1. Les fonctions affines.

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "1. Les fonctions affines."

Transcription

1 L E S F O N C T I O N S U S U E L L E S. Les fonctions ffines.. Définition. Une fonction ffine est une fonction f définie sur R pr : f ( x) = x+ b.2 Représenttion grphique. o o Si b =, l fonction est linéire. Si =, l fonction est constnte. L fonction ffine f ( x) = x+ b se représente pr l droite d d éqution : y= x+ b, où :. Sens de vrition. o est le coefficient directeur de l droite o b est l ordonnée à l origine (d psse pr le point B( ; b ).. Rppel sur le sens de vrition d une fonction. On choisit deux vleurs u et v pour l vrible x, telles que u < v, donc telles que u v< o Si f ( u) f ( v) lors : f ( u) f ( v) < < et l fonction est strictement croissnte, cr l fonction vrie dns le même sens que l vrible. o Si f ( u) f ( v) lors f ( u) f ( v) > > et l fonction est strictement décroissnte cr l fonction vrie en sens inverse de l vrible...2 Sens de vrition d une fonction ffine, si >. Soient deux vleurs de l vrible, telles que u < v, donc telles que u v<. On clcule : ( ) f ( v) f u = Conclusion : puisque u v Donc f ( u) f ( v) <, et > lors le produit ( u v) est.., est L fonction ffine f ( x) = x+ b est donc. lorsque est positif... Sens de vrition d une fonction ffine, si <. On risonne de l même fçon. On prend deux vleurs u et v de l vrible, telles que u < v, donc telles que u v< On clcule : ( ) f ( v) f u = Conclusion : puisque u v Donc f ( u) f ( v) <, et < lors le produit ( u v) est.., est

2 L fonction ffine f ( x) = x+ b est donc lorsque est négtif...4 Théorème. Une fonction f est ffine si et seulement si pour deux vleurs u et v de x, le rpport ( ) f ( v) f u u v est constnt. On dit que «les ccroissements de l vrible sont proportionnels ux ccroissements de l fonction «Adpttion grphique : On peut obtenir sur un grphique représentnt une fonction ffine, l vleur du coefficient en clculnt le y rpport x, qui équivut à yb ya, A et B étnt deux points de l droite dont on repéré les coordonnées. x x B A E X E R C I C E. Trouver l fonction ffine f telle que f ( ) = et ( ) f 2 =. 2. Trcer l représenttion grphique de f définie pr f ( x) = x+ 2, à prtir du point ( ; 2) utilisnt le coefficient directeur. 2 A en 2

3 . Trcer l représenttion grphique de l fonction définie pr : f x = x x o ( ), si o ( ) = si f x x x ] ; 2] ] 2 ; [ o f ( x) = x 5 si x [ ;+ [ E X E R C I C E 2 Trcer l repr résenttion grphique de l fonction définie pr ( ) f x = 2x

4 .4 Signe de x+ b Théorème : b x+ b= pour une vleur x= x+ b est du signe de pour les vleurs de x supérieures à x. Si >, l fonction ffine est strictement croissnte. -b f ( x) f ( x) x b + f( x ) + 2. Si <, l fonction ffine est strictement décroissnte. f ( x) -b f ( x) x b + f( x ) + E X E R C I C E 4 A chercher A l ide d un tbleu de signes, déterminer le signe de : f( x) = 2x+ 4

5 g( x) =,8x,6.5 Résolution d une inéqution du er degré. On veut résoudre l inéqution : x+ 4< 5x+ 6 Méthode : On rmène l inéqution u type x+ b< Il vient : x+ 4 5x 6< 2x 2< Puis : Soit résoudre pr le clcul : 2x 2< 2x< 2 x> Soit on utilise l règle des signes du binôme : 2x 2 s'nnule pour x= 2x 2 est du signe de (négtif) pour x> D où : S= ] ; + [ E X E R C I C E A chercher Résoudre le système : x+ 6 x 4 x doit vérifier à l fois les deux propriétés : x... et x... C'est-à-dire :... x... Schém : 5

6 Donc : S =.. 2. Fonctions linéires et proportionnlité. 2. Propriété : Soit f une fonction linéire définie sur R pr f( x) est le coefficient de proportionnlité. = x, lors f( x ) est proportionnel à x et à x et Réciproquement : toute reltion de proportionnlité peut se trduire pr une fonction linéire. Remrques : Le coefficient de proportionnlité correspond u coefficient directeur de l droite représenttive. L droite représenttive psse pr l origine des xes. Exemple : Soit le tbleu de proportionnlité On lui ssocie l fonction linéire f( x) = 2x C D Les points A( 2; 4 ), B( ; 2 ), C( 2 ; 4) et D( ; 6) A B sont lignés sur une droite pssnt pr l origine. E X E R C I C E 5 A chercher Proportionnlité et vitesse.. Quelles est l distnce prcourue en 2h6 min à l vitesse moyenne de 6 km. h 6

7 2. Quel est le temps nécessire pour prcourir 8 km à l vitesse moyenne de 45 km. h 2.2 Propriétés de linérité. Soit l fonction définie pr f( x) = x Pour tous nombres réels x, x2 et k f( x x) 2 f( kx ) = + =.. D où les conséquences : Dns un tbleu de proportionnlité, on peut : Additionner les nombres de 2 colonnes pour former une nouvelle colonne. Multiplier les nombres d une colonne pr un même nombre. E X E R C I C E ,4 Compléter le tbleu de proportionnlité suivnt, en utilisnt les propriétés de llinérité. k Vérifier les résultts, schnt que k=,4 E X E R C I C E 7 7

