Pour chaque proposition, indiquer si elle est vraie ou fausse et justifier soigneusement la réponse. Les questions sont indépendantes entre elles.

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Pour chaque proposition, indiquer si elle est vraie ou fausse et justifier soigneusement la réponse. Les questions sont indépendantes entre elles."

Transcription

1 TS - Maths - D.S.5 Samedi 17 janvier 015-4h Spécialités : SVT - Physique Exercice 1 (5 points) Pour les candidats n ayant pas suivi l enseignement de spécialité Pour chaque proposition, indiquer si elle est vraie ou fausse et justifier soigneusement la réponse. Les questions sont indépendantes entre elles. 1. On considère le cube ci-dessous. Les points I et J sont respectivement des points des segments [AE] et [EF]. Proposition 1 : La droite (IJ) est orthogonale à la droite (BC). Vraie. En effet (BC) est orthogonale à la droite (AB) car ABCD est un carré et (BC) est orthogonale à (BF) car BCGF est un carré. Donc la droite (BC) est orthogonale à deux droites sécantes (AB) et (BF) du plan (ABFE). Ainsi (BC) est orthogonale à toutes les droites de ce plan, (IJ) étant une droite du plan (ABFE) car I est un point de [AE] et J un point de [EF], on a en conclusion (BC) orthogonale à (IJ).. Le plan complexe est rapporté à un repère orthonormé direct ( O ; u, v ). On considère les points A, B et C d affixes respectives : a = + i, b = 3 + i, c = 1 + i 3. Proposition : Les points A, B et C sont alignés. Vraie.On détermine les affixes des vecteurs AB et AC puis on vérifiera si ils sont colinéaires ou non. z AB = z B z A = b a = 3+i i = 3 i et z AC = z C z A = c a = 1+i 3 i = 1+i ( 3 ). On a alors AB( 3 ; 1) et AC ( 1 ; 3 ), on teste la colinéarité entre ces deux vecteurs : ( 3) ( 3 ) ( 1) ( 1) = = 0. Donc les vecteurs AB et AC sont colinéaires ainsi les points A, B et C sont alignés. 3. Proposition 3 : Toute suite croissante tend vers +. Faux. Si une suite est croissante et majorée, elle est convergente et donc elle ne tend pas vers +. TS - D.S.5 - Page 1/ 8

2 Un contre-exemple pour contredire la proposition est la suite u n = 1. Elle est en effet croissante et n elle converge vers Soit f la fonction définie sur R par : { x 4x + 3 si x 1 f (x) = x + si x > 1 Proposition 4 : La fonction f est continue sur R. Faux. La fonction n est pas continue en 1 car f (1) = 1 et lim x + = 4 f (1). e x 1 5. Proposition 5 : lim x 0 x 3 = +. e x 1 e x 1 Vraie. lim x 0 x 3 = lim 1 x 0 x x. e x 1 Or lim = e 0 1 = 1 car c est le nombre dérivé de la fonction exponentielle en 0 et lim = + donc x 0 x x 0 x e x 1 par produit de limites on obtient la limite escomptée lim x 0 x 3 = Soit f la fonction définie sur R par f (x) = 3ex e x + 1. Proposition 6 : La fonction f est dérivable sur R et sa dérivée est donnée par la formule f (x) = 3ex 3e 3x (e x + 1). Vraie. La fonction f est dérivable comme quotient de fonctions dérivables sur R. On a f de la forme f = u v et f = u v uv v. Avec u(x) = 3e x, u (x) = 3e x et v(x) = e x + 1, v (x) = e x pour x R car pour une fonction u dérivable (e u ) = u e u. Alors pour x R, f (x) = 3ex (e x + 1) 3e x e x (e x + 1) = 3e3x + 3e x 6e 3x (e x + 1) = 3ex 3e 3x (e x + 1) x 1 x>1 TS - D.S.5 - Page / 8

3 Exercice (5 points) Virus Les deux parties A et B peuvent être traitées indépendamment. Les résultats seront donnés sous forme décimale en arrondissant à Dans un pays, il y a % de la population contaminée par un virus. Partie A : On dispose d un test de dépistage de ce virus qui a les propriétés suivantes : La probabilité qu une personne contaminée ait un test positif est de 0,99. La probabilité qu une personne non contaminée ait un test négatif est de 0,97. On fait passer un test à une personne choisie au hasard dans cette population. On note V l évènement «la personne est contaminée par le virus»et T est l évènement «le test est positif». 1. (a) Préciser les valeurs des probabilités P(V ), P V (T ) et P V (T ). Traduire la situation à l aide d un arbre de probabilité. On a P(V ) = 0,0, P V (T ) = 0,99 et P V (T ) = 0,03. On obtient l arbre suivant : (b) En déduire la probabilité de V T. On a P(V T ) = P(V ) P V (T ) = 0,0 0,99 = 0, Démontrer que la probabilité que le test soit positif est 0,049. D après la formule des probabilités totales on a : P(T ) = P(V T ) + P(V T ) = 0, P(V ) P V (T ) = 0, ,98 0,03 = 0, (a) Justifier par un calcul la phrase : «Si le test est positif, le pourcentage des personnes contaminés est d environ 40%». On a P T (V ) = P(V T ) = 0,0198 P(T ) 0,049 0,404. Il y a donc 40% de chance que la personne soit contaminée si le test est positif. Partie B : (b) Déterminer la probabilité qu une personne ne soit pas contaminée par le virus sachant que son test est négatif. Que peut-on en conclure? On a P T (V ) = P(V T ) = P(V ) P V (T ) = 0,98 0,97 1 0,049 0,9998. P(T ) 1 P(T ) Si le test est négatif, on est «quasi»sûr (99,98%) que la personne n est pas contaminée. Il y a très peu de chance d obtenir un faux négatif. On choisit successivement 100 personnes de la population au hasard, on considère que les tirages sont indépendants. On appelle X la variable aléatoire qui donne le nombre de personnes contaminées par le virus parmi ces 100 personnes. TS - D.S.5 - Page 3/ 8

