphique représentant une distribution, on place en ordonnées le rapport des effectifs n i de chaque

Plus en détail

I. Introduction. 1. Objectifs. 2. Les options. a. Présentation du problème.

I. Introduction. 1. Objectifs. 2. Les options. a. Présentation du problème. I. Introduction. 1. Objectifs. Le but de ces quelques séances est d introduire les outils mathématiques, plus précisément ceux de nature probabiliste, qui interviennent dans les modèles financiers ; nous

Plus en détail

4. Martingales à temps discret

4. Martingales à temps discret Martingales à temps discret 25 4. Martingales à temps discret 4.1. Généralités. On fixe un espace de probabilités filtré (Ω, (F n ) n, F, IP ). On pose que F contient ses ensembles négligeables mais les

Plus en détail

Python - introduction à la programmation et calcul scientifique

Python - introduction à la programmation et calcul scientifique Université de Strasbourg Environnements Informatique Python - introduction à la programmation et calcul scientifique Feuille de TP 1 Avant de commencer Le but de ce TP est de vous montrer les bases de

Plus en détail

Statistiques Descriptives à une dimension

Statistiques Descriptives à une dimension I. Introduction et Définitions 1. Introduction La statistique est une science qui a pour objectif de recueillir et de traiter les informations, souvent en très grand nombre. Elle regroupe l ensemble des

Plus en détail

Circuits RL et RC. Chapitre 5. 5.1 Inductance

Circuits RL et RC. Chapitre 5. 5.1 Inductance Chapitre 5 Circuits RL et RC Ce chapitre présente les deux autres éléments linéaires des circuits électriques : l inductance et la capacitance. On verra le comportement de ces deux éléments, et ensuite

Plus en détail

Séance 0 : Linux + Octave : le compromis idéal

Séance 0 : Linux + Octave : le compromis idéal Séance 0 : Linux + Octave : le compromis idéal Introduction Linux est un système d'exploitation multi-tâches et multi-utilisateurs, basé sur la gratuité et développé par une communauté de passionnés. C'est

Plus en détail

Modélisation et simulation

Modélisation et simulation Modélisation et simulation p. 1/36 Modélisation et simulation INFO-F-305 Gianluca Bontempi Département d Informatique Boulevard de Triomphe - CP 212 http://www.ulb.ac.be/di Modélisation et simulation p.

Plus en détail

Chapitre 2 Le problème de l unicité des solutions

Chapitre 2 Le problème de l unicité des solutions Université Joseph Fourier UE MAT 127 Mathématiques année 2011-2012 Chapitre 2 Le problème de l unicité des solutions Ce que nous verrons dans ce chapitre : un exemple d équation différentielle y = f(y)

Plus en détail

OUTILS STATISTIQUES ET NUMÉRIQUES

OUTILS STATISTIQUES ET NUMÉRIQUES UNIVERSITÉ D ORLEANS Année universitaire 211-212 UFR Sciences Master FAC et SAE, 2ème année OUTILS STATISTIQUES ET NUMÉRIQUES POUR LA MESURE ET LA SIMULATION T. Dudok de Wit Université d Orléans 16 septembre

Plus en détail

Simulation : application au système bonus-malus en responsabilité civile automobile

Simulation : application au système bonus-malus en responsabilité civile automobile Simulation : application au système bonus-malus en responsabilité civile automobile Robert Langmeier Travail de séminaire réalisé sous la supervision du professeur François Dufresne Ecole des HEC Université

Plus en détail

K. Ammar, F. Bachoc, JM. Martinez. Séminaire ARISTOTE - 23 octobre 2014 - Palaiseau

K. Ammar, F. Bachoc, JM. Martinez. Séminaire ARISTOTE - 23 octobre 2014 - Palaiseau Apport des modèles de krigeage à la simulation numérique K Ammar, F Bachoc, JM Martinez CEA-Saclay, DEN, DM2S, F-91191 Gif-sur-Yvette, France Séminaire ARISTOTE - 23 octobre 2014 - Palaiseau Apport des

Plus en détail

données en connaissance et en actions?

