Transferts d énergie thermique

Dimension: px
Commencer à balayer dès la page:

Download "Transferts d énergie thermique"

Transcription

1 Transferts d énergie thermique Notions et contenus Transferts d énergie entre systèmes macroscopiques Notions de système et d énergie interne. Interprétation microscopique. Capacité thermique. Transferts thermiques : conduction, convection, rayonnement. Flux thermique. Résistance thermique. Notion d irréversibilité. Bilans d énergie. Compétences exigibles Savoir que l énergie interne d un système macroscopique résulte de contributions microscopiques. Connaître et exploiter la relation entre la variation d énergie interne et la variation de température pour un corps dans un état condensé. Interpréter les transferts thermiques dans la matière à l échelle microscopique. Exploiter la relation entre le flux thermique à travers une paroi plane et l écart de température entre ses deux faces. Établir un bilan énergétique faisant intervenir transfert thermique et travail. Les conducteurs thermiques transfèrent bien la chaleur. Au contraire, les isolants ne la transfèrent pas ou très peu. I Energie interne d un système 1. Définition L énergie totale E d un système correspond à : E = E C + E P + U avec E C : énergie cinétique, E P : énergie potentielle et U : énergie interne. L énergie interne est liée à la structure microscopique du système (énergie thermique, chimique, nucléaire ). Attention : il ne faut pas confondre l énergie cinétique microscopique d un système et l énergie cinétique. La première correspond à l agitation des particules, elle est liée directement à l énergie thermique : 2 1 mpart <v 2 > = 2 3 kb.t. Avec m part : masse d une particule ; <v 2 > : vitesse quadratique moyenne d une particule ; k B : constante de Boltzmann ; T : température en K. L énergie cinétique se manifeste à l état macroscopique. Le système a une vitesse d ensemble v et E C = 2 1.m.v 2 avec m masse du système LEÇON Travail et chaleur L énergie interne U d un système peut se décomposer en travail et chaleur : U = W + Q avec U énergie interne en J ; W travail échangé en J ; Q chaleur échangée en J. Si le système est fermé et n échange que de la chaleur, la Par convention, Q > 0, si le système reçoit de la chaleur et Q < 0 s il en perd. relation précédente devient : U = Q = m.c. T pour une phase condensée (liquide, solide) avec U en J ; T : variation de la température en K ; c : capacité massique en J.K -1.kg -1 ; m : masse en kg. Application : On place une pièce de 20 centimes à la température ambiante de 20 C dans une casserole maintenue en ébullition (à 100 C). Calculer la variation d énergie interne de cette pièce.

2 II Transferts thermiques Mode de transfert Exemple 1. Différents modes de transferts thermiques Conduction Convection Rayonnement De proche en proche Mouvement d un fluide Interaction lumière - matière Propagation de la chaleur Un radiateur chauffe une Le soleil chauffe la Terre dans une poêle pièce par convection par rayonnement. 2. Définition Si on pose un verre rempli d eau sur une source de chaleur, sa température va augmenter. Inversement, si on le place dans un T 1 T 2 réfrigérateur, sa température va diminuer. Un flux thermique Système 1 Système 2 s effectue spontanément du corps chaud vers le corps froid. Ce transfert cesse lorsque les deux corps ont la même température. Φ Ce phénomène est spontané et irréversible : les transferts thermiques ne peuvent pas augmenter la température des corps les plus chauds. Transfert thermique Φ Le transfert thermique peut s expliquer par la propagation de spontané pour T 1 > T 2. proche en proche de l agitation des entités constituant le système. En première approximation, le flux thermique Φ échangé entre un corps chaud et un corps froid Q est défini par : Φ = Φ : transfert thermique en Watt (W) ; Q : chaleur échangée en J ; t : t durée de l échange thermique en s. Exercice 31 p Flux thermique et résistance thermique Activité de découverte : la résistance thermique Document 1 : fiche accompagnant la laine de roche ENFLOCONS Document technique Isolation des combles perdus par soufflage de laine de roche. Conditionnement Laine de roche en flocons conditionnée en sacs de 25 kg. Fonctionnalité Rapidité de mise en œuvre Continuité de l isolation (suppression des ponts thermiques) Isolation soufflée stable, sans fixateur Adaptation parfaite aux combles difficiles d accès (faible hauteur sous faîtage, trappe réduite, fermette). Sécurité incendie La laine ENFLOCONS est classée M 0 (non combustible). Elle ne participe pas au développement de l incendie et contribue à la protection des structures Résistance thermique intrinsèque Conductivité thermique pour une densité d application de 22,5 kg/m 3 : la mesure de la conductivité thermique de la laine de roche ENFLOCONS a été réalisée conformément à la Norme Française NF X , qui correspond à la méthode de la plaque chaude gardée. Lambda = 0,0427 W/m.K

3 Résistance thermique intrinsèque (en m 2.K/W) 2 2,5 3 3,5 4 4,5 5 5,5 6 Epaisseurs (en cm) 8,5 10, ,5 Poids moyen (en g/m 2 ) 1,9 2,4 2,9 3,4 3,8 4,3 4,7 5,2 5,7 Document 2 : Document destiné au grand public lisible sur le site de l'ademe Document 3 : Conductivité thermique de certains matériaux Conductivité matériau thermique λ (W.m - 1.K -1 ) Polystyrène expansé 0,04 Laine minérale (de verre ou de roche) 0,04 Bois 0,20 Béton cellulaire 0,24 Brique pleine 0,75 Béton plein 1,75 Acier 52 Verre 1,2 Document 4 : Notion de flux thermique Epaisseur de la paroi donnant le même niveau d'isolation thermique Lorsqu'une paroi (de surface S et d'épaisseur e) est soumise à un écart de température T entre sa face intérieure et sa face extérieure, elle est traversée par un flux énergétique Φ. Ce flux obéit à la loi physique : T = R th.φ avec T en Kelvin (K) ou C ; Φ en W et R th résistance thermique de la paroi en K.W -1. Remarque : Les professionnels du bâtiment utilisent la résistance thermique intrinsèque R i qui est une grandeur indépendante de la surface exposée au flux : R i = S.R th Partie A : Appropriation de paramètres physiques utiles et relation entre eux 1- Comment la résistance intrinsèque R I de la laine de roche enflocons varie-t-elle avec l'épaisseur e? Coup de pouce : tracer le graphe R I = f(e) sur tableur, utiliser les fonctionnalités du logiciel pour déterminer la relation entre R i et e.

