TUTORAT UE Biostatistiques Correction du concours blanc 03/11/2011

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "TUTORAT UE Biostatistiques Correction du concours blanc 03/11/2011"

Transcription

1 FACULTE De PHARMACIE TUTORAT UE Biostatistiques Correctio du cocours blac 03/11/2011 QCM 1 : b, c, d a Faux : P(AUB=P(A+P(B=0,55 et P(A B=Ø. b Vrai c Vrai d Vrai : C 5 - C (ombre de mais totales-ombre de mais sas rois. e Faux: P(A/S=P(B/S=0,5. QCM 2 : c, d, e a Faux : la spécificité = probabilité que le test soit égatif chez le o malade. b Faux : d après la formule mathématique de sesibilité et de spécificité, elles e sot pas l iverse l ue de l autre. c Vrai : D après la formule de Bayes : P( M P( / M P( M /-= P( / M P( M P( / M P( M = Sp 0,9 Sp 0,9 0,2 0,1 0,96 d Vrai : par cotre la sesibilité et la spécificité sot 2 paramètres itrisèques qui e dépedet pas de la prévalece. e Vrai : VPP = P(M/+= 0,8 0,1 0,18. 0,8 0,1 0,4 0,9 QCM 3 : a,e a Vrai : P(X 290= 0,2 Par lecture iverse : P(X b Faux c Faux d Faux e Vrai D où : Tutorat UE 4 Biostatistiques Correctio du cocours blac 1 / 6

2 QCM 4 : a, b, d a Vrai : taille de l échatillo icoue (etre 40 et 50 et p=50/200. Expériece à 2 issues possibles (garços/filles b Vrai : >20 et p<0.5 c Faux : d Vrai: (voir c e Faux f Faux QCM 5 : b, c, d, e a Faux : Pas besoi, ous disposos ici d u effectif suffisat. De plus il s agit d ue proportio. b Vrai : Il s agit ici d ue proportio ; po po doc o utilisera cette formule : [ po c ; po c ] Avec p la proportio estimée das l échatillo 127 Aisi o obtiet u p 0 = = 0, E remplaçat o obtiet alors bie [0,363 ; 0,416]. o c = 0,994 pour =32% c Vrai : Lorsque l o veut u résultat a 3% près, cela veut dire que le résultat doit être correcte à plus ou mois 3%. E effet si le bo résultat est 100 alors 97,1 comme 102,9 sot des résultats correctes à 3% près. Doc, das la formule po(1 po po c = ecadremet, o e déduit que po c = 0, 03 O ous demade u itervalle de cofiace a 92%, doc α=8% et c = 1,751 po p.(1 p Isolos alors l icoue, : c = 0, 03 c. = 0,03 N oublios pas que ous cherchos à estimer p (so ecadremet tout du mois, aisi il faut faire ue hypothèse quat à sa vraie valeur. A partir de là, o remarque que augmete lorsque p.(1-p augmete. Aisi afi d être sur d avoir le max, ous permettat aisi, quelque soit la vrai probabilité, d avoir ue estimatio exacte (quitte à predre u trop grad doc, o doit predre p.(1-p max! Il est alors facile de compredre qu il faut chercher p tel que p.(1-p soit max. O trace doc la courbe p.(1-p=f(p. L abscisse correspodat au sommet de la courbe ous doera la probabilité qui correspod au p.(1-p max et doc par extesio à max. O remarque que le maximum est atteit pour ue probabilité de p=0,5. O remplace alors das la formule : 0,5.0,5 1,751. =0,2918= 0,03 = 29,18² = 851 Ou sio, rappelez vous juste que das les exos comme ça o pred toujours p=0, Tutorat UE 4 Biostatistiques Correctio du cocours blac 2 / 6

3 d Vrai : O repred simplemet la formule de l ecadremet, sas oublier que l o e s itéresse à préset seulemet qu aux coccielles e trai de se oyer. O a doc = 127. Pour α=21% o a c = 1,254 po po O sait que [ po c ; po c ] et o trouve bie [0,68 ; 0,78]. po e Vrai : O se retrouve das le même cas de figure que précédemmet : c = 0,01. O cherche le risque, doc o cherche c. O coait la proportio : p= 0,769 et o coait l effectif : =562. O isole c et o fera ue lecture iverse de la table pour coaitre le risque α. 0,01 O a doc c = 0,562. po Et par lecture iverse o trouve que α est bie compris etre 57 et 58%. QCM 6 : a, c, e a Vrai : Ici la moyee est de 374 fruits b Faux : Calculos la variace observée : s² = i 1 _ ² x i ² x 1 s² = ² = fruits², il s agit bie de la variace observée. 11 Calculos maiteat l écart-type estimé : S² = 1. s² = fruits². D où l écart-type estimé est de 155 fruits. S² S² c Vrai : Il faut se servir des formules doées e cours : [( 1 ;( 1 ] avec : S² = variace b a estimée de la populatio. Le Ddl est de 10 (-1 avec : a tel que P( ² 10,10% a 0, 10 b tel que P( 10,10%² b 0, 90 Il e faut pas oublier que la table du Chi² doe les probabilités supérieures! Doc attetio à la lecture das la table. O trouve aisi a = 4,865 et b = 15,987 E remplaçat o tombe sur le bo itervalle de cofiace : [ ; ]. d Faux : pas das tous les cas, il faut que la v.a.r suive ue Loi Normale! e Vrai : Ue fois l hypothèse effectuée l ecadremet est juste : O a u effectif iférieur à 30, doc o doit e préambule supposer que la v.a.r. suit ue Loi Normale. E suite o lit le fractile qui correspod au risque α=2%. O trouve pour u ddl de 10 : t 1, = 2,764. O remplace das la formule avec l écart-type estimé das la populatio : S [ x t 1, ; x t 1, S ] et o trouve u itervalle de cofiace de [244,83 ; 503,17] Tutorat UE 4 Biostatistiques Correctio du cocours blac 3 / 6