données en connaissance et en actions? 1 Partie 2 : Présentation de la plateforme SPSS Modeler : Comment transformer vos données en connaissance et en actions? SPSS Modeler : l atelier de data mining Large gamme de techniques d analyse (algorithmes)

Plus en détail

chargement d amplitude variable à partir de mesures Application à l approche fiabiliste de la tolérance aux dommages Modélisation stochastique d un d

chargement d amplitude variable à partir de mesures Application à l approche fiabiliste de la tolérance aux dommages Modélisation stochastique d un d Laboratoire de Mécanique et Ingénieriesnieries EA 3867 - FR TIMS / CNRS 2856 ER MPS Modélisation stochastique d un d chargement d amplitude variable à partir de mesures Application à l approche fiabiliste

Plus en détail

Introduction à l approche bootstrap

Introduction à l approche bootstrap Introduction à l approche bootstrap Irène Buvat U494 INSERM buvat@imedjussieufr 25 septembre 2000 Introduction à l approche bootstrap - Irène Buvat - 21/9/00-1 Plan du cours Qu est-ce que le bootstrap?

Plus en détail

ACTUARIAT 1, ACT 2121, AUTOMNE 2013 #16

ACTUARIAT 1, ACT 2121, AUTOMNE 2013 #16 ACTUARIAT 1, ACT 2121, AUTOMNE 201 #16 ARTHUR CHARPENTIER 1 Dans une petite compagnie d assurance le nombre N de réclamations durant une année suit une loi de Poisson de moyenne λ = 100. On estime que

Plus en détail

LA NOTATION STATISTIQUE DES EMPRUNTEURS OU «SCORING»

LA NOTATION STATISTIQUE DES EMPRUNTEURS OU «SCORING» LA NOTATION STATISTIQUE DES EMPRUNTEURS OU «SCORING» Gilbert Saporta Professeur de Statistique Appliquée Conservatoire National des Arts et Métiers Dans leur quasi totalité, les banques et organismes financiers

Plus en détail

Loi binomiale Lois normales

Loi binomiale Lois normales Loi binomiale Lois normales Christophe ROSSIGNOL Année scolaire 204/205 Table des matières Rappels sur la loi binomiale 2. Loi de Bernoulli............................................ 2.2 Schéma de Bernoulli

Plus en détail

Baccalauréat ES/L Métropole La Réunion 13 septembre 2013 Corrigé

Baccalauréat ES/L Métropole La Réunion 13 septembre 2013 Corrigé Baccalauréat S/L Métropole La Réunion 13 septembre 2013 Corrigé A. P. M.. P. XRCIC 1 Commun à tous les candidats Partie A 1. L arbre de probabilité correspondant aux données du problème est : 0,3 0,6 H

Plus en détail

I. Polynômes de Tchebychev

I. Polynômes de Tchebychev Première épreuve CCP filière MP I. Polynômes de Tchebychev ( ) 1.a) Tout réel θ vérifie cos(nθ) = Re ((cos θ + i sin θ) n ) = Re Cn k (cos θ) n k i k (sin θ) k Or i k est réel quand k est pair et imaginaire

Plus en détail

MODELES DE DUREE DE VIE

MODELES DE DUREE DE VIE MODELES DE DUREE DE VIE Cours 1 : Introduction I- Contexte et définitions II- Les données III- Caractéristiques d intérêt IV- Evènements non renouvelables/renouvelables (unique/répété) I- Contexte et définitions

Plus en détail

Transmission d informations sur le réseau électrique

Transmission d informations sur le réseau électrique Transmission d informations sur le réseau électrique Introduction Remarques Toutes les questions en italique devront être préparées par écrit avant la séance du TP. Les préparations seront ramassées en

Plus en détail

Les algorithmes de base du graphisme

Les algorithmes de base du graphisme Les algorithmes de base du graphisme Table des matières 1 Traçage 2 1.1 Segments de droites......................... 2 1.1.1 Algorithmes simples.................... 3 1.1.2 Algorithmes de Bresenham (1965).............