4 2- On pose R i = k.e a- Déterminer la valeur numérique du coefficient k dans le système international d'unités. b- En réalité, k = λ 1 où λ désigne la conductivité thermique du matériau. Donner l unité de λ c- Quelle est la valeur de la conductivité thermique de la laine de roche enflocons déduite du graphe précédent? Cette valeur est-elle en accord celle de la fiche technique (document 1)? Partie B : Vérification 1- Expliquer pourquoi, en exploitant les données du document 3, une épaisseur de 2 cm de laine de roche est aussi efficace qu'un mur de béton plein de 90 cm d'épaisseur. 2- D'après le document 3, quelle serait l'épaisseur de brique pleine donnant la même efficacité thermique? 3- Retrouver cette valeur par le calcul de la résistance intrinsèque de cette paroi. Partie C : Application 1- Calculer la résistance intrinsèque R I,acier d'une paroi d'acier de 2 cm d'épaisseur et la R I,poly de la même épaisseur de polystyrène expansé. 2- En déduire les valeurs des résistances thermiques des parois si elles présentent une surface de 10 m². 3- En déduire les valeurs des flux thermiques qui permettent le maintient d'un écart de température de 15 C de part et d'autre de ces parois. T 1 T 2 = R th.φ avec T en Kelvin (K) ou C ; Φ en W et R th résistance thermique de la paroi en K.W -1. S Pour une surface plane : Φ = λ. T avec Φ en W ; T : en K ; S surface de la paroi en m 2 ; e : e épaisseur de la paroi en m et λ : conductivité thermique en W.m -1.K -1. Soit R th = Exercice 27 p 368 e. λ.s Activité : Pose d une fenêtre dans un toit 1- Les pertes thermiques à travers un toit isolé s établissent à 0,10 W par m 2 de surface d échange, pour une différence de 1 K entre l intérieur et l extérieur de la maison. a- Déterminer la résistance thermique R th d un toit d aire A = 100 m 2. b- Estimer la puissance thermique P th perdue à travers le toit, lorsque la température extérieure est de 5 C et la température intérieure de 19 C. 2- Les pertes thermiques à travers un triple vitrage séparant deux milieux entre lesquels règne une différence de 1 K s élèvent à 1,0 W par m 2 de vitre. a- Déterminer la résistance thermique Rth 2 d un triple vitrage d aire A 2 = 10m 2. b- Quelle serait la résistance thermique Rth 1 d un toit de surface A 1 = 90 m 2? 3- Une fenêtre d aire A 2 équipée de ce triple vitrage est percée dans le toit d aire (A 1 + A 2 = A). La résistance thermique de l ensemble R th est telle que : = +. R th R th 1 R th2 a- Calculer R th b- Reprendre la question 1-b. dans ces conditions et conclure. Exercice 25 p 367 III Machines thermiques Un moteur thermique reçoit de l énergie d une source chaude (Q C ) qu il convertit en travail (W). Il en cède une partie à une source froide (Q F ). Bilan en valeur absolue : Q C W Q F = 0. Un récepteur reçoit du travail qui lui permet de pomper de la chaleur d une source froide pour la céder à une source chaude. Bilan en valeur absolue : -Q C + W + Q F = 0.

5 chaude Q C Moteur froide Q F Travail W Récepteur froide Q F Travail W Document 1 : Bilan énergétique d un moteur chaude QC Document 2 : Bilan énergétique d un récepteur Activité : Chauffage d une maison On considère une habitation parallélépipédique, de longueur L = 10 m et de largeur l = 9,0 m, dont les murs ont une hauteur H = 2,5 m. La capacité thermique de cette habitation est égale à C = 200 W.h.K -1. La résistance thermique de l ensemble des parois (murs, sol et toit) est R th = A r où r = 6,5 m 2.K -1.W et A correspond à la surface totale des parois. 1- Quelle est la quantité d énergie nécessaire pour obtenir une augmentation de température de 1 C dans cette habitation? 2- Que vaut la résistance thermique R th de l habitation? 3- Quel est le flux thermique dont l habitation est le siège, lorsque la température intérieure est de 19,5 C et la température extérieure de 3,8 C? 4- Quelle quantité d énergie consommerait une installation de radiateurs électriques en une journée pour maintenir la même température? 5- Le coefficient de performance (ou COP) d une pompe à chaleur correspond à la puissance thermique fournie en kw, divisée par la puissance électrique absorbée par le dispositif en kw. a- Quelle quantité d énergie électrique une pompe à chaleur de COP égal à 3,2 consommerait-elle en une journée, pour maintenir la température intérieure à 19,5 C? b- Quel est donc l intérêt d une pompe à chaleur?

Ressources pour le lycée général et technologique

Ressources pour le lycée général et technologique éduscol Physique-chimie Exemple d activités de classe Ressources pour le lycée général et technologique Préambule Notion de résistance thermique Extrait du programme d enseignement spécifique de physique-chimie

Plus en détail

L énergie interne U d un système macroscopique résulte de contributions microscopiques.

L énergie interne U d un système macroscopique résulte de contributions microscopiques. LES TRANSFERTS THERMIQUES Energie interne L énergie interne U d un système macroscopique résulte de contributions microscopiques. Les particules qui constituent le système sont en mouvement perpétuel :

Plus en détail

LES PRINCIPES DE LA THERMIQUE

LES PRINCIPES DE LA THERMIQUE LES PRINCIPES DE LA THERMIQUE 1- Introduction : isolation d une maison Après avoir regardé la vidéo «bien isoler sa maison», répondre aux questions suivantes : Depuis 2011, qu impose la réglementation

Plus en détail

TP 17 : Notion de résistance thermique d un matériau

TP 17 : Notion de résistance thermique d un matériau TP 17 : Notion de résistance thermique d un matériau Objectifs : - Mesurer la résistance thermique de certains matériaux. - Comparer ces matériaux pour l appliquer à l isolation des bâtiments. Compétences

Plus en détail

L énergie Maîtriser les déperditions énergétiques dans un bâtiment

L énergie Maîtriser les déperditions énergétiques dans un bâtiment L énergie Maîtriser les déperditions énergétiques dans un bâtiment Travaux Dirigés 02 Comment bien isoler une maison? Bien isoler sa maison avec Fred et Jamy Filière Scientifique - Option Sciences de l

Plus en détail

FLUX ET RESISTANCE THERMIQUE Compétences et connaissances exigibles. Document 1 : Fiche descriptive de la laine de roche. Document technique

FLUX ET RESISTANCE THERMIQUE Compétences et connaissances exigibles. Document 1 : Fiche descriptive de la laine de roche. Document technique PARTIE COMPRENDRE CH20 TRANSFERTS THERMIQUES FLUX ET RESISTANCE THERMIQUE Compétences et connaissances exigibles Notions de système et d énergie interne. Interprétation microscopique. Capacité thermique.