4 QCM 7 : b, c, e a Faux : H 0 est l hypothèse ulle que l o essaye de réfuter. A cotrario, H 1 est l hypothèse complémetaire que l o essaye de corroborer. b Vrai : α est la probabilité de rejeter à tord H 0, et doc d accepter à tord H 1. c Vrai : la puissace (π = 1-β est la capacité d u test à mettre e évidece ue différece sigificative (doc de rejeter H 0 si H 0 est fausse. d Faux : das u test bilatéral! e Vrai : mais e cotrepartie les tests paramétriques sot plus cotraigats à utiliser car ils écessitet de satisfaire à des coditios d utilisatio. QCM 8 : a, b, c a Vrai b Vrai c Vrai d Faux : S=12 e Faux : S > a 8 lu das la table o e rejette pas. QCM 9 : a, c a Vrai b Faux : o utilise le test du Chi² de Mac Nemar. Célibataire (après E couple (après Célibataire (avat 12 2 =14 E couple (avat 11 2 =13 =23 =4 = = 13 paires discordates. Les coditios d utilisatio du test du Chi² de Mac Nemar sot doc réalisées (b de paires discordates > (11 2 c Vrai : Tobs 6, d Faux : pour le test du Chi² de Mac Nemar, la Pvalue se lit par lecture iverse de la table du Chi² à 1 ddl. O trouve : 0,02 > Pvalue > 0,01. e Faux : o peut procéder de 2 faços différetes : faço 1 : das la table du Chi² à 1 ddl (α=1%, o lit t α =6,635 6,23<6,635 doc t obs <t α o e rejette pas H 0. faço 2 : 0,02>Pvalue>0,01 doc Pvalue>α o e rejette pas H Tutorat UE 4 Biostatistiques Correctio du cocours blac 4 / 6

5 QCM 10 : b a Faux : a partir de 35 =(t obs *σ/δ m ². b Vrai : si o isole m das la formule du T obs. c Faux : l effectif e chage pas le σ, il augmete juste racie de... d Faux : l écart reduit e se sert pas de ddl. e Faux : la variace serait multipliée par 4. QCM 11 : a, b, e a Vrai : icidece cumulée = = =0,0029 b Vrai c Faux : 10 pour 1000 car prévalece = d Faux : taux de létalité = = 1200 / 7000 = 0.17 soit 170 pour 1000 (o multiplie par 1000 tout simplemet! e Vrai : 3400/700000= 0,0049 QCM 12 : b, e a Faux : à partir de 1950, le champ de l épidémilogie s est élargi à toutes les pathologies otammet chroiques, même si elle est plutôt cetrée sur les épidémies et maladies ifectieuses. b Vrai c Faux : pas 5 mais 3 braches (sio le reste est vrai d Faux : épidémiologie de populatio=sais + malades e Vrai QCM 13 : c, d, e a Faux : tout vrai sauf que c est u temps défii b Faux : ce risque est variable selo les persoes : leur âge, leurs caractéristiques biologiques... c Vrai d Vrai e Vrai QCM 14 : b, e a Faux b Vrai : RR= =6 c Faux : multiplicatif d Faux : p<1 % e Vrai Tutorat UE 4 Biostatistiques Correctio du cocours blac 5 / 6

6 QCM 15 : a, b, c, d a Vrai b Vrai c Vrai d Vrai e Faux : ça c est l épidémiologie. 3 biais : de sélectio, de classemet (=d iformatio et de cofusio. QCM 16 : f a Faux : e terme d efficacité et e terme de tolérace b Faux : il est effectué chez des patiets atteits de la pathologie c Faux : procédure expérimetale d Faux : c est la phase 3 e Faux : préciser les critères d iclusio et de o iclusio Tutorat UE 4 Biostatistiques Correctio du cocours blac 6 / 6

Estimation par intervalle de confiance

Estimation par intervalle de confiance 62 CHAPITRE 12 Estimatio par itervalle de cofiace 1. Estimatio de la moyee par itervalle de cofiace 1.1. Calcul de la marge d erreur. O veut maiteat faire ue estimatio par itervalle de cofiace de la moyee

Plus en détail

1 lois usuelles. 2 Estimation. 1.1 Loi Binomiale. 1.2 Loi de Poisson. 1.3 Loi normale. 2.1 Estimation ponctuelle de la moyenne

1 lois usuelles. 2 Estimation. 1.1 Loi Binomiale. 1.2 Loi de Poisson. 1.3 Loi normale. 2.1 Estimation ponctuelle de la moyenne 1 lois usuelles 11 Loi Biomiale B(, p) q = 1 p p(x = k) = C k p k q k Espérace E(X) = p Variace : V ar(x) = pq Écart type : σ = pq 12 Loi de Poisso P(λ) : loi de Poisso de paramètre λ > 0 : X(Ω) = N λ

Plus en détail

COURS N 6 : Estimations

COURS N 6 : Estimations COURS N 6 : Estimatios O peut rappeler que les biostatistiques ot pour objectif de predre e compte la variabilité iteridividuelle, de résumer et décrire des doées et de comparer des échatillos. Nous avos

Plus en détail

Techniques d enquête

Techniques d enquête Sodage aléatoire simple Techiques d equête Exercice 1 Sur les 500 élèves de M1 de l Uiversité d Auverge, o veut coaître la proportio P qui souhaitet faire u Master à Clermot-Ferrad. Parmi les 150 élèves

Plus en détail

Estimation de paramètres

Estimation de paramètres CHAPITRE 8 Estimatio de paramètres 1. Distributio des moyees des échatillos Das ce chapitre, ous étudieros commet est distribué la moyee de tous les échatillos de taille possibles d ue certaie populatio.

Plus en détail

Annexe I. Théorie des tests : Rappel très simplifié sur un exemple.

Annexe I. Théorie des tests : Rappel très simplifié sur un exemple. Théorie des tests : Rappel très simplifié sur u exemple. Aexe I Test de l efficacité d u remède sur des malades atteit d u rhume. p 0 : probabilité de guérir das les huit jours avec u placebo p 1 : probabilité

Plus en détail

Résumé de statistique inductive

Résumé de statistique inductive Uiversité de Bourgoge Faculté de Médecie et de Pharmacie Résumé de statistique iductive NB : les iformatios coteues das ce polycopié e fot e aucu cas office de référece pour le cocours, il s agit uiquemet

Plus en détail

UNIVERSITÉ PARIS OUEST NANTERRE LA DÉFENSE U.F.R. SEGMI Année universitaire Méthodes Statistiques

UNIVERSITÉ PARIS OUEST NANTERRE LA DÉFENSE U.F.R. SEGMI Année universitaire Méthodes Statistiques UNIVERSITÉ PARIS OUEST NANTERRE LA DÉFENSE U.F.R. SEGMI Aée uiversitaire 2014 2015 L2 Écoomie Cours de B. Desgraupes Méthodes Statistiques Séace 07: Tests de coformité II Table des matières 1 Tests sur