Plus en détail

Texte Agrégation limitée par diffusion interne

Texte Agrégation limitée par diffusion interne Page n 1. Texte Agrégation limitée par diffusion interne 1 Le phénomène observé Un fût de déchets radioactifs est enterré secrètement dans le Cantal. Au bout de quelques années, il devient poreux et laisse

Plus en détail

Probabilités III Introduction à l évaluation d options

Probabilités III Introduction à l évaluation d options Probabilités III Introduction à l évaluation d options Jacques Printems Promotion 2012 2013 1 Modèle à temps discret 2 Introduction aux modèles en temps continu Limite du modèle binomial lorsque N + Un

Plus en détail

Fig. 1 Le détecteur de LHCb. En bas à gauche : schématiquement ; En bas à droite: «Event Display» développé au LAL.

Fig. 1 Le détecteur de LHCb. En bas à gauche : schématiquement ; En bas à droite: «Event Display» développé au LAL. LHCb est l'une des expériences installées sur le LHC. Elle recherche la physique au-delà du Modèle standard en étudiant les mésons Beaux et Charmés. L accent est mis entre autres sur l étude de la violation

Plus en détail

TP1 Méthodes de Monte Carlo et techniques de réduction de variance, application au pricing d options

TP1 Méthodes de Monte Carlo et techniques de réduction de variance, application au pricing d options Université de Lorraine Modélisation Stochastique Master 2 IMOI 2014-2015 TP1 Méthodes de Monte Carlo et techniques de réduction de variance, application au pricing d options 1 Les options Le but de ce

Plus en détail

Travaux dirigés d introduction aux Probabilités

Travaux dirigés d introduction aux Probabilités Travaux dirigés d introduction aux Probabilités - Dénombrement - - Probabilités Élémentaires - - Variables Aléatoires Discrètes - - Variables Aléatoires Continues - 1 - Dénombrement - Exercice 1 Combien

Plus en détail

Hedging delta et gamma neutre d un option digitale

Hedging delta et gamma neutre d un option digitale Hedging delta et gamma neutre d un option digitale Daniel Herlemont 1 Introduction L objectif de ce projet est d examiner la couverture delta-gamma neutre d un portefeuille d options digitales Asset-Or-Nothing

Plus en détail

I3, Probabilités 2014 Travaux Dirigés F BM F BM F BM F BM F B M F B M F B M F B M 20 20 80 80 100 100 300 300

I3, Probabilités 2014 Travaux Dirigés F BM F BM F BM F BM F B M F B M F B M F B M 20 20 80 80 100 100 300 300 I3, Probabilités 2014 Travaux Dirigés TD 1 : rappels. Exercice 1 Poker simplié On tire 3 cartes d'un jeu de 52 cartes. Quelles sont les probabilités d'obtenir un brelan, une couleur, une paire, une suite,

Plus en détail

Chapitre 4: Dérivée d'une fonction et règles de calcul

Chapitre 4: Dérivée d'une fonction et règles de calcul DERIVEES ET REGLES DE CALCULS 69 Chapitre 4: Dérivée d'une fonction et règles de calcul Prérequis: Généralités sur les fonctions, Introduction dérivée Requis pour: Croissance, Optimisation, Études de fct.

Plus en détail

Master IMA - UMPC Paris 6 RDMM - Année 2009-2010 Fiche de TP

Master IMA - UMPC Paris 6 RDMM - Année 2009-2010 Fiche de TP Master IMA - UMPC Paris 6 RDMM - Année 2009-200 Fiche de TP Préliminaires. Récupérez l archive du logiciel de TP à partir du lien suivant : http://www.ensta.fr/~manzaner/cours/ima/tp2009.tar 2. Développez

Plus en détail

Actuariat I ACT2121. septième séance. Arthur Charpentier. Automne 2012. charpentier.arthur@uqam.ca. http ://freakonometrics.blog.free.