8 Les fonctions définies ci-dessous vérifient-elles les propriétés de l linérité?. f( x) = x b. g( x) = 4x 5 2. Pourcentges. Sitution : on veut ugmenter une quntité p de t %. Que devient-elle? Solution : t t Elle devient p, telle que p= p+ p p= + p Remrque : t t + et sont ppelés coefficients multiplicteurs. E X E R C I C E 8 Pourcentges successifs. Trouver le pourcentge d ugmenttion correspondnt à deux ugmenttions successives de 5% et 8%. 8

x est la variable et f(x) est l image de x. On note y = f(x). L ensemble des éléments de I ayant une image est appelé ensemble de définition, noté E.

x est la variable et f(x) est l image de x. On note y = f(x). L ensemble des éléments de I ayant une image est appelé ensemble de définition, noté E. http://mths-sciences.r LES FONCTIONS NUMÉRIQUES USUELLES I) Générlités ) Déinition Soit I un intervlle de, une onction est une reltion qui ssocie à tout élément x de I, un nombre réel (x) u plus. : I x

Plus en détail

Ch.4èFONCTIONS DE RÉFÉRENCE

Ch.4èFONCTIONS DE RÉFÉRENCE LFA / première S COURS - mthémtiques Mme MAINGUY Ch.4èFONCTIONS DE RÉFÉRENCE ere S Dns tout le chpitre, le pln est muni d'un repère orthonorml ( O ; i! ;! j ) I. Rppels de Seconde Soit f une fonction définie

Plus en détail

CHAPITRE 10 : LA FONCTION LOGARITHME NEPERIEN

CHAPITRE 10 : LA FONCTION LOGARITHME NEPERIEN L fonction logrithme népérien Cours CHAPITRE : LA FONCTION LOGARITHME NEPERIEN. Définition de l fonction logrithme népérien L fonction logrithme népérien, notée ln, est définie sur ],+ [, prend l vleur

Plus en détail

Cours en salle d'informatique muni d'un vidéo-projecteur ou d'un tableau interactif

Cours en salle d'informatique muni d'un vidéo-projecteur ou d'un tableau interactif CTIVITÉ TICE : DÉRIVATIOND ACTIVITÉ Niveu : Bc Professionnel Type d'utilistion : Cours en slle d'informtique muni d'un vidéo-projecteur ou d'un tbleu interctif Mtériel : 1 ordinteur pr binôme et/ou un

Plus en détail

Intégration. 1 Intégrale d une fonction. 2.1 Définition Propriétés Ensemble des primitives d une fonction... 6

Intégration. 1 Intégrale d une fonction. 2.1 Définition Propriétés Ensemble des primitives d une fonction... 6 Tble des mtières Intégrle d une fonction. Définition.................................................. Propriétés................................................. 4 Notion de primitive d une fonction 5.

Plus en détail

Chapitre 1 Le Second Degré

Chapitre 1 Le Second Degré Cours de Mthémtiques Première STID Chpitre 1 : Le second degré Chpitre 1 Le Second Degré A) Résolution de l'éqution du second degré 1) Définitions On ppelle polynôme de second degré l expression x² x c

Plus en détail

Fiches de cours analyse 4 ème Sciences expérimentales. Limites et continuité. Limites et comparaison de fonctions.

Fiches de cours analyse 4 ème Sciences expérimentales. Limites et continuité. Limites et comparaison de fonctions. Fiches de cours nlyse 4 ème Sciences epérimentles Limites et continuité Limites et comprison de fonctions. L et L ' sont des réels. désigne soit un réel, soit +, soit Premier théorème de comprison Soit

Plus en détail

Chapitre 6 : Fonctions Logarithme Népérien

Chapitre 6 : Fonctions Logarithme Népérien Lycée Pul Sbtier, Cstelnudry Clsse de T`le STG Chpitre 6 : Fonctions Logrithme Népérien D. Zncnro et C. Aupérin 008-009 Téléchrger c est tuer l industrie, tuons les tous Thurston Moore Dernière modifiction

Plus en détail

ÉQUATIONS DIFFÉRENTIELLES DU PREMIER ORDRE (COURS)

ÉQUATIONS DIFFÉRENTIELLES DU PREMIER ORDRE (COURS) Équtions différentielles du ÉQUATIONS DIFFÉRENTIELLES DU PREMIER ORDRE (COURS) TI-Nspire CAS 1. Objectifs Découvrir les équtions différentielles du premier ordre. Résoudre à l min et à l ide de l clcultrice

Plus en détail

I] Généralités. b) Tableau de données et représentation graphique

I] Généralités. b) Tableau de données et représentation graphique Chpitre 4 Fonctions I] Générlités ) Notion de fonction Définition : Une fonction numérique est un processus qui fbrique un nombre (souvent noté y) à prtir d un nombre vrible (souvent noté x). On v noter

Plus en détail

Chapitre 1 Équations et Inéquations du 2nd degré

Chapitre 1 Équations et Inéquations du 2nd degré Cours de Mthémtiques Première S Chpitre 1 : équtions et inéqutions du second degré Chpitre 1 Équtions et Inéqutions du nd degré A) Les Polynômes 1) Définitions On ppelle monôme une expression de l forme

Plus en détail

Primitives Calcul intégral

Primitives Calcul intégral Primitives Clcul intégrl Christophe ROSSIGNOL Année scolire 2009/200 Tble des mtières Primitives 2. Définition, premières propriétés..................................... 2.2 Primitives des fonctions usuelles....................................

Plus en détail

Chapitre 6 : Logarithme

Chapitre 6 : Logarithme Chpitre 6 : Logrithme Introduction Pour représenter grphiquement des nombres qui vrient sur plusieurs ordres de grndeur (pr exemple de à 000), on ne peut ps utiliser l échelle hbituelle où les grdutions

Plus en détail

Résumé de cours : Terminale ES. Table des matières. Maths-Terminale ES. Mr Mamouni : source disponible sur: Samedi 08 Avril 2006.