Plus en détail

Première 1er 2ème 3ème COMPORTEMENT THERMIQUE DES EXERCICES NIVEAU 1 1 / 7. Enseignement transversal LES TRANSFERTS THERMIQUES EXERCICES.

Première 1er 2ème 3ème COMPORTEMENT THERMIQUE DES EXERCICES NIVEAU 1 1 / 7. Enseignement transversal LES TRANSFERTS THERMIQUES EXERCICES. 1 / 7 NIVEAU 1 Exercice 1 Soit un vitrage simple d épaisseur 5 mm, de coefficient de conductibilité λ = 1,15 W/m C. La température de surface du vitrage intérieure est 22 C, la température de surface du

Plus en détail

Energie, matière et rayonnement. Chapitre 10 : VERS L INTERPRETATION MICROSCOPIQUE

Energie, matière et rayonnement. Chapitre 10 : VERS L INTERPRETATION MICROSCOPIQUE THEME Sous -thème COMPRENDRE Energie, matière et rayonnement Chapitre 10 : VERS L INTERPRETATION MICROSCOPIQUE NOTIONS ET CONTENUS Du macroscopique au microscopique Photon et onde lumineuse. Transfert

Plus en détail

Notions et contenus : transferts d'énergie entre systèmes macroscopiques Compétence travaillée ou évaluée : extraire et exploiter des informations

Notions et contenus : transferts d'énergie entre systèmes macroscopiques Compétence travaillée ou évaluée : extraire et exploiter des informations Thème : COMPRENDRE Type de ressources : Activités Documentaires Notions et contenus : transferts d'énergie entre systèmes macroscopiques Compétence travaillée ou évaluée : extraire et exploiter des informations

Plus en détail

C.M.E 41 Pourquoi le métal semble-t-il plus froid que le bois?

C.M.E 41 Pourquoi le métal semble-t-il plus froid que le bois? C.M.E 41 Pourquoi le métal semble-t-il plus froid que le bois? I) Pourquoi le métal semble-t-il plus froid que le bois? 1) Objet chaud, objet froid : nos sensations sont-elles fiables? A température ambiante,

Plus en détail

CONFORT THERMIQUE. 1/ La chaudière et la cheminée fonctionnent 2/ La chaudière et la cheminée ne fonctionnent pas

CONFORT THERMIQUE. 1/ La chaudière et la cheminée fonctionnent 2/ La chaudière et la cheminée ne fonctionnent pas CONFORT THERMIQUE I. Pourquoi isolons-nous? 1/ La chaudière et la cheminée fonctionnent 2/ La chaudière et la cheminée ne fonctionnent pas - La température ambiante est agréable - La température ambiante

Plus en détail

L énergie thermique. Φ.R th S. λ = ,75 =23,7 C =T 1 = ( 1 3 0,8 + 1

L énergie thermique. Φ.R th S. λ = ,75 =23,7 C =T 1 = ( 1 3 0,8 + 1 Exercice 1 L énergie thermique Soit un vitrage simple d épaisseur 5 mm, de coefficient de conductibilité = 1,15 W/(m.K) La température de surface du vitrage intérieure est 22 C, la température de surface

Plus en détail

Pourquoi le métal semble-t-il plus froid que le bois? ( CME4)

Pourquoi le métal semble-t-il plus froid que le bois? ( CME4) Équilibre thermique des matériaux Conduction thermique Capacité thermique massique d un matériau Quantité de chaleur La résistance thermique d un matériau Pourquoi le métal semble-t-il plus froid que le

Plus en détail

COEFFICIENT DE TRANSFERT THERMIQUE

COEFFICIENT DE TRANSFERT THERMIQUE FICHE CALCUL CALCUL DES CHARGES S Version 00-203 Page / 6 RESISTANCE La résistance thermique notée «R» est la capacité d un matériau de résister au passage de la chaleur (flux thermique ), de l extérieur

Plus en détail

Première STI2D /STL Tronc commun Exercices Isolation thermique

Première STI2D /STL Tronc commun Exercices Isolation thermique Première STI2D /STL Tronc commun Exercices Isolation thermique Classe : Première Enseignement : Sciences physiques THEME du programme : HABITAT / VÊTEMENT et REVÊTEMENT Résumé du contenu de la ressource.

Plus en détail

Chap.2 Diffusion thermique

Chap.2 Diffusion thermique Chap.2 Diffusion thermique 1. Description de la diffusion thermique 1.1. Les trois types de transferts thermiques 1.2. Flux thermique (ou Puissance thermique) Vecteur densité de courant 1.3. Analogies

Plus en détail

Aides pour mieux comprendre l'isolation thermique du batiment.

Aides pour mieux comprendre l'isolation thermique du batiment. Aides pour mieux comprendre l'isolation thermique du batiment. Information sur les mots-clés dans le domaine de l'isolation thermique des batiments La conductivité thermique ou Lambda La conductivité thermique

Plus en détail

Lycée Professionnel Le Chesnois Bains les Bains

Lycée Professionnel Le Chesnois Bains les Bains Quelques exemples choisis de conductivité thermique b - La résistance thermique : R La capacité d'un matériau à résister au froid et au chaud est appelée ou R. Cet indicateur exprime la capacité d'un matériau

Plus en détail

L Energie. Energie : aptitude d un objet matériel, ou de plusieurs objets pris dans leur globalité, à effectuer un travail ou à fournir de la chaleur.

L Energie. Energie : aptitude d un objet matériel, ou de plusieurs objets pris dans leur globalité, à effectuer un travail ou à fournir de la chaleur. L Energie I- Le concept d énergie Energie : aptitude d un objet matériel, ou de plusieurs objets pris dans leur globalité, à effectuer un travail ou à fournir de la chaleur. Utilisation courante de l «énergie»

Plus en détail

Plan de la séance. L5C : Environnement thermique et maîtrise énergétique. Cours n 03 > Bases physiques (I)

Plan de la séance. L5C : Environnement thermique et maîtrise énergétique. Cours n 03 > Bases physiques (I) L5C : Environnement thermique et maîtrise énergétique Cours n 03 > Bases physiques (I) Salle de test à l échelle 1 > CSTB Nantes http://aerodynamique.cstb.fr Nicolas.Tixier@grenoble.archi.fr! Les illustrations

Plus en détail

a. Déterminer la résistance électrique et thermique du dispositif. de la tige à 15 cm de son extrémité froide. EXERCICE 2

a. Déterminer la résistance électrique et thermique du dispositif. de la tige à 15 cm de son extrémité froide. EXERCICE 2 1 EXERCICE 1 1. On considère une tige en aluminium de longueur = 50 cm, de section S = 2 cm 2 possédant une conductivité thermique λ = 239 W m -1 K -1 et une résistivité électrique de 2,65µ Ω. cm. Cette

Plus en détail

Table des matières. Diusion thermique. S.Boukaddid Thermodynamique MP2

Table des matières. Diusion thermique. S.Boukaddid Thermodynamique MP2 Diusion thermique Table des matières 1 oi de Fourier 2 1.1 Flux thermique.................................... 2 1.2 Vecteur densité volumique du courant thermique................ 2 1.3 oi de Fourier.....................................

