Oscillateur harmonique (CORRIGES)

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Oscillateur harmonique (CORRIGES)"

Transcription

1 Oscillateur harmonique (CORRIGES) 1. Mesure de masse en apesanteur : a) Système ; chaise, de masse m o représentée par un point matériel M de masse m o. Actions : poids et rappel du ressort. La RFD (ou deuxième loi de Newton) écrite en projection sur l axe (Oz) donne : -m o g k. L = m o. (1) où l élongation algébrique du ressort est L= z L o, L o étant sa longueur à vide. Comme le poids de la chaise va comprimer le ressort, on attend L < 0, ce qui conduit à un terme de force de rappel dirigé vers le haut, s opposant au poids. Il vient, après réaménagement de l équation (1) : soit formellement : + = + M(m o ) z z g + ².= + Oscillations harmoniques de pulsation : z = 0 = c est à dire oscillations sinusoïdales, autour de la position d équilibre z éq = L o m o g/k. Ces oscillations auront une période : ce qui conduit à : =2/ =2 = 4² soit numériquement : m o = 25,1 kg. b) En orbite, le poids est exactement compensé par la force centrifuge subie dans le référentiel lié au satellite. Tout se passe comme si la pesanteur avait disparu (im-pesanteur). On reprend une étude analogue, avec cette fois pour système l ensemble {chaise + spationaute} de masse m + m o. L équation du mouvement devient : k. L = (m + m o ). soit avec toujours L= z L o : où cette fois : On tire donc : +.= + = + = 4² Soit numériquement : m = 58,2 kg. Le spationaute est probablement une spationaute... 1

2 2. Pendule élastique : a. La position d équilibre z éq de la masse m répond à. =0 avec L = z - L o soit : mg k(z L o ) = 0 dont la solution sera : z éq = L o + mg/k. b. L équation du mouvement s obtient par la projection de la RFD (ou seconde loi de Newton) sur l axe du mouvement, (Oz): + = soit : M(m) z z z = 0 g avec + ².=+ = En posant : x = z z éq, on aura = et donc + ².=0 Solution générale : x(t) = A.cos(ω o t) + B.sin(ω o t) Conditions initiales : à l instant initial la vitesse doit être = et le mobile est situé en sa position d équilibre. Soit x(0) = 0 et 0=. Ceci amène A = 0 et 0= = Bω o donc B = -v o /ω o. La solution x(t) s écrit donc : x(t) = (-v o /ω o ).sin(ω o t) L équation horaire z(t) en fonction de L o, m, g et v o sera finalement : z(t) =(-v o /ω o ).sin(ω o t) + L o + mg/k. 3. Exploitation d un relevé expérimental. 4 3 x (cm) x(t) A T 0 0,2 0,4 0,6 0,8 1 1,2 1,4 1,6 t (s) -3-4 a. amplitude : 2A = 6,0 cm donne A) 3,0 cm. T = 0,85 s donne une fréquence f = 1/T = 1,18 s et une pulsation ω o = 2π/T = 7,39 rad.s -1 ; phase à l origine : x(0) = 2,0 cm amène A.cosφ = x(0) dont on tire φ = arccos(x(0)/a) cequi amène φ = ± 0,84 rad. Or φ > 0 car le signal est en avance de phase par rapport à un signal de forme A.cos(ω o t) qui passerait par A en t = 0 (x(t) atteint A plus tôt). 2

3 b. A t = 0, x(0) = 2,0 cm et v = dx/dt = -A.ω o.sinφ = -16,5 cm.s -1. c. k = m.ω o ² d après l expression de ω o (qu on peut établir à partir de l équation du mobile...). k= 8,83 N.m -1. d. Pour tracer l allure des courbes v(t) et a(t), s appuyer sur la notion de courbe dérivée. v(t) est la courbe présentant l évolution de la pente du graphe x(t) et a(t) est la courbe présentant l évolution de la pente du graphe v(t). a(t) sera ici en opposition de phase vis à vis de x(t). 4. Masse percutant un ressort : Système : masse m, qui glisse sans frottement le long de l axe (Ox). Référentiel : lié au support, galiléen. Actions : poids, réaction du support (qui va exactement compenser le poids, dirigée verticalement), rappel du ressort. A t= 0, m prend contact avec le ressort, dont la longueur est alors à la longueur à vide, à la vitesse constante = (avec v o > 0). Elle reste ensuite accrochée. a. Ecrire l équation du mouvement de la masse pour t > 0 : Système : masse m, qui glisse sans frottement le long de l axe (Ox). Référentiel : lié au support, galiléen. Actions : poids, réaction du support (qui va exactement compenser le poids, dirigée verticalement), rappel du ressort. A t= 0, m prend contact avec le ressort, dont la longueur est alors à la longueur à vide, à la vitesse constante = (avec v o > 0). Elle reste ensuite accrochée. Choisissons x= 0 en la position du point de contact O du ressort avec la masse m à t = 0. Ainsi, l élongation du ressort vaut L = L L o = x, et x sera négatif pour t > 0. x O A x = 0 La force est dirigée selon (Ox), et sa projection sur cet axe est d expression kx. Cette force sera ainsi bien dirigée vers la gauche de la figure quand le ressort est comprimé, pour x < 0. La RFD donne sur (0x) : + =0 La résolution générale amène : x(t) = A.cos(ω o t) + B.sin(ω o t). Les Conditions Initiales sont x(0) = 0 et donc A = 0 et v(0) = -v o donc comme v = -B.ω o.cos(ω o t) on doit avoir : v(0) = -v o = -B.ω o. Finalement : x(t)= (-v o /ω o ).sin(ω o t). b. La masse m vient percuter la paroi en une buttée B située à mi-distance de O et A si x atteint la valeur L o /2. Or lavaleur extrémale de x(t) sera (-v o /ω o ). On déduit la condition : v o > (L o /2).(k/m) 1/2. Retrouvons ce résultat par des considérations énergétiques. 3