4 1. Justifier que X suit une loi binomiale dont on donnera les paramètres. La contamination par le virus de chaque personne est une expérience de Bernoulli, avec être contaminée pour «succès». La probabilité de succès est 0,0. Cette expérience est répétée 100 fois de manière indépendante (car les tirages sont identiques). X est la variable aléatoire qui compte les «succès». X suit donc la loi binomiale de paramètres n = 100 et p = 0,0.. Calculer la probabilité qu il y ait au moins deux personnes contaminées parmi les 100. On calcule à l aide de la calculatrice : P(X ) = 1 P(X 1) 0, Combien peut-on espérer avoir de personnes saines parmi ces 100 personnes? On détermine l espérance E(X ) = n p = 100 0,0 =. On peut espérer seulement personnes contaminées et donc 98 saines. Exercice 3 (5 points) Suites L objet de cet exercice est d étudier la suite (u n ) définie sur N par u 0 = 3 et pour tout entier naturel n, u n+1 = 1 ( u n + 7 ) u n On pourra utiliser sans démonstration le fait que pour tout entier naturel n, u n > On désigne par f la fonction définie sur l intervalle ]0 ; + [ par f (x) = 1 Démontrer que la fonction f admet un minimum. ( x + 7 ). x En déduire que pour tout entier naturel n, u n 7. La fonction f est dérivable sur ]0 ; + [ comme de somme de fonctions dérivables sur ]0 ; + [ et sur cet intervalle : f (x) = 1 (1 7x ) = 1 ( x x 7 ) qui est du signe de x 7. Donc f (x) = 0 x 7 = 0 ( x 7 )( x + 7 ) = 0 x = 7 ou x = 7. Il y a donc une solution dans l intervalle ]0 ; + [ : 7. Le trinôme x 7 est positif sauf entre ses racines donc ici sur ] 0 ; 7 [. Conclusion : f est décroissante sur ] 0 ; 7 ] puis croissante sur [ 7 ; + [ ; donc f ( 7 ) est le minimum de f sur ]0 ; + [. f ( 7 ) = 1 ( ) = 1 ( ) = 7. 7 D après l énoncé, pour tout entier naturel n, u n > 0 alors par définition du minimum de f pour tout entier naturel n,u n+1 = f (u n ) 7 y compris u 0 = 3, car 3 > 7.. (a) Démontrer que la suite (u n ) est décroissante. u n+1 u n = 1 ( u n + 7 ) u n = 1 ( ) 7 u n = 1 u n u n ( 7 u n Comme 1 > 0, u n > 0 et que u n 7 un 7 (car la fonction carré est croissante sur [0 ; + [) un u n 0, on en conclut que Donc la suite (u n ) est décroissante. u n u n+1 u n 0 (b) En déduire que la suite (u n ) est convergente. La suite (u n ) étant décroissante et minorée par 7 est donc convergente vers une limite supérieure ou égale à 7. ). TS - D.S.5 - Page 4/ 8

5 ( un 7 ) 3. Démontrer que pour tout entier naturel n, u n+1 7 = 1. u n u n+1 7 = 1 ( u n + 7 ) 7 = 1 ( u n + 7 ) ( 7 = 1 ) u n + 7 u n 7 = 1 ( un 7 ). (identité remarquable) u n u n u n u n 4. On définit la suite (d n ) par : d 0 = 1 et pour tout entier naturel n, d n+1 = 1 d n. (a) Démontrer par récurrence que pour tout entier naturel n, Initialisation : u 0 7 = 3 7 0,35 et d 0 = 1. On a bien u 0 7 d 0. Hérédité : u n 7 d n. Remarque préliminaire : on a démontré que u n 7, donc u n > 1 ou encore 1 < 1 ( ). u n Supposons qu il existe un entier naturel k quelconque tel que u k 7 d k soit vraie montrons que u k+1 7 d k+1 est vraie. ( uk 7 ) u k+1 7 = 1. u k Donc comme 0 u k 7 d k ( u k 7 ) d car la fonction carré est croissante sur [0 ; + [ k D où 1 ( uk 7 ) 1 d k Ainsi 1 ( uk 7 ) 1 u k d k 1 car u k > 0. u k Or d après la question 3 : ( uk 7 ) u k+1 7 = 1 u k. Ainsi u k d k 1 1 u k d d après l inégalité (*) de la remarque ci-dessus. k Finalement u k d k u k+1 7 d k+1. L hérédité est établie. Conclusion : L initialisation et l hérédité étant vérifiée, on a démontré par récurrence que : Pour tout entier naturel n, (b) On admet que la suite (d n ) converge vers 0. En déduire la limite de la suite (u n ). Pour tout entier naturel n, u n 7 d n. u n 7 d n et 7 u n 7 u n 7 + d n Or 7 et 7 + d n converge vers 7 alors par théorème d encadrement la suite (u n ) converge vers 7. (c) Voici un algorithme : TS - D.S.5 - Page 5/ 8

6 Variables : n et p sont des entiers naturels d est un réel. Entrée : Demander à l utilisateur la valeur de p. Initialisations : Affecter à d la valeur 1. Affecter à n la valeur 0 Traitement : Tant que d > 10 p. Affecter à d la valeur 0,5d Affecter à n la valeur n + 1. Fin Tant que Sortie : Afficher n. En entrant la valeur 9, l algorithme affiche le nombre 5. Quelle inégalité peut-on en déduire pour d 5? Justifier que u 5 est une valeur approchée de 7 à 10 9 près. L algorithme indique que pour que d n 10 9 il faut que n 5. On a donc d Comme u 5 7 < d 5 c est-à-dire u 5 7 < 10 9, on en déduit que u 5 est une valeur approchée par excès de 7 à 10 9 près. Exercice 4 (5 points) Fonction exponentielle On considère les deux courbes (C 1 ) et (C ) d équations respectives y = e x et y = x 1 dans un repère orthogonal du plan. Le but de cet exercice est de prouver qu il existe une unique tangente T commune à ces deux courbes. 1. Sur le graphique représenté dans l annexe 1, tracer approximativement une telle tangente à l aide d une règle. Lire graphiquement l abscisse du point de contact de cette tangente avec la courbe (C 1 ) et l abscisse du point de contact de cette tangente avec la courbe (C ). Graphiquement l abscisse du point de contact de cette tangente avec la courbe (C 1 ) est a 0,8 et l abscisse du point de contact de cette tangente avec la courbe (C ) est b 1,.. On désigne par a et b deux réels quelconques, par A le point d abscisse a de la courbe (C 1 ) et par B le point d abscisse b de la courbe (C ). (a) Déterminer une équation de la tangente (T A ) à la courbe (C 1 ) au point A. Une équation de la tangente (T A ) à la courbe (C 1 ) au point A est donnée par la formule : y = f (a)(x a) + f (a), avec f (x) = e x la fonction polynôme définie et dérivable sur R tel que f (x) = e x. Ainsi une équation de cette tangente est : y = e a (x a) + e a y = e a x + e a (1 a) (b) Déterminer une équation de la tangente (T B ) à la courbe (C ) au point B. Une équation de la tangente (T B ) à la courbe (C ) au point B est donnée par la formule : y = g (b)(x b)+ g (b), avec g (x) = x 1 une fonction polynôme donc définie et dérivable sur R tel que g (x) = x. Ainsi une équation de cette tangente est : y = f (b)(x b) + f (b)y = b(x b) + ( b 1) y = bx + b 1 (c) En déduire que les droites (T A ) et (T B ) sont confondues si et seulement si les réels a et b sont solutions du système (S) : { e a = b e a ae a = b 1. TS - D.S.5 - Page 6/ 8

