Evaluation n 1 : Les polygones. Evaluation n 1 : Les polygones. ! J ai quatre égaux, mes côtés sont parallèles, je n ai pas d angle droit, je suis un.

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Evaluation n 1 : Les polygones. Evaluation n 1 : Les polygones. ! J ai quatre égaux, mes côtés sont parallèles, je n ai pas d angle droit, je suis un."

Transcription

1 Date : Evaluation n 1 : Les polygones Consigne 1 : Complète (orthographe importante). Comment appelle-t-on : L ensemble des polygones à 3 côtés? Les... Prénom et Nom : Date : Evaluation n 1 : Les polygones Consigne 1 : Complète (orthographe importante). Comment appelle-t-on : L ensemble des polygones à 3 côtés? Les... L ensemble des polygones à 4 côtés? Les... L ensemble des polygones à 4 côtés? Les... Un polygone à 5 côtés? Un Un polygone à 5 côtés? Un Un polygone à 6 côtés? Un Un polygone à 6 côtés? Un Consigne 2 : Complète Consigne 2 : Complète! J ai quatre égaux, mes côtés sont parallèles, je n ai pas d angle droit, je suis un.! J ai quatre côtés égaux, mes côtés sont parallèles, j ai quatre angles droits je suis un.! J ai quatre égaux, mes côtés sont parallèles, je n ai pas d angle droit, je suis un.! J ai quatre côtés égaux, mes côtés sont parallèles, j ai quatre angles droits je suis un. Consigne 3 : Trace Consigne 3 : Trace Un polygone concave Un polygone convexe Un polygone concave Un polygone convexe

2 Date : Evaluation n 1 : Les polygones Consigne 1 : Comment appelle-t-on l ensemble des polygones à 4 côtés? Les Consigne 2 : Observe attentivement la figure qui suit. A E B F D C 1- Donne le nom des polygones A, B, C, D, E et F Polygone A Polygone B Polygone C Polygone D un un un un Polygone E Polygone F un un 2- Tu choisis, dans la liste de renseignements, ceux qui justifient ta réponse côtés égaux 2. 4 angles droits 3. pas d'angle droit 4. côtés égaux et parallèles 2 à 2. Pour le Polygone A : Polygone B :.... Polygone C : Tu donnes la mesure en centimètres: - d'un des côtés du carré que tu as trouvé. Côté =...cm - de la Longueur du rectangle trouvé. Longueur =...cm - de la largeur de ce même rectangle. Largeur =...cm

3 4 - Reproduis le polygone A et uniquement ce polygone, à l identique. Consigne 3 : Ecris le nom de chaque triangle! # " Consigne 4 : Complète Je suis un triangle rectangle isocèle : j ai Je n ai aucun côté égaux, mes angles sont tous différents, je suis : Consigne 5 : Dans le cadre en dessous, construit un triangle isocèle ABC (prends les mesures de ton choix)

4 Nom et prénom : EVALUATION DE GÉOMÉTRIE Date :.. /20 1 ) Mes 4 cotés sont égaux, j ai 4 angles droits Qui suis-je? /1 2 ) J ai mes cotés parallèles 2 à 2, mes diagonales sont perpendiculaires, mais je n ai pas d angles droits Qui suis-je? /1 3 ) Je n ai aucun angle droit et seuls 2 de mes cotés sont parallèles entre eux Qui suisje? /2 4 ) Combien y a-t-il de sortes de trapèze? (Nomme-les) /4 5 ) Qu est-ce qu un quadrilatère? /2 5 ) Sur une feuille de classeur, construis : /10 Les 3 sortes de trapèze, un parallélogramme, un losange, un rectangle et un carré de la taille de ton choix. (Crayon à papier et règle OBLIGATOIRES) propreté et précision : /3 figures exactes : /7 BONUS : Je n ai ni cotés, ni sommets, ni angles, mais je suis une figure de géométrie Qui suis-je?

5 Date : Evaluation n 3 : Les polygones à 4 côtés Consigne 1 : Comment appelle-t-on l ensemble des polygones à 4 côtés? Les Consigne 2 : Tu observes attentivement la figure qui suit. A B E F D C 1- Tu dois entourer, dans la liste proposée, le nom des polygones A, B, C, D. Polygone A Polygone B Polygone C Polygone D un carré un rectangle un losange un trapèze un parallélogramme un carré un rectangle un losange un trapèze un parallélogramme un carré un rectangle un losange un trapèze un parallélogramme un carré un rectangle un losange un trapèze un parallélogramme 2- Tu choisis, dans la liste de renseignements, ceux qui justifient ta réponse. - 4 côtés égaux - 4 angles droits - pas d'angle droit - côtés égaux et parallèles 2 à 2. Pour le Polygone A : Polygone B :... Polygone C :

6 3 - Tu donnes la mesure en centimètres: - d'un des côtés du carré que tu as trouvé. Côté =...cm - de la Longueur du rectangle trouvé. Longueur =...cm - de la largeur de ce même rectangle. Largeur =...cm Consigne 3 : Tu reproduis la figure présentée à la consigne n 2 sans le polygone A, mais en respectant la place et les mesures des autres polygones.

7 Date : Prénom et Nom : Evaluation : Les polygones à 3 côtés Date : Prénom et Nom : Evaluation : Les polygones à 3 côtés Consigne 1 : Ecris le nom pour chaque triangle! " # Consigne 2 : Complète Je suis un triangle rectangle isocèle : j ai Je n ai aucun côté égaux, mes angles sont tous différents, je suis Consigne 3 : Dans le cadre en dessous, construit un triangle isocèle ABC (prends les mesures de ton choix) Consigne 1 : Ecris le nom pour chaque triangle! " # Consigne 2 : Complète Je suis un triangle rectangle isocèle : j ai Je n ai aucun côté égaux, mes angles sont tous différents, je suis Consigne 3 : Dans le cadre en dessous, construit un triangle équilatéral ABC de 3 cm de côté.

8 Evaluation n 2 : Les polygones à 3 côtéserreur! Date : Consigne 2 : Dans le cadre en dessous, construit un triangle équilatéral ABC de 4 cm de côté. Consigne 1 : Ecris le nom pour chaque triangle en dessous.! " # $ %

9 Evaluation : Les polygones à 3 côtés Date : Consigne 3 : Dans le cadre en dessous, construit un triangle équilatéral ABC de 4 cm de côté. Consigne 1 : Ecris le nom pour chaque triangle en dessous.! " # Consigne 2 : Complète J ai 2 côtés égaux, mes angles à la base sont égaux, je suis Je suis un triangle rectangle isocèle : j ai

10 Nom : Prénom : CM ÉVALUATION DE GÉOMÉTRIE 1 ) Qu est-ce qu un polygone? /3 2 ) Qu est-ce qu un triangle? /2 3 ) Nomme cette figure et explique pourquoi tu as choisi ce nom. /5 A B C Nom de la figure : 4 ) Dessine un triangle rectangle dont les côtés autour de l angle droit font 1 cm et 3 cm : /6 (crayon gris et équerre OBLIGATOIRE) 5 ) Remplis le tableau suivant : /4 NOMS CARACTÉRISTIQUES SOMMETS NOMBRE DE CÔTÉS MESURE DES CÔTÉS LA MESURE DES ANGLES LE TRIANGLE ÉQUILATÉRAL

11 ! Évaluation n 1 : Les polygones PARTIE 1 : Les polygones Consigne 1 : Complète (orthographe importante). Un polygone est. Comment appelle-t-on l ensemble des polygones à 4 côtés? Les Comment appelle-t-on un polygone à 5 côtés? Un Comment appelle-t-on un polygone à 6 côtés? Un!! PARTIE 2 : Les polygones à 3 côtés Consigne 1 : Complète (orthographe importante). Consigne 2 : Complète J ai 2 côtés égaux, mes angles à la base sont égaux, je suis un Je suis un triangle rectangle isocèle : j ai.... Consigne 3 : Dans le cadre en dessous, construit un triangle équilatéral ABC de 4 cm de côté. Consigne 1 : Écris le nom en dessous de chaque triangle.!