Résumé de cours : Terminale ES. Table des matières. Maths-Terminale ES. Mr Mamouni : source disponible sur: Samedi 08 Avril 2006. Résumé de cours : Terminle ES. Mths-Terminle ES. Mr Mmouni : myismil@ltern.org source disponile sur: c http://www.chez.com/myismil Smedi 08 Avril 2006. Tle des mtières Eqution du second degré. 2. Ses solutions

Plus en détail

LIMITES DE SUITES ET DE FONCTIONS I..

LIMITES DE SUITES ET DE FONCTIONS I.. TS-cours-chp2-1 - LIMITES DE SUITES ET DE FONCTIONS I.. Limite d une suite 1 / tend vers l infini Définition ( rppel ) Dire que l suite tend vers + signifie que, pour tout nombre A, l intervlle [A ; +

Plus en détail

3 Méthodes du 1 er degré

3 Méthodes du 1 er degré 3 Méthodes du 1 er degré 3.1 Activité Un groupement de commerçnts plnifie ses dépenses promotionnelles u jour le jour, sur une période d un n. Il sit qu u début de l nnée, une dépense de 180 pr semine

Plus en détail

Corrigé du baccalauréat S Pondichéry 21 avril 2010

Corrigé du baccalauréat S Pondichéry 21 avril 2010 Corrigé du bcclurét S Pondichéry 2 vril 2 EXERCICE Commun à tous les cndidts Prtie A : Restitution orgnisée de connissnces 6 points f et g sont deux fonctions continues sur un intervlle [ ; b] donc g f

Plus en détail

Cours de 1ère S/ Géométrie plane. Eric Dostal

Cours de 1ère S/ Géométrie plane. Eric Dostal Cours de 1ère S/ Géométrie plne Eric Dostl Aout 015 Tble des mtières Vecteurs et repérge dns le pln.1 Rppels.......................................... Bses, Repères et Coordonnées.............................

Plus en détail

si x 0 Math C Page 1

si x 0 Math C Page 1 Mth 30411 C Pré-Clcul 1, pges 44-445, nos 1, 3d, 4bd, 7, 8, 10, 13, 14, 15, 16, 18, 19 Pge 1 1. Emine l éqution et le grphique de qutre fonctions rtionnelles. Associe chque grphique à l éqution correspondnte.

Plus en détail

ÉQUATIONS INÉQUATIONS SYSTÈMES Site MathsTICE de Adama Traoré Lycée Technique Bamako

ÉQUATIONS INÉQUATIONS SYSTÈMES Site MathsTICE de Adama Traoré Lycée Technique Bamako ÉQUATIONS INÉQUATIONS SYSTÈMES Site MthsTICE de Adm Troré Lycée Technique Bmko I Équtions du second degré : Résolution pr l méthode du discriminnt : Pour résoudre l éqution du second degré b c = ( d inconnu,

Plus en détail

Fonctions homographiques

Fonctions homographiques HAPITRE 6 Fonctions omorpiques. Fonctions omorpiques Définition. On ppelle fonction omorpique toute fonction du type f : b c où, b, c et d d sont des constntes réelles vérifint : b 0 (6.) c d Remrques.

Plus en détail

LE CALCUL ALGEBRIQUE

LE CALCUL ALGEBRIQUE I. Clculs vec des frctions : ce fcteur : ) Rppels : LE CALCUL ALGEBRIQUE b = b = b = b Exemple : 3 x = x 3 = 3x ( b ) c = ( bc ) = bc Exemple : ( 3x ) 5 = 3 ( 5x ) = 15x 1 = 1 = b) Signe moins dns une

Plus en détail

Fractions. 1 Propriété des quotients égaux 1. 2 Addition, soustraction de deux fractions 3. 3 Produit de deux fractions 5

Fractions. 1 Propriété des quotients égaux 1. 2 Addition, soustraction de deux fractions 3. 3 Produit de deux fractions 5 Tle des mtières Frctions 1 Propriété des quotients égux 1 Addition, soustrction de deux frctions Produit de deux frctions Comprison de deux frctions Produit en croix 10 6 Quotient de deux frctions. Inverse

Plus en détail

Exercice 1 : Polygones

Exercice 1 : Polygones Exercice 1 : Polygones Pour toutes les figures de cette ctivité : - ABCD est un rectngle. - AB = 10 cm et AD = 5 cm. - le point M est un point mobile sur le segment [AB]. - on nomme l distnce BM mesurée

Plus en détail

Leçon n 2 les fonctions affines

Leçon n 2 les fonctions affines Leçon n les fonctions ffines Définition On ppelle fonction ffine, toute fonction numérique de l forme : f : A B A et B sous ensemles de R x y = f(x) = x + ( et étnt des réels) L représenttion grphique

Plus en détail

8. Primitives d'une fonction et intégrales

8. Primitives d'une fonction et intégrales 8. Primitives d'une fonction et intégrles I- Usge du tleu des dérivées Compléter les tleu et en précisnt le numéro des lignes utilisées. Tleu N f () f ' () -... Fonction f f () + érivée f ' f ' ()......