7 On a (T A ) = (T B ). En identifiant terme à terme les deux équations, on obtient : { e a = b (T A ) = (T B ) (S) : e a (1 a) = b 1 (d) Montrer que le système (S) est équivalent au système (S ) : { e a = b e a + 4ae a 4e a 4 = 0. (S) { b = e a { ( ) b = e a e a (1 a) = ea 1 4e a (1 a) = (e a ) 4 { e a = b e a + 4ae a 4e a 4 = 0 3. Le but de cette question est de prouver qu il existe un unique réel solution de l équation (E) : e x + 4xe x 4e x 4 = 0. Pour cela, on considère la fonction f définie sur R par : f (x) = e x + 4xe x 4e x 4. (a) Montrer que pour tout x appartenant à ] ; 0[, e x 4 < 0 et 4e x (x 1) < 0. La fonction exponentielle étant strictement croissante sur ] ; 0[, x 0 e x e 0 e x < 0 et x ] ; 0[ x < 0 x 1 < 1 < 0 = 4e x (x 1) < 0 car 4e x > 0 (b) En déduire que l équation (E) n a pas de solution dans l intervalle ] ; 0[. L équation (E) n a pas de solution dans l intervalle ] ; 0[, car sur cet intervalle, e x + 4xe x 4e x 4 < 0. (c) Démontrer que la fonction f est strictement croissante sur l intervalle [0 ; + [. La fonction f est dérivable sur [0 ; + [ comme somme et produit de fonctions dérivables. On commence par dériver la fonction i (x) = 4xe x, de la forme u v dont la dérivée est égale à u v+uv avec u(x) = 4x, u (x) = 4 et v(x) = e x, v (x) = e x pour x [0 ; + [. Ainsi pour x [0 ; + [ : i (x) = 4e x + 4xe x et donc : f (x) = e x + 4e x + 4xe x 4e x = e x + 4xe x > 0 (somme de nombres strictement positifs) Alors la fonction f est strictement croissante sur [0 ; + [. (d) Démontrer que l équation (E) admet une solution unique dans l intervalle [0 ; + [. On note a cette solution. Donner un encadrement d amplitude 10 de a. La fonction f est continue sur [0 ; + [ en tant que somme et produit de fonctions continues sur [0 ; + [. La fonction f est strictement croissante ( sur [0 ; + [. ) On a f (0) = 7 et lim f (x) = lim x + x + ex x e x 4 e x 4 = + e x x 4 par somme et produit des limites suivantes lim x + e x = lim x + e nx = 0 (n = 1 ou ) Or 0 [ 7 ; + [= f ([0 ; + ). D après le théorème des valeurs intermédiaires appliqué aux fonctions strictement monotones, l équation f (x) = 0 admet une unique solution notée a sur [0 ; + [. Pour un encadrement d amplitude 10 de a (en utilisant la calculatrice) : f (0,84) 0,117 et f (0,85) 0,07 = 0,84 a 0,85 TS - D.S.5 - Page 7/ 8

8 4. On prend pour A le point d abscisse a. Déterminer un encadrement d amplitude 10 1 du réel b pour lequel les droites (T A ) et (T B ) sont confondues. 0,84 a 0,85,31 < e 0,84 e a e 0,85 <,34 (car la fonction exponentielle est croissante sur R) 1,155 ea 1,17 1,155 ea 1,17 1,17 ea 1,155 1, b = ea 1,1 Annexe (Exercice 4, question 1) 4 (C 1 ) 3 A 1 a b B 3 (C ) 4 5 TS - D.S.5 - Page 8/ 8

Sujet Asie 2013 EXERCICE 1. [5 pts] Probabilités

Sujet Asie 2013 EXERCICE 1. [5 pts] Probabilités Sujet Asie 203 EXERCICE. [5 pts] Probabilités Dans cet exercice, les probabilités seront arrondies au centième. Partie A Une grossiste achète des boîtes de thé chez deux fournisseurs. Il achète 80% de

Plus en détail

Bac blanc février 2013

Bac blanc février 2013 Lycée Louise MICHEL Terminales S MATHEMATIQUES Année 0/0 Bac blanc février 0 (Durée : 4 heures.) Les calculatrices sont autorisées, mais l échange de tout matériel est interdit. Les brouillons ne sont

Plus en détail

TS - Maths - D.S.4 - Correction Spécialités : SVT - Physique

TS - Maths - D.S.4 - Correction Spécialités : SVT - Physique TS - Maths - D.S. - Correction Spécialités : SVT - Physique Samedi 05 Décembre 05 - h Exercice ( points) Commun à tous les candidats Une usine produit de l eau minérale en bouteilles. Lorsque le taux de

Plus en détail

TS - Maths - D.S.3 - CORRECTION

TS - Maths - D.S.3 - CORRECTION TS - Maths - DS3 - CORRECTION Samedi 4 Novembre 20-2h Exercice Les parties A et B sont indépendantes Un site internet propose des jeux en ligne On donnera une valeur approchée à 0 2 près des résultats

Plus en détail

Correction du devoir de Mathématiques commun aux terminales S (n 1/2H)

Correction du devoir de Mathématiques commun aux terminales S (n 1/2H) Année scolaire 202-20 0 octobre 202 Terminales S 704/705/706) Correction du devoir de Mathématiques commun aux terminales S n /2H) Question de cours : points) Rappeler la définition de deux événements

Plus en détail

TES/TL spé maths Eléments de correction du Bac Blanc n 1 Jeudi 18 décembre 2014

TES/TL spé maths Eléments de correction du Bac Blanc n 1 Jeudi 18 décembre 2014 TES/TL spé maths Eléments de correction du Bac Blanc n Jeudi 8 décembre 4 Calculatrice autorisée - Aucun document n'est autorisé. Exercice. (5 points) Le barème est noté sur points. Partie : Fonctions

Plus en détail

Lycée Marlioz - Aix les Bains. Bac Blanc Mathématiques - Terminale S. 2 avril 2015

Lycée Marlioz - Aix les Bains. Bac Blanc Mathématiques - Terminale S. 2 avril 2015 Lycée Marlioz - Aix les Bains Bac Blanc 205 Mathématiques - Terminale S Candidats n ayant pas choisi la spécialité maths 2 avril 205 Pour cette épreuve, la rédaction, la clarté et la précision des explications

Plus en détail

Terminale S Bac Blanc Février 2013 Corrigé

Terminale S Bac Blanc Février 2013 Corrigé Terminale S Bac Blanc Février 2013 Corrigé Métropole Juin 2006 (6 points) 1) Soit la fonction définie sur par. On désigne par sa courbe représentative dans un repère orthonormé d unité graphique 2cm. a)

Plus en détail

DST n 4 - Corrigé. Centre étranger Juin 2007 (6 point) Le but de l'exercice est de démontrer que l'équation :, admet une unique solution dans

DST n 4 - Corrigé. Centre étranger Juin 2007 (6 point) Le but de l'exercice est de démontrer que l'équation :, admet une unique solution dans DST n 4 - Corrigé Centre étranger Juin 2007 (6 point) Le but de l'exercice est de démontrer que l'équation :, admet une unique solution dans l'ensemble des nombres réels, et de construire une suite qui

Plus en détail

Baccalauréat S Nouvelle-Calédonie 17 novembre 2014 Corrigé

Baccalauréat S Nouvelle-Calédonie 17 novembre 2014 Corrigé Baccalauréat S Nouvelle-Calédonie 17 novembre 014 Corrigé A. P. M. E. P. Exercice 1 Commun à tous les candidats Une fabrique de desserts glacés dispose d une chaîne automatisée pour remplir des cônes de

Plus en détail

/1 point n, c est-à-dire que

/1 point n, c est-à-dire que Externat Notre Dame Devoir n Tle S) Samedi 5 octobre 204 Proposition de corrigé Exercice : / point Restitution organisée de connaissances Dans cet exercice n désigne un entier naturel. On définit une suite

Plus en détail

Sujets de bac : Exponentielle

Sujets de bac : Exponentielle Sujets de bac : Exponentielle Sujet : Polynésie septembre 2002 On considère la fonction définie sur par ) Etudier la parité de. 2) Montrer que pour tout,. 3) Déterminer les ites de en et en. Donner l interprétation

Plus en détail

FONCTIONS NUMÉRIQUES : DÉRIVATION

FONCTIONS NUMÉRIQUES : DÉRIVATION FONCTIONS NUMÉRIQUES : DÉRIVATION Ph DEPRESLE 30 septembre 05 Table des matières Dérivée en un point Continuité et dérivabilité 3 Fonction dérivée 4 Sens de variation d une fonction dérivable 3 5 Dérivées

Plus en détail

BAC BLANC. Bac Blanc wicky-math.fr.nf Février Le plan complexe est rapporté à un repère orthonormal direct (O; u, v) (unité graphique : 2 cm).