Plus en détail

Q1) Q2) Q3) Compétences travaillées : Q4) Q5) Q6)

Q1) Q2) Q3) Compétences travaillées :  Q4) Q5) Q6) Q1) En quelle unité exprime-t-on la consommation d énergie dans le DPE? Comment la convertir dans l unité d énergie du système international (usi)? En kilowattheure : 1 kwh = 10 3 Wh et 1 Wh = 3600 J Q2)

Plus en détail

TECHNIQUE DU FROID ET DU CONDITIONNEMENT DE L AIR. Séance : Bilan thermique d une chambre froide Date :

TECHNIQUE DU FROID ET DU CONDITIONNEMENT DE L AIR. Séance : Bilan thermique d une chambre froide Date : TECHNIQUE DU FROID ET DU CONDITIONNEMENT DE L AIR Tâche T1.2 : Analyser les plans d une installation Compétence C1.1 : Collecter, identifier, lister, relever des données Thème : S4 : Approche scientifique

Plus en détail

Réseau SCEREN. Ce document a été numérisé par le CRDP de Bordeaux pour la. Base Nationale des Sujets d Examens de l enseignement professionnel.

Réseau SCEREN. Ce document a été numérisé par le CRDP de Bordeaux pour la. Base Nationale des Sujets d Examens de l enseignement professionnel. Ce document a été numérisé par le CRDP de Bordeaux pour la Base Nationale des Sujets d Examens de l enseignement professionnel. Campagne 2013 Ce fichier numérique ne peut être reproduit, représenté, adapté

Plus en détail

I. APPROCHE SUCCINCTE DES 3 MODES DE TRANSFERTS THERMIQUES.

I. APPROCHE SUCCINCTE DES 3 MODES DE TRANSFERTS THERMIQUES. Fiches professeur Transferts thermiques : conduction, convection, rayonnement. Flux thermique, résistance thermique. Caractéristiques thermiques des matériaux. I. APPROCHE SUCCINCTE DES 3 MODES DE TRANSFERTS

Plus en détail

Thème : Le bâtiment à énergie positive Classe : Tle S Pays ou ville : Antilles-Guyane sept 2014

Thème : Le bâtiment à énergie positive Classe : Tle S Pays ou ville : Antilles-Guyane sept 2014 Thème : Le bâtiment à énergie positive Classe : Tle S Pays ou ville : Antilles-Guyane sept 2014 DOC 1 : Consommation d énergie et de développement urbain La consommation d énergie par habitant est liée

Plus en détail

REFRIGERATEUR, CLIMATISEUR ET POMPE A CHALEUR.

REFRIGERATEUR, CLIMATISEUR ET POMPE A CHALEUR. Systèmes et procédés REFRIGERATEUR, CLIMATISEUR ET POMPE A CHALEUR. Capacités exigibles : Pour une pompe à chaleur, un climatiseur ou un réfrigérateur : décrire le principe de fonctionnement ; identifier

Plus en détail

Comment fonctionne un chauffe-eau solaire?

Comment fonctionne un chauffe-eau solaire? Thème 1 : Confort dans l habitat Activité 11 1.4. Le chauffage dans l habitat Comment fonctionne un chauffe-eau solaire? Quels sont tous les transferts thermiques qui permettent de produire de l eau chaude

Plus en détail

Convection thermique

Convection thermique Convection thermique I. Introduction Le transfert thermique s effectue spontanément dès qu il existe une différence de température entre deux points d un système ou de deux systèmes différents en absence

Plus en détail

L énergie s exprime en joules (J)

L énergie s exprime en joules (J) I Les différents types d énergie L énergie peut prendre plusieurs formes : Ici on trouve l énergie cinétique, l énergie calorifique et l énergie lumineuse. Ici on trouve l énergie de changement d état,

Plus en détail

Ce document a été mis en ligne par le Canopé de l académie de Bordeaux pour la Base Nationale des Sujets d Examens de l enseignement professionnel.

Ce document a été mis en ligne par le Canopé de l académie de Bordeaux pour la Base Nationale des Sujets d Examens de l enseignement professionnel. Ce document a été mis en ligne par le Canopé de l académie de Bordeaux pour la Base Nationale des Sujets d Examens de l enseignement professionnel. Ce fichier numérique ne peut être reproduit, représenté,

Plus en détail

I.3. Modes de transfert de la chaleur I.3.1. La conduction Expérience : L'eau contenue dans une casserole est chauffée par une flamme. Observation : L

I.3. Modes de transfert de la chaleur I.3.1. La conduction Expérience : L'eau contenue dans une casserole est chauffée par une flamme. Observation : L L'ENERGIE THERMIQUE I. ENERGIE THERMIQUE - CHALEUR I.1. Energie thermique Expérience : Un ballon en verre rempli d'air fermé par un bouchon de liège est chauffé. Observation : Le bouchon de liège saute.

Plus en détail

L inertie thermique : est la capacité d un matériau à stocker l énergie, traduite par sa capacité thermique.

L inertie thermique : est la capacité d un matériau à stocker l énergie, traduite par sa capacité thermique. L inertie thermique : est la capacité d un matériau à stocker l énergie, traduite par sa capacité thermique. Plus l inertie est élevée et plus le matériau restitue des quantités importantes de chaleur

Plus en détail

I. Barre métallique isolée thermiquement

I. Barre métallique isolée thermiquement TP N 8 DE THERMO-MECA TRANSFERTS THERMIQUES Les buts du TP sont de : mesurer la conductivité thermique de l aluminium λ mesurer et voir l influence de paramètres sur le coefficient moyen global d échange

Plus en détail

Isolation thermique par l extérieur

Isolation thermique par l extérieur Isolation thermique par l extérieur 8 Diathonite Evolution est un enduit idéal pour réaliser une isolation thermique par l extérieur sur tous les types de maçonnerie. 1 2 3 4 1. Diathonite Finition / Plasterpaint

Plus en détail

Transmission de chaleur

Transmission de chaleur Transmission de chaleur Matthieu Schaller et Xavier Buffat matthieu.schaller@epfl.ch xavier.buffat@epfl.ch 31 octobre 2007 Table des matières 1 Introduction 2 2 Méthode 2 2.1 Matériel..............................