Plus en détail

Opérations sur les variables aléatoires Lois limites

Opérations sur les variables aléatoires Lois limites Opératios sur les variables aléatoires Lois limites A. Idépedace de deux variables aléatoires. Exemple 1. Pour améliorer le stockage d u produit u supermarché fait ue étude sur la vete de packs de 6 bouteilles

Plus en détail

Estimations. Les Moyennes des échantillons suivent une loi normale : = m et d' écart - type σ X

Estimations. Les Moyennes des échantillons suivent une loi normale : = m et d' écart - type σ X Estimatios Problématique. A partir d'observatios faites sur u échatillo, o se propose de tirer des coclusios sur la populatio toute etière. Aisi cotrairemet à la logique déductive, qui va du gééral au

Plus en détail

Tests. Chapitre 2. 1 Principe d un test Définitions Méthode générale... 3

Tests. Chapitre 2. 1 Principe d un test Définitions Méthode générale... 3 Tests Chapitre Table des matières 1 Pricipe d u test 1 11 Défiitios 1 Méthode géérale 3 Test de coformité à u paramètre 3 1 Test de coformité à ue moyee 3 Test de coformité à ue proportio 4 3 Test d homogééité

Plus en détail

ANOVA avec un facteur aléatoire

ANOVA avec un facteur aléatoire Chapitre 7 ANOVA avec u facteur aléatoire Jusqu à maiteat, o a supposé que les modalités du facteur étudié ot été choisies parce qu elles étaiet itrisèquemet itéressates. Le modèle à effets fixes porte

Plus en détail

II - Estimation d'un paramètre par intervalle de confiance

II - Estimation d'un paramètre par intervalle de confiance II - Estimatio d'u paramètre par itervalle de cofiace 1 ) - Gééralités sur la costructio O veut estimer u paramètre (moyee, proportio ) d'u caractère das ue populatio P. Ue estimatio poctuelle à partir

Plus en détail

Tests Statistiques. Tony Bourdier ESSTIN

Tests Statistiques. Tony Bourdier ESSTIN Tests Statistiques Toy Bourdier ESSTIN 9-1 1 Formulatio 1.1 Notio de test Soit X ue variable aléatoire réelle de desité f θ x dépedat d u paramètre θ de valeur icoue. O formule deux hypothèses sur la valeur

Plus en détail

STATISTIQUES - ESTIMATION

STATISTIQUES - ESTIMATION STATISTIQUES - ESTIMATION I Echatilloage et estimatio : itroductio O se situe ici das 2 domaies des statistiques qui sot ceux de l «échatilloage» et de l «estimatio». Ces 2 domaies ot des cotextes d applicatio

Plus en détail

Proposition : la droite d équation «y= 4» est asymptote horizontale à la courbe de f en. . Calculer : a) lim f( x) h( x) xlim

Proposition : la droite d équation «y= 4» est asymptote horizontale à la courbe de f en. . Calculer : a) lim f( x) h( x) xlim NOM : Termiale S- ABC S3 ludi ovembre 06 La présetatio, la rédactio et la rigueur des résultats etrerot pour ue part sigificative das l évaluatio de la copie. Le sujet est composé de 5 eercices idépedats.

Plus en détail

IUT HSE Introduction aux probabilités et statistiques Applications Variables aux statistiques aléatoires 4 / 1

IUT HSE Introduction aux probabilités et statistiques Applications Variables aux statistiques aléatoires 4 / 1 IUT HSE Itroductio aux probabilités et statistiques Variables aléatoires Philippe Jamig Istitut Mathématique de Bordeaux PhilippeJamig@gmailcom http://wwwmathu-bordeaux1fr/ pjamig/ X variable aléatoire

Plus en détail

P(X> ) = f(..) + f(...).. MAIS si on ne sait pas le max à 1-P(X< )* P(X< ) = f(..) + f( ).. Type de donnée Ex Main Excel

P(X> ) = f(..) + f(...).. MAIS si on ne sait pas le max à 1-P(X< )* P(X< ) = f(..) + f( ).. Type de donnée Ex Main Excel Les lois discrètes Réalisatios déombrables Poits portet probabilités P(X> ) = f(..) + f(...).. MAIS si o e sait pas le max à -P(X< )* P(X< )= f(..) + f(...).. P(X> ) = *-P(X< ) = F( ) è soit f( ) f( )

Plus en détail

i la moyenne empirique de X n n v =

i la moyenne empirique de X n n v = Corrigé Statistiques iféretielle par par Pierre Veuillez Itervalle de cofiace. Exercice Détermier ue valeur approchée de la loi de la moyee empirique : E X E X, V X V X doc X N E X, V X Exercices. Variace

Plus en détail

Estimation Intervalle de Confiance

Estimation Intervalle de Confiance Estimatio Itervalle de Cofiace Pr Roch Giorgi roch.giorgi@uiv-amu.fr SESSTIM, Faculté de Médecie, Aix-Marseille Uiversité, Marseille, Frace http://sesstim-orspaca.org Itroductio Coaître des valeurs de

Plus en détail

Master Eseec Statistique pour l expertise - partie2

Master Eseec Statistique pour l expertise - partie2 Master Eseec Statistique pour l expertise - partie2 Christia Laverge Uiversité Paul Valéry - Motpellier 3 http://moodle-miap.uiv-motp3.fr http://www.uiv-motp3.fr/miap/es (UPV) Eseec 1 / 57 Lois limites

Plus en détail

UNIVERSITÉ PARIS OUEST NANTERRE LA DÉFENSE U.F.R. SEGMI Année universitaire Méthodes Statistiques

UNIVERSITÉ PARIS OUEST NANTERRE LA DÉFENSE U.F.R. SEGMI Année universitaire Méthodes Statistiques UNIVERSITÉ PARIS OUEST NANTERRE LA DÉFENSE U.F.R. SEGMI Aée uiversitaire 2014 2015 L2 Écoomie Cours de B. Desgraupes Méthodes Statistiques Séace 11: Tests d adéquatio II Table des matières 1 Test de Kolmogorov-Smirov

Plus en détail

est la fréquence empirique des succès lors des 10 premières expériences.

est la fréquence empirique des succès lors des 10 premières expériences. Pierre Veuillez Statistiques iféretielle Sources, et pour e savoir plus : http://www.math-ifo.uiv-paris5.fr/smel 1 Problématique : Exemple ue ure cotiet des boules rouges et blaches dot o e coaît pas la

Plus en détail

Physique Numérique TP4 Intégration Numérique

Physique Numérique TP4 Intégration Numérique Physique Numérique TP4 Victor Lavi Itroductio Das ce TP, o s itéresse aux méthodes umériques de calcul d itégrales. O étudiera plus précisémet la méthode des trapèzes, e ue et deux dimesios. Das u premier

Plus en détail

Echantillon : Collection d'individus prélevés dans la population statistique.