BAC BLANC. Bac Blanc wicky-math.fr.nf Février Le plan complexe est rapporté à un repère orthonormal direct (O; u, v) (unité graphique : 2 cm). Bac Blanc wicky-math.fr.nf Février 0 BAC BLANC Exercice. Le plan complexe est rapporté à un repère orthonormal direct (O; u, v) (unité graphique : cm). Partie A On considère l équation : (E) : z + 6z +

Plus en détail

EABJM Bac Blanc Novembre 2009 MATHÉMATIQUES

EABJM Bac Blanc Novembre 2009 MATHÉMATIQUES EABJM Bac Blanc Novembre 2009 MATHÉMATIQUES Terminales S - S2 N. Chiffot S. Coursaget J. Giovendo Durée : 4 heures. Nombre de pages : 7. L utilisation de la calculatrice est autorisée. Corrigé TS - TS2

Plus en détail

Baccalauréat S Pondichéry 8 avril 2014

Baccalauréat S Pondichéry 8 avril 2014 Baccalauréat S Pondichéry 8 avril 014 EXERCICE 1 Commun à tous les candidats 4 points Dans cet exercice, sauf indication contraire, les résultats seront arrondis au centième. 1. La durée de vie, exprimée

Plus en détail

Correction du baccalauréat S Asie 18 juin 2013

Correction du baccalauréat S Asie 18 juin 2013 Correction du baccalauréat S Asie 18 juin 01 EXERCICE 1 Commun à tous les candidats 5 points 1 Le grossiste a deux fournisseurs et il y a dans chaque boîte des traces de pesticides ou non On a donc un

Plus en détail

DST 3 Corrigé. b) B : «les 2e et 3e sondages sont négatifs». et d après l énoncé ; D où :

DST 3 Corrigé. b) B : «les 2e et 3e sondages sont négatifs». et d après l énoncé ; D où : DST 3 Corrigé Exercice 1 (4 points) Avant le début des travaux de construction d une autoroute, une équipe d archéologie préventive procède à des sondages successifs en des points régulièrement espacés

Plus en détail

Correction DC1. Exercice 1: (5 points) 1. Conservation du volume total d eau du circuit : Pour tout entier naturel n,

Correction DC1. Exercice 1: (5 points) 1. Conservation du volume total d eau du circuit : Pour tout entier naturel n, Correction DC1 Exercice 1: (5 points) 1. Conservation du volume total d eau du circuit : 00. Pour tout entier naturel n, 10 100 15 100 90 100 15 100 00 3 4 330 3 4 330 3. L algorithme ci-dessous permet

Plus en détail

Nouvelle-Calédonie mars 2012

Nouvelle-Calédonie mars 2012 Nouvelle-Calédonie mars EXERCICE 5 points Commun à tous les candidats Partie A : On considère le polynôme P défini sur C par P() = ( + i ) + ( + i ) i.. Montrer que le nombre complee = i est solution de

Plus en détail

Baccalauréat Blanc 2016 : correction

Baccalauréat Blanc 2016 : correction Baccalauréat Blanc 016 : correction EXERCICE 1 Le chikungunya est une maladie virale transmise d un être humain à l autre par les piqûres de moustiques femelles infectées. Un test a été mis au point pour

Plus en détail

Correction du Contrôle commun de Mathématiques - Sujet A - TS. 2 1 n. n ) n

Correction du Contrôle commun de Mathématiques - Sujet A - TS. 2 1 n. n ) n Correction du Contrôle commun de Mathématiques - Sujet A - TS Exercice 5 points. n N, u n = n n( n + = n ) n( + = n ) n + n Or par somme, on a lim n = et lim + n =. Ainsi par quotient, lim u n = réponse

Plus en détail

Exercice 1. Probabilités

Exercice 1. Probabilités TS Eléments de correction de l évaluation n 1 du Mercredi 4 Novembre 015 Calculatrice autorisée - Aucun document n'est autorisé. Vous apporterez un grand soin à la présentation et à la rédaction de votre

Plus en détail

Antilles Guyane Juin 2013

Antilles Guyane Juin 2013 Juin 0 / 5 Exercice. Les plans (AEC) et (IEC) sont confondus. J n appartient pas à (AEC). Réponse b.. = ( ). ( ) = ( ). ( ) =. + +. +. = ² = Réponse c. ( ;0 ;) (0 ; ;) sont vecteurs non colinéaires. Ce

Plus en détail

Cours de terminale S - Généralités sur les fonctions

Cours de terminale S - Généralités sur les fonctions les fonctions LPO de Chirongui - Exercices : Savoir Faire (livre)- Déterminer une ite Interprétation graphique Livre Indice BORDAS - Page 45 Exercice 34, 35, 36 et 37 page 56 - Limite finie à l infini

Plus en détail

Corrigé du baccalauréat série S Amérique du Sud 17 novembre 2014

Corrigé du baccalauréat série S Amérique du Sud 17 novembre 2014 orrigé du baccalauréat série S Amérique du Sud 17 novembre 014 A. P. M. E. P. Exercice 1 ommun à tous les candidats 6 points Une entreprise est spécialisée dans la fabrication de ballons de football. ette

Plus en détail

Fonction exponentielle : Exercices Corrigés en vidéo avec le cours sur jaicompris.com. e x. e x + 1

Fonction exponentielle : Exercices Corrigés en vidéo avec le cours sur jaicompris.com. e x. e x + 1 Fonction exponentielle : Exercices Corrigés en vidéo avec le cours sur jaicompris.com Calculer avec la fonction exponentielle Simplifier les expressions suivantes où x est un réel quelconque : a) e1+x

Plus en détail

Bac Blanc Terminale ES - Février 2014 Correction de l'épreuve de Mathématiques (durée 3 heures)

Bac Blanc Terminale ES - Février 2014 Correction de l'épreuve de Mathématiques (durée 3 heures) Bac Blanc Terminale ES - Février 2014 Correction de l'épreuve de Mathématiques (durée 3 heures) Exercice 1 (5 points) pour les candidats n ayant pas choisi la spécialité MATH Le tableau suivant donne l'indice

Plus en détail

Corrigé du baccalauréat S Antilles-Guyane 22 juin 2015

Corrigé du baccalauréat S Antilles-Guyane 22 juin 2015 Corrigé du baccalauréat S Antilles-Guyane juin 15 A. P. M. E. P. EXERCICE 1 Commun à tous les candidats 6 POINTS 1. Pour toutes les courbes, on a g a (1)= a. Donc on a de bas en haut les courbes Γ,5, Γ,1,