Plus en détail

Chapitre I : Fonctions, expressions algébriques et problèmes

Chapitre I : Fonctions, expressions algébriques et problèmes Chpitre I : Fonctions, expressions lgériques et prolèmes I Les ensemles de nomres : Déinition 1 : 0 ;1; 2;3;4 ;...;15;16;... est l ensemle des nomres entiers nturels.... ; -16; -15;...; -4; -3; -2; -1;

Plus en détail

Analyse numérique : Intégration numérique

Analyse numérique : Intégration numérique Anlyse numérique : Intégrtion numérique Pgor 1A Chpitre 4 8 février 11 mrs 2013 Anlyse numérique (Pgor 1A) Intégrtion numérique 8/02-11/03/2013 1 / 67 Pln 1 Introduction 2 Intégrtion pr méthode de Monte-Crlo

Plus en détail

ÉTUDES DE FONCTIONS NUMÉRIQUES Site MathsTICE de Adama Traoré Lycée Technique Bamako

ÉTUDES DE FONCTIONS NUMÉRIQUES Site MathsTICE de Adama Traoré Lycée Technique Bamako ÉUDES DE FONCIONS NUMÉRIQUES Site MthsICE de Adm roré Lycée echnique Bmko I Pln d étude d une fonction numérique : Pour étudier une fonction numérique nous dopterons le pln suivnt : Déterminer l ensemble

Plus en détail

Chapitre 2 Limites et asymptotes

Chapitre 2 Limites et asymptotes Chpitre 2 Limites et symptotes A) Introduction ) Le grenier Je veux monter un toit à une pente en lissnt l plce pour une pièce (grenier) de 3 mètres de long et 2 mètres de hut. OA = 3, OC = 2, OE = x.

Plus en détail

Fonctions de référence

Fonctions de référence Chpitre 7 Clsse de Seconde Fonctions de référence Ce que dit le progrmme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Fonctions de référence Fonctions linéires et fonctions ffines Vritions de l fonction

Plus en détail

LOIS À DENSITÉ. a) Un site de vente en ligne de vêtements établit le bilan des ventes par taille. L histogramme ci-contre résume ce bilan.

LOIS À DENSITÉ. a) Un site de vente en ligne de vêtements établit le bilan des ventes par taille. L histogramme ci-contre résume ce bilan. 1 LOIS À DENSITÉ I. Loi de probbilité à densité Exemples : 1) Vrible létoire continue ) Un site de vente en ligne de vêtements étblit le biln des ventes pr tille. L histogrmme ci-contre résume ce biln.

Plus en détail

Résumés de cours : Terminale S.

Résumés de cours : Terminale S. Résumés de cours : Terminle S. Mths-Terminle S. Mr Mmouni : myismil@ltern.org source disponible sur: c http://www.chez.com/myismil Smedi 08 Avril 2006. Tble des mtières Nombres complexes. 3. Prtie réelle

Plus en détail

LIMITES ET CONTINUITÉ

LIMITES ET CONTINUITÉ LIMITES ET CONTINUITÉ Cours Terminle S Limite d une onction à l inini ) Limite inie en l inini Déinition : Soit une onction déinie sur un intervlle de l orme ] A ; + [ On dit que l onction dmet pour limite

Plus en détail

La clarté des raisonnements et la qualité de la rédaction interviendront dans l appréciation des copies.

La clarté des raisonnements et la qualité de la rédaction interviendront dans l appréciation des copies. ACADEMIE DE GRENOBLE Bcclurét Professionnel Systèmes Électroniques Numériques (S.E.N.) Durée : h C.C.F. de Mthémtiques Coefficient : Dte : novemre 007 Thèmes : Régultion du contrste lumineu d un téléviseur

Plus en détail

I. Fonctions

I. Fonctions FORMULAIRE MATHÉMATIQUES - RENTRÉE 205 - PRÉPA ECS PREMIÈRE ANNÉE Tble des mtières I. Fonctions - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 4. Générlités sur les fonctions...................

Plus en détail

Chapitre 10 Intégrales. Table des matières. Chapitre 10 Intégrales TABLE DES MATIÈRES page -1

Chapitre 10 Intégrales. Table des matières. Chapitre 10 Intégrales TABLE DES MATIÈRES page -1 Chpitre Intégrles TABLE DES MATIÈRES pge - Chpitre Intégrles Tble des mtières I Exercices I-................................................ I-................................................ I-................................................

Plus en détail

Mémo de cours n 4. Intégrales

Mémo de cours n 4. Intégrales Mémo de cours n 4 Intégrles v.0 4. Primitive 4.. Définition Si l fonction f (x) est l dérivée de l fonction F(x), c est à dire que f (x) = df(x) dx, lors nous ppelons l fonction F une primitive de f. On

Plus en détail

! Remarque : La racine carrée d un nombre négatif n existe pas.

! Remarque : La racine carrée d un nombre négatif n existe pas. 3 ème Chpitre A 3 RACINE CARREE D UN NOMBRE POSITIF 1 I) Définition et conditions d existence de l rcine crrée d un nombre. 1) Définition. Il existe deux nombres tel que si on les multiplie pr eux même

Plus en détail

a x b a < x < b a x < b ] a ; b [ ] a ; b] a < x b ex : ] 1 ; 3 ] L intervalle [a ; b] est fermé [a ; b] [ [ [a ; b [ INTERVALLES.

a x b a < x < b a x < b ] a ; b [ ] a ; b] a < x b ex : ] 1 ; 3 ] L intervalle [a ; b] est fermé [a ; b] [ [ [a ; b [ INTERVALLES. INTERVALLES. INEQUATIONS I ) INTERVALLES DE R ) Intervlles ornés, fermés ou ouverts. On trouve 4 types d intervlles ornés. et sont deux réels tels que < Définition [ ; ] ex : [1 ; 3] x ] ; [ < x < Représenttion

Plus en détail

Cours de quatrième. Quatrième

Cours de quatrième. Quatrième Qutrième 1. Opértions sur les nombres reltifs. 2. Ecritures frctionnires. 3. Les puissnces d'exposnt entier reltif. 4. Géométrie: bses. 5. L droite des milieux. 6. L propriété de Thlès. 7. Des expressions