Echantillon : Collection d'individus prélevés dans la population statistique. SONDAGE (ECHANTILLONNAGE) POPULATION STATISTIQUE N idividus possédat ue modalité yi de la (ou des) variable(s) y ( i N) PARAMETRES valeur cetrale dispersio corrélatio µ σ² ρ moyee variace coef. corr. ECHANTILLON

Plus en détail

Lois normales. Intervalle de fluctuation. Estimation.

Lois normales. Intervalle de fluctuation. Estimation. Lois ormales. Itervalle de fluctuatio. Estimatio.. Loi ormale cetrée réduite... p. Théorème de Moivre-Laplace... p 3. Loi ormale (µ ; σ²)... p3 Copyright meilleuremaths.com. Tous droits réserwidevec{}vés

Plus en détail

Chapitre 9 La loi binomiale

Chapitre 9 La loi binomiale A) Variables aléatoires 1) Défiitio Chapitre 9 La loi biomiale O appelle variable aléatoire X ue foctio qui associe à tout résultat (évéemet élémetaire) u ombre réel. Pour ue même expériece aléatoire,

Plus en détail

MÉTHODES STATISTIQUES EXAMEN INTRA HIVER 2009 Date : Dimanche 15 mars 2009 de 14h00 à 17h00

MÉTHODES STATISTIQUES EXAMEN INTRA HIVER 2009 Date : Dimanche 15 mars 2009 de 14h00 à 17h00 MAT 2080 MÉTHODES STATISTIQUES EXAMEN INTRA HIVER 2009 Date : Dimache 15 mars 2009 de 14h00 à 17h00 INSTRUCTIONS 1. Détachez la feuille-réposes à la fi de ce cahier et iscrivez-y immédiatemet votre om,

Plus en détail

1 Un peu de vocabulaire

1 Un peu de vocabulaire Statistiques - Échatilloage Cours Objectifs du chapitre Passer d u mode de représetatio des doées à u autre (doées brutes, tableau d effectifs, représetatio graphique) Calculer la moyee, la médiae, les

Plus en détail

Intervalles de fluctuations et intervalles de confiance

Intervalles de fluctuations et intervalles de confiance Complémets e statistique. Préparatio au Capes. Uiversité de Rees 1. 2015. Complémets e Statistique Préparatio au Capes Uiversité de Rees 1 Itervalles de fluctuatios et itervalles de cofiace Table des matières

Plus en détail

Corrigé Fiche 6 Septembre 2016

Corrigé Fiche 6 Septembre 2016 Corrigé Fiche 6 Septembre 2016 1. Estimatio de la moyee, variace coue, cas gaussie O dispose d u -échatillo X 1,..., X i.i.d. tel que X i suit ue loi ormale N µ, σ 2 ). L objectif est d estimer µ. Supposos

Plus en détail

1. Notion de «série statistique» 2. VRAI ou FAUX. Corrigé des exercices du chapitre 10 : SECTION «ON S ENTRAÎNE» (P.

1. Notion de «série statistique» 2. VRAI ou FAUX. Corrigé des exercices du chapitre 10 : SECTION «ON S ENTRAÎNE» (P. Corrigé des exercices du chapitre 10 : SECTION «ON S ENTRAÎNE» (P. 351-355) Page 1 1. Notio de «série statistique» Il s agit d ue série de doées recueillies auprès des différetes uités statistiques d u

Plus en détail

Statistiques inférentielles. Introduction. Exemples. Définition (Échantillon aléatoire) Définition (Statistique inférentielle) Exemple 1.

Statistiques inférentielles. Introduction. Exemples. Définition (Échantillon aléatoire) Définition (Statistique inférentielle) Exemple 1. Statistiques iféretielles Pierre-Heri WUILLEMIN Licece d Iformatique Uiversité Paris 6 Itroductio Soit ue populatio de taille N sur laquelle o observe ue propriété, dot o veut calculer moyee µ et de variace

Plus en détail

Intervalles de fluctuations et intervalles de confiance

Intervalles de fluctuations et intervalles de confiance Complémets e statistique. Préparatio au Capes. Uiversité de Rees 1. 2017. Complémets e Statistique Préparatio au Capes Uiversité de Rees 1 Itervalles de fluctuatios et itervalles de cofiace Table des matières

Plus en détail

EXERCICES de Statistiques

EXERCICES de Statistiques EXERCICES de Statistiques Aette Corpart lycée Jea Zay de Thiers EXERCICES sur la LOI NORMALE La variable aléatoire X suit la loi ormale N ( 12 ; 4 ). Calculer les probabilités suivates : P ( X 15 ) ; P

Plus en détail

Intervalles de confiance

Intervalles de confiance Itervalles de cofiace H4 H4 Itervalles de cofiace Vocabulaire : u correspod à ue fiabilité (ou cofiace) de 95 %, u correspod à ue fiabilité (ou cofiace) de 99 % 0 ) Echatillo o exhaustif La théorie des

Plus en détail

Fiche Diagonalisation des Matrices 2x2

Fiche Diagonalisation des Matrices 2x2 Fiche Diagoalisatio des Matrices x MOSE 1003 4 Septembre 014 Table des matières Motivatio, puissaces d ue matrice 1 Diagoalisatio Vérificatio avec Scilab 3 Puissace 4 Motivatio, puissaces d ue matrice

Plus en détail

Chapitre 7. Tests d hypothèse. Sommaire. 1. Introduction Principe des tests...3

Chapitre 7. Tests d hypothèse. Sommaire. 1. Introduction Principe des tests...3 Mathématiques : Outils pour la Biologie Deug SV UCBL D. Mouchiroud (8/0/003) Chapitre 7 Tests d hypothèse Sommaire. Itroductio.. 3. Pricipe des tests......3.. Choix de l hypothèse à tester.4... Hypothèse

Plus en détail

IREM Martine Quinio. 5 février 2013

IREM Martine Quinio. 5 février 2013 : 1 IREM 2013 Martie Quiio 5 février 2013 1 La loi de Gauss, ou loi ormale Itroductio : Lire court article C.Villai das Le Mode du 14-15/12 : il compare le traitemet médiatique boso de Higgs et rats OGM

Plus en détail

LA LOI DES GRANDS NOMBRES ET LE THÉORÈME DE LA LIMITE CENTRALE

LA LOI DES GRANDS NOMBRES ET LE THÉORÈME DE LA LIMITE CENTRALE LA LOI DES GRANDS NOMBRES ET LE THÉORÈME DE LA LIMITE CENTRALE MATTHIEU KOWALSKI 1. INTRODUCTION La démarche statistique cosiste à observer ue expériece aléatoire das le but de mieux coaître ses caractéristiques.