Plus en détail

Chapitre décembre 2015

Chapitre décembre 2015 Chapitre 4 Groupe scolaire La Sagesse Lycée qualifiante 21 décembre 2015 1 (2015-2016) 1ere Bac SM Sommaire 1 2 3 2 (2015-2016) 1ere Bac SM Sommaire 1 2 3 2 (2015-2016) 1ere Bac SM Sommaire 1 2 3 2 (2015-2016)

Plus en détail

Transferts de chaleur. Marie Pierrot Lycée du Rempart

Transferts de chaleur. Marie Pierrot Lycée du Rempart Transferts de chaleur 1 Température et chaleur La température : C'est une grandeur physique qui caractérise le degrés d'agitation thermique des particules constituant la matière. Elle se mesure à l'aide

Plus en détail

LA DIFFUSION THERMIQUE

LA DIFFUSION THERMIQUE LA DIFFUSION THERMIQUE I LES DIFFÉRENTS MODES DE TRANSFERT THERMIQUE Différence de température entre deux milieux transport d'énergie thermique (transfert thermique). On distingue trois modes de transfert

Plus en détail

Activité documentaire

Activité documentaire Le chauffage de l'habitat Activité documentaire Face au réchauffement climatique, il devient nécessaire de réduire le recours aux énergies fossiles. Comment réaliser des économies d'énergie dans l'habitat?

Plus en détail

Paramètres influent le transfert de chaleur et le besoin en. énergie

Paramètres influent le transfert de chaleur et le besoin en. énergie Paramètres ayant une influence sur le transfert de chaleur et/ou le besoin en énergie Le thème traité : quels sont les paramètres ayant une influence sur le transfert de chaleur et/ou le besoin en énergie

Plus en détail

Paramètres influent le transfert de chaleur et le besoin en. énergie

Paramètres influent le transfert de chaleur et le besoin en. énergie Paramètres ayant une influence sur le transfert de chaleur et/ou le besoin en énergie Le thème traité : quels sont les paramètres ayant une influence sur le transfert de chaleur et/ou le besoin en énergie

Plus en détail

Plateforme Formation et Evaluation. Besoins de chauffage

Plateforme Formation et Evaluation. Besoins de chauffage Plateforme Formation et Evaluation Besoins de chauffage 1 Besoins de chauffage Déperditions Apports solaires Apports internes Contenu Méthode simplifiée de calcul des besoins de chauffage 2 1. Les déperditions

Plus en détail

Thermique et matériaux

Thermique et matériaux Thermique et matériaux 1. Variété et performance des matériaux 3. Aperçu de la logique HQE Sources : Oliva Jean-Pierre (2001). L'isolation écologique, Mens : Éd. Terre vivante. 1. Variété et performance

Plus en détail

Exemple : IV.2. Forme macroscopique du 2 ème principe

Exemple : IV.2. Forme macroscopique du 2 ème principe Chapitre IV : Deuxième principe de la thermodynamique Le er principe fournit le bilan énergétique d une transformation sans fournir d information sur le genre de processus qui a lieu. Il ne permet pas

Plus en détail

NOTE TECHNIQUE. Calcul du pont thermique ponctuel du rupteur à scellement chimique IT-Fix. Nom du client : Sit-ab Titre de l'affaire : IT-Fix

NOTE TECHNIQUE. Calcul du pont thermique ponctuel du rupteur à scellement chimique IT-Fix. Nom du client : Sit-ab Titre de l'affaire : IT-Fix Nom du client : Sit-ab Titre de l'affaire : IT-Fix NOTE TECHNIQUE Calcul du pont thermique ponctuel du rupteur à scellement chimique IT-Fix Auteur: Florian SIMON Date : 27/09/2013 N/Ref : CMDL/FS.2013.42

Plus en détail

Dans cette zone appelée couche limite, la température de l'air ainsi que sa vitesse varient rapidement en fonction de la distance à la paroi.

Dans cette zone appelée couche limite, la température de l'air ainsi que sa vitesse varient rapidement en fonction de la distance à la paroi. 3 L'air en tant qu'isolant L'air immobile possède une conductivité thermique très faible (λ = 0.024 W/mK). Cette propriété est utilisée dans tous les matériaux isolants dont la fonction principale est

Plus en détail

Matinée A. Le Grenelle de l environnement B. Les grandeurs caractéristiques C. Le confort D. Les déperditions thermiques Après midi E.

Matinée A. Le Grenelle de l environnement B. Les grandeurs caractéristiques C. Le confort D. Les déperditions thermiques Après midi E. Matinée A. Le Grenelle de l environnement B. Les grandeurs caractéristiques C. Le confort D. Les déperditions thermiques Après midi E. Applications sur un pavillon F. Exemples de mises en évidence 1 Ne

Plus en détail

G.P. DNS07 Novembre 2012

G.P. DNS07 Novembre 2012 DNS Sujet Isolation thermique d'un tube vaporisateur...1 I.Transfert thermique dans un milieu homogène...1 II.Transferts thermiques pour un tube...2 A.Conduction ou diffusion...2 B.Conducto-convection...3

Plus en détail

1. PREMIER PRINCIPE - ENTHALPIE H

1. PREMIER PRINCIPE - ENTHALPIE H 1. PREMIER PRINCIPE - ENTHALPIE H 121. Chaleur Q Données pour tous les exercices : Chaleur massique de l eau : ceau = 4185 J.kg -1. -1 Chaleur massique de la glace : cglace = 2100 J.kg -1. -1 Chaleur latente

Plus en détail

Licence Science de la Mer et de l Environnement. Physique Générale

Licence Science de la Mer et de l Environnement. Physique Générale Licence Science de la Mer et de l Environnement Physique Générale Chapitre 10 :Calorimétrie 1 Notion de quantité de chaleur Si on place des corps ayant des températures différentes dans une enceinte isolée

Plus en détail

TRANSMISSION THERMIQUE PAR CONDUCTION

TRANSMISSION THERMIQUE PAR CONDUCTION TRANSMISSION THERMIQUE PAR CONDUCTION 1) définition de la conduction La conduction est le mode de propagation de l'énergie thermique à travers la matière. Elle se produit par contact entre les particules

Plus en détail

CI 4 : DIMENSIONNEMENT DES STRUCTURES ET CHOIX DES MATÉRIAUX Comportement des matériaux

CI 4 : DIMENSIONNEMENT DES STRUCTURES ET CHOIX DES MATÉRIAUX Comportement des matériaux INTRODUCTION Ce premier exercice constitue sensibilisation à un Diagnostic de Performance énergétique. Il s agira donc ici de relever les éléments entrant en compte dans un DPE ; nous utiliserons un logiciel

Plus en détail

Règles Th-U. Parois vitrées. Fascicule 3/5 SOMMAIRE

Règles Th-U. Parois vitrées. Fascicule 3/5 SOMMAIRE Règles Th-U Ex Fascicule 3 : Parois vitrées - Sommaire I Règles Th-U Fascicule 3/5 Parois vitrées SOMMAIRE Chapitre I : Introduction... 1 Chapitre II : Méthode générale de calcul... 2 2.1 Parois vitrées...