Plus en détail

LOGARITHME. Ph DEPRESLE. 29 juin Fonction logarithme népérien Définition Conséquences Propriétés algébriques 3

LOGARITHME. Ph DEPRESLE. 29 juin Fonction logarithme népérien Définition Conséquences Propriétés algébriques 3 LOGARITHME Ph DEPRESLE 9 juin 5 Table des matières Fonction logarithme népérien. Définition............................................... Conséquences............................................ 3 Propriétés

Plus en détail

Baccalauréat série S Amérique du Sud 17 novembre 2014 Corrigé

Baccalauréat série S Amérique du Sud 17 novembre 2014 Corrigé Baccalauréat série S Amérique du Sud 17 novembre 014 orrigé A. P. M. E. P. Exercice 1 6 points ommun à tous les candidats Une entreprise est spécialisée dans la fabrication de ballons de football. ette

Plus en détail

Athénée Royal d Uccle 1. Cours de Mathématique 6 ème année Révision de juin

Athénée Royal d Uccle 1. Cours de Mathématique 6 ème année Révision de juin Athénée Royal d Uccle 1 Cours de Mathématique 6 ème année Révision de juin A.Droesbeke Version : 016 Chapitre 1 Algèbre 1.1 Exercices { (1 + i)x + y = 1 i 1. Résoudre dans C : x iy = i. Démontrer que

Plus en détail

a) ln(x + 1) ln(2 x) = 0 b) ln(x + 1) ln(2 x) 0 c) ln x + ln(3x + 2) > 0

a) ln(x + 1) ln(2 x) = 0 b) ln(x + 1) ln(2 x) 0 c) ln x + ln(3x + 2) > 0 Savoir calculer avec des logarithmes Simplifier les expressions suivantes : Fonction logarithme : Exercices Corrigés en vidéo avec le cours sur jaicompris.com a) ln 6 ln 2 b) ln e 2 c) ln 1 e x d) e ln

Plus en détail

Proposition de corrigé

Proposition de corrigé Externat Notre Dame Bac Blanc n 2 (Tle S) Lundi 27 Avril 2015 durée : 4 h calculatrice autorisée Dans tout ce devoir, la qualité de la rédaction et le soin seront pris en compte dans la notation. Les exercices

Plus en détail

Type bac janvier Corrigé

Type bac janvier Corrigé Exercice (Métropole 24) Commun à tous les élèves Type bac janvier 27 - Corrigé Partie A ) L image de par la fonction f est : f () +e. Le point d abscisse sur la courbe C, représentative de la fonction

Plus en détail

Baccalauréat ES Polynésie 13 septembre 2012

Baccalauréat ES Polynésie 13 septembre 2012 Baccalauréat ES Polynésie 13 septembre 01 EXERCICE 1 Commun à tous les candidats 4 points Le tableau ci-dessous représente l évolution de l indice du PIB de la Chine de 1985 à 005, base 100 en 1985 année

Plus en détail

Mathématique ECS 1 03 Sept Devoir surveillé 1.

Mathématique ECS 1 03 Sept Devoir surveillé 1. Mathématique ECS 0 Sept. 06 Devoir surveillé. Veillez à bien justifier vos réponses : un exercice bien traité rapporte des points, un exercice traité de façon non rigoureuse ne rapporte pas de points.

Plus en détail

Corrigé du baccalauréat S Centres étrangers 12 juin 2014

Corrigé du baccalauréat S Centres étrangers 12 juin 2014 Durée : 4 heures Corrigé du baccalauréat S Centres étrangers juin 4 A. P. M. E. P. Exercice 4 points Commun à tous les candidats Question Dans un hypermarché, 75 % des clients sont des femmes. Une femme

Plus en détail

b) Montrer que le vecteur 2 est normal au plan (ABE).

b) Montrer que le vecteur 2 est normal au plan (ABE). Baccalauréat S Liban 3mai 206\ XRCIC (4 points Commun à tous les candidats On considère un solide ADCBF constitué de deux pyramides identiques ayant pour base commune le carré ABCD de centre I. Une représentation

Plus en détail

Corrigé du baccalauréat S Antilles-Guyane Septembre 2015

Corrigé du baccalauréat S Antilles-Guyane Septembre 2015 Corrigé du baccalauréat S Antilles-Guyane Septembre 5 EXERCICE Commun à tous les candidats 6 points Soit n un entier naturel non nul. On considère la fonction f n définie et dérivable sur l ensemble R

Plus en détail

Baccalauréat S Pondichéry 18 avril 2012

Baccalauréat S Pondichéry 18 avril 2012 Baccalauréat S Pondichéry 18 avril 2012 EXERCICE 1 Commun à tous les candidats Les deux parties sont indépendantes. Partie A 6 points Un groupe de 50 coureurs, portant des dossards numérotés de 1 à 50,

Plus en détail

TES BAC BLANC 2013 durée 3h. f(x) = 100xe x + 1

TES BAC BLANC 2013 durée 3h. f(x) = 100xe x + 1 TES BAC BLANC 2013 durée 3h Exercice 1 ( 4,5 points ) Cet exercice est un questionnaire à choix multiples. Pour chacune des trois questions, trois réponses sont proposées ; une seule de ces réponses convient.

Plus en détail

Baccalauréat S Asie 16 juin 2015 Corrigé

Baccalauréat S Asie 16 juin 2015 Corrigé Baccalauréat S Asie 16 juin 015 Corrigé A. P. M. E. P. Exercice 1 5 points Commun à tous les candidats Partie A Un concurrent participe à un concours de tir à l arc, sur une cible circulaire. À chaque

Plus en détail

0 0,5 1,0 1,5 2,0 2,5 3,0 3,5 4,0 4,5 5,0 5,5 6,0

0 0,5 1,0 1,5 2,0 2,5 3,0 3,5 4,0 4,5 5,0 5,5 6,0 EXERCICE 1 - POUR TOUS LES CANDIDATS 7 points Partie A Voici deux courbes C 1 et C 2 qui donnent pour deux personnes P 1 et P 2 de corpulences différentes la concentration C d alcool dans le sang taux

Plus en détail

Session avril 2015 BACCALAUREAT BLANC. Série : S. Épreuve : Mathématiques ( candidats n ayant pas suivi l enseignement de spécialité )

Session avril 2015 BACCALAUREAT BLANC. Série : S. Épreuve : Mathématiques ( candidats n ayant pas suivi l enseignement de spécialité ) BACCALAUREAT BLANC Session avril 2015 Série : S Épreuve : Mathématiques ( candidats n ayant pas suivi l enseignement de spécialité ) Durée de l'épreuve : 4 heures coefficient : 7 MATERIEL AUTORISE OU NON

Plus en détail

TS - Maths - D.S.7. Spécialités : Physique - SVT. Samedi 28 mars h

TS - Maths - D.S.7. Spécialités : Physique - SVT. Samedi 28 mars h TS - Maths - D.S.7 Samedi 28 mars 205-4h Spécialités : Physique - SVT Exercice (5 points) Fonctions trigonométriques Soit f la fonction définie surrpar : f (x)=sin 2 x+ 3cos x et C sa courbe dans un repére