4 Par la conservation de l énergie mécanique, on a : E m = (1/2)mv o ² = cste. En toute position : E m = (1/2)mv² + (1/2)kx² avec E c = (1/2)mv² > 0. La condition x atteint la valeur L o /2 s obtient pour x < -Lo/2, ce qui impose alors : E m = (1/2)mv o ² > (1/2)k(L o /2)² ce qui se traduit par v o > (L o /2).(k/m) 1/2. 5. Reconnaître la forme canonique de l équation de l oscillateur harmonique : 1. l équation du mouvement de l aiguille, fournie, est :.+..=0 avec θ faible donc sinθ θ, ceci amène: +..=0 Cette équation différentielle a la forme de celle d un oscillateur harmonique ; on peut poser ω o ² = M.B/J. La fréquence des oscillations sera : = 2 = Pour le pendule simple : =. ² ; =..1 La conservation de l énergie mécanique s écrit : =. ²+..1 = L équation du mouvement du pendule est obtenue en décrivant l expression précédente par rapport au temps : =0 soit après simplification, et compte tenu que pour θ faible on aura sinθ θ +.=0 On retrouve l équation d un oscillateur harmonique de pulsation propre ω o tlle que ω o ² = g/l. la période de ses oscillations sera : =2./ 6. Oscillateurs à deux ressorts : Appliquer la seconde loi de Newton, en analysant bien les actions exercées. Attention au sens des forces de rappel des ressorts, à l expression de la longueur des ressorts pour une abscisse x de M. Projeter le résultat sur l axe horizontal (Ox). Situation 1 (ressorts de part et d autre de M) : = soit : + +.= +. N.B. : On pourra vérifier que pour x = L o1, on a l équilibre. 4

5 La fréquence des oscillations sera : = 2 = Situation 2 (ressorts reliés entre eux) : Mouvement de M(m) : =. Mouvement de A (sans masse) : 0=. +. ce qui amène : = En injectant ce résultat dans la première équation, on élimine ainsi y du problème : + + = + + N.B. : On pourra vérifier que pour x = L o1 + L o2, on a l équilibre. La fréquence des oscillations sera : = 2 = Oscillateur symétrique à deux masses. a) Au repos, le ressort est de longueur L= L o =10 cm. Tenu par le haut, la masse inférieure étant alors suspendue, le ressort disposé verticalement s allonge à une longueur de L = 12 cm. Ecrivons la relation d équilibre pour la masse située à l extrémité inférieure du ressort ; celle-ci est soumise à son poids et à la force de rappel élastique. En projection sur la verticale, ceci conduit à l équation : mg k.(l L o ) = 0 d où k =mg/(l L o ) A.N. : k = 50 N.m -1. Si le ressort est comprimé de façon à avoir une longueur de L = 8 cm, les masses étant immobiles et disposées horizontalement, le système {masse 1, masse 2, ressort} à une énergie mécanique se limitant alors à l énergie potentielle élastique : E m = E pél = k(l L o )²/2 b) Notons et les abscisses de chacune des masses ; L =. Le système étant parfaitement symétrique, les deux masses auront des déplacements opposés, et des vitesses opposées : = Ayant un système conservatif : = 1 2 ² ²+ 1 2 = 1 soit : 5

6 = ² = 2 La vitesse v = sera maximale pour une énergie potentielle minimale, donc pour =0 Soit pour L = =. Alors = ² donc = / A.N. : v max = 0,30 m.s -1. c) On veut obtenir l équation du mouvement à partir de (2). Introduisant pour variable, notée ici X, la quantité d allongement du ressort. = = ce qui donne en dérivant par rapport au temps : = = 2 Il vient de (2) : = 1 4 ² ²= En dérivant cette équation par rapport au temps : =0 qui amène : + 2 =0 C est l équation d un oscillateur harmonique de pulsation = 2 et de période T= 2π/ω o. d) En bloquant l une des masses, par exemple la masse (1): = 1 2 ²+ 1 2 = On pose alors de même qu en c) : et donc = = = =0 on a alors : = 1 2 ²+ 1 2 ²= Par dérivation temporelle, on obtient cette fois l équation : + =0 C est l équation d un oscillateur harmonique de pulsation = 6

7 et de période T = 2π/ω o. On pourrait aussi écrire la RFD pour la seule masse (2), la masse (1) étant fixée et faisant office de point d attache du ressort (comme dans le cas du cours). 8. Oscillateur à deux ressorts : a) Deux ressorts identiques (k, L o ). z représente l écart de position du disque D par rapport au milieu du segment [AB] où A et B sont les extrémités fixées des deux ressorts. Pour z suffisamment élevé, le ressort (1) est en extension, (2) en compression. A la position d équilibre, l action des deux ressorts doit compenser le poids du disque. La RFD en projection sur la direction verticale donne : mg k.(l/2 + z L o ) + k.(l/2 - z L o ) = 0 (1) d où : mg = 2kz et donc z éq = mg/2k. A.N. : z éq = 2,45 cm. b) La position du disque D, maintenant en mouvement, est repérée par y, qui représente l écart à la position d équilibre : y = z z éq. La RFD en projection verticale s écrit : mg k. L 2 + z é+y Lo+ k. L 2 z é y Lo=m Soit en injectant le résultat(1) : 2=m d où l équation : + 2 =0 C est l équation d un oscillateur harmonique de pulsation = 2 et de période T= 2π/ω o. En tenant compte des conditions initiales : y(0) = d et 0=0 on aboutit à : = Pendule élastique sur un pan oblique : x y a) RFD, à l équilibre : ++ =0 7

8 En projetant cette relation vectorielle sur (Ox), c est à dire en écrivant son produit scalaire par l unitaire de cet axe : -mg.sinα + k.(l L o ) = 0 qui donne : k = mg.sinα /(L L o ) = 50 N.m -1. b) Notons : x = -(L L o ). Le choix d orienter l axe (Ox) vers le haut me semble saugrenu, mais puisque c est demandé... x a donc une valeur négative sur le dessin. L objet étant en mouvement, la RFD est maintenant : soit en projection sur (Ox) : ++ = =m +.= C est l équation d un oscillateur harmonique de pulsation = et de période T = 2π/ω o. Les oscillations se font autour de la position d équilibre x éq = -mg.sinα/k. Vues les CI : x(0) = x éq d et 0=0 Il vient : =. 2. c) E m = E pél + E ppes + E c où E pél = kx²/2 et E ppes = mgz = mg.x.sinα (z = x.sinα voir dessin) = 1 2 ² ²= En dérivant par rapport au temps ceci donne l équation de l oscillateur : +.= 8

TRAVAUX DIRIGÉS DE S 1

TRAVAUX DIRIGÉS DE S 1 Travau Dirigés S 1 Correction PCSI 2016 2017 TRAVAUX DIRIGÉS DE S 1 Eercice 1 : Homogénéité 1. ontrer que l epression obtenue en cours ω = k est homogène. m 2. n trouve epérimentalement ω = 250 /min, convertir

Plus en détail

Cours de mécanique. M13-Oscillateurs

Cours de mécanique. M13-Oscillateurs Cours de mécanique M13-Oscillateurs 1 Introduction Nous étudierons dans ce chapitre en premier lieu l oscillateur harmonique solide-ressort horizontale, nous introduirons donc la force de rappel du ressort

Plus en détail

La valeur positive extrême (ou maximale) prise par l abscisse angulaire est appelée amplitude de l oscillation.