Plus en détail

CORRIGE DES EXERCICES : Exercices de révision

CORRIGE DES EXERCICES : Exercices de révision U.F.R. S.P.S.E. Licece de psychologie L5 PLPSTA03 Tests d'hypothèses statistiques UNIVERSITE PARIS X NANTERRE CORRIGE DES EXERCICES : Exercices de révisio Exercice 8. P{filles de 0 as}, X ombre de boes

Plus en détail

Master 1 de Santé Publique. UE de biostatistique : cours Tests portant sur des échantillons appariés

Master 1 de Santé Publique. UE de biostatistique : cours Tests portant sur des échantillons appariés Master 1 de Saté Publique UE de biostatistique : cours 10 Tests portat sur des échatillos appariés M1 de Saté Publique Biostatistique - Cours 10 - Echatillos appariés 1 Tests portat sur des échatillos

Plus en détail

Les mesures de tendance centrale

Les mesures de tendance centrale 6 CHAPITRE 7 Les mesures de tedace cetrale Les mesures de tedace cetrale servet à caractériser ue série statistique à l aide d ue valeur ou d ue modalité typique. Il existe trois mesures possibles : le

Plus en détail

Convergences et approximations

Convergences et approximations Covergeces et approximatios Probabilités : Chapitre 5 Das tout ce chapitre, les démostratios serot faites das le cas des variables discrètes et des variables à desité. I Iégalité de Bieaymé-Tchebychev

Plus en détail

T. D. n o 2 Intervalles de confiance-correction

T. D. n o 2 Intervalles de confiance-correction T. D. o 2 Itervalles de cofiace-correctio Exercice 1. Les billes métalliques 1. Nous calculos la moyee µ 10 de l échatillo : µ 10 = 20. Calculos la variace corrigée puis l écart-type corrigé de l échatillo

Plus en détail

MÉTHODES STATISTIQUES EXAMEN FINAL HIVER 2007 Date : Dimanche 29 avril de 14h00 à 17h00

MÉTHODES STATISTIQUES EXAMEN FINAL HIVER 2007 Date : Dimanche 29 avril de 14h00 à 17h00 MAT 080 MÉTHODES STATISTIQUES EXAME IAL HIVER 007 Date : Dimache 9 avril de 14h00 à 17h00 ISTRUCTIOS Détachez la feuille-réposes à la fi de ce cahier et iscrivez-y immédiatemet votre om, votre code permaet

Plus en détail

TS Exercices sur les fonctions puissances et racines n-ièmes

TS Exercices sur les fonctions puissances et racines n-ièmes TS Eercices sur les octios puissaces et racies -ièmes Calculer sas utiliser la calculatrice e détaillat les étapes de calcul 4 4 A ; B 6 ; C 8 ) Développer et ) E déduire la valeur eacte de A 0 4 0 4 4

Plus en détail

. En déduire la limite de f 1 en +. F 1 (x) = e 2 2 4

. En déduire la limite de f 1 en +. F 1 (x) = e 2 2 4 Atilles-Guyae septembre 5 EXERCICE 6 POINTS Commu à tous les cadidats 6 poits Soit u etier aturel o ul. O cosidère la foctio f défiie et dérivable sur l esemble des ombres réels par f (x) = x e x O ote

Plus en détail

Loi binomiale. Loi de Bernoulli

Loi binomiale. Loi de Bernoulli Loi biomiale Loi de Beroulli O s itéresse ici à la réalisatio ou o d u évéemet. Autremet dit, o étudie les expérieces aléatoires qui ot que deux issues possibles : Obteir Pile ou Face Doer aissace à u

Plus en détail

ANOVA Analyse de la Variance

ANOVA Analyse de la Variance Chapitre 8 ANOVA Aalyse de la Variace. Obectif de la méthode Chap 8.. Obectif de la méthode. Approche ituitive 3. Décompositio de la variace 4. ANOVA: le test et le modèle statistique sous-acet O s itéresse

Plus en détail

Statistiques inférentielles

Statistiques inférentielles Statistiques iféretielles LI323 Hugues Richard (otes de cours: Pierre-Heri Wuillemi) Uiversité Pierre et Marie Curie (UPMC) Laboratoire géomique des microorgaismes (LGM) Itroductio Soit ue populatio de

Plus en détail

I. Probabilités : petit bilan de 2 nde

I. Probabilités : petit bilan de 2 nde ère S FICHE Variables aléatoires I. Probabilités : petit bila de de EXECICE TYPE (voir évaluatio diagostique d etrée e ère S) Eocé O fait tourer ue roue équilibrée comme ci-dessous séparées e 8 secteurs

Plus en détail

DS - 3 : correction. Partie 1. Exercice 1. Pour tout n 2, on pose : n 1. V n =

DS - 3 : correction. Partie 1. Exercice 1. Pour tout n 2, on pose : n 1. V n = Lycée Thiers DS - 3 : correctio Partie Exercice Pour tout, o pose : V ( i i Calculer V p+ pour tout p, e regroupat les termes coveablemet. E déduire le calcul de V p. Quelle formule «uifiée» peut-o proposer

Plus en détail

Statistiques. Ne pas oublier - la légende sur les axes - les unités - un titre pour le diagramme

Statistiques. Ne pas oublier - la légende sur les axes - les unités - un titre pour le diagramme Statistiques I. Tableaux d effectifs, de fréqueces : 1. Calculer la fréquece d'ue valeur ou d'ue classe : Diviser l effectif de la valeur par l effectif total fréquece La somme des fréqueces est 1 (ou

Plus en détail

TS Devoir Commun de Mathématiques N 3 Lundi17/11/2014

TS Devoir Commun de Mathématiques N 3 Lundi17/11/2014 TS Devoir Commu de Mathématiques N Ludi7//04 La présetatio, la rédactio et la rigueur des résultats etrerot pour ue part sigificative das l évaluatio de la copie Le sujet est composé de 4 eercices idépedats

Plus en détail

Chapitre II: Notions sur les fautes et les erreurs.