Plus en détail

Baccalauréat S Polynésie, correction

Baccalauréat S Polynésie, correction Baccalauréat S Polynésie, correction 0 juin 00 Exercice 5 points Commun à tous les candidats. Le plan complexe est rapporté à un repère orthonormal direct (O; u ; v). Partie A - Restitution organisée de

Plus en détail

démonstrations exigibles au baccalauréat

démonstrations exigibles au baccalauréat démonstrations exigibles au baccalauréat fonction exponentielle (1/2) propriété : Il existe une unique fonction dérivable sur telle que ' = et (0) = 1 1 L'existence de la fonction est admise conformément

Plus en détail

BACCALAURÉAT GÉNÉRAL SESSION 2013 OBLIGATOIRE MATHÉMATIQUES. Série S. Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE

BACCALAURÉAT GÉNÉRAL SESSION 2013 OBLIGATOIRE MATHÉMATIQUES. Série S. Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE BACCALAURÉAT GÉNÉRAL SESSION 2013 MATHÉMATIQUES Série S Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE Les calculatrices électroniques de poche sont autorisées, conformément à la

Plus en détail

Baccalauréat ES Centres étrangers 15 juin 2009

Baccalauréat ES Centres étrangers 15 juin 2009 Durée : 3 heures Baccalauréat ES Centres étrangers 15 juin 009 EXERCICE 1 Commun à tous les candidats 4 points Cet exercice est un questionnaire à choix multiples. Pour chacune des quatre questions proposées,

Plus en détail

Baccalauréat S Métropole 19 juin 2014

Baccalauréat S Métropole 19 juin 2014 Baccalauréat S Métropole 19 juin 2014 EXERCICE 1 Partie A A. P. M. E. P. Dans le plan muni d un repère orthonormé, on désigne par C 1 la courbe représentative de la fonction f 1 définie sur R par : f 1

Plus en détail

Mathématiques. préparation à la Terminale S

Mathématiques. préparation à la Terminale S Mathématiques préparation à la Terminale S Le programme de Terminale S est chargé et est la continuité de celui de 1 ère ère S. Les nouvelles notions sont nombreuses et le rythme de progression est rapide.

Plus en détail

Devoir surveillé de mathématiques Enseignement de spécialité

Devoir surveillé de mathématiques Enseignement de spécialité Lycée Eugène Delacroix Terminales S samedi décembre 04 Devoir surveillé de mathématiques Enseignement de spécialité Durée : 4 heures L utilisation d UNE ET D UNE SEULE calculatrice est autorisée. Tout

Plus en détail

Bac Blanc - Mathématiques

Bac Blanc - Mathématiques Bac Blanc - Mathématiques série S (obligatoire et Spécialité) mars 014 Durée : 4 h Les calculatrices sont autorisées. Le barème prend en compte la rédaction, la qualité de l expression et la présentation

Plus en détail

Fonctions de référence 1

Fonctions de référence 1 Fonctions de référence Les fonctions sinus et cosinus. Définitions Le plan étant muni d un repère orthonormé (O; I, J), on peut associer à tout réel x un unique point M sur le cercle trigonométrique. (voir

Plus en détail

Corrigé du bac S Antilles-Guyane juin 2014

Corrigé du bac S Antilles-Guyane juin 2014 orrigé du bac S Antilles-Guyane juin 204 EXERIE ommun à tous les candidats Partie A 5 points. a. L arbre pondéré est le suivant : 0,80 0,85 J 0,20 0,5 J 0,0 b. D après l arbre : 0,90 ( ) p J = 0,5 0,0=0,05.

Plus en détail

j a sa courbe y= f (a) (x a)+ f(a) f définie sur... f(x) f (x) f dérivable sur... Ê x n nx n 1 Ê pour n entier n 2 1 x 2 n x n+1 Ê pour n entier n 1

j a sa courbe y= f (a) (x a)+ f(a) f définie sur... f(x) f (x) f dérivable sur... Ê x n nx n 1 Ê pour n entier n 2 1 x 2 n x n+1 Ê pour n entier n 1 Lcée JNSON DE SILLY 5 septembre 06 DÉRIVTION, ÉTUDE DE FONCTIONS T le STID I TNGENTE À UNE COURBE Soit f une fonction définie sur un intervalle I, dérivable en a où a est un réel de I, et C f sa courbe

Plus en détail

I. Fonction de référence

I. Fonction de référence I. Fonction de référence Fonction x x 2 x x 3 x x x x Nom Domaine de définition x 3 2,5 2,5 0,5 0 0,5,5 2 2,5 3 Tableau de valeurs x² x 3 x /x Graphes Extremum Eléments de symétrie de la courbe Fonctions

Plus en détail

Corrigé entrée à Sciences Po ADMISSION AU COLLÈGE UNIVERSITAIRE 2016 Samedi 20 février 2016 MATHÉMATIQUES durée de l épreuve : 3 h.

Corrigé entrée à Sciences Po ADMISSION AU COLLÈGE UNIVERSITAIRE 2016 Samedi 20 février 2016 MATHÉMATIQUES durée de l épreuve : 3 h. Corrigé entrée à Sciences Po ADMISSION AU COLLÈGE UNIERSITAIRE 206 Samedi 20 février 206 MATHÉMATIQUES durée de l épreuve : 3 h A. P. M. E. P. Les calculatrices sont autorisées. Problème La partie A est

Plus en détail

Mathématiques. préparation à la Terminale ES

Mathématiques. préparation à la Terminale ES Mathématiques préparation à la Terminale ES Le programme de Terminale ES est chargé et est la continuité de celui de 1 ère ère ES. Les nouvelles notions sont nombreuses et le rythme de progression est

Plus en détail

Lycée Polyvalent de Taaone. Mathématiques Série S (Mars-2014) Durée : 4 heures

Lycée Polyvalent de Taaone. Mathématiques Série S (Mars-2014) Durée : 4 heures Mathématiques Série S (Mars-2014) Durée : 4 heures L usage de la calculatrice est autorisé Tout autre document est interdit Ce sujet s adresse aux élèves qui n ont pas suivi la spécialité Mathématiques

Plus en détail

Exercice n 1. On note An l'évènement " le tirage a lieu dans l'urne U1 à l'étape n " et pn sa probabilité. On a donc p1 = Calculer p2.

Exercice n 1. On note An l'évènement  le tirage a lieu dans l'urne U1 à l'étape n  et pn sa probabilité. On a donc p1 = Calculer p2. Exercice n 1 On considère deux urnes U1 et U2. L'urne U1 contient 17 boules blanches et 3 boules noires indiscernables au toucher. L'urne U2 contient 1 boule blanche et 19 boules noires indiscernables

Plus en détail

4. Calculer. En déduire la nature du triangle DAC.

4. Calculer. En déduire la nature du triangle DAC. Nouvelle-alédonie novembre 2011 EXERIE 1 5 points ommun à tous les candidats Le plan complexe est muni d un repère orthonormal direct (O ; u, v). On prendra 1 cm pour unité graphique. 1. Résoudre dans

Plus en détail

Épreuve de Mathématiques - Série S - Durée : 4 heures Mercredi 27 mars Calculatrice Autorisée

Épreuve de Mathématiques - Série S - Durée : 4 heures Mercredi 27 mars Calculatrice Autorisée ... Épreuve de Mathématiques - Série S - Durée : 4 heures Mercredi 27 mars Calculatrice Autorisée Le sujet comporte 4 exercices : Les élèves n ayant pas choisi l option Mathématiques en spécialité traiteront