Actuariat I ACT2121. septième séance. Arthur Charpentier. Automne 2012. charpentier.arthur@uqam.ca. http ://freakonometrics.blog.free. Actuariat I ACT2121 septième séance Arthur Charpentier charpentier.arthur@uqam.ca http ://freakonometrics.blog.free.fr/ Automne 2012 1 Exercice 1 En analysant le temps d attente X avant un certain événement

Plus en détail

Correction du baccalauréat STMG Polynésie 17 juin 2014

Correction du baccalauréat STMG Polynésie 17 juin 2014 Correction du baccalauréat STMG Polynésie 17 juin 2014 EXERCICE 1 Cet exercice est un Q.C.M. 4 points 1. La valeur d une action cotée en Bourse a baissé de 37,5 %. Le coefficient multiplicateur associé

Plus en détail

Baccalauréat ES/L Amérique du Sud 21 novembre 2013

Baccalauréat ES/L Amérique du Sud 21 novembre 2013 Baccalauréat ES/L Amérique du Sud 21 novembre 2013 A. P. M. E. P. EXERCICE 1 Commun à tous les candidats 5 points Une entreprise informatique produit et vend des clés USB. La vente de ces clés est réalisée

Plus en détail

Analyses de Variance à un ou plusieurs facteurs Régressions Analyse de Covariance Modèles Linéaires Généralisés

Analyses de Variance à un ou plusieurs facteurs Régressions Analyse de Covariance Modèles Linéaires Généralisés Analyses de Variance à un ou plusieurs facteurs Régressions Analyse de Covariance Modèles Linéaires Généralisés Professeur Patrice Francour francour@unice.fr Une grande partie des illustrations viennent

Plus en détail

Baccalauréat ES Antilles Guyane 12 septembre 2014 Corrigé

Baccalauréat ES Antilles Guyane 12 septembre 2014 Corrigé Baccalauréat ES Antilles Guyane 12 septembre 2014 Corrigé EXERCICE 1 5 points Commun à tous les candidats 1. Réponse c : ln(10)+2 ln ( 10e 2) = ln(10)+ln ( e 2) = ln(10)+2 2. Réponse b : n 13 0,7 n 0,01

Plus en détail

Designer d escalier GUIDE DE L UTILISATEUR. Stair Designer-1

Designer d escalier GUIDE DE L UTILISATEUR. Stair Designer-1 Designer d escalier GUIDE DE L UTILISATEUR Stair Designer-1 Stair Designer-2 Designer d escalier Le Designer d escalier rend facile la réalisation et la mise en place d escaliers sur mesure dans votre

Plus en détail

NON-LINEARITE ET RESEAUX NEURONAUX

NON-LINEARITE ET RESEAUX NEURONAUX NON-LINEARITE ET RESEAUX NEURONAUX Vêlayoudom MARIMOUTOU Laboratoire d Analyse et de Recherche Economiques Université de Bordeaux IV Avenue. Leon Duguit, 33608 PESSAC, France tel. 05 56 84 85 77 e-mail

Plus en détail

FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4)

FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4) FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4) Bernard Le Stum Université de Rennes 1 Version du 13 mars 2009 Table des matières 1 Fonctions partielles, courbes de niveau 1 2 Limites et continuité

Plus en détail

NOTE SUR LA MODELISATION DU RISQUE D INFLATION

NOTE SUR LA MODELISATION DU RISQUE D INFLATION NOTE SUR LA MODELISATION DU RISQUE D INFLATION 1/ RESUME DE L ANALYSE Cette étude a pour objectif de modéliser l écart entre deux indices d inflation afin d appréhender le risque à très long terme qui

Plus en détail

Plus courts chemins, programmation dynamique

Plus courts chemins, programmation dynamique 1 Plus courts chemins, programmation dynamique 1. Plus courts chemins à partir d un sommet 2. Plus courts chemins entre tous les sommets 3. Semi-anneau 4. Programmation dynamique 5. Applications à la bio-informatique

Plus en détail

Exercice autour de densité, fonction de répatition, espérance et variance de variables quelconques.

Exercice autour de densité, fonction de répatition, espérance et variance de variables quelconques. 14-3- 214 J.F.C. p. 1 I Exercice autour de densité, fonction de répatition, espérance et variance de variables quelconques. Exercice 1 Densité de probabilité. F { ln x si x ], 1] UN OVNI... On pose x R,

Plus en détail

Introduction au Data-Mining

Introduction au Data-Mining Introduction au Data-Mining Alain Rakotomamonjy - Gilles Gasso. INSA Rouen -Département ASI Laboratoire PSI Introduction au Data-Mining p. 1/25 Data-Mining : Kèkecé? Traduction : Fouille de données. Terme