Plus en détail

L c on o d n u d c u tio i n o C m o men e t n? les s ol o ide d s

L c on o d n u d c u tio i n o C m o men e t n? les s ol o ide d s Le transfert de la chaleur Les processus de transfert de la chaleur La chaleur est transmise d un objet chaud à un objet froid. Chapitre 6 Les processus de transfert de la chaleur Il y a trois processus

Plus en détail

M22 C > Planning Enseignants : Nicolas REMY & Bruno Burlat

M22 C > Planning Enseignants : Nicolas REMY & Bruno Burlat M22 C > Planning Enseignants : Nicolas REMY & Bruno Burlat Cours Cours 0 : lundi 16 Février 2004 de 8h à 10h Cours 1 : Mardi 17 Février 2004 de 10h à 12h Cours 2 : lundi 23 Fé vrier de 10h à 12h Cours

Plus en détail

Ce document a été mis en ligne par le Canopé de l académie de Montpellier pour la Base Nationale des Sujets d Examens de l enseignement professionnel.

Ce document a été mis en ligne par le Canopé de l académie de Montpellier pour la Base Nationale des Sujets d Examens de l enseignement professionnel. Ce document a été mis en ligne par le Canopé de l académie de Montpellier pour la Base Nationale des Sujets d Examens de l enseignement professionnel. Ce fichier numérique ne peut être reproduit, représenté,

Plus en détail

E, P, t. 1B L homme et l énergie L homme ne peut ni créer, ni perdre de l énergie, celle-ci doit exister au préalable.

E, P, t. 1B L homme et l énergie L homme ne peut ni créer, ni perdre de l énergie, celle-ci doit exister au préalable. 1 / 8 E, P, t 1. ENERGIE 1A Mot d usage très répandu Energies nucléaire, solaire, thermique, hydraulique, d un aliment... Il a de l énergie crise de l énergie économie d énergie... 1B L homme et l énergie

Plus en détail

Phénomènes de transfert de chaleur et de masse. Prof. H.Hofmann LTP, IMX, EPFL. Matériaux 4 ième semestre

Phénomènes de transfert de chaleur et de masse. Prof. H.Hofmann LTP, IMX, EPFL. Matériaux 4 ième semestre Phénomènes de transfert de chaleur et de masse Prof. H.Hofmann LTP, IMX, EPFL Matériaux 4 ième semestre Prof. H. HOFMANN Laboratoire de Technologie des Poudres EPFL / IMX 2 PHENOMENES DE TRANSFERT I. TRANSFERT

Plus en détail

RETOUR D EXPERIENCE SUR UNE MAISON PASSIVE

RETOUR D EXPERIENCE SUR UNE MAISON PASSIVE RETOUR D EXPERIENCE SUR UNE MAISON PASSIVE Les ingénieurs conseil d HELIASOL ont fait une visite de 3 jours dans une maison passive dont ils ont fait l étude et l optimisation thermique. L objectif était

Plus en détail

CALCUL DE PONTS THERMIQUES DE LIAISON AVEC FACADE F4

CALCUL DE PONTS THERMIQUES DE LIAISON AVEC FACADE F4 Département Enveloppe et Revêtements Division HygroThermique des Ouvrages N affaire : 10-099 Le 26 avril 2011 Réf. DER/HTO 2011-100-AD/LS CALCUL DE PONTS THERMIQUES DE LIAISON AVEC FACADE F4 Version 1

Plus en détail

Mesure de la résistance thermique d un matériau

Mesure de la résistance thermique d un matériau Mesure de la résistance thermique d un matériau OBJECTIFS : Mesurer la résistance thermique d un matériau. Montrer que tous les matériaux ne sont pas des isolants. PRINCIPE DE L EXPERIENCE : Soumettre

Plus en détail

NOTIONS DE PHYSIQUE ET THERMOPHYSIQUE

NOTIONS DE PHYSIQUE ET THERMOPHYSIQUE NOTIONS DE PHYSIQUE ET THERMOPHYSIQUE Introduction: La thermophysique est une branche de la physique classique qui traite des phénomènes physiques en relation avec les manifestations de chaleur. La thermophysique

Plus en détail

SOMMAIRE NOTIONS FONDAMENTALES 1

SOMMAIRE NOTIONS FONDAMENTALES 1 SOMMAIRE NOTIONS FONDAMENTALES 1 OBJECTIFS POURSUIVIS 1 NOTION DE TEMPERATURE 2 NOTION DE CHALEUR 3 DÉFINITIONS 3 ECHANGE DE CHALEUR À TRAVERS UNE SURFACE 3 UNITÉS SI ET UNITÉS PRATIQUES 4 EXEMPLES DE

Plus en détail

Proposition de plan d année physique sciences générales (5 h/sem)

Proposition de plan d année physique sciences générales (5 h/sem) Proposition de plan d année physique sciences générales (5 h/sem) Cours THEME 1.- TRAVAIL, ENERGIE et PUISSANCE 1 Le principe d inertie 2 Applications du principe d inertie Notion de MRU vlp 24 Examen

Plus en détail

Réhabilitation BBC d une maison individuelle à Vanves

Réhabilitation BBC d une maison individuelle à Vanves Bâtiments Matériaux Opérations Installations Réhabilitation BBC d une maison individuelle à Vanves Afin de réduire les factures d énergie de sa maison des années 30, un habitant de Vanves choisi de la

Plus en détail

Température résultante d hiver (d après DTU) [ C]

Température résultante d hiver (d après DTU) [ C] Température résultante d hiver (d après DTU) [ C] Température résultante d été [ C] à titre indicatif Habitation Salle de séjour 18 23 à 25 Salle à manger 18 23 à 25 Cuisine 18 23 à 25 Salon 18 23 à 25