Plus en détail

Fonction homographique - tangente à une courbe - suite récurrente

Fonction homographique - tangente à une courbe - suite récurrente f est la fonction définie sur D = ]- ;3[ ]3 ;+ [ par f(x) = x + 1 3 - x. 1) a) Etudier les variations de f sur D, ses limites aux bornes de D puis construire sa représentation graphique C f dans un repère

Plus en détail

x 1 0 et que, sur l intervalle ; 2 4

x 1 0 et que, sur l intervalle ; 2 4 Polynésie septembre 015 EXERCICE 1 7 points Commun à tous les candidats Les parties A et B peuvent être traitées de façon indépendante. On rappelle que la partie réelle d un nombre complexe z est notée

Plus en détail

BACCALAURÉAT GÉNÉRAL OBLIGATOIRE. Semaine du 4 mars 2013 MATHÉMATIQUES. Série S. Durée de l épreuve : 4 heures Coefficient : 7

BACCALAURÉAT GÉNÉRAL OBLIGATOIRE. Semaine du 4 mars 2013 MATHÉMATIQUES. Série S. Durée de l épreuve : 4 heures Coefficient : 7 BACCALAURÉAT GÉNÉRAL Semaine du 4 mars 2013 MATHÉMATIQUES Série S Durée de l épreuve : 4 heures Coefficient : 7 Ce sujet comporte 6 pages (y compris celle-ci) numérotées de 1 à 6 OBLIGATOIRE L emploi des

Plus en détail

BACCALAUREAT GENERAL. MATHEMATIQUES Série S

BACCALAUREAT GENERAL. MATHEMATIQUES Série S 16MASCOMLR1 BACCALAUREAT GENERAL SESSION 016 MATHEMATIQUES Série S ÉPREUVE DU LUNDI 0 JUIN 016 Enseignement Obligatoire Coefficient : 7 Durée de l épreuve : 4 heures Ce sujet comporte 6 pages numérotées

Plus en détail

1 ( 8 points ) Sur le graphique de l annexe 1, on a tracé, dans le plan muni d un repère orthonormé

1 ( 8 points ) Sur le graphique de l annexe 1, on a tracé, dans le plan muni d un repère orthonormé TS. Contrôle 4 -Correction 8 points ) Sur le graphique de l annee, on a tracé, dans le plan muni d un repère orthonormé la courbe représentative C d une fonction f définie et dérivable sur l intervalle

Plus en détail

Correction du baccalauréat S Polynésie 10 juin 2010

Correction du baccalauréat S Polynésie 10 juin 2010 Correction du baccalauréat S Polynésie 0 juin 00 Exercice Commun à tous les candidats. Le plan complexe est rapporté à un repère orthonormal direct O, u, ) v. 5 points Prérequis Partie A - Restitution

Plus en détail

EXERCICE 1. 6 points. Corrigé du baccalauréat S Amérique du Nord 1 er juin 2016 TS

EXERCICE 1. 6 points. Corrigé du baccalauréat S Amérique du Nord 1 er juin 2016 TS Corrigé du baccalauréat S Amérique du Nord er juin 06 EXERCICE 6 points Commun a tous les candidats Une entreprise fabrique des billes en bois sphériques grâce à deux machines de production A et B. L entreprise

Plus en détail

APPLICATIONS DE LA DERIVATION

APPLICATIONS DE LA DERIVATION APPLICATIONS DE LA DERIVATION 1 I. Sens de variation d une fonction ; extréma : 1) Cas d une fonction constante : On a vu que si f est une fonction constante définie sur un intervalle I de IR alors f (x)

Plus en détail

Chapitre 1 : Les suites

Chapitre 1 : Les suites Chapitre : Les suites I. Exercices supplémentaires Partie A : Récurrence Exercice La suite est définie par et +2+ pour tout entier naturel. Démontrer par récurrence que pour tout. La suite est définie

Plus en détail

Corrigé du baccalauréat S Centres étrangers 16 juin 2011

Corrigé du baccalauréat S Centres étrangers 16 juin 2011 Corrigé du baccalauréat S Centres étrangers 6 juin EXERCICE Commun à tous les candidats 4 points. a. A O A A 4 A 6 A 5 A A On a a a a,5, puis a,75, a 4,65 a 5,6875 et a 6,6565 b. c. Puisque le point A

Plus en détail

EXERCICE 1 (4 points)

EXERCICE 1 (4 points) EXERCICE 1 4 points) Pour chaque question de cet exercice, plusieurs réponses sont proposées. Parmi elles, une seule est exacte. Le candidat devra choisir l une des réponses et justifier son choix. 1.

Plus en détail

Baccalauréat S Centres étrangers 12 juin 2013

Baccalauréat S Centres étrangers 12 juin 2013 Durée : 4 heures Baccalauréat S Centres étrangers 2 juin 203 L usage des calculatrices est autorisé selon les termes de la circulaire n o 99-86 du 6 novembre 999. Il est rappelé que la qualité de la rédaction,

Plus en détail

Antilles Guyane. Septembre Enseignement spécifique. Corrigé

Antilles Guyane. Septembre Enseignement spécifique. Corrigé Antilles Guyane Septembre 15 Enseignement spécifique Corrigé EXERCICE 1 Partie A : étude de la fonction f 1 1) a) f 1 est dérivable sur R en tant que produit de fonctions dérivables sur R et pour tout

Plus en détail

Durée : 1 heure 30 Épreuves communes ENI GEIPI POLYTECH Série S 11 mai 2016

Durée : 1 heure 30 Épreuves communes ENI GEIPI POLYTECH Série S 11 mai 2016 Durée : 1 heure 30 Épreuves communes ENI GEIPI POLYTECH Série S 11 mai 2016 Nous vous conseillons de répartir équitablement les 3 heures d épreuves entre les sujets de mathématiques et de physique-chimie

Plus en détail

Baccalauréat série S Amérique du Sud 17 novembre 2014

Baccalauréat série S Amérique du Sud 17 novembre 2014 Baccalauréat série S Amérique du Sud 17 novembre 2014 A. P. M. E. P. EXERCICE 1 Commun à tous les candidats 6 points Une entreprise est spécialisée dans la fabrication de ballons de football. Cette entreprise

Plus en détail

Session janvier 2015

Session janvier 2015 BACCALAUREAT BLANC Session janvier 2015 Série : S Épreuve : Mathématiques ( candidats n ayant pas suivi l enseignement de spécialité ) Durée de l'épreuve : 4 heures MATERIEL AUTORISE OU NON AUTORISE :

Plus en détail

Corrigé de l examen de mathématiques

Corrigé de l examen de mathématiques Collège notre Dame de Jamhour Juin 2014 Classe de première S Corrigé de l examen de mathématiques Exercice 1 1. a. admet pour vecteur directeur ; admet pour vecteur directeur Alors et sont orthogonales.