Chapitre II: Notions sur les fautes et les erreurs. Chapitre II: Notios sur les fautes et les erreurs. Chapitre II: Notios sur les fautes et les erreurs.. Gééralités Mesurer c'est l'actio de comparer ue gradeur (quatité) par rapport à ue gradeur de même

Plus en détail

Introduction aux théorèmes limites et aux intervalles de confiance

Introduction aux théorèmes limites et aux intervalles de confiance Chapitre 5 Itroductio aux théorèmes limites et aux itervalles de cofiace Objectifs du chapitre. Savoir approcher ue loi biomiale par ue loi de Poisso ou ue loi ormale. 2. Savoir approcher ue loi e appliquat

Plus en détail

B2 - Intervalle de confiance d une moyenne avec écart-type inconnu dans le cas d une population Gaussienne

B2 - Intervalle de confiance d une moyenne avec écart-type inconnu dans le cas d une population Gaussienne B2 - Itervalle de cofiace d ue moyee avec écart-type icou das le cas d ue populatio Gaussiee Das le cas précédet, o a costruit l IdC à partir de la var X m σ{?. Mais, maiteat σ état icou, il coviet de

Plus en détail

Vendredi 20 octobre CONTRÔLE DE MATHEMATIQUES N 2 Classe de TERM 07. En salle 206, deux heures de 8 h à 10 h : LES SUITES et PROBABILITES.

Vendredi 20 octobre CONTRÔLE DE MATHEMATIQUES N 2 Classe de TERM 07. En salle 206, deux heures de 8 h à 10 h : LES SUITES et PROBABILITES. Vedredi 0 octobre 07. CONTRÔLE DE MATHEMATIQUES N Classe de TERM 07. E salle 06, deux heures de 8 h à 0 h : LES SUITES et PROBABILITES. La première feuille de ce devoir doit être ue feuille double. Lisez

Plus en détail

Séance 5 : Exercices récapitulatifs sur l estimation ponctuelle

Séance 5 : Exercices récapitulatifs sur l estimation ponctuelle Math-F-207 Corrigé Séace 5 Exercice 1 Séace 5 : Exercices récapitulatifs sur l estimatio poctuelle Les élémets d ue populatio possèdet u caractère X qui suit ue loi de desité f (x e x2 /2 2π où > 0. Pour

Plus en détail

1 Intervalles de confiance. 2 Tests d hypothèses. 3 La loi du χ 2. X N (µ; σ 2 ) n très grand = la valeur observée x de X µ

1 Intervalles de confiance. 2 Tests d hypothèses. 3 La loi du χ 2. X N (µ; σ 2 ) n très grand = la valeur observée x de X µ Pla du cours 3 RFIDEC cours 3 : Itervalles de cofiace, tests d hypothèses, loi du χ Christophe Gozales LIP6 Uiversité Paris 6, Frace 1 Itervalles de cofiace Tests d hypothèses 3 La loi du χ Itervalles

Plus en détail

Divers exercices de probabilité

Divers exercices de probabilité Divers exercices de probabilité Traiter e priorité les quatre premiers exercices de chaque sectio. 1 Probabilité Exercice 1.1 Mo voisi a deux efats. 1- Le plus jeue est ue fille, quelle est la probabilité

Plus en détail

x 0 h a (x) ln (2 a ) h a 2 a Justifier, par le calcul, le signe de h' a (x) pour x appartenant à ] 0 ; + [. b. Rappeler la limite de ln x x

x 0 h a (x) ln (2 a ) h a 2 a Justifier, par le calcul, le signe de h' a (x) pour x appartenant à ] 0 ; + [. b. Rappeler la limite de ln x x EXERCICE (6 poits) Commu à tous les cadidats Soit f la foctio défiie sur l itervalle ] ; + [ par f () = l Pour tout réel a strictemet positif, o défiit sur ] ; + [ la foctio g a par g a () = a O ote C

Plus en détail

Le rang d une matrice correspond à la dimension de son image, ce qui est égal à la dimension maximale d une sous-matrice extraite inversible.

Le rang d une matrice correspond à la dimension de son image, ce qui est égal à la dimension maximale d une sous-matrice extraite inversible. Uiversité de Geève Sectio de Mathématiques Algèbre I Corrigé 2 Série 7, ex 3 Toutes les affirmatios sot vraies sauf la derière E effet, pour que deux espaces soiet e somme directe, il faut que leur itersectio

Plus en détail

Tous les quatre pensent ensuite utiliser la formule bien connue : f

Tous les quatre pensent ensuite utiliser la formule bien connue : f Exercices sur les Itervalles de cofiace Exercice Le parti d u cadidat commade u sodage réalisé à partir de 600 persoes à l issue duquel il est doé gagat avec 52% des voix. A-t-il des raisos d être cofiat?

Plus en détail

- Représenter un schéma de Bernoulli par un arbre pondéré. - Reconnaître des situations relevant de la loi binomiale

- Représenter un schéma de Bernoulli par un arbre pondéré. - Reconnaître des situations relevant de la loi binomiale www.mathselige.com STI2D - P2 - LOI IOMIALE COURS (/5) Le travail sur les séries statistiques et les probabilités meé e classe de secode se poursuit avec la mise e place de ouveaux outils. Les scieces

Plus en détail

Baccalauréat S Centres étrangers 10 juin 2016

Baccalauréat S Centres étrangers 10 juin 2016 Baccalauréat S Cetres étragers 0 jui 206 Exercice I (4 poits) Pour chacue des quatre affirmatios suivates, idiquer si elle est vraie ou fausse, e justifiat la répose. il est attribué u poit par répose

Plus en détail

Utilisation en modélisation. Régression linéaire

Utilisation en modélisation. Régression linéaire Utilisatio e modélisatio Régressio liéaire La régressio est l ue des otios basiques de la statistique et de l aalyse des doées. Gééralemet, le problème cosiste à décrire la dépedace etre deux variables

Plus en détail

Exercices - Variables aléatoires discrètes : corrigé. Variables discrètes finies - Exercices pratiques

Exercices - Variables aléatoires discrètes : corrigé. Variables discrètes finies - Exercices pratiques Variables discrètes fiies - Exercices pratiques Exercice 1 - Loi d u dé truqué - Deuxième aée - 1. X pred ses valeurs das {1,..., 6}. Par hypothèse, il existe u réel a tel que P (X k) ka. Maiteat, puisque

Plus en détail

La plage. Par Arnauld HECQUET, Raphaël SIMONET DAVIN, Maxime LOUIS. Élèves de Seconde au Lycée MONTAIGNE de BORDEAUX. Année 2008.