Plus en détail

COURS TERMINALE S LE CALCUL INTEGRAL

COURS TERMINALE S LE CALCUL INTEGRAL COURS TERMINALE S LE CALCUL INTEGRAL A. Notion d'intégrle. Aire sous l coure On définit le domine pln, qu'on ppeller ire sous l coure C représenttive d'une fonction positive f sur un intervlle [; ], l

Plus en détail

TS 2, Correction Bac Blanc n o 2

TS 2, Correction Bac Blanc n o 2 TS, Correction Bc Blnc n o Exercice Nouvelle-Clédonie, mrs extrit) points Restitution Orgnisée de Connissnces On utiliser le résultt suivnt : les solutions de l éqution différentielle E ) y = y où R sont

Plus en détail

LES PUISSANCES: vers les exposants négatifs

LES PUISSANCES: vers les exposants négatifs LES PUISSANCES: vers les exposnts négtifs Puissnces de Puissnces de n définition résultt n définition résultt 6 6 6 - - - - - - - - - - -6-6 Complète l prtie supérieure du tbleu ; elle correspond ux puissnces

Plus en détail

Terminale ES Lycée Georges Imbert 2015/2016. Notes de cours de Mathématiques en terminale ES O. Lader

Terminale ES Lycée Georges Imbert 2015/2016. Notes de cours de Mathématiques en terminale ES O. Lader Notes de cours de Mthémtiques en terminle ES O. Lder 1 Tble des mtières 1 Suites numériques (1S) 4 1.1 Rppels.................................................. 4 1.2 Suite rithmétique............................................

Plus en détail

Calculs de base (Rappels)

Calculs de base (Rappels) Chpitre I Clculs de bse (Rppels) I.1 Diviseurs et multiples I.1.1 Définitions On : 12=3 4. On dit que 3 et 4 sont des diviseurs de 12, ou que 12 est un multiple de 3 et de 4. DÉFINITION I.1.1 Soit et b

Plus en détail

Chapitre VII : Les polynômes

Chapitre VII : Les polynômes Chpitre VII : Les polnômes Au terme de ce chpitre, tu sers cple de : Svoir Définir monôme, polnôme et degré d un polnôme Définir inôme et trinôme Enoncer les crctéristiques d un polnôme complet, d un polnôme

Plus en détail

La proposition «Si n Æalors n et n» est vraie. Par contre, la réciproque «Si n et n alors n Æ» est fausse. (Il suffit de choisir n= 1)

La proposition «Si n Æalors n et n» est vraie. Par contre, la réciproque «Si n et n alors n Æ» est fausse. (Il suffit de choisir n= 1) 0 septemre 016 ENSEMBLES DE NOMBRES nde 3 I ENSEMBLES DE NOMBRES 1 NOMBRES ENTIERS NATURELS Æ DÉFINITION L ensemle des entiers nturels, noté Æ = {0;1;;3;;...}. C est l ensemle des nomres positifs qui permettent

Plus en détail

Cours de Terminale S Analyse. Éric ROUGIER

Cours de Terminale S Analyse. Éric ROUGIER Cours de Terminle S Anlyse Éric ROUGIER 13 vril 2015 2 Tble des mtières 1 Suites et récurrence 5 I - Le risonnement pr récurrence...................................... 6 1. Principe de récurrence.......................................

Plus en détail

Corrigé du TD 3 : Limites

Corrigé du TD 3 : Limites Corrigé du TD 3 : Limites Eercice : Fonction réciproque. Cs f() = + L fonction f est définie sur R et à vleurs dns I = [,+ [. Elle est pire donc en prticulier pour tout réel, on f( ) = f() et en prticulier

Plus en détail

X. Equations paramétriques d'une courbe. Coordonnées polaires.

X. Equations paramétriques d'une courbe. Coordonnées polaires. . Equtions prmétriques X. Equtions prmétriques d'une courbe. Coordonnées polires. f ( ) Soient deu équtions où intervlle [, b] g( ) A chque vleur de correspondent une vleur de et une vleur de. Si l'on

Plus en détail

Chapitre 5. Intégration. 5.1 Intégration des fonctions en escaliers

Chapitre 5. Intégration. 5.1 Intégration des fonctions en escaliers Chpitre 5 Intégrtion Nous llons construire l intégrle pr un procédé de pssge à l limite. D bord on définit l intégrle des fonctions en escliers, ensuite on psse à l limite pour intégrer des fonctions plus

Plus en détail

Sujet de Bac 2011 Maths S Obligatoire & Spécialité Polynésie

Sujet de Bac 2011 Maths S Obligatoire & Spécialité Polynésie Sujet de Bc 20 Mths S Oligtoire & Spécilité Polynésie Exercice : 5 points Commun à tous les cndidts. Pour chcune des propositions suivntes, indiquer si elle est vrie ou fusse et donner une démonstrtion

Plus en détail

Exercice 2 Soit N un nombre entier qui s écrit avec 4 chiffres en base 4, et avec 6 chiffres en base 3? Trouver toutes les valeurs possibles de N.

Exercice 2 Soit N un nombre entier qui s écrit avec 4 chiffres en base 4, et avec 6 chiffres en base 3? Trouver toutes les valeurs possibles de N. Groupe seconde chnce Feuille d exercice n 7 Exercice 1 On considère Un segment [AC] de longueur 16 cm, et le point B situé sur [AC] à 6 cm de C. P est un point du cercle de dimètre [AB] tel que AP = 8

Plus en détail

Intégration. Intégrale d une fonction. II - Interprétation graphique : calcul d aire. 1) Aire d une fonction positive. T ale STI

Intégration. Intégrale d une fonction. II - Interprétation graphique : calcul d aire. 1) Aire d une fonction positive. T ale STI Intégrtion T le STI I - Intégrle d une fonction Définition Soit F une primitive de l fonction f sur [; ], lors, on note Exemple : Clcul de Clcul de 4 (3x ) dx = = [F(x)] = F() F() xdx : Une primitive de

Plus en détail

LES CONIQUES. Qu est-ce qu une conique?