Plus en détail

Présentation du Master Ingénierie Informatique et du Master Science Informatique 2007-2008, Année 2 Université Paris-Est Marne-la-Vallée

Présentation du Master Ingénierie Informatique et du Master Science Informatique 2007-2008, Année 2 Université Paris-Est Marne-la-Vallée Présentation du Master Ingénierie Informatique et du Master Science Informatique 2007-2008, Année 2 Université Paris-Est Marne-la-Vallée Responsable du Master Informatique : Marc Zipstein Responsable de

Plus en détail

Centre d'etudes Nucléaires de Fontenay-aux-Roses Direction des Piles Atomiques Département des Etudes de Piles

Centre d'etudes Nucléaires de Fontenay-aux-Roses Direction des Piles Atomiques Département des Etudes de Piles CEA-N-1195 Note CEA-N-1195 Centre d'etudes Nucléaires de Fontenay-aux-Roses Direction des Piles Atomiques Département des Etudes de Piles Service d'etudes de Protections de Piles PROPAGATION DES NEUTRONS

Plus en détail

Aide - mémoire gnuplot 4.0

Aide - mémoire gnuplot 4.0 Aide - mémoire gnuplot 4.0 Nicolas Kielbasiewicz 20 juin 2008 L objet de cet aide-mémoire est de présenter les commandes de base pour faire rapidement de très jolis graphiques et courbes à l aide du logiciel

Plus en détail

Chapitre 3 : Principe des tests statistiques d hypothèse. José LABARERE

Chapitre 3 : Principe des tests statistiques d hypothèse. José LABARERE UE4 : Biostatistiques Chapitre 3 : Principe des tests statistiques d hypothèse José LABARERE Année universitaire 2010/2011 Université Joseph Fourier de Grenoble - Tous droits réservés. Plan I. Introduction

Plus en détail

4 Exemples de problèmes MapReduce incrémentaux

4 Exemples de problèmes MapReduce incrémentaux 4 Exemples de problèmes MapReduce incrémentaux 1 / 32 Calcul des plus courtes distances à un noeud d un graphe Calcul des plus courts chemins entre toutes les paires de noeuds d un graphe Algorithme PageRank

Plus en détail

Quatrième partie IV. Test. Test 15 février 2008 1 / 71

Quatrième partie IV. Test. Test 15 février 2008 1 / 71 Quatrième partie IV Test Test 15 février 2008 1 / 71 Outline Introduction 1 Introduction 2 Analyse statique 3 Test dynamique Test fonctionnel et structurel Test structurel Test fonctionnel 4 Conclusion

Plus en détail

Statistiques avec la graph 35+

Statistiques avec la graph 35+ Statistiques avec la graph 35+ Enoncé : Dans une entreprise, on a dénombré 59 femmes et 130 hommes fumeurs. L entreprise souhaite proposer à ses employés plusieurs méthodes pour diminuer, voire arrêter,

Plus en détail

3. SPÉCIFICATIONS DU LOGICIEL. de l'expression des besoins à la conception. Spécifications fonctionnelles Analyse fonctionnelle et méthodes

3. SPÉCIFICATIONS DU LOGICIEL. de l'expression des besoins à la conception. Spécifications fonctionnelles Analyse fonctionnelle et méthodes PLAN CYCLE DE VIE D'UN LOGICIEL EXPRESSION DES BESOINS SPÉCIFICATIONS DU LOGICIEL CONCEPTION DU LOGICIEL LA PROGRAMMATION TESTS ET MISE AU POINT DOCUMENTATION CONCLUSION C.Crochepeyre Génie Logiciel Diapason

Plus en détail

Rapport du projet CFD 2010

Rapport du projet CFD 2010 ISAE-ENSICA Rapport du projet CFD 2010 Notice explicative des différents calculs effectués sous Fluent, Xfoil et Javafoil Tanguy Kervern 19/02/2010 Comparaison des performances de différents logiciels

Plus en détail

Corrigé des TD 1 à 5

Corrigé des TD 1 à 5 Corrigé des TD 1 à 5 1 Premier Contact 1.1 Somme des n premiers entiers 1 (* Somme des n premiers entiers *) 2 program somme_entiers; n, i, somme: integer; 8 (* saisie du nombre n *) write( Saisissez un