La plage. Par Arnauld HECQUET, Raphaël SIMONET DAVIN, Maxime LOUIS. Élèves de Seconde au Lycée MONTAIGNE de BORDEAUX. Année 2008. La plage Par Arauld HECQUET, Raphaël SIMONET DAVIN, Maime LOUIS. Élèves de Secode au Lycée MONTAIGNE de BORDEAUX. Itro : présetatio du sujet Partie I : la pièce Techique de comptage Aée 2008 Le ombre total

Plus en détail

Annexe : Leçon 10 - Échantillonnage

Annexe : Leçon 10 - Échantillonnage Aexe : Leço 10 - Échatilloage Clémet BOULONNE pour la sessio 01 I Niveau, prérequis, référeces Niveau BTS Prérequis Probabilités, lois discrètes et cotiues Référeces [1,,, 4, 5] II Coteu de la leço 1 Approximatio

Plus en détail

Test de STUDENT et tests non paramétriques

Test de STUDENT et tests non paramétriques Test de STUENT et tests o paramétriques Certaies techiques statistiques jouisset d ue grade otoriété, elles sot souvet utilisées, sas teir compte des coditios précises qui justifiet cette utilisatio et

Plus en détail

Intervalle de confiance - Données censurées

Intervalle de confiance - Données censurées Itervalle de cofiace - Doées cesurées Durées de vie expoetielles: Echatillo complet Supposos que ous avos eregistré u échatillo complet de durées de vie T,T 2,,T qui sot i.i.d. suivat ue expoetielle dot

Plus en détail

Chapitre 6 Tests statistiques paramétriques usuels

Chapitre 6 Tests statistiques paramétriques usuels . Itroductio Chaitre 6 Tests statistiques aramétriques usuels Cha 6.. Itroductio. Tests aramétriques usuels à artir d u échatillo 3. Notio de uissace de test 4. Tests de comaraiso O est souvet ameés à

Plus en détail

Notes de cours : ajustement linéaire. 1 Cadre : mesure conjointe de deux caractères

Notes de cours : ajustement linéaire. 1 Cadre : mesure conjointe de deux caractères Documet dispoible à http://www.uiv-motp3.fr/miap/es/aes/l1/optiomath. AES optio mathématique Aée 2004 2005 Notes de cours : ajustemet liéaire 1 Cadre : mesure cojoite de deux caractères O se place das

Plus en détail

Biostatistiques Sciences FUNDP Eric Depiereux, Benoît DeHertogh, Grégoire Vincke

Biostatistiques Sciences FUNDP Eric Depiereux, Benoît DeHertogh, Grégoire Vincke www.fudp.ac.be/biostats Module 80 80 DISTRIBUTION T DE STUDENT...2 80.1 UTILITE...2 80.2 PRINCIPE...2 80.3 TABLES ET GRAPHIQUES...3 80.4 EXEMPLE...5 17/10/08 Module 80-1 80 Distributio t de Studet 1 80.1

Plus en détail

DISTRIBUTIONS D'ECHANTILLONNAGE et INTERVALLES DE VARIATION

DISTRIBUTIONS D'ECHANTILLONNAGE et INTERVALLES DE VARIATION Chapitre 4 DISTRIBUTIONS D'ECHANTILLONNAGE et INTERVALLES DE VARIATION Bases de la statistique iféretielle PLPSTA0 119 Chapitre 4 (suite ) 1. Itroductio. Estimatio d'ue moyee Distributio d'échatilloage

Plus en détail

MAP 311: Aléatoire PC 8 Marc Lelarge 20 juin 2016

MAP 311: Aléatoire PC 8 Marc Lelarge 20 juin 2016 MAP 3: Aléatoire PC 8 Marc Lelarge 0 jui 06 Exercice Soit (X ) ue suite de v.a. idépedates et de même loi. itégrable, de moyee m et de variace σ > 0. O défiit: O suppose que X est de carré ˆm = X + + X,

Plus en détail

D E V O I R S U R V E I L L E

D E V O I R S U R V E I L L E D E V O I R S U R V E I L L E MATIERE : MATHEMATIQUES CLASSE de : SALLE : PROFESSEUR : DATE : HEURE Début : HEURE fi : MATERIEL UTILISE : CALCULATRICE AUTORISEE OUI NON Rappel : Tous les prêts, échages

Plus en détail

EXERCICES SUR LES SUITES NUMERIQUES

EXERCICES SUR LES SUITES NUMERIQUES EXERCICES SUR LES SUITES NUMERIQUES 1 Etudier la mootoie des suites a ) 0 défiies par : a) a = b) a = + 1) + ) + ) c) a =! d) a = α + 1) α réel positif) Soit a, la suite de terme gééral a = 3 + 1 3 + Trouver

Plus en détail

Exercices de dénombrement

Exercices de dénombrement DOMAINE : Combiatoire AUTEUR : Atoie TAVENEAUX NIVEAU : Itermédiaire STAGE : Grésillo 0 CONTENU : Exercices Exercices de déombremet Exercice Combie y a-t-il de sous-esembles d u esemble de cardial? Exercice

Plus en détail

Concours blanc général PAES Tutorat PSA. 21 et 22 Avril 2011

Concours blanc général PAES Tutorat PSA. 21 et 22 Avril 2011 Cocours blac gééral PES Tutorat PS 21 et 22 vril 2011 UE 4 : Evaluatio des méthodes d'aalyses appliquées aux scieces de la vie et de la saté Correctio 1. CDE 11. E 2. 12. CD 3. CE 13. D 4. CD 14. D 5.

Plus en détail

Tests statistiques en pratique

Tests statistiques en pratique Tet tatitique e pratique Tet du Chi- et de Studet pour érie o appariée Loïc Dequilbet Départemet de Sciece Biologique et Pharmaceutique Ecole Natioale Vétériaire d Alfort loic.dequilbet@vet-alfort,fr Module

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours Exo7 Valeurs absolues. Partie etière. Iégalités Exercices de Jea-Louis Rouget. Retrouver aussi cette fiche sur www.maths-frace.fr * très facile ** facile *** difficulté moyee **** difficile ***** très

Plus en détail

TD10. Loi des grands nombres, théorème central limite.