LES CONIQUES. Qu est-ce qu une conique? LES CONIQUES Qu est-ce qu une conique? Une conique est une courbe plne que l on peut trcer sur un cône de révolution à deux nppes. Suivnt l position qu il occupe pr rpport à un cône, un pln qui coupe ce

Plus en détail

Contrôle Continu 3 Novembre 2015

Contrôle Continu 3 Novembre 2015 L2 MIASHS 20 2016 Introduction à l Modélistion Sttistique Contrôle Continu 3 Novembre 20 Durée : 1h30 Documents interdits clcultrices UPPA utorisées Chque réponse devr être justifiée et rédigée de mnière

Plus en détail

Les équations dans l ensemble des nombres complexes Le degré 1 et le degré 2

Les équations dans l ensemble des nombres complexes Le degré 1 et le degré 2 Les équtions dns l ensemle des nomres complexes Le degré et le degré Eqution du premier degré 3 Eqution du second degré : Résolution de l éqution A 4 Exemples de résolutions d équtions simples (rédction

Plus en détail

Chapitre 11 : Calcul intégral

Chapitre 11 : Calcul intégral Cpitre 11 : Clcul intégrl I Intégrle d une fonction positive I.1 Définition Définition ( 1. Dns un repère ortogonl O; i ; ) j, on ppelle unité d ire l ire du rectngle de côtés [OI] et [OJ]. 2. Soient f

Plus en détail

ROC: Restitution Organisée des Connaissances

ROC: Restitution Organisée des Connaissances ROC: Restitution Orgnisée des Connissnces Terminle S Septembre 2005 Tble des mtières 1 Anlyse 2 1.1 Limites et ordre........................... 2 1.2 Bijection............................... 3 1.3 Fonction

Plus en détail

L induction électromagnétique

L induction électromagnétique 1- Étude expérimentle - Mnipultions : Mnipultion 1 : L imnt est immobile à proximité de l bobine, le micrompèremètre indique un cournt nul Mnipultion 2 : En rpprochnt l imnt de l bobine, le micrompèremètre

Plus en détail

Chapitre 12 : Lois de probabilité continues

Chapitre 12 : Lois de probabilité continues Chpitre 12 : Lois de probbilité continues I. Lois de probbilité à densité Dns les situtions précédentes, on rencontré des vribles létoires dites discrètes : elles ne prennent qu un nombre fini de vleurs.

Plus en détail

Tout ce qu il faut savoir en math

Tout ce qu il faut savoir en math Tout ce qu il fut svoir en mth 1 Pourcentge Prendre un pourcentge t % d un quntité : t Clculer le pourcentge d une quntité pr rpport à une quntité b : Le coefficient multiplicteur CM pour une ugmenttion

Plus en détail

Diffraction de la lumière

Diffraction de la lumière Terminle S iffrction de l lumière Objectifs : - Observer des phénomènes de diffrction. - Rechercher les fcteurs ynt une influence sur l figure de diffrction : * en déduire l lrgeur d une fente fine à l

Plus en détail

Clamaths.fr - Les Roc en Terminale S

Clamaths.fr - Les Roc en Terminale S Clmths.fr - Les Roc en Terminle S CONTENTS ROC - exigibles... 2 Roc 1 Théorème de comprison pour les suites... 2 Roc 2 Limite de qn lorsque q > 1... 2 Roc 3 Unicité de l fonction exponentielle... 3 Roc

Plus en détail

Le Centre d éducation en mathématiques et en informatique. Ateliers en ligne Euclide Atelier n o 5. Suites et séries. c 2014 UNIVERSITY OF WATERLOO

Le Centre d éducation en mathématiques et en informatique. Ateliers en ligne Euclide Atelier n o 5. Suites et séries. c 2014 UNIVERSITY OF WATERLOO Le Centre d éduction en mthémtiques et en informtique Ateliers en ligne Euclide Atelier n o 5 Suites et séries c 014 UNIVERSITY OF WATERLOO L pluprt des problèmes de cette trousse font ppel à des formules

Plus en détail

Exercices sur le calcul algébrique. Petits problèmes

Exercices sur le calcul algébrique. Petits problèmes Exercices sur le clcul lgébrique Les exercices ou questions précédés d un stérisque pourront être trités vec profit à l ide d un logiciel de clcul formel, tel que Xcs, qui ser vu en Trvux Prtiques, ou

Plus en détail

DÉNOMBREMENT LOIS DE PROBABILITÉ

DÉNOMBREMENT LOIS DE PROBABILITÉ DÉNOMBREMENT LOIS DE PROBABILITÉ A Dénombrement I Utilistion de digrmmes, de tbleux, d rbres Exemples : 1. Un centre de loisirs ccueille 100 enfnts. Deux sports sont proposés : le footbll et le tennis.

Plus en détail

ANALYSE : Fonctions exponentielles et logarithmes. Les exponentielles et logarithmes dans différents domaines

ANALYSE : Fonctions exponentielles et logarithmes. Les exponentielles et logarithmes dans différents domaines ANALYS : Fonctions exponentielles et logrithmes ppl-log-exp Les exponentielles et logrithmes dns différents domines 1) ntérêts composés ) Si 3. euros de frncs sont plcés ctuellement à intérêts composés,

Plus en détail

Généralités sur Les Fonctions Numériques 1 fonction numérique d'une variable réelle

Généralités sur Les Fonctions Numériques 1 fonction numérique d'une variable réelle Générlités sur Les Fontions Numériques ontion numérique d'une vrible réelle. Déinitions et nottions.. Déinition Soit E et F deux ensembles. ) On ppelle ontion de E dns F une reltion qui à x de E ssoie

Plus en détail

DM1. Nombres complexes, homographies. u w = u w.