La valeur positive extrême (ou maximale) prise par l abscisse angulaire est appelée amplitude de l oscillation. Terminale S Chapitre 12 Les systèmes mécaniques oscillants. Lycée J-B Schwilgué - SELESTAT I. Exemples de systèmes oscillants. 1. L oscillateur. On appelle oscillateur (ou système oscillant) un système

Plus en détail

1. Sur un schéma représentez la force gravitationnelle exercée par la Terre (masse M T ) sur un satellite S (masse m S ) situé à la distance r de son

1. Sur un schéma représentez la force gravitationnelle exercée par la Terre (masse M T ) sur un satellite S (masse m S ) situé à la distance r de son Physique TC 1 Correction 1. Sur un schéma représentez la force gravitationnelle exercée par la Terre (masse M T ) sur un satellite S (masse m S ) situé à la distance r de son centre. 2. Proposer une expression

Plus en détail

S14 - Oscillateurs mécaniques amortis. Signaux physiques. Chapitre 14 : Oscillateurs mécaniques amortis

S14 - Oscillateurs mécaniques amortis. Signaux physiques. Chapitre 14 : Oscillateurs mécaniques amortis Signaux physiques Chapitre 14 : Oscillateurs mécaniques amortis Sommaire 1 Etude du régime libre de l oscillateur harmonique amorti 1 1.1 Définition d un OH amorti...........................................

Plus en détail

CHAPITRE I Oscillations libres non amorties Système à un degré de liberté CHAPITRE I

CHAPITRE I Oscillations libres non amorties Système à un degré de liberté CHAPITRE I Page1 CHAPITRE I Oscillations libres non amorties : Système à un degré de liberté I.1 Généralités sur les vibrations I.1.1 Mouvement périodique : Définition : C est un mouvement qui se répète à intervalles

Plus en détail

Énergie potentielle - Énergie

Énergie potentielle - Énergie MPSI - 2006/2007 - Mécanique I - Énergie potentielle - Énergie mécanique - Problèmes à un degré de liberté page 1/6 Énergie potentielle - Énergie mécanique - Problèmes à un degré de liberté Dans le chapitre

Plus en détail

Cette manipulation doit être effectuée 3 fois afin de minimiser certaines erreurs expérimentales.

Cette manipulation doit être effectuée 3 fois afin de minimiser certaines erreurs expérimentales. TP - N : LA LOI DE NEWTON But de l expérience : - Vérifier le principe fondamental de la dynamique pour un mouvement de translation uniformément accéléré. - Déterminer expérimentalement la valeur de g.

Plus en détail

Devoir n 3 de sciences physiques (2 heures)

Devoir n 3 de sciences physiques (2 heures) Lycée de Bambey erminale Sa Année: 7/8 Devoir n 3 de sciences physiques ( heures) 1 Exercice 1: Réaction entre un acide fort et une base forte (8 points) Les parties I et II sont indépendantes. Partie

Plus en détail

Sujet. I. Pas de frottements. G.P. DNS Octobre Ressort et frottement

Sujet. I. Pas de frottements. G.P. DNS Octobre Ressort et frottement DNS Sujet Ressort et frottement...1 I.Pas de frottements... 1 II.Frottement fluide...2 III.Frottement solide... 2 A.Plage d équilibre... 2 B.Mouvement...3 Ressort et frottement Un mobile ponctuel B de

Plus en détail

CORRIGE SERIE 11 : OSCILLATIONS MECANIQUES EXERCICE 1 PARTIE

CORRIGE SERIE 11 : OSCILLATIONS MECANIQUES EXERCICE 1 PARTIE CORRIGE SERIE 11 : OSCILLATIONS MECANIQUES EXERCICE 1 PARTIE 1 1 ) «Evoluer de façon alternative et périodique» signifie osciller entre une valeur maximale et une valeur minimale en répétant le phénomène

Plus en détail

Matière : Physique Classe : SG.

Matière : Physique Classe : SG. Matière : Physique Classe : SG. Premier exercice (7pts) : étude énergétique Un jouet d'enfant est formé d'un rail placé dans un plan vertical comme indique la figure ci-dessous. La partie ABC est un trajet

Plus en détail

Amérique du Sud 2005 Sans calculatrice I. ÉMISSION ET RÉCEPTION D UNE ONDE RADIO (4 points)

Amérique du Sud 2005 Sans calculatrice I. ÉMISSION ET RÉCEPTION D UNE ONDE RADIO (4 points) Amérique du Sud 25 Sans calculatrice I. ÉMISSION ET RÉCEPTION D UNE ONDE RADIO (4 points) Au cours d une séance de travaux pratiques, les élèves réalisent un montage permettant d émettre puis de recevoir

Plus en détail

LES OSCILLATIONS. Un mouvement qui se répète à intervalles de temps consécutifs égaux est dit périodique.

LES OSCILLATIONS. Un mouvement qui se répète à intervalles de temps consécutifs égaux est dit périodique. LES OSCILLATIONS Un mouvement qui se répète à intervalles de temps consécutifs égaux est dit périodique. Exemples d oscillations : la balancoire, cordes d une guitare... molécules d air qui transmettent

Plus en détail

TD 17 Approche énergétique du mouvement d un point matériel

TD 17 Approche énergétique du mouvement d un point matériel Mécanique I 1TPC TD 17 Approche énergétique du mouvement d un point matériel Exercice 1 Energie cinétique et théorème de l énergie cinétique (cours) 1. Donner la définition de l énergie cinétique d un

Plus en détail

SERIE N 7 ETUDE DES OSCILLATIONS MECANIQUE LIBRES

SERIE N 7 ETUDE DES OSCILLATIONS MECANIQUE LIBRES SERIE N 7 ETUDE DES OSCILLATIONS MECANIQUE LIBRES EXERCICE 1 Dans cet eercice, les réponses attendues doivent être rédigées de façon succincte. Le modèle d'oscillateur étudié est décrit ci-contre, et les