TD10. Loi des grands nombres, théorème central limite. Uiversité Pierre & Marie Curie Licece de Mathématiques L3 UE LM345 Probabilités élémetaires Aée 2014 15 TD10. Loi des grads ombres, théorème cetral limite. 1. Soit (U ) 1 ue suite de variables aléatoires

Plus en détail

Exercices. Exercice 1 (Suites adjacentes) On considère les suites (u n ) n N et (v n ) n N définies par: 1 k u n = n 3, v n = u n + 1 n 1 2n 2

Exercices. Exercice 1 (Suites adjacentes) On considère les suites (u n ) n N et (v n ) n N définies par: 1 k u n = n 3, v n = u n + 1 n 1 2n 2 Exercices Exercice (Suites adjacetes) O cosidère les suites (u ) N et (v ) N défiies par: u 3, k3 k 2 + v u + 2 2 Motrer que (u ) N et (v ) N sot adjacetes. Exercice 2 Soiet les deux suites (u ) et (v

Plus en détail

Université Pierre et Marie Curie Mathématiques L2 UE 2M231 Probabilités-Statistiques Année Examen du 13 mai 2015

Université Pierre et Marie Curie Mathématiques L2 UE 2M231 Probabilités-Statistiques Année Examen du 13 mai 2015 Uiversité Pierre et Marie Curie Mathématiques L2 UE 2M231 Probabilités-Statistiques Aée 2014-15 Exame du 13 mai 2015 Le sujet comporte 2 pages. L épreuve dure 2 heures. Les documets, calculatrices et téléphoes

Plus en détail

ESTIMATION Exercices

ESTIMATION Exercices ESTIMATION Exercices EERCICE : Les variables aléatoires cosidérées das cet exercice sot défiies sur u espace probabilisable, AP, Soit a u réel strictemet positif et ue variable aléatoire de loi uiforme

Plus en détail

1 Lois des grands nombres. 2 Théorème central-limite. 3 Estimation ponctuelle à partir d échantillons. 4 Biais dans les estimations

1 Lois des grands nombres. 2 Théorème central-limite. 3 Estimation ponctuelle à partir d échantillons. 4 Biais dans les estimations Pla du cours 2 RFIDEC cours 2 : Échatillos, estimatios poctuelles Christophe Gozales LIP6 Uiversité Paris 6, Frace 1 Lois des grads ombres 2 Théorème cetral-limite 3 Estimatio poctuelle à partir d échatillos

Plus en détail

Chapitre 4 Tests paramétriques de comparaison de 2 moyennes. José LABARERE

Chapitre 4 Tests paramétriques de comparaison de 2 moyennes. José LABARERE UE4 : Biostatistiques Chapitre 4 Tests paraétriques de coparaiso de oyees José LABARERE Aée uiversitaire 0/0 Uiversité Joseph Fourier de Greoble - Tous droits réservés. Pla I. Nature des variables II.

Plus en détail

Cours sur les lois usuelles

Cours sur les lois usuelles Cours sur les lois usuelles. Lois de probabilités discrètes Loi de Berouilli Cotexte d applicatio : ue expériece dot le résultat est succès ou échec, u idividu qui possède ou pas ue caractéristique Défiitio

Plus en détail

Variables aléatoires finies Présentation

Variables aléatoires finies Présentation Variables aléatoires fiies Présetatio. Défiitio élémetaire (tombola).... Le prix de vete d'u billet de la tombola... 3 3. Espérace mathématique d ue variable aléatoire fiie... 4 4. Variace et écart type

Plus en détail

RAPPEL NORMATIF OBILOG RAPPEL NORMATIF. - 18/04/2008 1

RAPPEL NORMATIF OBILOG RAPPEL NORMATIF. - 18/04/2008 1 RAPPEL NORMATIF OBILOG RAPPEL NORMATIF. - 1804008 1 SOMMAIRE 5 Calcul des capabilités machie selo les ormes... 3 5.1 FOR (1989)...3 5.1.1 Loi ormale 3 5.1. Loi de RAYLEIGH 4 5.1. Loi de RAYLEIGH 4 5.1.3

Plus en détail

Exercice 1 Zé doux, thé 2 points. Exercice 2 T es où, Zed? 2 points

Exercice 1 Zé doux, thé 2 points. Exercice 2 T es où, Zed? 2 points INSA Méthodes Statistiques M8 Exame Fial 03-3 h Sauf idicatio cotraire, o cosidérera das les exercices u risque de première espèce de 5%. Exercice Zé doux, thé poits Au iveau atioal, le score moye sur

Plus en détail

Éléments de correction de la feuille d exercices # 3

Éléments de correction de la feuille d exercices # 3 Uiversité de Rees L SVE Probabilités et statistiques aée 25-26 Élémets de correctio de la feuille d exercices # 3 Exercice Exemple de loi discrète Soit X ue variable aléatoire discrète preat les valeurs

Plus en détail

Estimations et intervalles de confiance

Estimations et intervalles de confiance Estimatios et itervalles de cofiace Estimatios et itervalles de cofiace Résumé Cette vigette itroduit la otio d estimateur et ses propriétés : covergece, biais, erreur quadratique, avat d aborder l estimatio

Plus en détail

Bac Blanc Terminale L - Février 2017 Correction de l Épreuve de Spécialité Mathématiques (durée 3 heures)

Bac Blanc Terminale L - Février 2017 Correction de l Épreuve de Spécialité Mathématiques (durée 3 heures) Bac Blac Termiale L - Février 2017 Correctio de l Épreuve de Spécialité Mathématiques (durée 3 heures) Exercice 1 (5 poits) 1. Depuis le 28 jui 2007, la ville de Bordeaux a été classée au patrimoie modial

Plus en détail

Chapitre 6 Théorèmes de convergence

Chapitre 6 Théorèmes de convergence Chapitre 6 Théorèmes de covergece 1. La covergece e loi O a déjà recotré ue covergece e loi lors de l approximatio d ue loi biomiale par ue loi de Poisso. Ce problème se place das u cadre plus gééral où

Plus en détail

Quelques notions élementaires de probabilités et statistiques

Quelques notions élementaires de probabilités et statistiques Chapitre 6 Quelques otios élemetaires de probabilités et statistiques 6.1 Probabilités U uivers Ω est u esemble modélisat les réalisatios possibles d ue expériece. U esemble A P(Ω) modélise la otio d évéemet

Plus en détail

Correction Baccalauréat STL biotechnologies Polynésie 13 juin 2016

Correction Baccalauréat STL biotechnologies Polynésie 13 juin 2016 Correctio Baccalauréat STL biotechologies Polyésie 13 jui 2016 EXERCICE 1 4 poits Das cet exercice, o s itéresse au taux de cholestérol LDL de la populatio d adultes d u pays. O ote X la variable aléatoire

Plus en détail