Plus en détail

Dérivation, cours, terminale S

Dérivation, cours, terminale S Dérivation, Dérivation, 27 septembre 2016 Définitions : Soit f une fonction définie sur un intervalle I contenant a. Dire que f est dérivable en a de nombre dérivé f (a), signifie que le taux d accroissement

Plus en détail

Pour démarrer la classe de terminale S. Tout ce qu il faut savoir de la 1 re S. Paul Milan

Pour démarrer la classe de terminale S. Tout ce qu il faut savoir de la 1 re S. Paul Milan Pour démarrer la classe de terminale S Tout ce qu il faut savoir de la 1 re S Paul Milan 8 novembre 015 Table des matières 1 Second degré 7 1 Forme canonique............................. 7 Racines du

Plus en détail

Exercices de Mathématiques 1 ère S

Exercices de Mathématiques 1 ère S Exercices de Mathématiques 1 ère S Pour préparer la rentrée en TS Fonctions, équations et inéquations Exercice 1 1. Pour quelle(s) valeur(s ) de m, l'équation x² - (m+1) x +4 = 0 a-t-elle une seule solution

Plus en détail

Sujet Bac Maths SUJET 3 ANTILLES - GUYANE alainpiller. fr

Sujet Bac Maths SUJET 3 ANTILLES - GUYANE alainpiller. fr Sujet Bac Maths SUJET 3 ANTILLES - GUYANE 2016 alainpiller. fr Sujets Bac Maths 2016 Annales Mathématiques Bac 2016 Sujets + Corrigés - Alain Piller Antilles - Guyane Annales Bac Maths 2016 BACCALAURÉAT

Plus en détail

Terminale S Problème de synthèse n 1 Fonctions irrationnelles - Fonction ln - Suites - Calcul d'aire

Terminale S Problème de synthèse n 1 Fonctions irrationnelles - Fonction ln - Suites - Calcul d'aire Terminale S Problème de synthèse n f est la fonction définie sur par f() = orthonormal (O; i ; j )(unité graphique : 2 cm). A. Etude de la fonction f + - et C sa courbe représentative dans un repère ²

Plus en détail

Sujet du baccalauréat S Asie 18 juin 2008

Sujet du baccalauréat S Asie 18 juin 2008 Sujet du baccalauréat S Asie 8 juin 2008 www.mathoman.com Exercice Commun à tous les candidats 4 points A - Vrai ou faux? Pour chacune des propositions suivantes, indiquer si elle est vraie ou fausse et

Plus en détail

Sujets de bac : Ln. Partie C Dans le plan rapporté à un repère orthonormé ; ;, on note : Γ la courbe représentative de la fonction ;

Sujets de bac : Ln. Partie C Dans le plan rapporté à un repère orthonormé ; ;, on note : Γ la courbe représentative de la fonction ; Sujets de bac : Ln Sujet n 1 : extrait de Liban juin 2004 Partie A Soit la fonction définie sur 0; par 2 ln. 1) Etudier les variations de sur 0; et préciser ses ites en 0 et en. a. Montrer que l équation

Plus en détail

Baccalauréat S Pondichéry 17 avril 2015

Baccalauréat S Pondichéry 17 avril 2015 Baccalauréat S Pondichéry 17 avril 2015 EXERCICE 1 Commun à tous les candidats Partie A 4 points Soit f la fonction définie sur R par f x)= 3 1+e 2x Sur le graphique ci-après, on a tracé, dans un repère

Plus en détail

Continuité d une fonction, Théorème des valeurs intermédiaires

Continuité d une fonction, Théorème des valeurs intermédiaires Continuité d une fonction, Théorème des valeurs intermédiaires I) Notion de continuité 1) Définition On dit qu une fonction est continue sur un intervalle I lorsque le tracé de sa courbe représentative

Plus en détail

Novembre 2008 Nouvelle Calédonie

Novembre 2008 Nouvelle Calédonie Novembre 2 Nouvelle Calédonie Pondichéry Avril 2 Centres étrangers Juin 2 Amérique du nord juin 2 Inde Pondichéry avril 2ds vos annales p 6) Sujets : Novembre 2 Nouvelle Calédonie PARTIE A On considère

Plus en détail

Exercices supplémentaires : Suites

Exercices supplémentaires : Suites Exercices supplémentaires : Suites Partie A : Calculs de termes et représentation graphique Exercice On considère la suite définie par 4 3 pour tout N. Calculer,, et Exercice On considère la suite définie

Plus en détail

Les suites numériques

Les suites numériques Les suites numériques chapitre 4 I Premier regard Définition : suite numérique Une suite numérique est une liste de nombres réels, numérotés généralement par des indices, entiers naturels consécutifs 0,

Plus en détail

Bac blanc 2015 Mathématiques - Série ES - durée : 3 heures Sujet pour les élèves n ayant pas suivi la spécialité maths

Bac blanc 2015 Mathématiques - Série ES - durée : 3 heures Sujet pour les élèves n ayant pas suivi la spécialité maths Bac blanc 2015 Mathématiques - Série ES - durée : 3 heures Sujet pour les élèves n ayant pas suivi la spécialité maths Le sujet est composé de 4 exercices indépendants. Le candidat est invité à faire figurer

Plus en détail

55 questions incontournables

55 questions incontournables 55 questions incontournables 1 On considère la suite (u n ) définie par u 0 = 1 et pour tout entier naturel n par : u n+1 = u n + 1. Montrer que la suite est à termes positifs et qu elle est croissante.

Plus en détail

Baccalauréat S Antilles-Guyane ჼ septembre 2011

Baccalauréat S Antilles-Guyane ჼ septembre 2011 Baccalauréat S Antilles-Guyane ჼ septembre 011 EXERCICE 1 Commun à tous les candidats ( point) On considère la fonction f définie ]0 ; + [ par : f (x) = x ln x 1. Partie A : Étude d une fonction 1. a.

Plus en détail

Correction Bac Blanc de juin : Liban 31 mai 2010 TES

Correction Bac Blanc de juin : Liban 31 mai 2010 TES Correction Bac Blanc de juin : Liban 31 mai 2010 Modalités : Durée de l épreuve : 3 heures ; Calculatrice autorisée ; Répondre sur votre copies) et non sur le présent sujet, sauf l annexe à remettre ;

Plus en détail

BACCALAUREAT GENERAL. MATHEMATIQUES Série S. ENSEIGNEMENT de SPECIALITE

BACCALAUREAT GENERAL. MATHEMATIQUES Série S. ENSEIGNEMENT de SPECIALITE Session 2006 BACCALAUREAT GENERAL Session 2006 MATHEMATIQUES Série S ENSEIGNEMENT de SPECIALITE Durée de l épreuve : 4 heures Coefficient : 9 Les calculatrices électroniques de poche sont autorisées, conformément

Plus en détail

( ) Exercice 1. Exercice 5

( ) Exercice 1. Exercice 5 Exercice 1 1. Effectuer : A 11 5 4 B F + 5 4 6 7 C G 7 1 + 7 Exercice 5 1 5 5 5 5 D 1 6 1+ 6 E 1 H 18 0. Compléter alors le tableau suivant en utilisant le symbole ou. A B C D E F G H IN On donne Ax x

Plus en détail

Dérivation Continuité

Dérivation Continuité Dérivation Continuité Christophe ROSSIGNOL Année scolaire 2009/2010 Table des matières 1 Nombre dérivé Fonction dérivé 2 1.1 Nombre dérivé.......................................... 2 1.2 Fonction dérivée.........................................

Plus en détail