Plus en détail

POLY-PREPAS Centre de Préparation aux Concours Paramédicaux. - Section i-prépa -

POLY-PREPAS Centre de Préparation aux Concours Paramédicaux. - Section i-prépa - POLY-PREPAS Centre de Préparation aux Concours Paramédicaux - Section i-prépa - Chapitre 10 : Oscillateurs mécaniques (II) 5. Oscillateur mécanique libre amorti : En présence de frottements, il n y a plus

Plus en détail

I. Première observation

I. Première observation PCSI1 Lycée Michelet L OSCILLATEUR HARMONIQUE Introduction Lorsqu une onde se propage (onde acoustique, onde à la surface de l eau), on observe localement un mouvement oscillant (oscillation des particules

Plus en détail

Tronc commun scientifique Mahdade Allal année scolaire Énergie cinétique et travail : activités

Tronc commun scientifique Mahdade Allal année scolaire Énergie cinétique et travail : activités Énergie cinétique et travail : activités Application 1 a. Calculer l énergie cinétique : d une voiture de masse 1, 0tonnes roulant à 90km/h d un camion de masse 30tonnes roulant à 90km/h b. Calculer la

Plus en détail

ETUDE DES OSCILLATIONS MECANIQUE FORCEES

ETUDE DES OSCILLATIONS MECANIQUE FORCEES EXERCICE 1 ETUDE DES OSCILLATIONS MECANIQUE FORCEES A/ Un pendule élastique horizontal est formé d'un ressort (R) à spires non jointives, de masse négligeable, de raideur K=20N.m -1 dont l'une de ses extrémités

Plus en détail

Exercice 1: Exercice2:

Exercice 1: Exercice2: Exercice 1: Un corps de masse m 1 = 3,2 kg se déplace vers l ouest à la vitesse de 6,0 m/s. Un autre corps différent, de masse m 2 = 1,6 kg, se déplace vers le nord à la vitesse de 5,0 m/s. Les deux corps

Plus en détail

Exercices et Problèmes de renforcement en Mécanique

Exercices et Problèmes de renforcement en Mécanique Exercices et Problèmes de renforcement en Mécanique I Un ressort de raideur k = 9 N/m et de longueur à vide L = 4 cm, fixé par une de ces deux extrémités en un point O, d un plan, incliné de 3 sur l horizontal,

Plus en détail

Lycée Viette TSI 1. DS h 50. Problème 01 Trajectoire d une particule

Lycée Viette TSI 1. DS h 50. Problème 01 Trajectoire d une particule DS 03 02 12 2011 1 h 50 Problème 01 Trajectoire d une particule On considère un point matériel en mouvement dans un référentiel. L équation en polaire de la trajectoire en polaire s écrit : =.. avec =.,

Plus en détail

Chapitre n 3 Travail et énergie. W AB ( ) =. = F.AB.cos α

Chapitre n 3 Travail et énergie. W AB ( ) =. = F.AB.cos α Chapitre n 3 Travail et énergie I. Travail d une force constante 1. Notion de travail Le travail est une grandeur algébrique qui permet d évaluer l effet d une force sur l énergie d un objet en mouvement.

Plus en détail

Gabriel Scherer TS3 LE PENDULE ÉLASTIQUE

Gabriel Scherer TS3 LE PENDULE ÉLASTIQUE Gabriel Scherer TS3 LE PENDULE ÉLASTIQUE 1 Étude manuelle d un pendule élastique vertical Schéma : Ressort constante de raideur k M asselote M asse m Support Table S chém a du m ontage utilisé TPP6odt

Plus en détail

8 v 7.1 Oscillations 1

8 v 7.1 Oscillations 1 8 Oscillations v 7.1 Mouvement oscillatoire exemples d'oscillations : pendule de Galilée corde d'une guitare, air dans une flûte, dans un tuyau d'orgue propagation du son dans la matière vibrations des

Plus en détail

repose sur le sol. Lorsque le sol est localement mis en mouvement O sous l effet de secousses sismiques, le référentiel du boîtier est animé,

repose sur le sol. Lorsque le sol est localement mis en mouvement O sous l effet de secousses sismiques, le référentiel du boîtier est animé, FICHE TD PREMIER PRINCIPE DE LA MECANIQUE CLASSIQUE EXERCICE N 1 Un sismographe est un appareil destiné à enregistrer les vibrations de la surface terrestre sous l action d un séisme. Son S g principe

Plus en détail

Oscillateurs. Une oscillation est le mouvement effectué par le système entre deux passages consécutifs à la même position et dans le même sens.

Oscillateurs. Une oscillation est le mouvement effectué par le système entre deux passages consécutifs à la même position et dans le même sens. I - Systèmes oscillants et mouvement sinusoïdal 1) Système mécanique oscillant Oscillateurs On appelle système mécanique oscillant un système matériel pouvant évoluer de part et d'autre d'une position

Plus en détail

BACCALAURÉAT LIBANAIS - SG Corrigé

BACCALAURÉAT LIBANAIS - SG Corrigé Exercice 1 : Pendule de torsion Le but de l exercice est de déterminer le moment d inertie d une tige homogène par rapport à un axe qui lui est perpendiculaire en son milieu et la constante de torsion

Plus en détail

oscillateurs et ondes progressive

oscillateurs et ondes progressive oscillateurs et ondes progressive Ce cours reprend le cours de madame Grenier de 2007, il constitue une aide et en aucun cas une référence pour le concours! C est un résumé du cours de madame Grenier,

Plus en détail

Exercices complémentaires sur la dynamique et l'énergie de l'oscillateur harmonique.