Plus en détail

Physique du Bâtiment Caractéristiques thermi -ques dynamiques

Physique du Bâtiment Caractéristiques thermi -ques dynamiques Déphasage et amortissement Définitions Thermique dynamique Etude thermique dans laquelle les paramètres de calcul sont variables. Par exemple : les températures extérieure (données météorologiques) et

Plus en détail

Durée de l épreuve : 3 heures Documents autorisés Date examen : Mercredi 15 février 2012 de 18h30 à 21h30 Date rattrapage : Mercredi 18 avril 2012 de 18h30 à 21h30 1 ECHANGEUR On utilise un échangeur à

Plus en détail

Planche : Sources d Énergie Domestique 09751

Planche : Sources d Énergie Domestique 09751 Planche : Sources d Énergie Domestique 09751 NOTICE Retrouvez l ensemble de nos gammes sur : www.pierron.fr PIERRON - ASCO & CELDA CS 80609 57206 SARREGUEMINES Cedex France Tél. : 03 87 95 14 77 Fax :

Plus en détail

30 ans d Expérience à votre service Traitement de bois - Sablage - Habitations Pliables. Spécification de la «Maison Container»

30 ans d Expérience à votre service Traitement de bois - Sablage - Habitations Pliables. Spécification de la «Maison Container» Spécification de la «Maison Container» Les logements Maison Container sont des produits utilisés par l'organisation Maritime Internationale, son développement n a cessé de croître ces dernières années,

Plus en détail

Nom :.. Prénom :.. Classe :. Connaître les différentes sources d énergie. Citer les différentes formes d énergie.

Nom :.. Prénom :.. Classe :. Connaître les différentes sources d énergie. Citer les différentes formes d énergie. Nom :.. Prénom :.. Classe :. Activité ① OBJECTIFS Connaître les différentes sources d énergie. Citer les différentes formes d énergie. 1- Sources d énergie Les matières ou objets susceptibles de fournir

Plus en détail

DETERMINATION DES COEFFICIENTS THERMIQUES (UP ET PSI) DES BLOCS DE COFFRAGE ISOLANT ISOLASUP EVOLUTION POUR UN AVIS TECHNIQUE

DETERMINATION DES COEFFICIENTS THERMIQUES (UP ET PSI) DES BLOCS DE COFFRAGE ISOLANT ISOLASUP EVOLUTION POUR UN AVIS TECHNIQUE Direction Isolation et Revêtements Division HygroThermique des Ouvrages N affaire : 13-098 Le 21 juillet 2014 Réf. DIR/HTO 2014-154-KZ/LS- N SAP 70042372 DETERMINATION DES COEFFICIENTS THERMIQUES (UP ET

Plus en détail

Ce document a été numérisé par le CRDP de Montpellier pour la Base Nationale des Sujets d Examens de l enseignement professionnel

Ce document a été numérisé par le CRDP de Montpellier pour la Base Nationale des Sujets d Examens de l enseignement professionnel Ce document a été numérisé par le CRDP de Montpellier pour la Base Nationale des Sujets d Examens de l enseignement professionnel Ce fichier numérique ne peut être reproduit, représenté, adapté ou traduit

Plus en détail

Thermodynamique appliquée au corps humain

Thermodynamique appliquée au corps humain Exercice de thermodynamique Thermodynamique appliquée au corps humain Partie A Equation de diffusion thermique On considère un corps homogène (FIGURE 1, où les parties noires représentent un isolant thermique)

Plus en détail

CH I L énergie : On appelle source d énergie toute réserve naturelle d une forme d énergie. On distingue deux groupes de sources d énergie.

CH I L énergie : On appelle source d énergie toute réserve naturelle d une forme d énergie. On distingue deux groupes de sources d énergie. CH I L énergie : L énergie est une des préoccupations majeures du monde actuel. Les besoins en énergie ne faisant que croître, le monde est à la recherche de sources d énergie nouvelles, surtout renouvelables.

Plus en détail

40 I Caractéristiques du verre et expressions clés du domaine de la physique Financial Center, Abu Dhabi, UAE

40 I Caractéristiques du verre et expressions clés du domaine de la physique Financial Center, Abu Dhabi, UAE 40 I Caractéristiques du verre et expressions clés du domaine de la physique Financial Center, Abu Dhabi, UAE 4 Caractéristiques du verre et expressions clés du domaine de la physique 4.1 Le verre et le

Plus en détail

Module L03 : TRANSFERTS THERMIQUES Corrigés des exercices posés en partiels

Module L03 : TRANSFERTS THERMIQUES Corrigés des exercices posés en partiels Module L03 : TRANSFERTS THERMIQUES Corrigés des exercices posés en partiels 1 Contrôle de température lors de travaux 1.1 Dimensionnement du chauffage 1.2 Température de surface 1.3 Consommation énergétique

Plus en détail

Ce document a été numérisé par le Canopé de l académie de Bordeaux pour la Base nationale des sujets d Examens de l enseignement professionnel.

Ce document a été numérisé par le Canopé de l académie de Bordeaux pour la Base nationale des sujets d Examens de l enseignement professionnel. Ce document a été numérisé par le Canopé de l académie de Bordeaux pour la Base nationale des sujets d Examens de l enseignement professionnel. Ce fichier numérique ne peut être reproduit, représenté,

Plus en détail

Machines thermiques. Exercice 1 : Cycle de Lenoir d un récepteur thermique

Machines thermiques. Exercice 1 : Cycle de Lenoir d un récepteur thermique Machines thermiques Exercice 1 : Cycle de Lenoir d un récepteur thermique Une mole de gaz parfait, caractérisé par le coefficient 𝛾 = 𝐶 /𝐶 constant, subit les transformations suivantes : - une détente

Plus en détail

AMELIORATIONS ENERGETIQUES D UN LOGEMENT

AMELIORATIONS ENERGETIQUES D UN LOGEMENT AMELIORATIONS ENERGETIQUES D UN LOGEMENT 1 OBJECTIFS : Recherche d indications dans des Textes officiels Recherche des caractéristiques des matériaux de construction et des équipements de chauffage Evaluation

Plus en détail

Travail et énergie. Seule une force dont le point d application se déplace peut fournir un travail.