Plus en détail

FICHE UE Licence/Master Sciences, Technologies, Santé Mention Informatique

FICHE UE Licence/Master Sciences, Technologies, Santé Mention Informatique NOM DE L'UE : Algorithmique et programmation C++ LICENCE INFORMATIQUE Non Alt Alt S1 S2 S3 S4 S5 S6 Parcours : IL (Ingénierie Logicielle) SRI (Systèmes et Réseaux Informatiques) MASTER INFORMATIQUE Non

Plus en détail

Découverte du tableur CellSheet

Découverte du tableur CellSheet Découverte du tableur CellSheet l application pour TI-83 Plus et TI-84 Plus. Réalisé par Guy Juge Professeur de mathématiques et formateur IUFM de l académie de Caen Pour l équipe des formateurs T 3 Teachers

Plus en détail

Optimisation Combinatoire et Colonies de Fourmis Nicolas Monmarche April 21, 1999 Sommaire Inspiration biologiques Ant Colony Optimization Applications TSP QAP Flow Shop Problemes dynamiques 1 Historique

Plus en détail

http://cermics.enpc.fr/scilab

http://cermics.enpc.fr/scilab scilab à l École des Ponts ParisTech http://cermics.enpc.fr/scilab Introduction à Scilab Graphiques, fonctions Scilab, programmation, saisie de données Jean-Philippe Chancelier & Michel De Lara cermics,

Plus en détail

3. Caractéristiques et fonctions d une v.a.

3. Caractéristiques et fonctions d une v.a. 3. Caractéristiques et fonctions d une v.a. MTH2302D S. Le Digabel, École Polytechnique de Montréal H2015 (v2) MTH2302D: fonctions d une v.a. 1/32 Plan 1. Caractéristiques d une distribution 2. Fonctions

Plus en détail

Compression Compression par dictionnaires

Compression Compression par dictionnaires Compression Compression par dictionnaires E. Jeandel Emmanuel.Jeandel at lif.univ-mrs.fr E. Jeandel, Lif CompressionCompression par dictionnaires 1/25 Compression par dictionnaire Principe : Avoir une

Plus en détail

Correction du baccalauréat ES/L Métropole 20 juin 2014

Correction du baccalauréat ES/L Métropole 20 juin 2014 Correction du baccalauréat ES/L Métropole 0 juin 014 Exercice 1 1. c.. c. 3. c. 4. d. 5. a. P A (B)=1 P A (B)=1 0,3=0,7 D après la formule des probabilités totales : P(B)=P(A B)+P(A B)=0,6 0,3+(1 0,6)

Plus en détail

Chapitre 11. Séries de Fourier. Nous supposons connues les formules donnant les coefficients de Fourier d une fonction 2 - périodique :

Chapitre 11. Séries de Fourier. Nous supposons connues les formules donnant les coefficients de Fourier d une fonction 2 - périodique : Chapitre Chapitre. Séries de Fourier Nous supposons connues les formules donnant les coefficients de Fourier d une fonction - périodique : c c a0 f x dx c an f xcosnxdx c c bn f xsinn x dx c L objet de

Plus en détail

Processus aléatoires avec application en finance

Processus aléatoires avec application en finance Genève, le 16 juin 2007. Processus aléatoires avec application en finance La durée de l examen est de deux heures. N oubliez pas d indiquer votre nom et prénom sur chaque feuille. Toute documentation et

Plus en détail

Méthodes de quadrature. Polytech Paris-UPMC. - p. 1/48

Méthodes de quadrature. Polytech Paris-UPMC. - p. 1/48 Méthodes de Polytech Paris-UPMC - p. 1/48 Polynôme d interpolation de Preuve et polynôme de Calcul de l erreur d interpolation Étude de la formule d erreur Autres méthodes - p. 2/48 Polynôme d interpolation

Plus en détail

Lois de probabilité. Anita Burgun

Lois de probabilité. Anita Burgun Lois de probabilité Anita Burgun Problème posé Le problème posé en statistique: On s intéresse à une population On extrait un échantillon On se demande quelle sera la composition de l échantillon (pourcentage

Plus en détail