Exercices complémentaires sur la dynamique et l'énergie de l'oscillateur harmonique. Exercices complémentaires sur la dynamique et l'énergie de l'oscillateur harmonique. E x 1. Le graphique ci-contre présente l élongation en fonction du temps d un pendule élastique amorti oscillant verticalement

Plus en détail

Université Joseph Fourier. UE PHY114 et PHY115 Examen terminal : mécanique du point. Mercredi 17 décembre 2014 durée : 1 heure 30 minutes

Université Joseph Fourier. UE PHY114 et PHY115 Examen terminal : mécanique du point. Mercredi 17 décembre 2014 durée : 1 heure 30 minutes Université Joseph Fourier UE PHY114 et PHY115 Examen terminal : mécanique du point Mercredi 17 décembre 2014 durée : 1 heure 30 minutes Numéro d anonymat : documents non autorisés calculatrices autorisées

Plus en détail

2 )- Que peut-on en conclure dans chaque cas. 2

2 )- Que peut-on en conclure dans chaque cas. 2 F(N) L.M.D-ST Eercice 1 : Une particule de masse m=10 kg se déplaçant sur une trajectoire rectiligne, sans frottement, est soumise à la force F() représentée sur la figure ci-dessous. 5 0 15 10 5 (m) 0

Plus en détail

Etude énergétique des systèmes mécaniques

Etude énergétique des systèmes mécaniques Etude énergétique des systèmes mécaniques I) TRAVAIL D UNE FORCE CONSTANTE 1) Expression du travail (rappel) 2) Travail du poids d un corps II) TRAVAIL D UNE FORCE QUELCONQUE 1) Travail élémentaire a)

Plus en détail

G.P. DNS03 Septembre 2011

G.P. DNS03 Septembre 2011 DNS Sujet Secousses en mécanique...1 I.Première modélisation...2 II.Une modélisation plus réaliste...2 A.Phase de non glissement...2 B.Phase de glissement...3 Tunnel terrestre...4 I.Étude préliminaire...4

Plus en détail

Le plan sur lequel se déplace le solide S est horizontal. La position du centre d'inertie G est donnée par

Le plan sur lequel se déplace le solide S est horizontal. La position du centre d'inertie G est donnée par P12-OSCILLATIONS MECANIQUES TRAVAUX DIRIGÉS TERMINALEE S 1 Oscillateur mécanique horizontal Un oscillateur mécanique est constitué d'un ressort à spires non jointives de raideur k dont une extrémité est

Plus en détail

est possible de résoudre certains avec le théorème de l énergie cinétique, l énergie mécanique Remarque : Dans ces exercices, il Exercice 38

est possible de résoudre certains avec le théorème de l énergie cinétique, l énergie mécanique Remarque : Dans ces exercices, il Exercice 38 Mécanique & Électricité http://membres.lycos.fr/wphysiquechimie Premières S Énergie mécanique : Théorème de l énergie mécanique Remarque : Dans ces exercices, il seulement il est clair que le but est Exercice

Plus en détail

Le pendule pesant. 1. Schéma. 2. Etude du mouvement du pendule pesant. par Gilbert Gastebois

Le pendule pesant. 1. Schéma. 2. Etude du mouvement du pendule pesant. par Gilbert Gastebois 1. Schéma Le pendule pesant par Gilbert Gastebois L 0 Longueur du pendule = distance entre l'axe et le centre de gravité du pendule. m Masse du pendule J Moment d'inertie du pendule par rapport à son axe.

Plus en détail

Oscillateurs mécaniques

Oscillateurs mécaniques Oscillateurs mécaniques I. Fiches d exercices R.Duperray Oscillateur harmonique en régime libre Lycée F.BUISSON PTSI Mécanique série n 4: Oscillateurs harmoniques libres Exercice: Détermination d un coefficient

Plus en détail

SOMMAIRE. Chapitre correspondant dans le livre

SOMMAIRE. Chapitre correspondant dans le livre Devoir commun EXERCICES DE RÉVISIONS PARTIE PHYSIQUE 1S SOMMAIRE tableau de synthèse des révisions exercices supplémentaires corrigés des exercices supplémentaires TABLEAU DE SYNTHÈSE Chapitre du cours

Plus en détail

UNIVERSITÉ PAUL SABATIER L1 STS PC : PHYSIQUE

UNIVERSITÉ PAUL SABATIER L1 STS PC : PHYSIQUE UNIVERSITÉ PAUL SABATIER LICENCE STS Année universitaire 2008 2009 L1 STS PC : PHYSIQUE Devoir à la maison n 1 durée conseillée 1 heure Exercice I : Équations aux dimensions I.1. Dans les domaines de la

Plus en détail

Mécanique du Point Matériel

Mécanique du Point Matériel (1) (1) Université Cadi Ayyad Faculté des Sciences Semlalia Département de Physique Année universitaire 2013/2014 Chapitre VII : Oscillateur harmonique 1 Introduction 2 3 Chapitre VII: Oscillateur harmonique

Plus en détail

Objectifs d apprentissage du chapitre 1 Physique et mécaniques, analyse dimensionnelle et ordres de grandeur

Objectifs d apprentissage du chapitre 1 Physique et mécaniques, analyse dimensionnelle et ordres de grandeur Objectifs d apprentissage du chapitre 1 Physique et mécaniques, analyse dimensionnelle et ordres de grandeur Principes de la démarche scientifique Cadre d étude de la physique Définition des mécaniques

Plus en détail

Lycée de Kounoune TS Retrouver la série Page 1

Lycée de Kounoune TS Retrouver la série  Page 1 Lycée de Kounoune Série d exercices classe de Tle S2 2015/2016: prof : M.Diagne P2 : Applications des bases de la dynamique email : diagnensis@yahoo.fr EXERCICE 1 Sur un banc à coussin d'air, on étudie

Plus en détail

Exercice 1 : Mouvement d'un palet

Exercice 1 : Mouvement d'un palet DM - Sciences Physiques Temps estimé 1,5h Pour le Lundi 6 avril 010 Exercice 1 : Mouvement d'un palet Les figures 1, et 4 ne sont pas à l échelle. La figure 3 est à l échelle 1. Intensité du champ de pesanteur

Plus en détail

TS Physique Mécanique du vol d un ballon sonde Exercice résolu

TS Physique Mécanique du vol d un ballon sonde Exercice résolu P a g e 1 TS Physique Exercice résolu Enoncé Un ballon sonde, en caoutchouc mince très élastique, est gonflé à l hélium. Une nacelle, attachée sous le ballon, emporte du matériel scientifique afin d étudier

Plus en détail

B. Théorème de l énergie cinétique, énergie potentielle.

B. Théorème de l énergie cinétique, énergie potentielle. Mouvement du centre de masse A. Théorème de la résultante cinétique. Le théorème de la résultante cinétique (ou théorème du centre d inertie) donne un intérêt tout particulier à la mécanique du point.