DM1. Nombres complexes, homographies. u w = u w. Université Pul Sbtier, Année 205-206 Licence LPS DM Nombres complexes, homogrphies. Dns ce problème, on considère le pln ffine euclidien P muni d un repère orthonormé (0, i, j). On identifier P vec l ensemble

Plus en détail

Table des matières 3. GÉNÉRALITÉS SUR LES FONCTIONS...63 A) ENSEMBLE DE DÉFINITION D'UNE FONCTION...63

Table des matières 3. GÉNÉRALITÉS SUR LES FONCTIONS...63 A) ENSEMBLE DE DÉFINITION D'UNE FONCTION...63 Tble des mtières 1. ALGORITHMES...15 A) LES PRINCIPAUX ALGORITHMES À SAVOIR CONSTRUIRE ET MANIPULER...15 1. Comment écrire un lgorithme qui clcule un terme u n d'une suite numérique définie pr récurrence?...15

Plus en détail

LIMITES DE FONCTIONS

LIMITES DE FONCTIONS LIMITES DE FONCTIONS I Limites à 'infini Définition Soit f une fonction dont 'ensembe de définition contient un interve ] + [ et soit un nombre rée. Si tout interve ] - r + r[ (vec r > ) contient toutes

Plus en détail

Kit de survie - Bac S

Kit de survie - Bac S - Opértions sur les inéglités Kit de survie - Bc S Inéglités - Etude de signe Règles usuelles : Pour tout : x < y x + < y + même sens Pour tout k > : x < y kx < ky même sens Pour tout k < : x < y kx >

Plus en détail

Chapitre 6 - Fonctions numériques - Généralités

Chapitre 6 - Fonctions numériques - Généralités PS hpitre 6 - Fonctions numériques - Générlités Fonctions d une vrile réelle à vleurs réelles. Définitions Une fonction à vleurs réelles est une ppliction de ou une prtie A de dns. On note f : A ; f ().

Plus en détail

Chapitre 0 : Mise au point sur les nombres et le calcul

Chapitre 0 : Mise au point sur les nombres et le calcul Lycée Jules Fil, Crcssonne Clsse de 2 nde Chpitre 0 : Mise u point sur les nombres et le clcul D. Zncnro C. Aupérin 2009-2010 Téléchrger c est tuer l industrie, tuons les tous Thurston Moore Dernière modifiction

Plus en détail

Chapitre 6 - Intégration

Chapitre 6 - Intégration TES Chpitre 6 - Intégrtion 1-13 Chpitre 6 - Intégrtion I Intégrle d une fonction positive TD1 : Des clculs d ire Définition 1 Dns un repère orthogonl (O, I, J), on ppelle unité d ire l ire du rectngle

Plus en détail

Mathématiques. Analyse de Fourier D après des notes rédigées par B. Helffer et T. Ramond

Mathématiques. Analyse de Fourier D après des notes rédigées par B. Helffer et T. Ramond Mthémtiques Anlyse de Fourier D près des notes rédigées pr B. Helffer et T. Rmond Année 2007 2 Tble des mtières I Suites, Intégrles et Séries 1 1 Suites de nombres réels ou complexes 1 1.1 Générlités.........................................

Plus en détail

Lycée Stendhl (Grenole) Niveu : Titre Cours : Terminle S Année : Chpitre 09 : Les Intégrles 204-205 826-866 874-94 Cittion du moment : «Le seul enseignement qu un professeur peut donner, à mon vis, est

Plus en détail

Etablissement de diagrammes d Ostwald pour l étude des combustions

Etablissement de diagrammes d Ostwald pour l étude des combustions Etblissement de digrmmes d Ostwld pour l étude des combustions A Combustion «neutre» Pour obtenir l combustion totle et complète d un combustible, il ut,théoriquement, que le dioxgène soit en quntité «stœchiométrique»

Plus en détail

La lumière : une onde

La lumière : une onde P g e TS Physique Exercice résolu Enoncé Remrque : les 3 prties sont indépendntes. e texte ci-dessous retrce succinctement l évolution de quelques idées à propos de l nture de l lumière : Pr nlogie à l

Plus en détail

LEÇON N 67 : Formules de Taylor. Applications.

LEÇON N 67 : Formules de Taylor. Applications. LEÇON N 67 : Formules de Tylor. Applictions. Pré-requis : Théorème de Rolle, théorème des Accroissements Finis ; Intégrtion pr prties ; Nottions de Lndu. 67. Résultts globux 67.. Formule de Tylor-Lgrnge

Plus en détail

Calcul intégral. I Intégrale d une fonction 2

Calcul intégral. I Intégrale d une fonction 2 T le STIGE Clcul intégrl 8-9 Clcul intégrl Tble des mtières I Intégrle d une fonction II Interpréttion grphique : clcul d ire II. Aire d un fonction positive...................................... II. Aire

Plus en détail

Intégration numérique

Intégration numérique Chpitre 5 Intégrtion numérique 5.1 Introduction Dns ce chpitre, on s interesse u clcul numérique d intégrles. Plus précisément, on considère une fonction f continue et une fonction w continue et positive

Plus en détail

Exercices - Capes première épreuve : corrigé

Exercices - Capes première épreuve : corrigé Avertissement : Ceci n est ps une correction in extenso du problème de cpes Il s git plutôt d une lecture personnelle des questions, vec des indictions, des idées de preuve, des mises en grde d erreurs

Plus en détail

Polycopié pour le cours de MATH121b Analyse élémentaire. Chapitre 1 Étude pratique des fonctions d une variable réelle.