12 Nom : Prénom : CM2 ÉVALUATION DE GÉOMÉTRIE 1 ) Explique ce qu est un axe de symétrie : /3 2 ) Trace UN axe de symétrie pour chacune de ces trois figures et nomme chacune des figures : / ) Dessine TOUS les axes de symétrie pour ces deux figures : /5 4 ) Remplis le tableau suivant /6 NOMS DES POLYGONES Le rectangle Le parallélogramme Le trapèze Le triangle rectangle L heptagone Le dodécagone NOMBRE D AXES DE SYMÉTRIE

13 Date : Evaluation n 4 : La symétrie par rapport à un axe CONNAISSANCES DE LA LECON : Complète.! Un axe, c est! Un symétrique, c est! Le symétrique d un point est! Le symétrique d un segment est! La symétrie conserve :! La symétrie ne conserve pas : RECHERCHE : Trace avec précision et en couleur (PAS DE ROUGE) tous les axes de symétrie de ces 3 figures.

14 Date : Evaluation n 4 : Périmètres et angles Consigne 1 : Calcule le périmètre de ces 4 figures (Pose tes calculs en ligne) A B C P A = P B = P C = P D = Résultats : P A = P B = P C = P D = Consigne 2 : Tu observes attentivement la figure qui suit, trouve son périmètre. Expose tes calculs à gauche. Tes calculs : La figure : Consigne 3 : Mesure ces 2 angles et écris leur mesure  = B =.. Consigne 4 : Au dos, construis 2 angles de 90 et 190.

15 Nom :.. Prénom :.. ÉVALUATION DE GÉOMÉTRIE CM RAPPEL&:&On&utilise&la&règle,&l équerre&et&le&crayon&gris&pour&tracer&des&figures.& Question 1 : Construis la figure ABCD en t aidant du plan de construction, puis écris le nom de la figure en-dessous. PLAN DE CONSTRUCTION :! On trace un segment [AB] de 4 cm. " Perpendiculairement à [AB], on trace un segment [AD] de 2 cm. # Perpendiculairement à [AD], on trace un segment [DC] de 4 cm. $ Relier les points C et B. Nom de la figure? Question 2 : Écris le nom au bout des flèches. Question 3 : Construis un carré ABCD de 3 cm de côté.

16 TRACAGE : Trace avec soin et précision le symétrique de ces 2 figures par rapport à la droite (xy) pour la première, et la droite (d) pour la deuxième.

17 PARTIE 1 : LA SYMETRIE Date : Evaluation n 5 : La symétrie et les polyèdres 1- Trace au crayon à papier, AVEC PRECISION, le ou les axes de symétrie de ces figures s il y en a. 2- Complète par symétrie par rapport à l axe «e». 3- Complète par symétrie par rapport à l axe «f».

18 PARTIE 2 : LES POLYEDRES 1- Réponds aux questions et complète : A -Complète. Le cube est formé de faces,.sommets,. arêtes. B - Entoure la lettre de la ou des figures qui ne sont pas des cubes? A B C 2- Entoure les lettres des patrons qui formeront bien un cube : 3- Ecris le nom à sa place : cube, tétraèdre (ou pyramide à base triangulaire), octaèdre. nom : nom :. nom :.! Au dos de la feuille : * Choisis l un de ces polyèdres, et trace son patron.

19 Date : Evaluation n 3 : Les polygones et les polyèdres PARTIE 1 : Les polygones Consigne 1 : Complète (orthographe importante). Comment appelle-t-on l ensemble des polygones à 3 côtés? Comment appelle-t-on l ensemble des polygones à 4 côtés? Les Les Comment appelle-t-on un polygone régulier à 5 côtés? Comment appelle-t-on un polygone régulier à 6 côtés? Un Un Consigne 2 : Complète (orthographe importante).! J ai quatre côtés et mes côtés opposés sont parallèles et égaux 2 à 2, je n ai pas d angle droit, je suis un.! J ai trois côtés, 2 de mes 3 côtés sont égaux, j ai un angle droit je suis un.! J ai quatre côtés, mes côtés opposés sont parallèles, j ai quatre cotés égaux, je n ai pas d angle droit, mais mes diagonales sont perpendiculaires, je suis un.! J ai quatre côtés, mes côtés opposés sont parallèles, j ai quatre côtés égaux et j ai quatre angles droits je suis un. Consigne 3 : Trace avec les mesures de ton choix au dos de cette feuille 1. Un carré 2. Un rectangle 3. Un trapèze 4. Un triangle isocèle 5. Un triangle équilatéral 6. Un losange

20 PARTIE 2 : Les polyèdres Consigne 1 : Qu est-ce qu un polyèdre?... Consigne 2 : Observe ci-dessous et complète le tableau (orthographe importante) Noms sommets faces arêtes Consigne 4 : Complète ce tableau. Polyèdre n Donne le nom de toutes les faces pour chaque polyèdre 1 Carré Carré Consigne 5 : Trace un cube de 5 cm d arête au dos de cette feuille.

Le vocabulaire de géométrie

Le vocabulaire de géométrie Géom1 Le vocabulaire de géométrie En géométrie, il faut être attentif lors de la lecture des consignes et très précis quand on utilise le vocabulaire : Un point A A X Un segment [AB] (d) Une droite (d)

Plus en détail

Droites parallèles et perpendiculaires Groupe 3

Droites parallèles et perpendiculaires Groupe 3 Droites parallèles et perpendiculaires Groupe 3 Objectif: reconnaître et tracer des droites parallèles et perpendiculaires. 1. Trace la droite (d4) passant par A et parallèle à (d2). Trace la droite (d5)

Plus en détail

La droite Une droite est un trait droit qui n a ni début, ni fin. On écrit une droite avec une lettre et 2 parenthèses : la droite (d) Droite d

La droite Une droite est un trait droit qui n a ni début, ni fin. On écrit une droite avec une lettre et 2 parenthèses : la droite (d) Droite d C3 Géométrie : droite, segment, milieu Leçon Géom1 CM1/2 La droite Une droite est un trait droit qui n a ni début, ni fin. On écrit une droite avec une lettre et 2 parenthèses : la droite (d) Droite d