Plus en détail

EXERCICE 1 : Ondes sismiques et sismomètre (9 points)

EXERCICE 1 : Ondes sismiques et sismomètre (9 points) Bac S 2010 Réunion http://labolycee.org EXERCICE 1 : Ondes sismiques et sismomètre (9 points) Partie 1 : Les ondes sismiques naturelles «Les ondes sismiques naturelles produites par les tremblements de

Plus en détail

3)Modélisation des actions mécaniques Une action mécanique se modélise par un vecteur force noté F

3)Modélisation des actions mécaniques Une action mécanique se modélise par un vecteur force noté F Actions mécaniques I) Notion d'actions mécaniques 1)Effets possibles Une action mécanique peut : mettre en mouvement un objet maintenir en équilibre un objet Déformer un objet 2)Classification On distingue

Plus en détail

Oscillateurs mécaniques

Oscillateurs mécaniques Oscillateurs mécaniques I. Mouvement Harmonique Simple (MHS) + + =. Projection sur [ ) : = + = Equation différentielle régissant le mouvement du dispositif {solide-ressort} Les solutions sont de la forme

Plus en détail

OSCILLATEUR HARMONIQUE : CORRECTIONS

OSCILLATEUR HARMONIQUE : CORRECTIONS OSCILLATEUR HARMONIQUE : CORRECTIONS Exercices prioritaires : Exercice n 1 Deux ressorts accrochés Deux ressorts sans masse de longueurs l 1 et l 2 au repos et de raideurs 1 et 2 sont accrochés bout à

Plus en détail

SYSTEMES OSCILLANTS. L étude des oscillations d un mobile en translation (MOt) ou d un mobile en rotation (MOr) est le sujet de cette manipulation.

SYSTEMES OSCILLANTS. L étude des oscillations d un mobile en translation (MOt) ou d un mobile en rotation (MOr) est le sujet de cette manipulation. MO 1 SYSTEMES OSCILLANTS On rencontre fréquemment en physique des phénomènes périodiques (ou oscillants ou vibratoires): mouvement autour d'une position d'équilibre d'un pendule, d'un poids suspendu à

Plus en détail

Système vibratoire à un degré de liberté sans amortissement Système MK. 1 Présentation du modèle. Hypothèses d'étude

Système vibratoire à un degré de liberté sans amortissement Système MK. 1 Présentation du modèle. Hypothèses d'étude Cours GP2.aldonado Vibrations à 1 ddl Système vibratoire à un degré de liberté sans amortissement Système K 1 Présentation du modèle Par dénition, un système possède un seul degré de liberté lorsque la

Plus en détail

Oscillations forcées en mécanique

Oscillations forcées en mécanique Oscillations forcées en mécanique I. Oscillateur amorti soumis à une excitation Lorsque l'oscillateur ( amorti par frottement fluide ) est soumis à une force excitatrice () son équation différentielle

Plus en détail

Chapitre IV : Problèmes à un degré de liberté

Chapitre IV : Problèmes à un degré de liberté Chapitre IV : Problèmes à un degré de liberté I Forces conservatives I-1) Définition I-2) Propriété principale I-3) La force de pesanteur I-4) La force de rappel I-5) Forces non conservatives II Energie

Plus en détail

Corrigés des exercices

Corrigés des exercices Il est intéressant d insister sur la définition du vecteur accélération pour enlever l idée qu un système accélère uniquement lors de variations de la valeur de son vecteur vitesse 4 Comment énoncer la

Plus en détail

Mécanique fondamentale

Mécanique fondamentale Chapitre 1 Mécanique fondamentale CURS Ce cours a pour objet de donner aux étudiants en PAES les outils indispensables àlaréussite de leurs concours. Nous avons donc privilégié systématiquement l aspect

Plus en détail

Mouvement d un solide en rotation autour d un axe fixe

Mouvement d un solide en rotation autour d un axe fixe Mouvement d un solide en rotation autour d un axe fixe II. Moment cinétique scalaire d un solide en rotation autour d un axe fixe 1. Moment cinétique d un point matériel par rapport à un point On appelle

Plus en détail

Corrigé de la série n 2 Dynamique et Statique. A.N : d = 1,

Corrigé de la série n 2 Dynamique et Statique. A.N : d = 1, Corrigé de la série n Dynamique et Statique 1/ le volume de la sphère est V = 4 πr et ρ = V m A.N : ρ = 1,7 10 17 Kg/m ρu a densité est d = ρ eau A.N : d = 1,7 10 14 ) es forces qui s exercent sur l ascenseur

Plus en détail

EXERCICES ONDES & LUMIERE

EXERCICES ONDES & LUMIERE EXERCICES ONDES & LUIERE Exercices : Ondes mécaniques 1. Une onde se propage à la vitesse de 40 cm/s. Sa fréquence est de 50 Hz. Quelle est sa longueur d onde? 2. Une onde a une longueur d onde de 1.20

Plus en détail

Révisions d électrocinétique

Révisions d électrocinétique TD 0 évisions d électrocinétique 3 harge d un condensateur On considère le circuit ci-contre À t = 0, on Dipôles et circuits du premier ordre met le circuit sous tension par l intermédiaire du générateur

Plus en détail

PROBLEME : PENDULES COUPLÉS PAR UNE BARRE DE TORSION

PROBLEME : PENDULES COUPLÉS PAR UNE BARRE DE TORSION UE PHY44 Vibrations, ondes et optique ondulatoire, 014-015 L Université Joseph Fourier, Grenoble UE PHY44 Partiel 1 mars 015 durée h 5 pages alculatrice collège autorisée, documents interdits, téléphone

Plus en détail

Oscillateur linéaire à un degré de liberté

Oscillateur linéaire à un degré de liberté Chapitre 4 Oscillateur linéaire à un degré de liberté 4.1 Rappel sur l oscillateur harmonique L équation différentielle d un oscillateur harmonique au voisinage d une position d équilibre stable est avec

Plus en détail

Oscillationsforcéesdessystèmesàun degrédeliberté

Oscillationsforcéesdessystèmesàun degrédeliberté Chapitre 3 Oscillationsforcéesdessystèmesàun degrédeliberté 3.1 Equation différentielle Rappelons la forme générale de l équation de Lagrange pour les systèmes à un degré de liberté : d L L dt q q + D

Plus en détail

Mécanique du point matériel TD1

Mécanique du point matériel TD1 UNIVERSITE CADI AYYAD CP 1 ère année 2015-2016 ENSA- MARRAKECH Mécanique du point matériel TD1 Questions de cours : On considère une courbe sur laquelle se déplace un point matériel d abscisse curviligne