Polycopié pour le cours de MATH121b Analyse élémentaire. Chapitre 1 Étude pratique des fonctions d une variable réelle. Université de Svoie 0-03 L MASS-SFT-SV Polycopié pour le cours de MATHb Anlyse élémentire. Chpitre Étude prtique des fonctions d une vrible réelle. I Générlités Un peu de vocbulire On doit toujours présenter

Plus en détail

Outils Mathématiques 4

Outils Mathématiques 4 Université de Rennes1 Année 5/6 1 Courbes prmétrées Outils Mthémtiques 4 Intégrtion résumé éfinition 1.1 Une courbe plne est un ensemble de couples (f(t), g(t)) où f et g sont des fonctions continues sur

Plus en détail

CHAPITRE 4 DÉTERMINANTS ET INVERSION DE MATRICES

CHAPITRE 4 DÉTERMINANTS ET INVERSION DE MATRICES HAPITRE DÉTERMINANTS ET INVERSION DE MATRIES Introduction Dns l lgèbre mtricielle, les déterminnts occupent une plce d importnce tnt en théorie qu en prtique est que l vleur numérique du déterminnt d une

Plus en détail

Variables aléatoires à densité

Variables aléatoires à densité Vribles létoires à densité Rppels : Une vrible létoire réelle (VAR) est une ppliction X : Ω R où (Ω,A,P) est un espce probbilisé. Lorsque X(Ω) est un ensemble discret on dit que X est une VAR discrète.

Plus en détail

; b Δ. 1 er cas Si <O : aucun réel n'est solution S = Ø. 2. SIGNE DU TRINOME : Posons P(x) = ax 2 + bx + c a 0

; b Δ. 1 er cas Si <O : aucun réel n'est solution S = Ø. 2. SIGNE DU TRINOME : Posons P(x) = ax 2 + bx + c a 0 Fonctions éqution et inéqution du second degré. EQUATIONS DE LA FORME x 2 + x + c =0, et c sont des réels tels que 0 L expression x 2 + x + c est ppelé trinôme Les tleux ci-dessous résument l résolution

Plus en détail

11 Fonctions numériques - continuité

11 Fonctions numériques - continuité 11 Fonctions numériques - continuité 11.1 Ensemble des fonctions à vleurs réelles 11.1.1 Fonctions numériques Soit E un ensemble non vide. On note E l ensemble des pplictions de E dns. On définit les opértions

Plus en détail

Primitives et intégrales

Primitives et intégrales Primitives et intégrles 19 mrs 14 Introduction Chercher une primitive et clculer une intégrle n est ps tout à fit l même chose. Une primitive d une fonction f, c est une fonction F qui, lorsqu on l dérive,

Plus en détail

Les Mathématiques : du collège au lycée. Rentrée 2014 Au. LYCEE Pierre Corneille

Les Mathématiques : du collège au lycée. Rentrée 2014 Au. LYCEE Pierre Corneille Les Mthémtiques : du collège u lycée Rentrée 2014 Au LYCEE Pierre Corneille 1 Clculer Développer Fctoriser Résoudre pour réussir u lycée. Nom de l élève :. 2 LIVRET DE REVISION 3 e / 2 nde - INTRODUCTION

Plus en détail

Intégrales et primitives

Intégrales et primitives Chpitre 3 Intégrles et primitives 3.1 Définitions Soit f(x une fonction continue définie sur l intervlle [, ]. L intégrle de f sur l intervlle [, ] est un nomre réel noté qui est défini de l fçon suivnte

Plus en détail

Chapitre 2. Les nombres complexes. 2.1 Définition et propriétés de C

Chapitre 2. Les nombres complexes. 2.1 Définition et propriétés de C Chpitre 2 Les nombres complexes Certines équtions polynomiles à coefficients réels n ont ps de solution dns R ; c est le cs de l éqution du second degré x 2 +1 = 0 puisque tout crré de réel est positif.

Plus en détail

Anses de panier. Ludovic Goudenège Agrégation 2010

Anses de panier. Ludovic Goudenège Agrégation 2010 Anses de pnier Ludovic Goudenège Agrégtion 1 Nous étudions dns c rticle un prolème d pproximtion géométrique : l pproximtion d un qurt d ellipse pr l réunion de deux rcs de cercle ppelée «nse de pnier»

Plus en détail

5. Intégration complexe

5. Intégration complexe 49 5. Intégrtion complexe 1. Intégrles définies d une fonction complexe d une vrible réelle Les intégrles sont extrêmement importntes dns l étude des fonctions d une vrible complexe. Nous étblirons l équivlence

Plus en détail

CONTENUS MODALITÉS DE MISE EN ŒUVRE COMMENTAIRES

CONTENUS MODALITÉS DE MISE EN ŒUVRE COMMENTAIRES MATHÉMATIQUES 65 culier que certins phénomènes peuvent être étudiés soit en temps discret - à l ide d une suite -, soit en temps continu - à l ide d une fonction (évolution d un cpitl pr exemple). Une

Plus en détail

Calcul Intégral - Equations Différentielles M211-1

Calcul Intégral - Equations Différentielles M211-1 /46 Clcul Intégrl - Equtions Différentielles M11-1 Michel Fournié michel.fournie@iut-tlse3.fr http://www.mth.univ-toulouse.fr/ fournie/ /46 Introduction Tble des mtières 1 Introduction Préliminires, Rppels

Plus en détail

Chapitre IV Equation d Euler-Lagrange

Chapitre IV Equation d Euler-Lagrange 26 hpitre IV Eqution d Euler-Lgrnge On s intéresse dns cette prtie ux problèmes de l forme suivnte : Sur l ensemble des fonctions y 1 ([,b]) (muni de l norme 1 ) telles que y() = A et y(b) = B, trouver

Plus en détail