Plus en détail

I. Polygones : II. Triangles : 1) Définition : Les segments [AC], [AB] et [BC] sont les trois côtés du triangle.

I. Polygones : II. Triangles : 1) Définition : Les segments [AC], [AB] et [BC] sont les trois côtés du triangle. 1 / 6 I. Polygones : Un polygone est une figure fermée dont les côtés sont des segments. II. Triangles : 1) Un triangle est un polygone à trois côtés. Les segments [AC], [AB] et [BC] sont les trois côtés

Plus en détail

Ex 1 : Vrai ou faux. Géom 1

Ex 1 : Vrai ou faux. Géom 1 CONNAITRE LE VOCABULAIRE ET LES INSTRUMENTS GEOMETRIQUES Géom 1 En géométrie, il faut être attentif lors de la lecture des consignes et très précis quand on utilise le vocabulaire. Ex 1 : Vrai ou faux

Plus en détail

FICHES OUTILS GEOMETRIE CM2

FICHES OUTILS GEOMETRIE CM2 FICHES OUTILS GEOMETRIE 1 Les instruments pour reproduire 2 Reproduire des figures planes 3 Les polygones 4 Les quadrilatères 5 Le carré et le rectangle 6 Les triangles 7 Construire des figures géométriques

Plus en détail

GEOMETRIE. Tableaux et quadrillages. Reproduire une figure. Droites perpendiculaires. Droites parallèles. Les quadrilatères

GEOMETRIE. Tableaux et quadrillages. Reproduire une figure. Droites perpendiculaires. Droites parallèles. Les quadrilatères GEOMETRIE GEOM. 1 Le vocabulaire GEOM. 2 Des instruments pour tracer, mesurer, vérifier GEOM. 3 Tableaux et quadrillages GEOM. 4 Reproduire une figure GEOM. 5 Les angles GEOM. 6 Droites perpendiculaires

Plus en détail

Table des matières DANS L ESPACE 24. N Leçon Niveau 1 Niveau 2 Niveau 3 Page

Table des matières DANS L ESPACE 24. N Leçon Niveau 1 Niveau 2 Niveau 3 Page Géométrie Table des matières N Leçon Niveau 1 Niveau 2 Niveau 3 Page DANS LE PLAN 3 Gé1 Les lignes X X X 4 Gé2 La droite X X X 5 Gé3 Les points alignés X X 5 Gé4 Le segment X X 6 Gé5 La demi-droite X X

Plus en détail

Vocabulaire de la géométrie

Vocabulaire de la géométrie GEOM 1 Vocabulaire de la géométrie 1 Le point Le point est un endroit précis du plan. On le représente par une croix dont il est le centre et on le nomme avec une lettre majuscule. 2 Droite Trois points

Plus en détail

Les droites perpendiculaires (3)

Les droites perpendiculaires (3) Exercices de Géométrie Les droites perpendiculaires (3 LES FORMES GEOMETRIQUES Observe le dessin.complète le tableau avec le signe qui signifie "est perpendiculaire à". (d 1 (d 2 (d 3 (d 4 (d 6 (d 5 (d

Plus en détail

«LES QUADRILATÈRES» Fiche pédagogique élaborée par Lidia SARAT

«LES QUADRILATÈRES» Fiche pédagogique élaborée par Lidia SARAT «LES QUADRILATÈRES» Fiche pédagogique élaborée par Lidia SARAT 1. Définition : un quadrilatère est une figure géométrique qui a 4 côtés 2. Définition : un trapèze est un quadrilatère qui a deux côtés parallèles.

Plus en détail

Ex 1 : Complète avec les mots de la leçon a)on le représente par une croix : c est CONNAITRE LE VOCABULAIRE ET LE CODAGE EN GEOMETRIE.

Ex 1 : Complète avec les mots de la leçon a)on le représente par une croix : c est CONNAITRE LE VOCABULAIRE ET LE CODAGE EN GEOMETRIE. CONNAITRE LE VOCABULAIRE ET LE CODAGE EN GEOMETRIE La géométrie exige rigueur et précision dans le vocabulaire utilisé. Une droite est formée par un nombre infini de points alignés : on ne peut donc pas

Plus en détail

Bloc 11 : La géométrie

Bloc 11 : La géométrie Bloc 11 : La géométrie Les quadrilatères Carré rectangle parallélogramme 4 côtés égaux 2 hauteurs égales 2 côtés égaux hauteur = côté 2 longueurs égales 2 longueurs égales 2 diagonales égales hauteur =

Plus en détail

EVALUATION DES COMPETENCES MATH - FRANÇAIS. Niveau : adolescent. Mathématiques. Cahier de l'élève

EVALUATION DES COMPETENCES MATH - FRANÇAIS. Niveau : adolescent. Mathématiques. Cahier de l'élève EVALUATION DES COMPETENCES MATH - FRANÇAIS Niveau : adolescent Mathématiques Cahier de l'élève Nom : Prénom : Classe : U.L.I.S. Etablissement : Lycée Brossaud Blancho Saint-Nazaire J'ai besoin d'un crayon,

Plus en détail

SOMMAIRE ACTIVITÉS GÉOMÉTRIE CE2

SOMMAIRE ACTIVITÉS GÉOMÉTRIE CE2 SOMMAIRE ACTIVITÉS GÉOMÉTRIE CE2 1. Le repérage (quadrillage) 2. Le repérage (cases et nœuds) 3. Le repérage (les coordonnées) 4. Le repérage (les coordonnées) 5. Le repérage (agrandissement de figures)

Plus en détail

Géom1. Connaitre le vocabulaire et les instruments géométriques

Géom1. Connaitre le vocabulaire et les instruments géométriques Connaitre le vocabulaire et les instruments géométriques Géom1 En géométrie, il faut être attentif lors de la lecture des consignes et très précis quand on utilise le vocabulaire. La règle sert à mesurer,

Plus en détail

Une droite ne s arrête jamais. On peut la prolonger à l infini.

Une droite ne s arrête jamais. On peut la prolonger à l infini. G 1 POINTS, LIGNES ET SEGMENTS Une ligne peut être droite ou courbe. Une droite ne s arrête jamais. On peut la prolonger à l infini. On la nomme par une lettre entre parenthèses. ( ) es points situés sur

Plus en détail

Pour se repérer et pour dire à quel endroit se trouvent les choses, on utilise un vocabulaire précis.

Pour se repérer et pour dire à quel endroit se trouvent les choses, on utilise un vocabulaire précis. Géométrie Se repérer dans l espace Gé1 Pour se repérer et pour dire à quel endroit se trouvent les choses, on utilise un vocabulaire précis. Géométrie Se repérer dans l espace Gé1 Pour se repérer et pour

Plus en détail

SOMMAIRE... SOMMAIRE... SOMMAIRE... SOMMAIRE... SOMMAIRE... SOMMAIRE... GÉOMÉTRIE

SOMMAIRE... SOMMAIRE... SOMMAIRE... SOMMAIRE... SOMMAIRE... SOMMAIRE... GÉOMÉTRIE SOMMIRE... SOMMIRE... SOMMIRE... SOMMIRE... SOMMIRE... SOMMIRE... GÉOMÉTRIE GEOM 0 Points, lignes, droites et segments GEOM 1 Tableaux et quadrillages GEOM 2 Reproduire une figure GEOM 3 ercle et compas

Plus en détail

Géom1. Connaître le vocabulaire et le codage en géométrie. La géométrie exige rigueur et précision dans le vocabulaire utilisé.