Plus en détail

LYCEE MOURATH NDAW ANNEE SCOLAIRE PROF;NJAAGA JOOB TERMINALE S 1

LYCEE MOURATH NDAW ANNEE SCOLAIRE PROF;NJAAGA JOOB TERMINALE S 1 --------------------------------------------------------------------------------------------------------------- EXERCICE N 1 : Oscillation d un pendule simple Un pendule simple est constitué d un objet

Plus en détail

Examen de Mécanique Analytique. Professeur: P. De Los Rios. Epreuve du 20 février Durée: 4 heures - Sans document

Examen de Mécanique Analytique. Professeur: P. De Los Rios. Epreuve du 20 février Durée: 4 heures - Sans document Examen de Mécanique Analytique Professeur: P. De Los Rios Epreuve du 2 février 27 - Durée: 4 heures - Sans document Exercice 1 Plan incliné (6 points On considère une masse m glissant sans frottement sur

Plus en détail

1 Définitions : Dynamique de translation : Dynamique de rotation :

1 Définitions : Dynamique de translation : Dynamique de rotation : M 2 Dynamique Bac pro - Faire l inventaire des forces agissant sur un système - Appliquer la relation fondamentale de la dynamique à un solide en translation, à un solide en rotation. - Calculer un moment

Plus en détail

Oscillateur harmonique - Régime libre

Oscillateur harmonique - Régime libre Mécanique 2 - Oscillations libres page 1/9 Oscillateur harmonique - Régime libre Table des matières 1 Oscillateur harmonique 1 2 Oscillations libres 2 2.1 Pulsation propre - Isochronisme des oscillations........

Plus en détail

FORCES ET EFFETS DES FORCES I- INTERACTIONS MÉCANIQUES ET ACTIONS MÉCANIQUES

FORCES ET EFFETS DES FORCES I- INTERACTIONS MÉCANIQUES ET ACTIONS MÉCANIQUES Dans ce chapitre, nous allons étudier quelques exemples de forces ainsi que leurs effets produits sur un système. FORCES ET EFFETS DES FORCES I- INTERACTIONS MÉCANIQUES ET ACTIONS MÉCANIQUES Avant de faire

Plus en détail

PHYSIQUE GENERALE I - Exercices Exercice I. Half-pipe

PHYSIQUE GENERALE I - Exercices Exercice I. Half-pipe PHYSIQUE GENERALE I - Exercices 30.01.2004 Exercice I. Half-pipe Un patineur de masse 70 kg se lance sur un half-pipe de forme circulaire, la hauteur de ce dernier étant de 3 m et sa largeur de 5 m (voir

Plus en détail

Professeur : Mohamed lemine ould Hasnat

Professeur : Mohamed lemine ould Hasnat Énoncé de l exercice 1 On étudie le mouvement d un solide ponctuel S dans le référentiel terrestre supposé galiléen. Ce solide, de masse m, est initialement au repos en A. On le lance sur la piste ACD,

Plus en détail

4. Propagation d une onde mécanique

4. Propagation d une onde mécanique 4. Propagation d une onde mécanique a) Introduction et définitions Le concept d «ondes» est l un des plus fondamentaux en physique, et intervient ainsi dans de nombreux domaines : on observe ainsi des

Plus en détail

PC PREMIÈRE ÉPREUVE DE PHYSIQUE

PC PREMIÈRE ÉPREUVE DE PHYSIQUE Jean-Marie DEORME delormejean-marie@wanadoofr François-Xavier COQ francoiscoq@ac-orleans-toursfr ycée POTHIER ORÉANS Si vous note des erreurs ou améliorations possibles, merci de nous les signaler 7 Mines-Ponts

Plus en détail

Mécanique et équilibre chimique

Mécanique et équilibre chimique Colles semaine 20, sujet A Langevin Wallon, PTSI 2015-2016 1 - Représenter la force de Lorentz que subit une particule de charge q < 0 dans la configuration ci-dessous. v 2 - Établir le théorème de la

Plus en détail

Exercices Mécanique du solide

Exercices Mécanique du solide Exercices Mécanique du solide Exo 1 Balançoire Un enfant sur une balançoire est schématisé par un pendule oscillant autour d un axe horizontal grâce à une liaison parfaite. L angle avec la verticale est

Plus en détail

Chapitre 1 Mécanique du point matériel

Chapitre 1 Mécanique du point matériel Chapitre 1 Mécanique du point matériel Exercices d entraînement Page 1 / 63 1. du point matériel Page 2 / 63 Trajectoire parabolique Enoncé Les coordonnées cartésiennes d un point sont données, en fonction

Plus en détail

Concours Commun Epita IPSA Le stabilisateur de camera Steadicam

Concours Commun Epita IPSA Le stabilisateur de camera Steadicam Concours Commun Epita IPSA Le stabilisateur de camera Steadicam Le stabilisateur de camera Steadicam (de l'anglais «steady camera» que l'on peut traduire par camera stable) est un dispositif utilisé pour

Plus en détail

LYCEE GALANDOU DIOUF Année scolaire 05 / 06 Classe 1 er S2 ENERGIE POTENTIELLE- ENERGIE MECANIQUE

LYCEE GALANDOU DIOUF Année scolaire 05 / 06 Classe 1 er S2 ENERGIE POTENTIELLE- ENERGIE MECANIQUE LYEE GLNDOU DIOUF nnée scolaire 05 / 06 lasse 1 er S2 ellule de Sciences Physiques Série P 3 : Exercice 1 ENERGIE POTENTIELLE- ENERGIE MENIQUE Un solide de masse m = 800g glisse sans frottement sur la

Plus en détail

CHAPITRE II Oscillations libres amorties Système à un degré de liberté CHAPITRE II

CHAPITRE II Oscillations libres amorties Système à un degré de liberté CHAPITRE II Page 1 CHAPITRE II Oscillations libres amorties : Systèmes à un degré de liberté Introduction : Le pendule élastique comme le pendule pesant, se comporte comme un oscillateur harmonique à la condition

Plus en détail

Travaux Dirigés de M 3

Travaux Dirigés de M 3 Travau Dirigés 3 Correction PCSI 2 203 204 Travau Dirigés de 3 Eercice : Tir vertical Un obus est lancé depuis le sol, selon la verticale ascendante avec une vitesse initial v 0 = v 0. e. Quelle altitude

Plus en détail

TP pendules. Ce TP est évalué en direct par les observations de l'enseignant.