Travail et énergie. Seule une force dont le point d application se déplace peut fournir un travail. Travail et énergie 1. Travail d une force : Dans le langage courant, le travail est synonyme d effort et de fatigue... En physique, le travail mécanique correspond à un transfert d énergie entre deux formes

Plus en détail

Transferts de chaleur et de masse

Transferts de chaleur et de masse Objectifs Transferts de chaleur et de masse Objectifs Introduire les notions théoriques à la base de transferts thermiques et de masse Établir leurs liens aux comportements de systèmes thermiques Arriver

Plus en détail

STI 2D CI 5 : AMÉLIORATION DE L EFFICACITÉ ÉNERGÉTIQUE Stockage de l énergie EXERCICE 1. Indication : Surface sphère 4 R 2

STI 2D CI 5 : AMÉLIORATION DE L EFFICACITÉ ÉNERGÉTIQUE Stockage de l énergie EXERCICE 1. Indication : Surface sphère 4 R 2 EXERCICE 1 "Chauffe-eau solaire" On se propose de déterminer le temps que met un chauffe- eau solaire de 4m 2 pour chauffer l'eau du réservoir (200 litres) de 20 C à 70 C. Les données sont : Puissance

Plus en détail

Essai original de mesure des caractéristiques thermiques du béton

Essai original de mesure des caractéristiques thermiques du béton Essai original de mesure des caractéristiques thermiques du béton Jean-David GRANDGEORGE, Sandrine BRAYMAND, Christophe FOND, Violaine TINARD IUT Robert Schuman, Université de Strasbourg «Construction

Plus en détail

Thème 6 p p Le transfert d énergie

Thème 6 p p Le transfert d énergie Objectif : Thème 6 p p.226-237 Le transfert d énergie Je peux expliquer comment la chaleur est transmit par la conduction, la convection et le rayonnement dans les solides, les liquides et les gazes Je

Plus en détail

Parois opaques (isolation thermique extérieure, intérieure, répartie lourde ou légère)

Parois opaques (isolation thermique extérieure, intérieure, répartie lourde ou légère) Parois opaques (isolation thermique extérieure, intérieure, répartie lourde ou légère) Durée du thème : 30 minutes FEEBAT Module 1+2 - Isolation thermique 1 Pour réduire les consommations d énergie Pour

Plus en détail

Nom :.. Prénom :.. Classe :. Connaître les différentes sources d énergie. Citer les différentes formes d énergie.

Nom :.. Prénom :.. Classe :. Connaître les différentes sources d énergie. Citer les différentes formes d énergie. Nom :.. Prénom :.. Classe :. Activité ① OBJECTIFS Connaître les différentes sources d énergie. Citer les différentes formes d énergie. 1- Sources d énergie Les matières ou objets susceptibles de fournir

Plus en détail

LES TRAVAUX ÉLIGIBLES

LES TRAVAUX ÉLIGIBLES LES TRAVAUX ÉLIGIBLES Critères d éligibilité & pièces justificatives Critères d éligibilité & pièces justificatives Avril 2016-1/25 Isolation de combles ou de toitures page 4 Isolation de murs page 6 Isolation

Plus en détail

TP 1 : Conductivités thermiques de différents matériaux

TP 1 : Conductivités thermiques de différents matériaux TP1 : Conductivités thermiques de différents matériaux 1 ère année de BTS SCBH TP 1 : Conductivités thermiques de différents matériaux Objectif : Comparer expérimentalement les conductivités thermiques

Plus en détail

BUREAU D ÉTUDES CANTY

BUREAU D ÉTUDES CANTY La performance du détail 20 Réf. PHPP Réf. RT 2012 Ψ = 0,079 W/m.K (réf. RT 2012) Ψ = -0,044 W/m.K (réf. PHPP) Calcul réalisé selon les normes NF EN ISO 10211 et NF EN ISO 10077-2, les Règles Th-Bât 2012

Plus en détail

Chap.1 Diffusion de particules

Chap.1 Diffusion de particules Chap.1 Diffusion de particules 1. Description de la diffusion particulaire 1.1. La diffusion : un phénomène de transport à l échelle microscopique 1.2. Flux de particules Vecteur densité de courant 1.3.

Plus en détail

LES ECHANGEURS THERMIQUES

LES ECHANGEURS THERMIQUES ES ECHANGEURS HERMIQUES I) Généralités : Un échangeur thermique est destiné à transmettre de la chaleur, d un fluide à un autre. Généralement les fluides sont séparés par une paroi, à travers laquelle

Plus en détail

LES EMETTEURS J-M R. D-BTP

LES EMETTEURS J-M R. D-BTP LES EMETTEURS J-M R. D-BTP 2006 1 Rôle Radiateurs fonte Radiateurs acier Radiateurs aluminium Échange thermique Emplacement des radiateurs Accessoires de pose des radiateurs Règles de pose Choix des radiateurs

Plus en détail

ETUDE ET REALISATION D UN REFRIGERATEUR SOLAIRE PHOTOVOLTAIQUE A TROIS COMPARTIMENTS DESTINE A LA CONSERVATION DES VACCINS ET MEDICAMENTS

ETUDE ET REALISATION D UN REFRIGERATEUR SOLAIRE PHOTOVOLTAIQUE A TROIS COMPARTIMENTS DESTINE A LA CONSERVATION DES VACCINS ET MEDICAMENTS ETUDE ET REALISATION D UN REFRIGERATEUR SOLAIRE PHOTOVOLTAIQUE A TROIS COMPARTIMENTS DESTINE A LA CONSERVATION DES VACCINS ET MEDICAMENTS Présentée par Paul Arsène ADINGRA KOUASSI 1 PLAN Introduction I-

Plus en détail

R filter. Pour une étanchéité à l air maîtrisée. OPTEZ POUR LA PERFORMANCE Praticité Étanchéité Rapidité Facilité

R filter. Pour une étanchéité à l air maîtrisée. OPTEZ POUR LA PERFORMANCE Praticité Étanchéité Rapidité Facilité R filter Pour une étanchéité à l air maîtrisée OPTEZ POUR LA PERFORMANCE Praticité Étanchéité Rapidité Facilité 02 03 DES OBJECTIFS RT 2012 AMBITIEUX DES EXIGENCES DE PERFORMANCES GLOBALES DE 3 TYPES >

Plus en détail

transformation d énergie mécanique en énergie électrique. L unité officielle du système international (Unité S.I.) de l énergie est le joule (J).

transformation d énergie mécanique en énergie électrique. L unité officielle du système international (Unité S.I.) de l énergie est le joule (J). 1 L énergie dans tous ses états Exemple de l automobile. Batterie : réserve d énergie chimique, source d énergie électrique ; Carburant : réserve d énergie chimique ; Démarreur : transformateur d énergie

Plus en détail

Titre: Energétique Etu #1

Titre: Energétique Etu #1 Titre: Energétique Etu 2015-2016 #1 Auteur: Patrice Nortier Objectif de l'exercice : Cours : Energétique Code : 3FMT1026 Durée : 1h30 Évaluer les compétences acquises, Promotion : 2018 essentiellement

Plus en détail