Géom1. Connaître le vocabulaire et le codage en géométrie. La géométrie exige rigueur et précision dans le vocabulaire utilisé. Connaître le vocabulaire et le codage en géométrie Géom1 La géométrie exige rigueur et précision dans le vocabulaire utilisé. Une droite est formée par un nombre infini de points alignés : on ne peut donc

Plus en détail

GÉOMÉTRIE. Ecole santa cruz M.Cohen

GÉOMÉTRIE. Ecole santa cruz M.Cohen GÉOMÉTRIE GM.01 Objets et notations GM.02 Les instruments de dessin GM.03 Tracer 2 droites perpendiculaires GM.04 Tracer 2 droites parallèles GM.05 Les polygones GM.06 Les quadrilatères GM.07 Les carrés

Plus en détail

GEOMETRIE. Points, lignes, droites et segments Tableaux et quadrillages Reproduire une figure Cercle et compas Construire une figure géométrique

GEOMETRIE. Points, lignes, droites et segments Tableaux et quadrillages Reproduire une figure Cercle et compas Construire une figure géométrique SOMMIRE... SOMMIRE... SOMMIRE... SOMMIRE... SOMMIRE... SOMMIRE... GEOMETRIE GEOM 0 GEOM 1 GEOM 2 GEOM 3 GEOM 4 GEOM 5 GEOM 6 GEOM 7 GEOM 8 GEOM 9 GEOM 10 GEOM 11 GEOM 12 GEOM 13 Points, lignes, droites

Plus en détail

Géométrie Cycle 3. Aide-mémoire. J appartiens à : version 1.0. Sommaire. 1. Distinguer : point, droite, segment, demi-droite, alignement de points

Géométrie Cycle 3. Aide-mémoire. J appartiens à : version 1.0. Sommaire. 1. Distinguer : point, droite, segment, demi-droite, alignement de points ide-mémoire Géométrie Cycle 3 Sommaire 1. Distinguer : point, droite, segment, demi-droite, alignement de points 2. Mesurer et tracer des segments 3. Se repérer dans un quadrillage 4. Repérer les angles

Plus en détail

PARALLELES ET PERPENDICULAIRES

PARALLELES ET PERPENDICULAIRES PARALLELES ET PERPENDICULAIRES Je sais définir et construire deux droites perpendiculaires Je sais définir et construire deux droites parallèles Je comprends les propriétés permettant de démontrer que

Plus en détail

S12. Autour des POLYGONES Quadrilatères et polygones réguliers convexes. Un quadrilatère qui a deux côtés parallèles est un parallélogramme

S12. Autour des POLYGONES Quadrilatères et polygones réguliers convexes. Un quadrilatère qui a deux côtés parallèles est un parallélogramme CRPE Mise en route 1. Trouver l intrus. Justifier. 2. Voici des polygones convexes S12. Autour des POLYGONES Quadrilatères et polygones réguliers convexes 1 2 3 4 5 6 7 8 Lesquels sont : des quadrilatères?

Plus en détail

A d2. A d2. A d2 GEOM 1 : TRACER DES DROITES PARALLELES ET PERPENDICULAIRES 1. a) Trace une droite d3 perpendiculaire à d2 et passant par le point A

A d2. A d2. A d2 GEOM 1 : TRACER DES DROITES PARALLELES ET PERPENDICULAIRES 1. a) Trace une droite d3 perpendiculaire à d2 et passant par le point A GEOM 1 : TRACER DES DROITES PARALLELES ET PERPENDICULAIRES 1 a) Trace une droite d3 perpendiculaire à d2 et passant par le point A et coupant la droite d1. b) Que peux-tu dire des droites d1 et d2? Des

Plus en détail

OBJETS ET NOTATIONS. Une ligne est une suite de points qui ne s'arrête pas. On la trace sans lever le crayon. une ligne peut être courbe :

OBJETS ET NOTATIONS. Une ligne est une suite de points qui ne s'arrête pas. On la trace sans lever le crayon. une ligne peut être courbe : GÉOMÉTRIE GM.01 Objets et notations GM.02 Les instruments de dessin GM.03 Tracer 2 droites perpendiculaires GM.04 Tracer 2 droites parallèles GM.05 Les polygones GM.06 Les quadrilatères GM.07 Les carrés

Plus en détail

CHAPITRE 2 : LES PROPRITES DES FIGURES PLANES

CHAPITRE 2 : LES PROPRITES DES FIGURES PLANES CHAPITRE 2 : LES PROPRITES DES FIGURES PLANES 1. Le carré : le carré est un quadrilatère qui a les côtés égaux et les angles droits. es propriétés : a) Quatre côtés de même longueur ; b) Quatre angles

Plus en détail

Chapitre 10 - Notions de géométrie

Chapitre 10 - Notions de géométrie Chapitre 10 - Notions de géométrie Activité 1 Exercice 1 Exercice 2 x y a b c x // // S y // // S a // // S b // // S c S S S S // Exercice 3 MATHE 1 re année - Solutionnaire, http://maths.deboeck.com

Plus en détail

I. Les figures élémentaires :

I. Les figures élémentaires : I. Les figures élémentaires : A. Les triangles : Triangle isocèle Un triangle isocèle est un triangle qui a deux de ses côtés de. un triangle est isocèle les deux côtés issus du sommet principal ont. un

Plus en détail

Chap 5 : A la règle, à l équerre, au compas et au rapporteur

Chap 5 : A la règle, à l équerre, au compas et au rapporteur Chap 5 : A la règle, à l équerre, au compas et au rapporteur A la fin du chapitre, tu dois être capable de : 6 G 7 : Tracer, par un point donné, la perpendiculaire ou la parallèle à une droite donnée (usage

Plus en détail

GEOMETRIE ENTRAINEMENT TRANSFERT RECHERCHE NIVEAU

GEOMETRIE ENTRAINEMENT TRANSFERT RECHERCHE NIVEAU Fiche n 7 1 ompétences visées : Identifier des figures. Mets une croix rouge dans les carrés, une croix verte dans les triangles et une croix bleue dans les rectangles. Fiche n 6 2 ompétences visées :

Plus en détail

Petit dictionnaire de géométrie plane

Petit dictionnaire de géométrie plane Petit dictionnaire de géométrie plane Le point 'est l'élément de base de la géométrie. eux droites qui se coupent définissent un point à leur intersection. xemple : Les droites (a) et (b) définissent le

Plus en détail

12.2 Les solides L aire des prismes et des pyramides Le cylindre et l aire des solides décomposables Les mesures manquantes

12.2 Les solides L aire des prismes et des pyramides Le cylindre et l aire des solides décomposables Les mesures manquantes 12.2 Les solides 12.3 L aire des prismes et des pyramides 14.4 Le cylindre et l aire des solides décomposables 12.4 Les mesures manquantes Notes de cours Mathématiques 2 e secondaire Mars et avril 2016

Plus en détail

Le cercle. Objectif: Tracer un cercle.