TP pendules. Ce TP est évalué en direct par les observations de l'enseignant. TP pendules Ce TP est évalué en direct par les observations de l'enseignant. Objectifs : Étudier les oscillations libres et forcées d un pendule élastique (ressort) ; Étudier les oscillations libres non

Plus en détail

- La force est-elle vraiment à l origine du déplacement entre deux points? Mieux : - Quelle est sa contribution au déplacement entre A et B?

- La force est-elle vraiment à l origine du déplacement entre deux points? Mieux : - Quelle est sa contribution au déplacement entre A et B? Chapitre 5 Energie des systèmes mécaniques Introduction Les deux premières lois de Newton nous ont permis d accepter le lien entre force et mouvement d un système matériel, la relation directe se faisant

Plus en détail

Chapitre 6 : Application des lois de Newton et des lois de Kepler (p. 155)

Chapitre 6 : Application des lois de Newton et des lois de Kepler (p. 155) PARTIE 2 - COMPRENDRE : LOIS ET MODÈLES Chapitre 6 : Application des lois de Newton et des lois de Kepler (p. 155) Compétences exigibles : Connaître et exploiter les trois lois de Newton ; les mettre en

Plus en détail

TP : Lois de Newton dans un champ de pesanteur uniforme

TP : Lois de Newton dans un champ de pesanteur uniforme TP : Lois de Newton dans un champ de pesanteur uniforme Connaissances préalables : Le champ de pesanteur est défini par l espace à proximité d une masse importante (comme celle de la Terre) ; il apparaît

Plus en détail

TRAVAUX DIRIGÉS DE M 3

TRAVAUX DIRIGÉS DE M 3 Travau Dirigés 3 Correction PCSI 1 2014 2015 TRVUX DIRIGÉS DE 3 Eercice 1 : Tir vertical Un obus est lancé depuis le sol, selon la verticale ascendante avec une vitesse initial v 0 = v 0. e. Quelle altitude

Plus en détail

Cinématique du point

Cinématique du point Notes de Cours PS 91 Cinématique du point La cinématique du point est l étude du mouvement d un point matériel indépendamment des causes de ce mouvement. En pratique l approximation du point matériel peut

Plus en détail

1 Description d un système oscillant

1 Description d un système oscillant Notions et contenus Oscillations mécaniques Amortissement Oscillations libres Oscillations forcées Résonance Objectifs Décrire un système oscillant autour de sa position d équilibre Décrire l oscillateur

Plus en détail

PHYS-F-104. Physique. BA-1 Biologie, Géographie, Géologie. Examen du 6 juin I. Théorie (20 points 1 heure) II. Exercices (20 points 2 heures)

PHYS-F-104. Physique. BA-1 Biologie, Géographie, Géologie. Examen du 6 juin I. Théorie (20 points 1 heure) II. Exercices (20 points 2 heures) PHYS-F-104 Physique BA-1 Biologie, Géographie, Géologie Examen du 6 juin 005 I. Théorie (0 points 1 heure) II. Exercices (0 points heures) Justifiez toujours vos réponses. (les simples affirmations du

Plus en détail

I- Les trois lois de Newton :

I- Les trois lois de Newton : Lycée Joliot Curie à 7 Chimie Chapitre X Classe de Ter S Cours «Lois de Newton et mouvement dans un champ uniforme» Quel point commun existe-t-il entre le décollage de la navette et le déplacement de la

Plus en détail

Travail et énergie mécanique

Travail et énergie mécanique Travail et énergie mécanique Si le chapitre 5 donnait les lois de la mécanique permettant de connaître position, vitesse et accélération d un système soumis à un ensemble de forces extérieures, nous prenons

Plus en détail

-I- Vibrations et oscillations :

-I- Vibrations et oscillations : BTS BTP 2 ème année Les oscillateurs mécaniques 1 Introduction : l'étude des oscillateurs mécaniques fait partie de la mécanique vibratoire. Cette partie de la physique étudie les vibrations dans les solides,

Plus en détail

TD 12 Description et paramétrage du mouvement d un point = cinématique du point matériel

TD 12 Description et paramétrage du mouvement d un point = cinématique du point matériel Mécanique I 1TPC Exercice 1 Définitions 1. Qu est-ce qu un référentiel? Pourquoi doit-on le définir avant de parler de mouvement? Qu est-ce qui distingue un repère et un référentiel? 2. Définir une base,

Plus en détail

PHYS-F-104 Physique 1 Examen du 30 août 2011 I. Théorie (20 points 1 heure)

PHYS-F-104 Physique 1 Examen du 30 août 2011 I. Théorie (20 points 1 heure) PHYS-F-104 Physique 1 Examen du 30 août 011 I. Théorie (0 points 1 heure) 1. Établissez («démontrez») l'équation de continuité. (3 points) voir cours. Considérez un ressort obéissant à la loi de Hooke.

Plus en détail

Chap8 : Travail et transferts énergétiques

Chap8 : Travail et transferts énergétiques 1. Travail d une force Diaporama : activité ma voiture est en panne Définition F B Le travail d une force constante dont le point d application se déplace de A vers B est égal au produit scalaire A Figure

Plus en détail

Induction électromagnétique

Induction électromagnétique Induction électromagnétique Exercice 1 : Freinage électromagnétique On étudie le freinage électromagnétique d une spire conductrice rectangulaire MNPQ mobile, de côtés a et b, de masse m négligeable, de

Plus en détail

Circuits linéaires du second ordre

Circuits linéaires du second ordre Circuits linéaires du second ordre Régimes périodique, pseudo périodique, critique et apériodique Introduction... I Oscillations électriques libres amorties dans un circuit RLC série...3 1 Montage et conditions

Plus en détail

Correction exercice 1 :

Correction exercice 1 : Exercice 1 : Déterminer une hauteur Une bille est lancée verticalement vers le haut à une altitude h = 2,0 m par rapport au sol, avec une vitesse v = 10 m / s. On considère que le poids est la seule force

Plus en détail

DM14 Énergétique et Cinétique

DM14 Énergétique et Cinétique DM14 Énergétique et Cinétique I Mouvement d un anneau sur une piste circulaire [ATS 004] On considère le dispositif de la figure ci-après, où un anneau assimilable à un point matériel M de masse m se déplace

Plus en détail

I. Les systèmes oscillants

I. Les systèmes oscillants CHAPITRE N 5 PARTIE B OSCILLATEURS MECANIQUES TS Introduction : Les points de certain système mécanique décrivent des trajectoires particulières, au cours desquels ils occupent une même position à des

Plus en détail