Le cercle. Objectif: Tracer un cercle. Le cercle Géométrie Niveau 1 Objectif: Tracer un cercle. *Termine les cercles dont on a commencé le tracé: *Utilise ton compas pour reproduire ce dessin. Les points noirs t indiquent où tu dois poser la

Plus en détail

Parallélogrammes Particuliers

Parallélogrammes Particuliers Parallélogrammes Particuliers I) Définitions et propriétés Les parallélogrammes particuliers étudiés sont les rectangles, les carrés et les losanges. 1) Le rectangle a) Définition : Un rectangle est un

Plus en détail

MATHÉMATIQUES GÉOMÉTRIE Alignements Placer des points alignés, vérifier l'alignement de points. Prénom :... Date :...

MATHÉMATIQUES GÉOMÉTRIE Alignements Placer des points alignés, vérifier l'alignement de points. Prénom :... Date :... MATHÉMATIQUES GÉOMÉTRIE Alignements Placer des points alignés, vérifier l'alignement de points POINTS ALIGNÉS Trouve trois points alignés et trace une ligne droite pour les relier. Place cinq points alignés.

Plus en détail

EVALUATION CM2 / 6 ème MATHEMATIQUES ANNEE 200../200..

EVALUATION CM2 / 6 ème MATHEMATIQUES ANNEE 200../200.. EVALUATION CM2 / 6 ème MATHEMATIQUES ANNEE 200../200.. Ecoles du secteur du Collège Charlemagne Nom : Prénom : Nom du maître : Ecole : Commune : Lire et écrire des nombres 1) Ecris sous la dictée :....

Plus en détail

TRIANGLES Inégalité triangulaire : Th Dans un triangle, la longueur de chaque côté est inférieure à la somme des longueurs des deux autres côtés.

TRIANGLES Inégalité triangulaire : Th Dans un triangle, la longueur de chaque côté est inférieure à la somme des longueurs des deux autres côtés. TRIANGLES Inégalité triangulaire : Th Dans un triangle, la longueur de chaque côté est inférieure à la somme des longueurs des deux autres côtés. Th Trois longueurs étant données, Si la plus grande est

Plus en détail

ÉPREUVE EXTERNE COMMUNE SOLIDES ET FIGURES ÉVEIL. Livret 7 Jeudi 19 juin FRANÇAIS SAVOIR ÉCOUTER SAVOIR ÉCRIRE FRANÇAIS MATHÉMATIQUES

ÉPREUVE EXTERNE COMMUNE SOLIDES ET FIGURES ÉVEIL. Livret 7 Jeudi 19 juin FRANÇAIS SAVOIR ÉCOUTER SAVOIR ÉCRIRE FRANÇAIS MATHÉMATIQUES ÉPREUVE EXTERNE COMMUNE CEB2014 SOLIDES ET FIGURES Livret 7 Jeudi 19 juin FRANÇAIS FRANÇAIS SAVOIR ÉCOUTER SAVOIR SAVOIR ÉCRIRE ÉCOUTER SAVOIR ÉCRIRE FRANÇAIS MATHÉMATIQUES SAVOIR ÉCOUTER SAVOIR SOLIDES

Plus en détail

Géométrie EUCLIDIENNE

Géométrie EUCLIDIENNE MPM1D - Module 4 Géométrie EUCLIDIENNE Fiches d observation de l élève Géométrie euclidienne - Activité d exploration avec le Cybergéomètre Nom : Date : Diagramme Mes observations et mes conclusions Leçon

Plus en détail

6 ème COURS : droites perpendiculaires et droites parallèles.

6 ème COURS : droites perpendiculaires et droites parallèles. 1 Droites sécantes Définition : deux droites sécantes sont deux droites qui ont un seul point commun. Ce point commun est appelé point d intersection des deux droites. Les deux droites (d1) et (d2) se

Plus en détail

Un point est toujours représenté par deux lignes qui se croisent. Il y a trois cas : Le point se situe ici

Un point est toujours représenté par deux lignes qui se croisent. Il y a trois cas : Le point se situe ici PREIERES NOTIONS DE GEOETRIE 1 POINT, DROITE, DEI-DROITE, SEGENT : a. Point : Un point est toujours représenté par deux lignes qui se croisent. Il y a trois cas : Le point se situe ici Un point n a pas

Plus en détail

GÉOMÉTRIE PLANE. On écrit : AB = 4cm et pas [AB] = 4cm On écrit : (AB) l (CD) et pas [AB] l [CD].

GÉOMÉTRIE PLANE. On écrit : AB = 4cm et pas [AB] = 4cm On écrit : (AB) l (CD) et pas [AB] l [CD]. GÉOMÉTRIE PLANE Langage géométrique : notations et vocabulaire. [ ] = segment [AB] = segment d extrémités A et B. AB = longueur du segment AB (ou parfois la distance de A à B). ( ) = droite (AB) = droite

Plus en détail

Déclic Correction Construire-02. Déclic Correction Construire Réponds aux questions suivantes en écrivant des phrases

Déclic Correction Construire-02. Déclic Correction Construire Réponds aux questions suivantes en écrivant des phrases éclic orrection onstruire-01 1. Trace un carré de 8 cm de cöté. Nomme chacun des sommets de ce carré. 2. Trace les diagonales [] et [] du carré. 3. Le point est le point d'intersection de ces deux diagonales.

Plus en détail

PUZZLE À 3 PIÈCES 1. DESCRIPTION 2. UTILISATIONS

PUZZLE À 3 PIÈCES 1. DESCRIPTION 2. UTILISATIONS 1 PUZZLE À 3 PIÈCES 1. DESCRIPTION Ce jeu est construit à partir du découpage d un carré en 3 pièces à l aide de deux segment (l un joignant le milieu d un côté à l un des deux sommets opposés, l autre

Plus en détail

Les quadrilatères. 1 Polygones Définition Différentes sortes de polygones... 2

Les quadrilatères. 1 Polygones Définition Différentes sortes de polygones... 2 ERNIÈRE IMPRESSIN LE 27 juin 2016 à 10:06 Les quadrilatères Table des matières 1 Polygones 2 1.1 éfinition................................. 2 1.2 ifférentes sortes de polygones..................... 2 2

Plus en détail

Construction de quadrilatères

Construction de quadrilatères Construction de quadrilatères Au cours de cette activité, l élève construit différents quadrilatères à l aide de divers outils. Pistes d observation L élève : connaît le bon usage d un rapporteur; mesure

Plus en détail

Droite et segment B B A A. une droite. un segment. C est un trait qui passe par deux points et qui va à l infini. On ne peut pas mesurer une droite.

Droite et segment B B A A. une droite. un segment. C est un trait qui passe par deux points et qui va à l infini. On ne peut pas mesurer une droite. Droite et segment une droite un segment B B A A C est un trait qui passe par deux points et qui va à l infini. On ne peut pas mesurer une droite. C est la partie de la droite qui est délimitée par deux

Plus en détail

Symétrie centrale - Exercices

Symétrie centrale - Exercices Symétrie centrale - Exercices Exercice 1 On considère le triangle ABC tel que AB = 4, 5 cm, AC = 6cm et BC = 4cm. a. Construire ce triangle. b. Tracer les symétriques A et C de A et C par rapport à B.

Plus en détail

COURS. Demi-droite d origine Segment d extrémités Droite A et B (AB) ou (d) [AB) [AB]

COURS. Demi-droite d origine Segment d extrémités Droite A et B (AB) ou (d) [AB) [AB] EC 4A : ELEMENTS DE MATHEMATIQUES PARALLELISME, PERPENDICULARITE, FIGURES PLANES ELEMENTAIRES COURS Objectifs du chapitre : Reconnaître et construire les figures de base de la géométrie Caractériser, reconnaître

Plus en détail

SECTION 5 : LES SOLIDES Leçon 11 : L identification des solides. Aide-mémoire

SECTION 5 : LES SOLIDES Leçon 11 : L identification des solides. Aide-mémoire SECTION 5 : LES SOLIDES Leçon 11 : L identification des solides Aide-mémoire Les solides sont les figures qui ont trois dimensions : une longueur, une largeur et une hauteur. Les propriétés des solides

Plus en détail

GÉOMÉTRIE. Définition Méthode de tracé avec la règle et l'équerre GM.04 Tracer 2 droites parallèles

GÉOMÉTRIE. Définition Méthode de tracé avec la règle et l'équerre GM.04 Tracer 2 droites parallèles GÉOMÉTRIE GM.0 Objets et notations Le point La ligne et la droite Le segment Intersection GM.0 Les instruments de dessin La règle L'équerre Le compas Le calque Le gabarit GM.0 Tracer droites perpendiculaires

Plus en détail

Géométrie. Quadrilatères, constructions et mesures

Géométrie. Quadrilatères, constructions et mesures Géométrie Quadrilatères, constructions et mesures 1. Quadrilatères et caractéristiques Un quadrilatère est une figure plane qui a quatre côtés, quatre angles et quatre sommets: Il existe différentes sortes

Plus en détail

Pyramide et cône de révolution

Pyramide et cône de révolution Pyramide et cône de révolution C H A P I T R E 13 Énigme du chapitre. On dispose des boules en forme de tétraèdre comme dans l image ci-dessus. Pour faire une pyramide à un étage, on a besoin d une boule,

Plus en détail

Thème N 12: SYMETRIE AXIALE

Thème N 12: SYMETRIE AXIALE Thème N 12: SYMETRIE XILE la fin du thème, tu dois savoir : onstruire le symétrique d un point, d une droite, d un segment, d un cercle (que l axe de symétrie coupe ou non la figure). onstruire ou compléter

Plus en détail

TAGE 2 / TAGE MAGE SOUS-TEST : CALCUL

TAGE 2 / TAGE MAGE SOUS-TEST : CALCUL TAGE 2 / TAGE MAGE SOUS-TEST : CALCUL GEOMETRIE AUCUN DOCUMENT N EST AUTORISE CALCULATRICES INTERDITES Le sujet a été réalisé par l équipe pédagogique de Mes Concours Blancs et n engage en rien le concours

Plus en détail

Attention! Pour être droit, l angle doit longer en même temps les deux plus petits côtés de ton équerre!

Attention! Pour être droit, l angle doit longer en même temps les deux plus petits côtés de ton équerre! Deux droites sont perpendiculaires si elles se coupent en formant un angle droit. On peut vérifier que deux droites sont perpendiculaires en utilisant une équerre. (d2) (d2) ttention! Pour être droit,

Plus en détail

Évaluation géométrie - mesure CM1 N 1

Évaluation géométrie - mesure CM1 N 1 Évaluation géométrie - mesure CM1 N 1 Exercice 1 Trace le segment [AU] = 4 cm qui est perpendiculaire à [AB] passant par A. Marque le point I milieu de [AB]. perpendiculaires Trace le segment [IP] = 3

Plus en détail

Chapitre 11 : Symétrie axiale.

Chapitre 11 : Symétrie axiale. Chapitre 11 : Symétrie axiale. I Approche expérimentale. Définition : Deux figures sont symétriques par rapport à une droite si, en pliant suivant cette droite, les deux figures se superposent. Cette droite

Plus en détail

Symétrie centrale: AB = A'B' Figures symétriques

Symétrie centrale: AB = A'B' Figures symétriques Symétrie centrale: Figures symétriques ide mémoire Géométrie 5 ème Le symétrique d'un segment par rapport à un point est un segment de même longueur. La symétrie centrale conserve les longueurs. ' = ''

Plus en détail

I Définition. Un quadrilatère est une figure constituée de quatre côtés. Le quadrilatère ABCD a : Quatre sommets : les points A, B, C et D.

I Définition. Un quadrilatère est une figure constituée de quatre côtés. Le quadrilatère ABCD a : Quatre sommets : les points A, B, C et D. QUADRILATERES I Définition Un quadrilatère est une figure constituée de quatre côtés. Le quadrilatère ABCD a : Quatre sommets : les points A, B, C et D. Quatre côtés : les segments [AB], [BC], [CD] et

Plus en détail

Chapitre 11 Géométrie 4. Figures usuelles

Chapitre 11 Géométrie 4. Figures usuelles I : Quelques éfinitions hapitre 11 Géométrie 4 Figures usuelles Nous avons vu au premier chapitre de géométrie la définition d'un segment. Voici donc quelques définitions supplémentaires: Ligne risée:

Plus en détail

Progression des activités géométriques au cycle 3 (programmes 2002)

Progression des activités géométriques au cycle 3 (programmes 2002) Progression des activités géométriques au cycle 3 (programmes 2002) Vocabulaire spécifique CE2 CM Repérage, utilisation de plans, de cartes Repérer une case ou un point sur un quadrillage Ecrire les coordonnées

Plus en détail

SOMMAIRE. Fiche 2 : Démontrer que deux droites sont perpendiculaires. Fiche 6 : Démontrer qu un quadrilatère est un parallélogramme

SOMMAIRE. Fiche 2 : Démontrer que deux droites sont perpendiculaires. Fiche 6 : Démontrer qu un quadrilatère est un parallélogramme SOMMAIRE Fiche 1 : Démontrer que deux droites sont parallèles Fiche 2 : Démontrer que deux droites sont perpendiculaires Fiche 3 : Démontrer qu un triangle est équilatéral Fiche 4 : Démontrer qu un triangle

Plus en détail

On dit que deux droites sont perpendiculaires si elles se coupent en formant un angle droit.

On dit que deux droites sont perpendiculaires si elles se coupent en formant un angle droit. Géométrie Les droites perpendiculaires Gé11 n dit que deux droites sont perpendiculaires si elles se coupent en formant un angle droit. n peut vérifier que deux droites sont perpendiculaires en utilisant

Plus en détail

Sommaire. Séquence 1 MATHÉMATIQUES

Sommaire. Séquence 1 MATHÉMATIQUES Sommaire Séquence 1 MATHÉMATIQUES Séance 1 : Numération - Les fractions Séance 2 : Calcul - Multiplier un nombre à 2 chiffres par un nombre à 2 chiffres Séance 3 : Mesures - Le périmètre du carré et du

Plus en détail

Parallélogrammes particuliers

Parallélogrammes particuliers Parallélogrammes particuliers C H A P I T R E 16 Énigme du chapitre. Construire un parallélogramme ABCD de périmètre 36 cm de périmètre et dont la longueur AB est le double de la longueur BC. Objectifs

Plus en détail

Construction de solides

Construction de solides Le matériel pour construire les solides est composé de 5 figures planes: *des carrés *des rectangles *des triangles rectangles *des triangles isocèles *des triangles équilatéraux. 1 Redonne leurs noms

Plus en détail

Droites, cercles et quadrilatères

Droites, cercles et quadrilatères Droites, cercles et quadrilatères «Des outils pour les démonstrations» I Droites et segments 1) Droites Propriété 1 : Par deux points distincts A et B, il passe une seule droite ; on peut la noter (AB).

Plus en détail

ÉVALUATION EXTERNE NON CERTIFICATIVE 2011 MATHÉMATIQUES. Grandeurs Solides et figures P É R I M È T R E PERPENDICULAIRE POLYGONE PROPRIÉTÉ

ÉVALUATION EXTERNE NON CERTIFICATIVE 2011 MATHÉMATIQUES. Grandeurs Solides et figures P É R I M È T R E PERPENDICULAIRE POLYGONE PROPRIÉTÉ S2 P É R I M È T R E PERPENDICULAIRE POLYGONE PROPRIÉTÉ ÉVALUATION EXTERNE NON CERTIFICATIVE 2011 MATHÉMATIQUES Grandeurs Solides et figures 2 e ANNÉE DE L ENSEIGNEMENT SECONDAIRE DIFFÉRENCIÉE NOM BRE

Plus en détail

Solides et patrons. 2 Solides de révolution Le cylindre Le cône La sphère... 5

Solides et patrons. 2 Solides de révolution Le cylindre Le cône La sphère... 5 DERNIÈRE IMPRESSION LE 30 juin 2016 à 15:12 Solides et patrons Table des matières 1 Les polyèdres 2 1.1 Définition................................. 2 1.2 Représentation d un polyèdre......................

Plus en détail

Chap 5 : A la règle, à l équerre, au compas et au rapporteur

Chap 5 : A la règle, à l équerre, au compas et au rapporteur Chap 5 : A la règle, à l équerre, au compas et au rapporteur A la fin du chapitre, tu dois être capable de : 6 G 7 : Tracer, par un point donné, la perpendiculaire ou la parallèle à une droite donnée (usage

Plus en détail

Mathématiques SOLIDES

Mathématiques SOLIDES SOLIDES I. Prismes 1. Définitions Prisme Un prisme est un polyèdre délimité par : - deux faces polygonales isométriques situées dans des plans parallèles. Ce sont les bases du prisme. - des parallélogrammes.

Plus en détail

Polyèdre régulier: Toutes ses faces sont congruentes et ses angles sont congrus (tétraèdre, hexaèdre, octaèdre, dodécaèdre et icosaèdre).

Polyèdre régulier: Toutes ses faces sont congruentes et ses angles sont congrus (tétraèdre, hexaèdre, octaèdre, dodécaèdre et icosaèdre). Définitions Surface: Figure à 2 dimensions. Elle n'a pas d'épaisseur. Solide: Figure à 3 dimensions. Corps rond : Solide qui contient au moins une surface courbée. Polygone: Surface plane qui est fermée.

Plus en détail

NOM : DELAIS :.. PRENOM :... :.. CLASSE : :.. LES ANGLES AUTOEVALUATION

NOM : DELAIS :.. PRENOM :... :.. CLASSE : :.. LES ANGLES AUTOEVALUATION NOM : DELAIS :.. PRENOM :... :.. CLASSE : :.. CTM N 7 LES ANGLES AUTOEVALUATION TRAVAIL J ai toujours mon CTM au complet avec moi Je me munis du matériel nécessaire à la réalisation de la tâche Je respecte

Plus en détail

Géométrie. Polygones à plus de 4 côtés, polygones réguliers inscrits dans des cercles, constructions et mesures

Géométrie. Polygones à plus de 4 côtés, polygones réguliers inscrits dans des cercles, constructions et mesures Géométrie Polygones à plus de 4 côtés, polygones réguliers inscrits dans des cercles, constructions et mesures 1. Polygones Un polygone est une figure plane limitée uniquement par des segments, une figure

Plus en détail

Polyèdres. 1. Prisme. Solides de Platon. 8. Octaèdre 9. Dodécaèdre 10. Icosaèdre 11. Dualité - Cinq solides de Platon

Polyèdres. 1. Prisme. Solides de Platon. 8. Octaèdre 9. Dodécaèdre 10. Icosaèdre 11. Dualité - Cinq solides de Platon Les cinq solides de Platon : tétraèdre, cube, octaèdre, dodécaèdre, icosaèdre ; et sept autres solides archimédiens. Sommaire 1. Prisme de base triangulaire 2. Prisme dont la base est un parallélogramme

Plus en détail

Clé de correction. en Mathématique. Section 5 : Les propriétés de diverses figures géométriques. Révision des préalables

Clé de correction. en Mathématique. Section 5 : Les propriétés de diverses figures géométriques. Révision des préalables Mathématique FBC Révision des préalables au cours MAT-2101 101-3 Révision des préalables en Mathématique MAT 2101 101-3 Modélisation algébrique Section 5 : Les propriétés de diverses figures géométriques

Plus en détail

Ce document vous permettra de réviser certaines notions mathématiques préalables au cours MAT

Ce document vous permettra de réviser certaines notions mathématiques préalables au cours MAT Mathématique FBC Révision des préalables au cours MAT-2101 101-3 Révision des préalables en Mathématique MAT 2101 101-3 Modélisation algébrique Ce document vous permettra de réviser certaines notions mathématiques

Plus en détail

LE PÉRIMÈTRE DE FIGURES SIMPLES MATHÉMATIQUES

LE PÉRIMÈTRE DE FIGURES SIMPLES MATHÉMATIQUES LE PÉRIMÈTRE DE FIGURES SIMPLES MATHÉMATIQUES CAHIER D EXERCICES Les Services de la formation professionnelle et de l éducation des adultes FP9803 C201206 2 TABLE DES MATIÈRES 1 EXPLICATION 3 Page 1.1

Plus en détail

5. Réponds aux questions suivantes en écrivant des phrases sous la figure que tu viens de coller.

5. Réponds aux questions suivantes en écrivant des phrases sous la figure que tu viens de coller. Déclic Construire-01 1. Trace un carré ABCD de 8 cm de côté. Nomme chacun des sommets de ce carré. 2. Trace les diagonales [AC] et [BD] du carré. 3. Le point O est le point d'intersection de ces deux diagonales.

Plus en détail

Cours configurations du plan

Cours configurations du plan I Polygones a) Polygones particuliers triangles Propriété : La somme des angles d un triangle est égale à 180. Définition : Un triangle isocèle a deux côtés de même longueur. Propriétés caractéristiques

Plus en détail

Vers le PARALLÉLOGRAMME

Vers le PARALLÉLOGRAMME Vers le PRLLÉLOGRMME es quadrilatères ont des propriétés particulières. près avoir effectué les mesures nécessaires, trouve ces particularités après avoir effectué les mesures nécessaires et indique les

Plus en détail

PROGRESSION POSSIBLE POUR LE COURS DE GEOMETRIE DANS LE CYCLE 10-12

PROGRESSION POSSIBLE POUR LE COURS DE GEOMETRIE DANS LE CYCLE 10-12 LES LIGNES Pré-requis PROGRESSION POSSIBLE POUR LE COURS DE GEOMETRIE DANS LE CYCLE 10-12 Sous-compétences à développer Identifier des lignes : Horizontales Verticales Obliques Brisées Courbes : ouvertes

Plus en détail

Activité 1 : La machine à prismes

Activité 1 : La machine à prismes 161 Activité 1 : La machine à prismes 1. Prends une feuille de papier A puis réalise les pliages nécessaires pour obtenir les marques en pointillés de la figure ci-contre. 2. Repasse en rouge les marques

Plus en détail

Cours 6ème Chapitre VIII. La symétrie axiale. Définition 1 : Deux figures sont symétriques par rapport à une droite (d) lorsque par

Cours 6ème Chapitre VIII. La symétrie axiale. Définition 1 : Deux figures sont symétriques par rapport à une droite (d) lorsque par La symétrie axiale I. Figures symétriques Définition 1 : Deux figures sont symétriques par rapport à une droite (d) lorsque par pliage autour de la droite (d), elles se superposent. Ex : (d) (F 1 ) (F

Plus en détail

Étymologiquement, le mot «polygone» vient du grec «polus» qui signifie «nombreux», et «gônia» qui signifie «angle».

Étymologiquement, le mot «polygone» vient du grec «polus» qui signifie «nombreux», et «gônia» qui signifie «angle». 2 Quadrilatères Ce deuxième chapitre 4 de géométrie plane sera consacré à l étude des quadrilatères d un point de vue théorique et d un point de vue didactique, par l intermédiaire d extraits de manuels,

Plus en détail

Printemps des Sciences : activité encadrée

Printemps des Sciences : activité encadrée 1 Printemps des Sciences : activité encadrée LA GÉOMÉTRIE EN PIÈCES" Résumé - Réalisation de puzzles à 2 et 3 dimensions pour créer des figures planes et solides ; Utilisation de puzzles pour établir les

Plus en détail

Bloc 11 : La géométrie

Bloc 11 : La géométrie Bloc 11 : La géométrie Trouvez le périmètre : 1. D un carré de 4 cm de côté : 4 x 4 cm = 16 cm. d un losange de 10 cm de côté :4 x 10 cm = 40 cm 3. d un rectangle de 4 cm par 6 cm : ( x 4) + ( x 6) = 0

Plus en détail

CST. Mathématiques CST - Figures planes équivalentes - Figures planes équivalentes. Deux figures planes sont équivalentes si elles ont la même aire.

CST. Mathématiques CST - Figures planes équivalentes - Figures planes équivalentes. Deux figures planes sont équivalentes si elles ont la même aire. - Figures planes équivalentes - Figures planes équivalentes Deux figures planes sont équivalentes si elles ont la même aire. Ex. : A A D 4 cm 2 cm B 3 cm C B 3 cm C A = A = A = b x h 2 3 x 4 2 2 A = b

Plus en détail

OBJETS ET NOTATIONS. Une ligne est une suite de points qui ne s'arrête pas. On la trace sans lever le crayon. une ligne peut être courbe :

OBJETS ET NOTATIONS. Une ligne est une suite de points qui ne s'arrête pas. On la trace sans lever le crayon. une ligne peut être courbe : GÉOMÉTRIE GM.0 Objets et notations GM.0 Les instruments de dessin GM.0 Tracer droites perpendiculaires GM.0 Tracer droites parallèles GM.05 Les polygones GM.06 Les quadrilatères GM.07 Les carrés GM.08

Plus en détail

Progression des apprentissages en mathématique : quelques précisions

Progression des apprentissages en mathématique : quelques précisions en mathématique : quelques précisions Géométrie/Géométrie p. 35, n o A-1 Repérage Effectuer des activités de repérage sur un axe, selon les nombres à l étude p. 35, n o A-2 Repérer un point dans le plan

Plus en détail

- Pyramide régulière à base carrée (type Khéops) Construis la pyramide de sommet I et de base EFGH. - Pyramides non régulières à base carrée

- Pyramide régulière à base carrée (type Khéops) Construis la pyramide de sommet I et de base EFGH. - Pyramides non régulières à base carrée S PYRMIS Je te propose de construire des pyramides en te servant du cube G qui est supposé transparent. ttention, les pyramides ne sont pas transparentes : tu dois donc bien repérer les arêtes cachées.

Plus en détail

CHAPITRE 16 : GEOMETRIE DANS L ESPACE

CHAPITRE 16 : GEOMETRIE DANS L ESPACE CHAPITRE 16 : GEOMETRIE DANS L ESPACE Ce chapitre rappelle les notions de base pour connaitre le vocabulaire et les propriétés attachées aux solides, pour savoir lire les représentations planes de ces

Plus en détail

De la symétrie centrale au parallélogramme

De la symétrie centrale au parallélogramme La géométrie en 5 doit nous permettre de passer de l identification perceptive (la reconnaissance par la vue) de figures et de configurations à leur caractérisation par des propriétés (passage du dessin

Plus en détail

, en déduire la nature du triangle ORS.

, en déduire la nature du triangle ORS. Groupe seconde chance Feuille d exercices n 6 Exercice On appelle triangles pythagoriciens les triangles rectangles dont les trois côtés ont pour mesure un nombre entier. Soit a, b, c les mesures des côtés

Plus en détail

MATHÉMATIQUES. 2 e ANNÉE DE L ENSEIGNEMENT SECONDAIRE COMMUNE ET COMPLÉMENTAIRE

MATHÉMATIQUES. 2 e ANNÉE DE L ENSEIGNEMENT SECONDAIRE COMMUNE ET COMPLÉMENTAIRE S2 P É R I M È T R E PERPENDICULAIRE POLYGONE PROPRIÉTÉ ÉVALUATION EXTERNE NON CERTIFICATIVE 2011 MATHÉMATIQUES Grandeurs Solides et figures 2 e ANNÉE DE L ENSEIGNEMENT SECONDAIRE COMMUNE ET COMPLÉMENTAIRE

Plus en détail

Les faces latérales sont représentées par des parallélogrammes, mais dans la réalité, ce sont des rectangles.

Les faces latérales sont représentées par des parallélogrammes, mais dans la réalité, ce sont des rectangles. Chapitre 8 GEOMETRIE GEOMETRIE DANS L ESPACE 1 ) Solides usuels de l espace le cube La face avant et la face arrière sont représentées par des carrés. Les faces latérales sont représentées par des parallélogrammes,

Plus en détail

SOMMAIRE TRACES ÉCRITES NUMÉRATION CE2

SOMMAIRE TRACES ÉCRITES NUMÉRATION CE2 SOMMAIRE TRACES ÉCRITES NUMÉRATION CE2 1. Comprendre ce que vaut un chiffre 2. Dizaines et centaines 3. Les nombres de 0 à 9 999 4. Utiliser un tableau de numération 5. Comparer des nombres 6. Le double,

Plus en détail